KR100926268B1 - Process and apparatus of four stages biological treatment including combination of pre oxic and post denitrification through none driven internal recycles and submerged membrane filtration for treating sewage and waste water - Google Patents

Process and apparatus of four stages biological treatment including combination of pre oxic and post denitrification through none driven internal recycles and submerged membrane filtration for treating sewage and waste water Download PDF

Info

Publication number
KR100926268B1
KR100926268B1 KR20090002737A KR20090002737A KR100926268B1 KR 100926268 B1 KR100926268 B1 KR 100926268B1 KR 20090002737 A KR20090002737 A KR 20090002737A KR 20090002737 A KR20090002737 A KR 20090002737A KR 100926268 B1 KR100926268 B1 KR 100926268B1
Authority
KR
South Korea
Prior art keywords
tank
aerobic
treatment
treatment tank
membrane
Prior art date
Application number
KR20090002737A
Other languages
Korean (ko)
Inventor
김훈
Original Assignee
호암엔지니어링 주식회사
김훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 호암엔지니어링 주식회사, 김훈 filed Critical 호암엔지니어링 주식회사
Priority to KR20090002737A priority Critical patent/KR100926268B1/en
Application granted granted Critical
Publication of KR100926268B1 publication Critical patent/KR100926268B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2853Anaerobic digestion processes using anaerobic membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: A wastewater processing method and device thereof are provided to reduce processing cost, and to improve removing efficiency of organic compounds, suspended materials, nitrogen and phosphorus while increasing nitrification and denitrification efficiency. CONSTITUTION: A wastewater processing device using biological and submerged membrane filtering comprises an anaerobic process bath(20), a pre-aerobic bath(30), a post-anoxic processing bath(40), a transfer pump facility, a flow rate shock-absorbing distribution tank(60), an aerobic submerged membrane bath(50), a separation membrane device, a residual sludge pulling pump(160), a first transfer line(80), and a second transfer line(90). The anaerobic process bath includes a mixer(100). The separation membrane unit includes a separation unit(130) having a plurality of separation membrane modules and a filtering pump(150). The residual sludge pulling pump removes the absorbed phosphorus while maintaining concentration of microbial mixed liquor. The first transfer line transfers a part of the microbial mixed liquor to the pre-aerobic bath, and the second transfer line transfers a part of the microbial mixed liquor to the anaerobic process bath.

Description

생물학적 처리와 침지형 분리막여과를 이용한 오,폐수 처리 방법 및 그 장치{PROCESS AND APPARATUS OF FOUR STAGES BIOLOGICAL TREATMENT INCLUDING COMBINATION OF PRE OXIC AND POST DENITRIFICATION THROUGH NONE DRIVEN INTERNAL RECYCLES AND SUBMERGED MEMBRANE FILTRATION FOR TREATING SEWAGE AND WASTE WATER}Wastewater treatment method and apparatus using biological treatment and immersion membrane filtration and its apparatus

본 발명은 생물학적 처리와 침지형 분리막여과를 이용한 오,폐수 처리 방법 및 그 장치에 관한 것으로, 더 상세하게는 미세 스크린을 통해 전처리된 하수, 오수 혹은 폐수를 혐기 처리조, 전호기 처리조, 후무산소 처리조, 호기침지막조를 차례로 지나게 하며 내부반송을 위해 무산소 처리조에서 호기분리막 침지조 전단의 유량완충분배탱크로 압송을 한 후 수위차에 의해 유량완충분배탱크에서 직접 혐기처리조로 무동력으로 내부반송하는 라인과 유량완충분배탱크로부터 호기침지막조로 자연유하로 유입된 후 다시 전호기 처리조로 수위차에 의해 무동력으로 반송하는 생물학적 처리 공정과 이러한 생물학적 처리 공정을 거친 미생물혼합액을 분리막에 의해 고액분리하는 막분리 공정을 결합시킨 MBR (Membrane BioReactor) 공정에 의해 유기물과 부유물질, 질소, 인을 고효율로 제거하는 방법 및 그 장치에 관한 것이다.The present invention relates to a method for treating sewage and wastewater using biological treatment and submerged membrane filtration, and more particularly, to an anaerobic treatment tank, an aerobic treatment tank, and an anaerobic treatment tank for sewage, sewage, or wastewater pretreated through a fine screen. After passing through the treatment tank and the aerobic immersion membrane tank, it is pumped from the oxygen-free treatment tank to the flow buffer distribution tank at the front of the aerobic separation membrane immersion tank for internal transport, and then flows directly from the flow buffer distribution tank to the anaerobic treatment tank by water level difference. The solid-liquid separation of the biological treatment process which flows into the aerobic immersion membrane tank from the conveying line and the flow buffer distribution tank into natural flow and then conveys it back to the pre-exposure treatment tank by force level difference and the microbial mixed solution which has undergone such biological treatment process by the separation membrane MBR (Membrane BioReactor) process combined with membrane separation process A method and apparatus for removing nitrogen and phosphorus with high efficiency.

종래의 하폐수의 고도처리공정으로서 생물학적 처리 공정으로는, 침전지로부터 반송되는 활성슬러지로부터 인방출반응이 이루어지는 혐기 공정, 탈질반응이 일어나는 무산소 공정 및 질산화와 유기물 분해 그리고 인의 초과 섭취가 일어나는 호기 공정으로 이루어진 A2O 공법(Anaerobic Anoxic Oxic Process)이 보편적으로 이용되어 왔었다.      The conventional treatment of sewage water is a biological treatment process, which includes an anaerobic process in which phosphorus release reaction is carried out from activated sludge returned from a sedimentation basin, an anoxic process in which denitrification occurs, and an aerobic process in which nitrification and organic matter decomposition and phosphorus excess intake occur. Anaerobic Anoxic Oxic Process has been commonly used.

그러나, 이들 공정은 운전시 미생물의 침강성에 관련된 문제가 있으며, 이는 플럭의 침강성이 악화되어 벌킹이나 거품 발생(foaming) 현상이 발생되면 침전조에서의 미생물 유실이 일어나 처리수의 수질이 나빠지게 되며 장기적으로 반응조의 미생물 농도가 감소하게 되어 처리 효율이 떨어지게 되는 문제점이 있었다.     However, these processes have a problem related to the sedimentation of microorganisms during operation, which causes deterioration of flocculation and deterioration of bulking or foaming, which leads to loss of microorganisms in sedimentation tanks, resulting in poor water quality. As a result, the concentration of microorganisms in the reactor was reduced, resulting in a decrease in treatment efficiency.

근래에 이르러, 생활수준 향상에 따라 수질 및 환경에 대한 관심과 욕구가 점차 높아 가고 있으며, 방류수 수질기준이 점차 강화되어 가고 있는 최근의 추세를 감안하여 오,폐수의 유입수 수질과 미생물의 특성과 관련하여 안정적인 처리가 가능한 MBR공정과 같은 새로운 기술의 도입이 최근 증가하고 있다.      In recent years, the interest and desire for water quality and environment are gradually increasing with the improvement of living standard, and considering the recent trend that the effluent water quality standards are gradually being strengthened, In recent years, the introduction of new technologies, such as the MBR process that enables a stable treatment is increasing.

이 MBR공정의 처리대상 및 성능을 위한 생물처리공정과 관련으로서의 공법의 추이는 3단계로 구분할 수 있는데, 1단계 도입기(1990년 초부터)에서는 질소제거 공정이 없는 일반 활성슬러지법에 단순히 분리막을 결합한 형태였고, 2단계 보급기(1993년 부터)에서는 질소제거를 위한 무산소조를 채택하여 단일 반응조에서 2개 의 반응조로 변한 것이 특징이였으며, 3단계는 생물학적 질소 및 인 제거를 위해 생물반응조 수를 2개에서 3개로 바꾸고 SRT를 25~40일 정도로 낮추는 추세로 변화하고 있다.      In the first stage introduction stage (from the beginning of 1990), the membrane is simply added to the general activated sludge process without the nitrogen removal process. In the second stage of diffusion (since 1993), an oxygen-free tank for nitrogen removal was adopted, and the two stages were changed from a single reactor to two reactors. The trend is changing from dogs to three and lowering the SRT to 25-40 days.

결국, 세계적으로 MBR시스템의 효율 및 안정성, 그리고 신뢰성에서 성능을 인정받고 시장을 점유하고 있는 방식을 정리하면, 생물반응조에 분리막을 침지시켜 흡입여과를 하는 침지형 MBR 방식이며 유기물뿐만 아니라 질소와 인까지 제거할 수 있는 다단 반응조 형태로 변화하고 있는 경향에 있다.      As a result, the global market is recognized for its efficiency, stability, and reliability in terms of efficiency, stability, and reliability. In addition, the membrane is immersed in a bioreactor for suction filtration. There is a tendency to change into a removable multistage reactor type.

그리고 MBR공정은 높은 미생물혼합액을 유지하기 위해서 많은 포기량이 필요하며 이로 인하여 높은 동력비를 발생시키는데 이는 높은 미생물농도에 의해 낮은 혼합조건을 형성하여 결국 불량한 산소전달을 야기하기 때문으로서 MBR공정의 경쟁력 강화를 위해서는 포기방법의 최적화 방안 등이 요구되고 있다.      In addition, MBR process requires a large amount of aeration to maintain high microbial mixture, which generates high energy cost because it forms low mixing condition by high microbial concentration and eventually leads to poor oxygen transfer. To this end, there is a need for an optimization method of the abandonment method.

한편, MBR공정은 특성상 비교적 높은 미생물농도 유지 및 높은 슬러지 일령 등으로 말미암아 생물학적 탈인효율이 높지 않아 이를 위해서 화학적 응집을 통해 이를 극복하고 있다. On the other hand, the MBR process is not high biological dephosphorization efficiency due to the maintenance of relatively high microbial concentration and high sludge age, so to overcome this through chemical aggregation.

본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 하수, 오수 및 폐수의 고도처리를 위해 기존 MBR공정대비 공기량을 효율적으로 이용할 수 있도록 반응조 구성 및 반송방법 등을 변경하여 질산화 및 탈질효율을 향상시킬 뿐만 아니라 동력비의 최적화방안을 위한 생물학적 처리 공정과 분리막 여과(Membrane Filtration)공정이 결합된 MBR 공정으로서 유기물 및 부유물질, 인 제거율 뿐만 아니라 질소 제거율도 상당히 향상시킬 수 있고 경제성면에서도 비용을 저감할 수 있는 하, 오폐수 처리 방법 및 그 장치를 제공하는 데 있다.        The present invention has been made to solve the conventional problems as described above, the object of the present invention is to provide a reaction tank configuration and conveying method, such as to efficiently use the air volume compared to the existing MBR process for the advanced treatment of sewage, sewage and wastewater The MBR process combines biological treatment process and membrane filtration process to optimize the nitrification and denitrification efficiency, and can significantly improve the removal rate of organic matter, suspended solids, phosphorus as well as nitrogen removal rate. The present invention provides a method and apparatus for treating sewage and sewage that can reduce costs in terms of economics.

상기와 같은 목적을 달성하기 위하여, 본 발명은,        In order to achieve the above object, the present invention,

(A) 미세스크린에 의해 전처리된 하, 오폐수중 상당부분(약 80%)를 혐기처리조로 유입시켜 미생물 혼합액내의 함유된 인을 최대한 방출시키는 단계;       (A) introducing a substantial portion (about 80%) of wastewater, pretreated by a microscreen, into an anaerobic treatment tank to maximize the release of phosphorus in the microbial mixture;

(B) 후단의 호기침지막조에서 자연유하로 내부반송된 미생물혼합액의 질산화를 최적화하기 위해 조를 3~4개로 구분하며 이들 조의 DO 혹은 ORP농도를 연동하여 각조에 적정의 공기량을 공급하도록 하여 호기 조건에서 질산화효율을 향상시키는 단계;      (B) In order to optimize the nitrification of the microbial mixture returned internally to natural oil in the aerobic submerged membrane tank at the next stage, the tanks are divided into 3 to 4 tanks. Improving nitrification efficiency under aerobic conditions;

(C) 전처리된 하, 오폐수중 일정부분(약 20%)를 후무산소처리조에 유입시키고 후단의 호기침지조와 전단의 전호기처리조를 거쳐 내부반송된 질산화된 미생물혼합액을 탈질화시키는 단계;       (C) denitrifying the nitrified microbial mixture conveyed internally through a preliminary aerobic treatment tank and a previous aerobic immersion tank and a preliminary aerobic treatment tank under a pretreated, a portion (about 20%) of waste water;

(D) 상기 탈질화 단계를 거친 하, 오폐수를 호기침지막조에서 호기적으로 처리하여 잔류 유기물 분해 및 질산화를 유도한 후 질산화된 미생물혼합액을 소정의 비율로 상기 (B) 단계로 수위차에 의한 자연유하로 내부반송시키는 단계; 및      (D) after the denitrification step, waste water is treated aerobicly in an aerobic immersion membrane tank to induce residual organic matter decomposition and nitrification, and then the nitrified microbial mixture at a predetermined ratio in the water level difference in the step (B). Internal conveyance by natural flow of water; And

(E) 상기 (D) 단계를 거친 미생물혼합액을 분리막 모듈에 의해 고액분리하여 처리수를 생산하는 단계;      (E) solid-liquid separation of the microbial mixed solution passed through the step (D) by a membrane module to produce treated water;

(F) 전단의 혐기처리조와 전호기처리조, 후무산소처리조, 및 호기침지막조에서 미생물혼합액에 섭취된 인은 전체 처리공정의 미생물혼합액 농도유지를 위해 배출되는 잉여슬러지에 포함되어 호기침지조에서 배출함으로서 인이 제거되는 단계;     (F) Phosphorus ingested in the microbial mixture in the anaerobic treatment tank, preaerobic treatment tank, after anaerobic treatment tank, and aerobic immersion membrane tank in the front end is included in the excess sludge discharged to maintain the concentration of the microbial mixture in the whole treatment process. Removing phosphorus by discharging it from the tank;

(G) 상기 (C)단계를 거친 미생물혼합액을 펌프를 이용하여 소정비율의 유량을 후단의 호기침지조 상부에 위치한 유량완충분배탱크로 이송시키고 소정바율의 유량(유입수량 대비 약 0.5 ~ 1.0 배)이 분배되어 혐기처리조로 자연유하로 반송시키고 또 다른 소정비율의 유량(유입수량 대비 약 2 ~ 4 배)은 호기침지막조에 분배되도록 하는 단계를 포함하는 하, 오폐수 처리 방법을 특징으로 한다.      (G) The microbial mixed solution passed through step (C) is transferred to a flow buffer distribution tank located at the upper end of the aerobic immersion tank using a pump, and the flow rate at a predetermined bar rate (about 0.5 to 1.0 times the inflow amount). ) Is distributed and returned to the anaerobic treatment tank as natural flow, and another predetermined ratio of flow rate (about 2 to 4 times the amount of inflow) is distributed to the aerobic immersion membrane tank, characterized by the wastewater treatment method.

또한, 본 발명은,       In addition, the present invention,

(A) 미세스크린에 의해 전처리된 하, 오폐수내의 인을 최대한 방출하기 위한 교반기가 구비된 혐기처리조;      (A) anaerobic treatment tank equipped with a stirrer for maximizing the discharge of phosphorus in the waste water, pretreated by a fine screen;

(B) 질산화효율 향상과 공기량 조절이 가능하도록 3~4개조로 구분하여 유기물 분해및 질산화를 유도하는 산기시스템이 구비된 전호기처리조;      (B) a pre-treatment treatment tank equipped with an acid system to induce decomposition and nitrification of organic matter divided into three to four tanks to improve the nitrification efficiency and control the air volume;

(C) 유입되는 하, 오폐수를 탈질화시키기 위한 교반기가 구비된 후무산소처리조;      (C) a post-oxygen treatment tank equipped with a stirrer for denitrifying the waste water flowing down;

(D) 상기된 후무산소처리조에서 내부반송량과 처리수량을 고려한 호기침지막조로의 펌프 이송설비;      (D) pump transfer equipment to the aerobic immersion membrane tank in consideration of the internal transport amount and the treated water amount in the post-oxygen treatment tank described above;

(E) 무산소조에서 이송된 유량의 완충 및 분배를 통해 소정유량은 혐기처리 조로 자연유하 내부반송되며 소정유량은 호기침지막조로 유입되도록 하는 유량완충분배탱크;      (E) through the buffer and distribution of the flow rate transferred from the anaerobic tank, the predetermined flow rate is conveyed to the anaerobic treatment tank under natural flow, and the predetermined flow rate is a flow buffer distribution tank to flow into the aerobic immersion membrane tank;

(F) 상기 유량완충분배탱크로부터 유입된 하, 오폐수를 호기적으로 처리하여 유기물 분해 및 질산화를 유도하는 호기침지막조;      (F) an aerobic immersion membrane tank which induces organic decomposition and nitrification by aerobic treatment of wastewater introduced from the flow buffer distribution tank;

(G) 상기 호기침지막조에서 미생물혼합액을 고액분리하기 위한 다수의 분리막 모듈을 포함한 분리막 유니트와 여과펌프를 포함한 분리막 장치;       (G) a membrane device including a membrane unit including a plurality of membrane modules for solid-liquid separation of the microbial mixture from the aerobic immersion membrane tank and a filtration pump;

(H) 상기 호기침지막조에서 전체 처리공정의 미생물혼합액 농도 유지와 흡수된 인을 제거하기 위한 잉여슬러지 배출펌프 장치;      (H) the excess sludge discharge pump device for maintaining the concentration of the microorganism mixture in the treatment process and remove the phosphorus absorbed in the aerobic immersion membrane tank;

(I) 상기 유량완충분배탱크로부터 미생물혼합액의 일부를 상기 혐기처리조로 자연유하로 반송시키는 제 2반송라인 및 호기침지막조에서 처리된 질산화된 미생물혼합액의 일부를 상기 전호기처리조로 자연유하로 반송시키기 위한 제 1 반송라인을 포함하는 하, 오폐수 처리 장치를 특징으로 한다. (I) a part of the nitrified microbial mixture treated in the second conveying line and the aerobic immersion membrane tank for returning a part of the microbial mixture solution from the flow rate buffer tank to the anaerobic treatment tank to the natural oil tank. A waste water treatment apparatus comprising a first conveying line for conveying is characterized by the above-mentioned.

이상에서 설명하고 있는 바와 같이, 본 발명에 따른 하, 오폐수 처리 방법 및 장치는 호기조를 3~4개로 분할하여 각각에 필요한 공기량을 제어하여 최적의 질산화율을 확보할 뿐만아니라 적재적소에 필요한 공기량을 공급함으로서 MBR공정에서의 문제인 호기조내의 불균질한 산소분포 야기를 해소하고 불필요한 공기공급을 줄일 수 있는 효과가 있고, 분리막을 이용하여 처리수를 생산함으로써 반응조 내의 미생물 농도를 고농도로 유지될 수 있어 각 반응조의 용량을 최적화할 수 있어 하, 오폐수 처리시스템의 컴팩트화로 인해 부지가 적게 소요될 뿐만 아니라 고부하 조건에서도 안정적인 처리 효율을 확보할 수 있으며 슬러지의 생산량을 감소시킬 수 있는 효과가 있으며, 또한 혐기처리조, 전호기처리조, 후무산소처리조 및 호기침지막조 구성으로 기존의 일반적인 혐기처리조, 후무산소처리조, 호기처리조와 호기침지막조의 구성보다 호기침지막조에서 호기처리조로 내부반송을 시행함으로써 질산화율을 높일 수 있고 이로 인한 탈질율도 향상될 수 있고, 그리고 후무산소처리조에서 호기침지막조로의 한번의 펌프이송을 한 후에는 혐기처리조와 호기처리조를 통한 무산소조로의 내부반송은 자연유하로 가능하게하여 설비 및 유지비를 절감시킬 수 있는 효과가 있으며, 호기침지막조에 적용한 분리막에 의해 대장균군이 대부분 제거되고 처리 수질이 양호하여 별도의 3차 처리 없이도 처리수의 재이용이 가능한 효과도 있다.      As described above, the wastewater treatment method and apparatus according to the present invention divides the aerobic tank into three to four to control the amount of air required for each to secure an optimum nitrification rate and to supply the amount of air necessary for loading in place. By eliminating heterogeneous oxygen distribution in the aerobic tank, which is a problem in the MBR process, and reducing unnecessary air supply, it is possible to maintain a high concentration of microorganisms in the reaction tank by producing treated water using a membrane. Its capacity can be optimized to reduce the site due to the compactness of sewage and wastewater treatment systems, and to ensure stable treatment efficiency even under high load conditions, and to reduce the production of sludge. The preaerobic treatment tank, the anaerobic oxygen treatment tank and the aerobic immersion membrane tank By performing internal transfer from the aerobic immersion membrane tank to the aerobic treatment tank than the general anaerobic treatment tank, the anaerobic treatment tank, the aerobic treatment tank and the aerobic immersion tank, the nitrification rate can be increased and the denitrification rate can be improved. After one pump transfer from the anaerobic treatment tank to the aerobic immersion membrane tank, the internal transfer of the anaerobic treatment tank and the aerobic treatment tank through the aerobic treatment tank is made possible by natural flow, thereby reducing the equipment and maintenance costs. Most of the coliforms are removed by the separation membrane applied to the cough membrane tank, and the treated water quality is good, so that the treated water can be reused without a separate tertiary treatment.

공정 반응조 구성Process reactor configuration

일반적으로 MBR공정에서는 미생물혼합액이 높은 관계로 호기조내의 혼합이 불량한 경우가 많으며 이로 인한 산소전달율이 낮아져서 필요 용존산소농도 확보가 어려우며 필요이상으로 많은 공기량이 요구된다.       In general, in the MBR process, due to the high microbial mixture, the mixing in the aerobic tank is often poor. As a result, the oxygen transfer rate is lowered, which makes it difficult to secure the required dissolved oxygen concentration and requires more air than necessary.

따라서, 본 발명에서는 이를 해소할 수 있는 하, 오폐수의 고도처리공정을 개발하고자 기존의 일반적인 혐기처리조, 무산소처리조, 호기처리조 및 호기침지막조로 구성된 일반적인 고도처리형 MBR공정(도 2)과 이에 대비한 혐기처리조, 전호 기처리조, 후무산소처리조 및 호기침지막조로 구성(도 1)하여 적정 규모의 실험장치를 통하여 연구하였던 바,        Therefore, in the present invention, in order to develop an advanced treatment process of wastewater, which can solve this problem, a general high-treatment type MBR process consisting of existing general anaerobic treatment tank, anoxic treatment tank, aerobic treatment tank, and aerobic immersion membrane tank (FIG. 2) Anaerobic treatment tank, pre-aerobic treatment tank, after-oxygen treatment tank and aerobic immersion membrane tank prepared for this (Fig. 1) were studied through an experimental apparatus of an appropriate scale.

실험결과에 의하면, 기존 일반적인 MBR공정(도 2)에서의 호기처리조와 호기침지막조의 질산화율 달성을 조사 실험한 결과, 각각 53.5%와 46.5%로서 나타났다. 이를 토대로 질산화를 위해 공급되는 공기량은 산기관의 효율에 의해 지배되는데, 호기처리조와 호기침지막조의 산기관 효율을 검토해보면, 호기처리조의 산기관은 여러 종류를 다양하게 적용할 수 있으므로 필요공기량을 공급하는데 문제가 없으나 이에 반해 호기침지조의 공기공급은 분리막 유니트 하단에 설치된 산기관에 의존하는데 비교적 낮은 산소전달율을 가지는 구조로 구성되어 필요한 산소전달을 위해서는 많은 공기가 필요함으로서 최적의 공기량 분배가 어려워지게 되고 많은 양의 공기가 부가적으로 공급되어야 할 뿐만 아니라 지나치게 많은 공기량은 분리막 모듈에도 나쁜 영향을 야기할 수 있다.       According to the experimental results, the results of the investigation of the achievement of the nitrification rate of the aerobic treatment tank and the aerobic immersion membrane tank in the conventional general MBR process (Fig. 2), respectively, appeared as 53.5% and 46.5%. Based on this, the amount of air supplied for nitrification is governed by the efficiency of the diffuser. When examining the efficiency of the diffuser of the aerobic treatment tank and the aerobic submerged membrane tank, the aerobic treatment of the aerobic treatment tank can be applied variously, so While there is no problem in supplying the air, the air supply of the aerobic immersion tank depends on the diffuser installed at the bottom of the membrane unit, and it is composed of a structure having a relatively low oxygen transfer rate. Not only that, but a large amount of air must be additionally supplied, too much air can adversely affect the membrane module.

따라서, 이를 해소하기 위해서 본 발명의 방법인 혐기처리조, 전호기처리조, 후무산소처리조 및 호기침지막조로 구성(도 1)하여 실험을 한 결과, 분할하지 않은 전호기처리조와 호기침지막조의 질산화율은 각각 83.7%와 16.3%로 구분되었다.       Therefore, in order to solve this, the experiment was performed by the anaerobic treatment tank, the preaerobic treatment tank, the post anaerobic treatment tank, and the aerobic immersion membrane tank (FIG. 1). Joe's nitrification rate was divided into 83.7% and 16.3%, respectively.

이와 같은 실험에 의해 본 발명의 방법이 보다 효과적으로 필요공기량을 공급할 수 있을 뿐만 아니라 분리막모듈에 대한 영향 및 과도한 공기공급을 최소화할 수 있음을 알 수 있다.       By such experiments, it can be seen that the method of the present invention can more efficiently supply the required air amount, as well as minimize the influence on the membrane module and excessive air supply.

전호기처리조에서 소정의 질산화효율을 확보하고 공기량의 적정분배를 위해 본 발명의 공정(도 1)을 대상으로 전호기처리조를 3단계로 동일한 용량으로 분할하여 상기와 같이 동일하게 실험한 결과, 전호기처리조의 각 단계에서의 질산화율 구성은 각각 70.6%, 23.5%, 5.9%로서 처음 2개 분할구역에서 대부분의 질산화가 이루어지는 것을 알 수 있었으며 이를 토대로 전호기처리조의 각 구획별로 필요공기량을 효과적으로 차등 공급할 수 있도록 장치를 구성하도록 한다.        In order to secure a predetermined nitrification efficiency in the preaerobic treatment tank and to distribute the amount of air appropriately, the preaerobic treatment tank was divided into three equal volumes in three steps for the process of the present invention (Fig. 1). The nitrification rate at each stage of the preaerobic treatment tank was 70.6%, 23.5%, and 5.9%, respectively, indicating that most nitrification occurred in the first two divisions. The device should be configured for differential supply.

이하, 본 발명을 첨부된 도면과 함께 다음의 실시예로 설명하는 바, 본 발명이 하기의 실시예와 같지만, 하기의 실시예로 한정되는 것은 아니다.        Hereinafter, the present invention will be described with reference to the accompanying drawings in conjunction with the accompanying drawings, the present invention is the same as the following examples, but is not limited to the following examples.

실시예 1Example 1

1. 실험 장치1. Experiment apparatus

본 발명자들은 도 1에 도시된 바와 같이, MBR처리공정에 대하여 전처리설비를 통한 유입수를 원수유입관(10)을 통하여 혐기처리조(20), 전호기처리조(30), 후무산소처리조(40) 및 호기침지막조(50)를 거치며 처리효율 실험을 6개월 동안 실시하였다.      The present inventors, as shown in Figure 1, the inflow water through the pre-treatment facility for the MBR treatment process through the raw water inlet pipe 10, anaerobic treatment tank 20, preaerobic treatment tank 30, after anaerobic treatment tank ( 40) and aerobic immersion membrane tank (50) was carried out for 6 months of treatment efficiency experiment.

본 실험장치는 원수분배조, 처리공정 MBR조, 처리수조 각 1조와 운전조작반(PLC반), 유량완충분배탱크(60), 제1반송라인(80), 제2반송라인(90), 유량조절밸브(180), 흡입펌프(분리막 여과펌프(150), 슬러지 인발펌프(160), 미생물혼합액 이송펌프(200))를 포함한 유량계(170), 차압계(190), 공기세정용 송풍기(포기용 송풍기(120), 분리막용 송풍기(140)), 유량계(170), 전호기처리조용 산기장치(110), 혐기처리조(20) 및 후무산소처리조(40)의 교반기(100) 및 분리막 유니트(130) 등으로 구성되어 있다.      This experimental device is divided into raw water distribution tank, treatment process MBR tank, each treatment tank and operation control panel (PLC panel), flow buffering tank (60), first conveying line (80), second conveying line (90), flow rate Flow meter 170, differential pressure gauge 190, air cleaning blower (for aeration, including control valve 180, suction pump (membrane filtration pump 150, sludge drawing pump 160, microbial mixed solution transfer pump 200)) Blower 120, separator blower 140), flow meter 170, preaerobic treatment tank diffuser 110, anaerobic treatment tank 20 and post-oxygen treatment tank 40, agitator 100 and membrane unit 130 and the like.

본 실험에 사용된 원수는 00 하수처리장의 원수를 이용하였고, 처리용량은 200L/일로서 반응조의 총 체류시간은 8.0시간이었으며 혐기처리조(20) 0.7시간, 전호기처리조(30) 2.5시간, 후무산소처리조(40) 3.0시간, 호기침지막조(50) 1.8시간이었으며, 내부반송량은 제1반송라인(80)이 2.5Q이고 제2반송라인(90)이 0.7Q 였다. 호기침지막조내 실험용 평막을 침지하였으며 정량 흡인여과를 실시하였으며 운전주기는 여과 10분, 휴지 2분으로 하였다. 여과플럭스는 25l/.hr정도로 운전하였다.      The raw water used in this experiment was raw water from 00 sewage treatment plant, the treatment capacity was 200L / day, and the total residence time of the reaction tank was 8.0 hours, 0.7 hours for anaerobic treatment tank (20), 2.5 hours for preaerobic treatment tank (30). After, the oxygen free treatment tank 40 3.0 hours, the aerobic immersion membrane tank 1.8 hours, and the internal transport amount of the first transfer line 80 is 2.5Q and the second transfer line 90 was 0.7Q. The experimental flat membrane was immersed in the aerobic immersion membrane tank and quantitative suction filtration was performed and the operation cycle was 10 minutes of filtration and 2 minutes of rest. The filtration flux was operated at about 25 l / hr.

본 실험에 따른 공정에 이용된 유입된 원수의 평균 성상은 BOD 126.6mg/L, CODMn 104.5mg/L, SS 143.0mg/L, T-N 31.9mg/L, T-P 3.5mg/L이었다. The average properties of the raw water used in the process according to this experiment were BOD 126.6mg / L, COD Mn 104.5mg / L, SS 143.0mg / L, TN 31.9mg / L, TP 3.5mg / L.

생물반응조의 미생물 농도는 각 반응조별로 약간의 차이는 있으나, 5,467~7,890(평균 6,398)mg/L이고, 수온은 20.1~26.8(평균 22.8)였고, 또한, 평균 슬러지 체류 시간(Sludge Retention Time : SRT)은 약 23일이었다.   Microbial concentration of bioreactor was slightly different for each reactor, but 5,467 ~ 7,890 (average 6,398) mg / L, water temperature was 20.1 ~ 26.8 (average 22.8), and average sludge retention time (SRT) ) Was about 23 days.

2. 평가2. Evaluation

1) 생물학적 처리 성능의 평가1) Evaluation of Biological Treatment Performance

상기한 유입원수에 대한 본 발명 MBR 공정의 처리결과는 다음 표 1과 같다.      The results of the treatment of the present invention MBR process for the influent water is shown in Table 1 below.

표 1      Table 1

본 발명의 생물학적 처리의 성능 평가      Performance Evaluation of Biological Treatments of the Invention

항목Item 유입 하수(mg/L)Influent sewage (mg / L) 본 발명의 공법으로 처리한 결과 (mg/L)Result of treatment with the method of the present invention (mg / L) 제거효율 Removal efficiency 농도범위Concentration range 평균Average 평균Average (%)(%) BODBOD 111.4~146.5111.4-146.5 126.6126.6 1.41.4 98.998.9 CODMn COD Mn 89.1~113.289.1 ~ 113.2 104.5104.5 6.06.0 94.394.3 SSSS 129.5~156.6129.5-156.6 143.0143.0 0.20.2 99.999.9 T-NT-N 28.5~37.628.5-37.6 31.931.9 8.18.1 74.774.7 T-PT-P 2.5~4.52.5 ~ 4.5 3.53.5 1.11.1 68.768.7

상기 표를 통해 알 수 있는 바와 같이, BOD 및 SS 제거율은 각각 98.9와 99.9% 정도로 안정되고 높은 효율을 나타났고, 이러한 제거효율은 일반적인 하수 MBR 공정의 제거효율과 대동소이한 것이나 CODMn 제거율은 94.3%로 다소 높게 나타났는데, 이는 분리막에 의한 완전한 고형물제거와 관련이 있다. As can be seen from the above table, the removal rate of BOD and SS was stable and high efficiency of 98.9 and 99.9%, respectively, and the removal efficiency is similar to that of the general sewage MBR process, but the COD Mn removal rate is 94.3. The percentage was somewhat higher, which is related to complete solids removal by the membrane.

T-N의 처리수는 6.2~10.2(평균 8.1)mg/L로서 안정된 처리효율을 나타내고 있는데, 이는 MBR공정을 도입하면서 분리막을 통하여 질산화미생물 및 탈질미생물을 충분히 유지할 수 있는 안정적인 운전 때문인 것으로 추정된다.       The treated water of T-N is 6.2 ~ 10.2 (average 8.1) mg / L, which shows stable treatment efficiency, which is presumably due to the stable operation that can sufficiently maintain nitrification and denitrification microorganisms through the membrane with the introduction of MBR process.

T-P 제거율은 약 68.7%로서 다소 높게 운전된 SRT (Sludge Retention Time ; 슬러지 체류 시간)의 영향인 것으로 추정된다.       The T-P removal rate is about 68.7%, which is presumed to be the effect of the SRT (Sludge Retention Time), which operated somewhat higher.

BOD와 T-N, T-P에 대한 유입수질, 처리수질을 다음 도 4, 도 5 및 도 6에 그래프로 도시한 바와 같이 안정된 처리효율로 높게 나타나고 있다.       Inflow water quality and treatment water quality for BOD, T-N, and T-P are shown to be high with stable treatment efficiency as shown in the following graphs in FIGS. 4, 5, and 6.

2) 막분리 공정의 성능 평가2) Performance Evaluation of Membrane Separation Process

도 7에 도시된 그래프를 통해 알 수 있듯이, 단위면적당 여과수량인 플럭스 범위는 25L/㎡·내외였으며, 막간차압은 약 0.24bar였고 비교적 안정적인 운전이 이루어졌으며 실험기간동안 분리막 운전에서 우려되는 유지관리상의 문제인 막면오염 현상도 적어 약품세정은 실시하지 않았다.      As can be seen from the graph shown in Fig. 7, the flux range per unit area was about 25 L / m 2, and the transmembrane pressure was about 0.24 bar and relatively stable operation was performed. There was also a small amount of contaminants, which was a problem with the mask, and the drug was not cleaned.

본 발명공정에서는 호기침지막조(50)로부터의 질산화된 미생물혼합액을 소정의 비율로 전단의 전호기처리조(30)로 제1반송라인(80)을 통하여 내부반송시킨 후 전호기처리조(30)에서 다시 한번 질산화시킨 후 후무산소처리조(40)로 유입되도록 하고, 후무산소처리조(40)에서 충분하게 탈질화된 미생물혼합액을 유량완충분배탱크(60)를 통하여 자연유하로 혐기처리조(20)로 제2반송라인(90)을 통하여 내부반송시키는 단계를 포함한 생물학적 처리 공정과 처리된 생물혼합액을 분리막을 이용하여 고액분리하여 처리수의 수질 향상을 하기 위한 막분리공정을 포함하는 MBR 공정을 도입함으로써, 제반 부하 조건에서도 안전하고 안정적인 처리 효율을 확보할 수 있으며 전호기처리조(30)의 분할 및 필요공기량의 적절한 공급시스템, 최소한의 동력을 이용한 내부반송시스템을 도입하고, 부가적인 탄소원 투입이나 약품 투입 공정이 불필요하여 운전관리가 용이할 뿐만 아니라 유지관리비가 저렴하다.      In the process of the present invention, the nitrified microbial mixture from the aerobic immersion membrane tank 50 is internally transported to the preaerobic treatment tank 30 of the front end through the first conveying line 80 at a predetermined ratio and then the preaerobic treatment tank ( After nitrifying once again in 30), it is introduced into the after anoxic treatment tank 40, and the denitrified microorganism mixture sufficiently depleted in the after oxygen treatment tank 40 is anaerobic treated under natural flow through the flow buffer distribution tank 60. And a membrane separation process for solidifying the treated biomixture using a separation membrane and the biological treatment process including the step of internal transfer through the second transfer line 90 to the tank 20 to improve the water quality of the treated water. By introducing the MBR process, it is possible to secure safe and stable processing efficiency even under various load conditions. Introduction of the system and an additional carbon source is cheaper inputs and chemicals put into the process is not required to be maintained as well as easy operation management costs.

이하, 본 발명은 첨부된 도 1 및 도 2를 참조하여 각각의 공정별로 상세하게 기술된다.      Hereinafter, the present invention will be described in detail for each process with reference to FIGS. 1 and 2.

혐기처리조에서의 인방출 공정Phosphorus release process in anaerobic treatment tank

도 1 을 참조하여, 미세스크린(도시되지 않음)에 의해 미세 협잡물이 제거된 유입수중 약 80%정도가 혐기처리조(20)로 유입되며 유입수중에 포함된 인산염 인(PO4-P)을 방출하는 반응이 이루어진다. 이때, 혐기처리조(20) 내부에는 유입수와 후단의 유량완충분배탱크(60)로부터 제2반송라인(90)을 통하여 내부반송되고 혐기처리조(20)의 미생물혼합액이 가라앉지 않도록 하면서 이들간의 접촉 기회를 주기위해 교반기(100)가 설치된다. 혐기처리조(20)에서의 HRT(Hydraulic Retention Time, 수리학적 체류시간)는 1시간 내외이다.       Referring to FIG. 1, about 80% of influent water from which fine contaminants have been removed by a microscreen (not shown) flows into the anaerobic treatment tank 20 and emits phosphate (PO4-P) contained in the influent. The reaction takes place. At this time, the inside of the anaerobic treatment tank 20 is conveyed internally through the second conveying line 90 from the flow-rate distribution tank 60 at the inlet and the rear end, and the microbial mixture of the anaerobic treatment tank 20 does not sink. The stirrer 100 is installed to give a contact opportunity. The hydraulic retention time (HRT) in the anaerobic treatment tank 20 is about 1 hour.

전호기처리조에서의 유기물 분해 및 질산화 공정Degradation and Nitrification Process of Organic Matter in Pre-treatment Tank

도 1 을 참조하여, 전단의 혐기처리조(20)로 부터의 유입수와 후단의 호기침지막조(50)에서 제1반송라인(80)을 통하여 반송된 미생물혼합액내의 유기물 및 질소가 호기처리조 산기장치(110)가 설치된 전호기처리조(30)로 유입되어 유기물 분해 및 질산화 반응이 이루어진다. 이 공정에서의 HRT는 2시간 내지 3시간이다.       Referring to FIG. 1, organic matter and nitrogen in the microbial mixed solution returned through the first conveying line 80 from the inflow water from the front anaerobic treatment tank 20 and the aerobic immersion membrane tank 50 at the rear stage are aerobic treatment tank. It is introduced into the preaerobic treatment tank 30 in which the acid generator 110 is installed, and organic matter decomposition and nitrification reaction are performed. HRT in this process is 2 hours to 3 hours.

유입수와 내부반송된 미생물혼합액의 질산화를 최적화하기 위해 조를 3~4개로 구분하며 이들 각조의 용존산소량(DO) 혹은 산화환원전위(ORP)농도와 연동하여 각조에 적정의 공기량을 공급할 수 있도록 별도의 포기용 송풍기(120) 설비와 유량계(170)를 구비토록 한다.       In order to optimize the nitrification of the influent and the internally transported microbial mixture, the tanks are divided into 3 to 4 tanks.These tanks are linked with dissolved oxygen (DO) or redox potential (ORP) concentrations to provide the appropriate amount of air to the tanks. Aeration blower 120 of the facility and the flow meter 170 to be provided.

후무산소처리조에서의 탈질화 공정Denitrification Process in Post Oxygen Treatment Tank

도 1 을 참조하여, 전호기처리조(30)에서 유입된 내부반송된 질산화된 미생물혼합액과 전처리된 유입수중 일부(약 20%)내의 유기물을 이용하여 질소산화물을 환원시키는 탈질반응이 이루어진다.       Referring to FIG. 1, a denitrification reaction is performed in which a nitrogen oxide is reduced by using an internal transported nitrified microbial mixture introduced from the preaerobic treatment tank 30 and an organic material in a portion (about 20%) of the pretreated influent.

이때, 후무산소처리조(40) 내부에는 유입수와 질산화된 미생물혼합액의 접촉기회를 부여하기 위해 교반기(100)를 설치토록 한다. 후무산소처리조(40)에서의 유입수 HRT(Hydraulic Retention Time, 수리학적 체류시간)는 2시간 내지 3.5시간이다.       At this time, in the after oxygen treatment tank 40, the stirrer 100 is installed to give a contact opportunity between the inflow water and the nitrified microbial mixture. The influent HRT (Hydraulic Retention Time, hydraulic retention time) in the post-oxygen treatment tank 40 is 2 hours to 3.5 hours.

미생물혼합액은 혐기처리조(20), 전호기처리조(30)로의 각각의 내부반송량 및 막분리여과에 의한 처리수량을 합한 양을 후단의 호기침지막조(50)로 강제 이송하기 위한 미생물혼합액 이송펌프(200)시설이 구비된다.        The microbial mixture is a microorganism for forcibly transferring the sum of the amount of each internal transfer to the anaerobic treatment tank 20 and the preaerobic treatment tank 30 and the amount of water treated by membrane separation filtration to the aerobic immersion membrane tank 50 at the rear stage. The mixed liquid transfer pump 200 is provided.

호기침지막조에서의 유기물 분해 및 질산화 공정Organic Decomposition and Nitrification Process in Aerobic Submerged Membrane

후무산소처리조(40)를 거친 하, 오폐수는 분리막 유니트(13)하부에 설치된 분리막용 송풍기(140)에 의해 상기된 전호기처리조(30)에서와 같이 잔류 유기물 분해 및 소정부분의 질산화가 일어난다. 이외에도 호기침지막조(50) 전단에는 유량완충분배탱크(60)가 설치되어 후무산소처리조(40)로부터 압송되어 온 미생물혼합액을 완충시키고 혐기처리조(20)로 자연유하로 내부반송 하기위한 제2반송라인과 일정유량을 호기침지막조(50)로 자연유하로 유입되도록 한다.        After passing through the anoxic treatment tank 40, the waste water is decomposed in the organic matter and nitrification of a predetermined portion as in the pre-treatment tank 30 described above by the separator blower 140 installed under the membrane unit 13. Happens. In addition, the flow buffer buffer tank 60 is installed at the front of the aerobic immersion membrane tank 50 to buffer the microbial mixture that has been conveyed from the post-oxygen treatment tank 40 and to return it internally to the anaerobic treatment tank 20 under natural flow. The second conveying line and a predetermined flow rate to be introduced into the natural flow into the aerobic immersion membrane tank 50.

그리고, 호기침지막조(50)에서 질산화된 미생물혼합액은 소정의 유량분율로 전단의 전호기처리조(30)로 자연유하하는 제1반송라인으로 구성된다.        In addition, the microbial mixed solution nitrified in the aerobic immersion membrane tank 50 is composed of a first conveying line which naturally flows to the preaerobic treatment tank 30 at the front end at a predetermined flow rate fraction.

이때, 내부반송량은 각각 유량계(170)와 유량조절밸브(180) 등을 연동하여 제어되도록 한다.        At this time, the internal conveyance is controlled to interlock with the flow meter 170 and the flow control valve 180, respectively.

이때, 제 1 반송라인(80) 및 제 2 반송라인(90)을 경유하여 전호기처리조(30)와 혐기처리조920)로 각각 자연유하로 반송되는 미생물혼합액의 양은 유입수의 양 Q에 대하여 각각 2 ~ 4Q 및 0.5 ~ 1Q가 바람직하다. 이 공정에서의 HRT는 1.5시간 내지 2.5시간 정도이다.        At this time, the amount of the microbial mixed liquor conveyed to the pre-aerobic treatment tank 30 and the anaerobic treatment tank 920 via natural flow via the first conveying line 80 and the second conveying line 90 is about the amount Q of the influent. 2-4Q and 0.5-1Q are preferable, respectively. HRT in this process is about 1.5 to 2.5 hours.

전단의 혐기처리조(20)와 전호기처리조(30), 후무산소처리조(40), 및 호기침지막조(50)에서 미생물내에 섭취된 인은 전체 처리공정의 미생물혼합액 농도 유지를 위해 잉여슬러지를 배출토록 슬러지인발 펌프(160)설비를 구비한다.       Phosphorus ingested in the microorganisms in the anaerobic treatment tank 20, the preaerobic treatment tank 30, the after anaerobic treatment tank 40, and the aerobic immersion membrane tank 50 at the front end is used to maintain the concentration of the microbial mixture in the entire treatment process. Sludge drawing pump 160 is provided to discharge excess sludge.

호기침지막조에서의 분리막여과 공정Membrane Filtration Process in Aerobic Submerged Membrane

호기침지막조(50)로 미생물혼합액 이송펌프(200)에 의해 강제이송된 미생물혼합액중에서 제1, 2반송라인(80)(90)에 의해 혐기처리조(20)와 전호기처리조(30)로 반송되는 양을 제외한 나머지는 분리막 여과펌프(150)와 분리막유니트(130) 등 의 고액분리 공정을 거치게 된다. 고액분리 공정에 이용되는 분리막 장치에는 처리수를 생산하기 위한 분리막 여과펌프(150), 고액분리를 수행하는 분리막 유니트(130), 주기적 약품세정을 위한 세정조 및 필요시에는 주기적인 물역세 시스템을 포함한 설비로 구성된다.        The anaerobic treatment tank 20 and the preaerobic treatment tank 30 by the first and second conveying lines 80 and 90 in the microbial mixed liquor forcedly transferred to the aerobic immersion membrane tank 50 by the microbial mixed liquor transfer pump 200. Except for the amount to be returned to the) is subjected to the solid-liquid separation process, such as the membrane filtration pump 150 and the membrane unit (130). The membrane device used in the solid-liquid separation process includes a membrane filtration pump 150 for producing treated water, a membrane unit 130 for performing solid-liquid separation, a washing tank for periodic chemical cleaning, and a periodic water backwash system if necessary. Consists of included equipment.

분리막 유니트(130)를 통한 여과수 생산은 여과수량을 감시하는 유량계(17)와 분리막 여과펌프(150)가 연동하여 소정의 유량을 일정하게 생산할 수 있도록 한다.        Filtrate production through the membrane unit 130 allows the flow meter 17 and the membrane filtration pump 150 to monitor the amount of filtered water to interlock and produce a predetermined flow rate.

분리막 유니트(130)하부에는 분리막의 막힘을 최소화하기 위한 공기세정과 관련한 산기장치가 포함된 분리막용 송풍기(140)가 구비된다.       Under the membrane unit 130, there is provided a separator blower 140 including an air diffuser associated with air cleaning to minimize clogging of the membrane.

분리막 유니트(130)는 낱개의 분리막 모듈을 적정 규모로 구성하며 이때, 본 발명의 막분리 공정에 이용되는 분리막으로는 침지형 평막 혹은 침지형 중공사막의 이용이 바람직하며 이외에도 유입수의 성상에 의해 가압형 관형막(tubular membrane)도 이용될 수 있다.       Membrane unit 130 is composed of a separate membrane module of the appropriate scale, in this case, the membrane used in the membrane separation process of the present invention, it is preferable to use an immersion flat membrane or immersion hollow fiber membrane, in addition to the pressurized tubular type by the properties of the influent Tubular membranes may also be used.

도 1은 본 발명에 따른 하수, 오수 및 폐수 처리 공정을 개략적으로 도시한 공정도로서, 질산화의 최적효율을 확보하기 위하여 반응조 배열을 재구성하고 내부반송을 무동력으로 하기 위해 유량완충분배탱크를 도입하고 1개의 펌프 이송을 배치한 상태를 나타낸 도면. 1 is a process diagram schematically showing a sewage, sewage and wastewater treatment process according to the present invention, a flow buffer distribution tank is introduced to reconfigure the reactor arrangement in order to secure the optimum efficiency of nitrification and to make the internal transfer non-powered. A diagram showing a state where two pump feeds are arranged.

도 2는 일반적인 혐기처리조+무산소조+호기조+호기침지막조 구성으로서 일반적인 2단 동력이용 내부반송에 의한 공정을 나타낸 도면.     Figure 2 is a general anaerobic treatment tank + anaerobic tank + aerobic tank + aerobic immersion membrane configuration showing a process by a general two-stage power use internal transport.

도 3는 유입수와 본 발명의 공정을 거친 처리수의 BOD 및 이의 제거효율을 보인 그래프.     Figure 3 is a graph showing the BOD and its removal efficiency of the influent and treated water undergoing the process of the present invention.

도 4는 유입수와 본 발명의 공정을 거친 처리수의 T-N 및 이의 제거효율을 보인 그래프.     Figure 4 is a graph showing the T-N and its removal efficiency of the influent and treated water undergoing the process of the present invention.

도 5는 유입수와 본 발명의 공정을 거친 처리수의 T-P 및 이의 제거효율을 보 인 그래프.     5 is a graph showing the T-P and its removal efficiency of the influent and treated water undergoing the process of the present invention.

도 6은 본 발명의 막분리 공정에서 단위면적당 여과수량인 플럭스 범위와 막간차압의 경시변화를 나타낸 그래프.     6 is a graph showing changes over time of the flux range and the intermembrane differential pressure in the membrane separation process of the present invention.

※도면의 주요부분에 대한 부호의 설명.※ Explanation of symbols for main part of drawing.

10 : 원수 유입 140 : 분리막용 송풍기10: raw water inlet 140: blower for membrane

20 : 혐기처리조 150 : 분리막 여과펌프20: anaerobic treatment tank 150: membrane filtration pump

30 : 전호기처리조 160 : 슬러지 인발펌프30: pre-treatment tank 160: sludge drawing pump

40 : 후무산소처리조 170 : 유량계40: back oxygen free treatment tank 170: flow meter

50 : 호기침지막조 180 : 유량조절밸브50: aerobic immersion membrane tank 180: flow control valve

60 : 유량완충분배탱크 190 : 차압계60: flow buffer distribution tank 190: differential pressure gauge

70 : 처리수 200 : 미생물혼합액 이송펌프70: treated water 200: microbial mixed solution transfer pump

80 : 제1반송라인 80: first conveying line

90 : 제2반송라인 90: second conveying line

100 : 교반기 100: Stirrer

110 : 호기처리조 산기장치 110: aerobic treatment tank diffuser

120 : 포기용 송풍기 120: aeration blower

130 : 분리막 유니트130: membrane unit

Claims (7)

하, 오폐수를 처리하는 방법에 있어서,       In the method of treating wastewater, (A) 미세스크린에 의해 전처리된 하, 오폐수중 상당부분(약 80%)를 혐기처리조로 유입시켜 미생물 혼합액내의 함유된 인을 최대한 방출시키는 단계;       (A) introducing a substantial portion (about 80%) of wastewater, pretreated by a microscreen, into an anaerobic treatment tank to maximize the release of phosphorus in the microbial mixture; (B) 유입되거나 후단의 호기침지막조에서 자연유하로 내부반송된 미생물혼합액내의 질소성분을 호기 조건에서 질산화시키고 유기물을 분해하는 단계;(B) nitrifying the nitrogen component in the microbial mixture liquid introduced or internally transported in a natural flow in a subsequent aerobic immersion membrane tank under aerobic conditions and decomposing organic matters; (C) 전처리된 하, 오폐수중 일정부분(약 20%)를 후무산소처리조에 유입시키고 후단의 호기침지막조와 전단의 전호기처리조를 거쳐 내부반송된 질산화된 미생물혼합액을 탈질화시키는 단계; (C) denitrifying the nitrified microbial mixture conveyed internally through a preliminary aerobic treatment tank and a preliminary aerobic treatment tank after introducing a portion (about 20%) of the wastewater into the post-oxygen treatment tank under pretreatment; (D) 상기 탈질화 단계를 거친 하, 오폐수를 호기침지막조에서 호기적으로 처리하여 잔류 유기물 분해 및 질산화를 유도한 후 질산화된 미생물혼합액을 소정의 비율로 상기 (B) 단계로 수위차에 의한 자연유하로 내부반송시키는 단계; 및(D) after the denitrification step, waste water is treated aerobicly in an aerobic immersion membrane tank to induce residual organic matter decomposition and nitrification, and then the nitrified microbial mixture at a predetermined ratio in the water level difference in the step (B). Internal conveyance by natural flow of water; And (E) 상기 (D) 단계를 거친 미생물혼합액을 분리막 유니트에 의해 고액분리하여 처리수를 생산하는 단계;(E) solid-liquid separation of the microbial mixed solution passed through the step (D) by a membrane unit to produce treated water; (F) 전단의 혐기처리조와 전호기처리조, 후무산소처리조, 및 호기침지막조에서 미생물혼합액에 섭취된 인은 전체 처리공정의 미생물혼합액 농도 유지를 위해 배출되는 잉여슬러지에 포함되어 호기침지막조에서 배출함으로서 인이 제거되는 단계를 포함하여 이루어지되,(F) Phosphorus ingested in the microbial mixture in the anaerobic treatment tank, preaerobic treatment tank, after anaerobic treatment tank, and aerobic immersion membrane tank in the front end is included in the excess sludge discharged to maintain the concentration of the microbial mixture in the whole treatment process. Including the step of removing the phosphorus by discharging from the last tank, 상기 (C)단계를 거친 미생물혼합액을 이송펌프를 이용하여 소정비율의 유량을 후단의 호기침지막조 상부에 위치한 유량완충분배탱크로 이송시키고 소정비율의 유량으로 분배되어 혐기처리조로 자연유하로 반송시키고, 또 다른 소정비율의 유량은 호기침지막조에 분배되도록 하는 단계를 더 포함하고,The microbial mixed solution passed through step (C) is transferred to a flow rate buffer distribution tank located at an upper portion of the aerobic immersion membrane tank at the rear end by using a transfer pump, and is distributed at a predetermined rate and returned to the anaerobic treatment tank as natural flow. And the flow rate of another predetermined ratio is distributed to the aerobic immersion membrane tank, 상기 (D) 단계에서, (A) 및 (B) 단계로의 내부 반송이 자연유하로 이루어지며 내부반송량은 유입수의 양 Q에 대하여 각각 (B)단계로는 0.5 내지 1.0Q이고, (C) 단계로의 반송량이 유입수의 양 Q에 대하여 2.0Q에서 4.0Q이며,In the step (D), the internal conveyance to the (A) and (B) step is made of natural flow and the internal conveying amount is 0.5 to 1.0Q in the (B) step, respectively, for the amount Q of the influent, (C Return to step) is 2.0Q to 4.0Q for the quantity Q of influent, 상기 (B)단계에서 질산화를 최적화하기 위해 전호기처리조를 3~4개로 구분하며 이들 조의 용존산소량(DO) 혹은 산화환원전위(ORP)농도를 연동하여 각조에 적정의 공기량을 공급하도록 하여 호기 조건에서 질산화효율을 향상시키는 것을 특징으로 하는 생물학적 처리와 침지형 분리막여과를 이용한 오,폐수 처리 방법.In the step (B), in order to optimize nitrification, the preaerobic treatment tanks are divided into three to four, and the dissolved oxygen (DO) or redox potential (ORP) concentrations of these tanks are interlocked to supply an appropriate amount of air to each tank. Wastewater treatment method using biological treatment and immersion membrane filtration characterized by improving the nitrification efficiency under the conditions. 삭제delete 삭제delete 삭제delete 하, 오폐수를 처리하는 장치에 있어서,        In the apparatus for treating wastewater, (A) 미세스크린에 의해 전처리된 하, 오폐수내의 인을 최대한 방출하기 위한 교반기가 구비된 혐기처리조;(A) anaerobic treatment tank equipped with a stirrer for maximizing the discharge of phosphorus in the waste water, pretreated by a fine screen; (B) 질산화효율 향상과 공기량 조절이 가능하도록 3~4개조로 구분하여 유기물 분해및 질산화를 유도하는 산기시스템이 구비된 전호기처리조;(B) a pre-treatment treatment tank equipped with an acid system to induce decomposition and nitrification of organic matter divided into three to four tanks to improve the nitrification efficiency and control the air volume; (C) 유입되는 하, 오폐수를 탈질화시키기 위한 교반기가 구비된 후무산소처리조;(C) a post-oxygen treatment tank equipped with a stirrer for denitrifying the waste water flowing down; (D) 상기된 후무산소처리조에서 내부반송량과 처리수량을 고려한 호기침지막조로의 이송펌프 이송설비;(D) a transfer pump transfer facility to the aerobic immersion membrane tank in consideration of the internal transport amount and the treated water amount in the post-oxygen treatment tank described above; (E) 후무산소처리조에서 이송된 유량의 완충및 분배를 통해 소정유량은 혐기처리조로 자연유하 내부반송되며 소정유량은 호기침지막조로 유입되도록 하는 유량완충분배탱크;(E) a flow-buffering distribution tank for allowing a predetermined flow rate to be internally transferred to the anaerobic treatment tank through buffering and distributing the flow rate transferred from the post-oxygen treatment tank, and the predetermined flow rate to enter the aerobic immersion membrane tank; (F) 상기 유량완충분배탱크로부터 유입된 하, 오폐수를 호기적으로 처리하여 유기물 분해 및 질산화를 유도하는 호기침지막조;(F) an aerobic immersion membrane tank which induces organic decomposition and nitrification by aerobic treatment of wastewater introduced from the flow buffer distribution tank; (G) 상기 호기침지막조에서 미생물혼합액을 고액분리하기 위한 다수의 분리막 모듈을 포함한 분리막 유니트와 여과펌프를 포함한 분리막 장치; (G) a membrane device including a membrane unit including a plurality of membrane modules for solid-liquid separation of the microbial mixture from the aerobic immersion membrane tank and a filtration pump; (H) 상기 호기침지막조에서 전체 처리공정의 미생물혼합액 농도 유지와 흡수된 인을 제거하기 위한 잉여슬러지 인발펌프;(H) the excess sludge drawing pump for maintaining the concentration of the microbial mixture in the treatment process and remove the absorbed phosphorus in the aerobic immersion membrane tank; (I) 상기 유량완충분배탱크로부터 미생물혼합액의 일부를 상기 혐기처리조로 자연유하로 반송시키는 제 2반송라인 및 호기침지막조에서 처리된 질산화된 미생물혼합액의 일부를 상기 전호기처리조로 자연유하로 반송시키기 위한 제 1 반송라인을 포함하여 구성되고,(I) a part of the nitrified microbial mixture treated in the second conveying line and the aerobic immersion membrane tank for returning a part of the microbial mixture solution from the flow rate buffer tank to the anaerobic treatment tank to the natural oil tank. A first conveying line for conveying, 상기 분리막은 침지형 분리막임을 특징으로 하는 생물학적 처리와 침지형 분리막여과를 이용한 오,폐수 처리 장치.The separator is a wastewater treatment apparatus using biological treatment and immersion membrane filtration characterized in that the immersion membrane. 삭제delete 삭제delete
KR20090002737A 2009-01-13 2009-01-13 Process and apparatus of four stages biological treatment including combination of pre oxic and post denitrification through none driven internal recycles and submerged membrane filtration for treating sewage and waste water KR100926268B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20090002737A KR100926268B1 (en) 2009-01-13 2009-01-13 Process and apparatus of four stages biological treatment including combination of pre oxic and post denitrification through none driven internal recycles and submerged membrane filtration for treating sewage and waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20090002737A KR100926268B1 (en) 2009-01-13 2009-01-13 Process and apparatus of four stages biological treatment including combination of pre oxic and post denitrification through none driven internal recycles and submerged membrane filtration for treating sewage and waste water

Publications (1)

Publication Number Publication Date
KR100926268B1 true KR100926268B1 (en) 2009-11-12

Family

ID=41561549

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20090002737A KR100926268B1 (en) 2009-01-13 2009-01-13 Process and apparatus of four stages biological treatment including combination of pre oxic and post denitrification through none driven internal recycles and submerged membrane filtration for treating sewage and waste water

Country Status (1)

Country Link
KR (1) KR100926268B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101432516B1 (en) 2012-08-17 2014-08-21 도레이케미칼 주식회사 Membrane bio-reactor for improving the water treatment efficiency
KR101494398B1 (en) * 2014-06-17 2015-02-23 주식회사 워터스 Apparatus for wastewater treatment with submerged membrane
CN105936547A (en) * 2016-06-23 2016-09-14 肇庆市鹏凯环保装备有限公司 Vertical, unpowered, internal circulation, and intelligent membrane bioreactor
CN107698110A (en) * 2017-11-23 2018-02-16 沈阳工业大学 A kind of small-sized integrated processing equipment of northern country sanitary sewage and its processing method
CN107935179A (en) * 2017-12-05 2018-04-20 上海碧禹水务工程有限公司 A kind of integrated domestic sewage treatment device using MBR techniques
CN110776197A (en) * 2019-10-25 2020-02-11 华电水务膜分离科技(天津)有限公司 Glycerol-containing wastewater treatment integrated device
CN110950489A (en) * 2019-04-18 2020-04-03 湖南湘牛环保实业有限公司 Intelligent integrated treatment equipment and process for domestic sewage in expressway service area
KR102370635B1 (en) 2021-05-07 2022-03-07 주식회사 장호 Apparatus for treating waste water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1128468A (en) 1997-07-08 1999-02-02 Kurita Water Ind Ltd Immersion membrane type solid-liquid separator
KR100459986B1 (en) * 2002-02-05 2004-12-04 강용태 Advanced Step Aeration with Media(ASA, SFC-Biofilter)
KR100537572B1 (en) * 2005-07-07 2005-12-19 주식회사 유성건설 Advanced treatment of sewage method and apparatus for eliminating chemical component such as nitrogen and phosphorus and fog reducing sludge
KR100540986B1 (en) * 2003-12-02 2006-01-10 주식회사 한화건설 Wastewater treatment system by means of membrane bio-reactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1128468A (en) 1997-07-08 1999-02-02 Kurita Water Ind Ltd Immersion membrane type solid-liquid separator
KR100459986B1 (en) * 2002-02-05 2004-12-04 강용태 Advanced Step Aeration with Media(ASA, SFC-Biofilter)
KR100540986B1 (en) * 2003-12-02 2006-01-10 주식회사 한화건설 Wastewater treatment system by means of membrane bio-reactor
KR100537572B1 (en) * 2005-07-07 2005-12-19 주식회사 유성건설 Advanced treatment of sewage method and apparatus for eliminating chemical component such as nitrogen and phosphorus and fog reducing sludge

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101432516B1 (en) 2012-08-17 2014-08-21 도레이케미칼 주식회사 Membrane bio-reactor for improving the water treatment efficiency
KR101494398B1 (en) * 2014-06-17 2015-02-23 주식회사 워터스 Apparatus for wastewater treatment with submerged membrane
CN105936547A (en) * 2016-06-23 2016-09-14 肇庆市鹏凯环保装备有限公司 Vertical, unpowered, internal circulation, and intelligent membrane bioreactor
CN107698110A (en) * 2017-11-23 2018-02-16 沈阳工业大学 A kind of small-sized integrated processing equipment of northern country sanitary sewage and its processing method
CN107935179A (en) * 2017-12-05 2018-04-20 上海碧禹水务工程有限公司 A kind of integrated domestic sewage treatment device using MBR techniques
CN110950489A (en) * 2019-04-18 2020-04-03 湖南湘牛环保实业有限公司 Intelligent integrated treatment equipment and process for domestic sewage in expressway service area
CN110776197A (en) * 2019-10-25 2020-02-11 华电水务膜分离科技(天津)有限公司 Glycerol-containing wastewater treatment integrated device
KR102370635B1 (en) 2021-05-07 2022-03-07 주식회사 장호 Apparatus for treating waste water

Similar Documents

Publication Publication Date Title
KR100926268B1 (en) Process and apparatus of four stages biological treatment including combination of pre oxic and post denitrification through none driven internal recycles and submerged membrane filtration for treating sewage and waste water
AU2007238520B2 (en) Method and system for nitrifying and denitrifying wastewater
US9975796B2 (en) Process, apparatus and membrane bioreactor for wastewater treatment
JP2008284427A (en) Apparatus and method for treating waste water
KR101294489B1 (en) Apparatus for treating a drainage containing organic sulfur compounds
KR100785044B1 (en) Method for remodeling of the existing wastewater treatment facilities into advanced treatment facilities and operating method using the advanced treatment facilities
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
KR100917839B1 (en) Treatment method for waste water
KR101161801B1 (en) Advanced treating system and process for wastewater with wide fluctuation of pollutant load
KR101326402B1 (en) Membrane Bio Reactor system comprising Sequencing Batch Reactor and method using the same
JP2010253428A (en) Wastewater treatment apparatus and wastewater treatment method
CN104710077A (en) Treatment system and treatment method of synthetic rubber wastewater
KR101190472B1 (en) A none piping membrane bioreactor with circulation-agitater
KR200484293Y1 (en) External-Submersed Membrane Bioreactor and Water Treatment Apparatus Using the Same
KR20040075413A (en) Wastewater treatment system by multiple sequencing batch reactor and its operation methods
KR100839035B1 (en) Biological wastewater treatment apparatus using diffuser-mediated sludge flotation and treatment method using the same
CN111153551A (en) Municipal sewage treatment device and treatment process
CN215516829U (en) High ammonia nitrogen sewage deep denitrification treatment device
KR100454584B1 (en) Process and system for treating sewage and waste water by using four-stage biological treatment and membrane separation
CN113443713A (en) Device and method for advanced denitrification treatment of high ammonia nitrogen sewage
JP3478241B2 (en) Biological treatment equipment
CN113443714A (en) Sewage deep denitrification treatment device and method
KR20010076873A (en) Organic and nitrogen compound removal methods from landfill leachate using an anaerobic-aerobic-anoxic system
KR100993482B1 (en) Apparatus for biological treatment of wastewater including sequencing batch reactor linked with air-flotation process, and method for wastewater treatment using the same
KR19990083645A (en) Organic material and nitrogen, phosphate removal method using intermitted aeration process and plate type microfiltration membrane

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120829

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130827

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141014

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150826

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161025

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20171106

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20181029

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20191104

Year of fee payment: 11