JP2008284427A - Apparatus and method for treating waste water - Google Patents

Apparatus and method for treating waste water Download PDF

Info

Publication number
JP2008284427A
JP2008284427A JP2007129694A JP2007129694A JP2008284427A JP 2008284427 A JP2008284427 A JP 2008284427A JP 2007129694 A JP2007129694 A JP 2007129694A JP 2007129694 A JP2007129694 A JP 2007129694A JP 2008284427 A JP2008284427 A JP 2008284427A
Authority
JP
Japan
Prior art keywords
tank
sludge
granule
water
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007129694A
Other languages
Japanese (ja)
Inventor
Kenji Yamamura
Hitoshi Kato
Akinori Kato
Taku Sato
卓 佐藤
仁 加藤
明徳 加藤
健治 山村
Original Assignee
Sumitomo Heavy Industries Environment Co Ltd
住友重機械エンバイロメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Environment Co Ltd, 住友重機械エンバイロメント株式会社 filed Critical Sumitomo Heavy Industries Environment Co Ltd
Priority to JP2007129694A priority Critical patent/JP2008284427A/en
Publication of JP2008284427A publication Critical patent/JP2008284427A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for treating waste water, in each of which raw sludge separated from organic waste water can be used effectively and organic waste water can be treated biologically, satisfactorily stably and efficiently. <P>SOLUTION: The apparatus 100 for treating waste water, in which granulated sludge obtained by agglomerating and granulating microbial sludge is used, is provided with: a first sedimentation basin 1 for separating organic waste water into raw sludge and the water to be treated; a biological treatment tank 2A for biologically treating the water to be treated under an aerobic condition; a final sedimentation basin 3 for separating the biologically-treated water from the biological treatment tank 2A into separated water and separated sludge; an acid production tank 12 for producing an organic acid by fermenting the raw sludge; a granulated sludge production tank 20 for producing granulated sludge from a liquid raw material containing the organic acid; and a first granulated sludge supplying line L19A for supplying the granulated sludge produced in the granulated sludge production tank 20 to the biological treatment tank 2A. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、微生物汚泥が集合して粒状化してなるグラニュール汚泥を利用した排水処理装置及び排水処理方法に関する。   The present invention relates to a wastewater treatment apparatus and a wastewater treatment method using granulated sludge formed by collecting and granulating microbial sludge.
下水などの有機性排水を処理する方法として微生物汚泥を利用した活性汚泥法が知られている。微生物汚泥を収容し、曝気などによって好気条件に維持された処理槽内において、有機性排水に含まれる有機物、特に炭素系有機化合物が微生物の代謝によって分解除去される。   An activated sludge method using microbial sludge is known as a method for treating organic wastewater such as sewage. In a treatment tank that contains microbial sludge and is maintained in an aerobic condition by aeration or the like, organic substances, particularly carbon-based organic compounds, contained in organic wastewater are decomposed and removed by metabolism of microorganisms.
有機性排水には炭素系有機化合物の他に、海や河川の富栄養化の原因となる窒素含有化合物やリン含有化合物などの化合物が含まれている。微生物汚泥は種々の微生物からなり、これらの化合物を代謝する微生物は、その生理特性によって以下の4群に分類されることが知られている(非特許文献1を参照)。
(i)好気条件下(酸素が存在する条件下)、炭素系有機化合物を利用して増殖する従属栄養生物、
(ii)好気条件下(酸素が存在する条件下)、アンモニア態窒素を硝酸態窒素へと酸化する独立栄養細菌(いわゆる硝化細菌)、
(iii)無酸素条件下(溶存酸素が存在しない条件下)、硝酸性呼吸、亜硝酸性呼吸を行う通性嫌気性細菌(いわゆる脱窒細菌)、
(iv)嫌気条件下(酸素、硝酸・亜硝酸が存在しない条件下)と好気条件下とに交互に曝されることにより、ポリリン酸を菌体内に多く蓄積する細菌(いわゆるリン蓄積細菌)。
In addition to carbon-based organic compounds, organic wastewater contains compounds such as nitrogen-containing compounds and phosphorus-containing compounds that cause eutrophication of the sea and rivers. Microbial sludge consists of various microorganisms, and it is known that microorganisms that metabolize these compounds are classified into the following four groups according to their physiological characteristics (see Non-Patent Document 1).
(I) heterotrophic organisms that grow using a carbon-based organic compound under aerobic conditions (in the presence of oxygen),
(Ii) autotrophic bacteria (so-called nitrifying bacteria) that oxidize ammonia nitrogen to nitrate nitrogen under aerobic conditions (in the presence of oxygen),
(Iii) facultative anaerobic bacteria (so-called denitrifying bacteria) that perform anaerobic conditions (under no dissolved oxygen), nitrate respiration, nitrite respiration,
(Iv) Bacteria that accumulate a large amount of polyphosphoric acid in cells by soaking alternately under anaerobic conditions (under the absence of oxygen, nitric acid / nitrite) and aerobic conditions (so-called phosphorus accumulating bacteria) .
非特許文献1には、活性汚泥法の運転条件を制御し、上記4群に属するそれぞれの微生物に適した条件を人為的に実現することで、炭素系有機化合物の分解除去に加え、生物学的脱窒や生物学的脱リンを行うことができる旨、記載されている。
建設省都市局下水道部監修、「下水道設備計画・設計指針と解説 後編 −1994年版−」、第2刷、社団法人 日本下水道協会、平成6年11月25日、p.14−15
In Non-Patent Document 1, in addition to decomposing and removing carbon-based organic compounds by controlling the operating conditions of the activated sludge method and artificially realizing conditions suitable for each microorganism belonging to the above four groups, biology It is described that it can perform denitrification and biological dephosphorization.
Supervised by the Sewerage Department, City Bureau of the Ministry of Construction, "Sewerage Facilities Planning and Design Guidelines and Explanation Part 2 -1994 Edition", 2nd edition, Japan Sewerage Association, November 25, 1994, p. 14-15
有機化合物の除去と生物学的脱窒や生物学的脱リンとを組み合わせた排水処理方法は、薬品等を使用することなく、有機化合物(主にBOD成分)、窒素含有化合物、リン含有化合物を除去できるという利点を有している。しかしながら、微生物の代謝機能を利用して各化合物を処理するものであるため、従来の方法にあっては処理の安定性及び効率の点において改善の余地があった。   The wastewater treatment method that combines the removal of organic compounds with biological denitrification and biological dephosphorization can be applied to organic compounds (mainly BOD components), nitrogen-containing compounds, and phosphorus-containing compounds without using chemicals. It has the advantage that it can be removed. However, since each compound is processed using the metabolic function of microorganisms, the conventional method has room for improvement in terms of the stability and efficiency of the processing.
また、例えば、下水処理施設で下水を処理する場合、有機性排水は最初沈殿池と呼ばれる固液分離槽に貯留され、その底部から有機性の固形分を多く含有する生汚泥が分離されるが、この生汚泥の処理を別途行う必要があった。   Also, for example, when treating sewage in a sewage treatment facility, organic wastewater is first stored in a solid-liquid separation tank called a sedimentation basin, and raw sludge containing a large amount of organic solids is separated from its bottom. Therefore, it was necessary to treat this raw sludge separately.
本発明は、かかる事情に鑑みてなされたものであり、有機性排水から分離された生汚泥を有効利用でき、有機性排水を十分に安定的且つ効率的に生物処理できる排水処理装置及び排水処理方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is capable of effectively using raw sludge separated from organic wastewater, and a wastewater treatment apparatus and wastewater treatment capable of biologically treating organic wastewater sufficiently stably and efficiently. It aims to provide a method.
本発明の排水処理装置は、微生物汚泥が集合して粒状化してなるグラニュール汚泥を利用したものであって、有機性排水を生汚泥と被処理水とに分離する第1の固液分離槽と、グラニュール汚泥を収容し、好気条件下において被処理水を生物処理する好気槽と、好気槽における処理を経た生物処理水を分離水と分離汚泥とに分離する第2の固液分離槽と、生汚泥を発酵させて有機酸を生成する酸生成槽と、有機酸を含有する原料液からグラニュール汚泥を生成するグラニュール生成槽と、グラニュール生成槽で生成したグラニュール汚泥を好気槽に供給する第1のグラニュール供給ラインと、を備える。   The waste water treatment apparatus of the present invention uses granulated sludge formed by collecting and granulating microbial sludge, and is a first solid-liquid separation tank that separates organic waste water into raw sludge and treated water. And an aerobic tank that contains granule sludge and biologically treats the water to be treated under aerobic conditions, and a second solid that separates the biologically treated water that has been treated in the aerobic tank into separated water and separated sludge. Liquid separation tank, acid generation tank that ferments raw sludge to generate organic acid, granule generation tank that generates granular sludge from raw material liquid containing organic acid, and granules generated in the granule generation tank A first granule supply line for supplying sludge to the aerobic tank.
また、本発明の排水処理装置は、下記の通り、好気条件下における処理と無酸素条件下における処理とを組み合わせた生物処理により、有機化合物の分解除去に加え、窒素含有化合物の分解処理をも可能としたものであってもよい。   In addition, the wastewater treatment apparatus of the present invention, as described below, decomposes nitrogen-containing compounds in addition to decomposing and removing organic compounds by biological treatment that combines treatment under aerobic conditions and treatment under anoxic conditions. It may also be possible.
即ち、本発明の排水処理装置は、微生物汚泥が集合して粒状化してなるグラニュール汚泥を利用したものであって、有機性排水を生汚泥と被処理水とに分離する第3の固液分離槽と、グラニュール汚泥を収容し、好気条件下において被処理水に含まれる有機物を低減させると共に、当該被処理水に含まれるアンモニア態窒素を酸化して硝酸態窒素を生成する好気槽と、好気槽内の処理水及び前記グラニュール汚泥の一部が供給され、無酸素条件下において当該処理水に含まれる硝酸態窒素を還元して窒素ガスを生成する無酸素槽と、好気槽及び無酸素槽における処理を経た生物処理水を分離水と分離汚泥とに分離する第4の固液分離槽と、生汚泥を発酵させて有機酸を生成する酸生成槽と、有機酸を含有する原料液からグラニュール汚泥を生成するグラニュール生成槽と、グラニュール生成槽で生成したグラニュール汚泥を無酸素槽及び/又は好気槽に供給する第2のグラニュール供給ラインと、を備える。   That is, the wastewater treatment apparatus of the present invention uses granule sludge formed by collecting and granulating microbial sludge, and is a third solid liquid that separates organic wastewater into raw sludge and treated water. An aerobic that contains a separation tank and granule sludge, reduces organic matter contained in the water to be treated under aerobic conditions, and generates nitrate nitrogen by oxidizing ammonia nitrogen contained in the water to be treated. A tank, an anaerobic tank in which a portion of the treated water in the aerobic tank and the granular sludge is supplied, and nitrogen gas contained in the treated water is reduced under anoxic conditions to generate nitrogen gas; A fourth solid-liquid separation tank that separates biologically treated water that has undergone treatment in an aerobic tank and an anaerobic tank into separated water and separated sludge; an acid generation tank that ferments raw sludge to produce an organic acid; Granule sludge is produced from acid-containing raw material liquid Comprising a granule production tank, the granular sludge generated in granules production tank and a second granule supply line for supplying the anoxic tank and / or aerobic tank, the for.
本発明の排水処理装置においては、有機性排水から分離された生汚泥を酸生成槽において発酵させて有機酸を生成する。この有機酸を含有する原料液を用いることで、好気性のグラニュール汚泥を安定的且つ効率的に生成することができる。このように、本発明によれば、従来、別途処理が必要とされた生汚泥を有効利用できる。   In the wastewater treatment apparatus of the present invention, raw sludge separated from organic wastewater is fermented in an acid production tank to produce an organic acid. By using this raw material liquid containing an organic acid, aerobic granular sludge can be generated stably and efficiently. As described above, according to the present invention, it is possible to effectively use raw sludge that conventionally requires separate treatment.
また、本発明の排水処理装置では、グラニュール汚泥を利用することにより、生物処理を安定的且つ効率的に行うことができる。グラニュール汚泥は微生物汚泥が集合して粒状化したものであり、また、沈降性に優れるという特性を有するため、生物処理槽(好気槽及び無酸素槽)の汚泥濃度を高濃度に維持できる。また、高い汚泥濃度を維持できることにより、生物処理槽を大幅に小型化でき、排水処理施設の敷地面積の省スペース化及び設備コストの大幅な削減を実現できる。   Moreover, in the waste water treatment apparatus of this invention, biological treatment can be performed stably and efficiently by utilizing granule sludge. Granule sludge is a pulverized sludge that is aggregated and granulated, and because it has excellent sedimentation properties, the sludge concentration in biological treatment tanks (aerobic tank and anoxic tank) can be maintained at a high level. . In addition, since the high sludge concentration can be maintained, the biological treatment tank can be significantly downsized, and the site area of the wastewater treatment facility can be saved and the equipment cost can be greatly reduced.
好気条件下における処理と無酸素条件下における処理とを組み合わせた生物処理を行う排水処理装置にあっては、微生物汚泥の菌体内に蓄積したリンを嫌気条件下で放出させる嫌気槽と、第4の固液分離槽から排出される分離汚泥の一部を嫌気槽に返送する分離汚泥返送ラインと、を更に備え、嫌気槽における処理を経た嫌気処理水が無酸素槽へと供給されるような構成であることが好ましい。   In a wastewater treatment apparatus that performs biological treatment combining treatment under aerobic conditions and treatment under anaerobic conditions, an anaerobic tank that releases phosphorus accumulated in the cells of microbial sludge under anaerobic conditions, And a separation sludge return line for returning a part of the separated sludge discharged from the solid-liquid separation tank to the anaerobic tank, so that the anaerobic treated water that has been treated in the anaerobic tank is supplied to the anoxic tank. It is preferable that it is a simple structure.
上記構成を採用することにより、リン蓄積細菌が増殖し、有機性排水に含まれるリン含有化合物の除去をも行うことができる。この場合、リン蓄積細菌によるリン含有化合物の処理効率を一層向上させる観点から、酸生成槽で生成した有機酸の一部を嫌気槽へと供給する有機酸供給ラインを更に備えることが好ましく、また、同様の観点から、第3の固液分離槽から被処理水を排出するラインは、無酸素槽に接続されていることが好ましい。   By adopting the above configuration, phosphorus-accumulating bacteria grow and the phosphorus-containing compound contained in the organic waste water can be removed. In this case, from the viewpoint of further improving the processing efficiency of the phosphorus-containing compound by the phosphorus accumulating bacteria, it is preferable to further include an organic acid supply line that supplies a part of the organic acid generated in the acid generation tank to the anaerobic tank. From the same viewpoint, it is preferable that the line for discharging the water to be treated from the third solid-liquid separation tank is connected to the anoxic tank.
また、生物処理槽内の汚泥濃度を一層高く維持する観点から、好気槽は槽内のグラニュール汚泥が槽外に流出することを防止するグラニュール流出防止手段を備えることが好ましい。また、同様の観点から、本発明の排水処理装置は、好気槽から生物処理水と共に流出したグラニュール汚泥を回収し、好気槽へと返送するグラニュール回収手段を更に備えることが好ましい。   Further, from the viewpoint of maintaining a higher sludge concentration in the biological treatment tank, the aerobic tank preferably includes granule outflow prevention means for preventing the granular sludge in the tank from flowing out of the tank. From the same viewpoint, it is preferable that the waste water treatment apparatus of the present invention further includes granule collecting means for collecting the granular sludge that has flowed out from the aerobic tank together with the biologically treated water and returning it to the aerobic tank.
本発明の排水処理方法は、微生物汚泥が集合して粒状化してなるグラニュール汚泥を利用したものであって、有機性排水を生汚泥と被処理水とに分離する固液分離工程と、生汚泥を発酵させて有機酸を得る酸生成工程と、有機酸を含有する原料液からグラニュール汚泥を得るグラニュール生成工程と、グラニュール生成工程を経て得られたグラニュール汚泥によって被処理水を好気条件下において生物処理する好気処理工程と、を備える。   The wastewater treatment method of the present invention uses granular sludge formed by microbial sludge being aggregated and granulated, a solid-liquid separation step for separating organic wastewater into raw sludge and treated water, The water to be treated is treated with an acid generation process for fermenting sludge to obtain an organic acid, a granule generation process for obtaining granule sludge from a raw material liquid containing organic acid, and a granule sludge obtained through the granule generation process. An aerobic treatment step for biologically treating under aerobic conditions.
本発明の排水処理方法においては、有機性排水から分離された生汚泥を発酵させて有機酸を生成する。この有機酸を含有する原料液を用いることで、好気性のグラニュール汚泥を安定的且つ効率的に生成することができる。このように、本発明によれば、従来、別途処理が必要とされた生汚泥を有効利用することができる。   In the wastewater treatment method of the present invention, organic sludge is produced by fermenting raw sludge separated from organic wastewater. By using this raw material liquid containing an organic acid, aerobic granular sludge can be generated stably and efficiently. As described above, according to the present invention, it is possible to effectively use raw sludge that conventionally requires separate treatment.
また、本発明の排水処理方法では、グラニュール汚泥を利用することにより、生物処理槽内の汚泥濃度を高濃度に維持できるため、生物処理を安定的且つ効率的に行うことができる。また、高い汚泥濃度を維持できることにより、生物処理槽を大幅に小型化でき、排水処理施設の敷地面積の省スペース化及び設備コストの大幅な削減を実現できる。   In the wastewater treatment method of the present invention, the sludge concentration in the biological treatment tank can be maintained at a high concentration by using granule sludge, so that the biological treatment can be performed stably and efficiently. In addition, since the high sludge concentration can be maintained, the biological treatment tank can be greatly reduced in size, and the site area of the wastewater treatment facility can be saved and the equipment cost can be greatly reduced.
本発明によれば、有機性排水から分離された生汚泥を有効利用でき、有機性排水を十分に安定的且つ効率的に生物処理できる排水処理装置及び排水処理方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the raw sludge isolate | separated from organic waste water can be used effectively, and the waste water treatment apparatus and waste water treatment method which can carry out biological treatment of organic waste water fully stably and efficiently can be provided.
以下、本発明の好適な実施形態について図面を参照しながら説明する。なお、各図において、同一の要素には同一符号を付し、重複する説明は省略する。   Preferred embodiments of the present invention will be described below with reference to the drawings. In each figure, the same symbols are attached to the same elements, and duplicate descriptions are omitted.
(第1実施形態)
図1は、本発明の第1実施形態に係る排水処理装置を示す概略構成図であり、例えば下水処理施設等に採用されるものである。
(First embodiment)
FIG. 1 is a schematic configuration diagram showing a wastewater treatment apparatus according to the first embodiment of the present invention, which is employed in, for example, a sewage treatment facility.
図1に示すように、排水処理装置100は、曝気による好気処理を含む処理を行う装置である。この排水処理装置100は、最初沈殿池1、生物処理槽(好気槽)2A、最終沈殿池3と共にグラニュール汚泥生成装置10を備えている。ここで、本実施形態では、最初沈殿池1が第1の固液分離槽に相当し、最終沈殿池3が第2の固液分離槽に相当する。   As shown in FIG. 1, the waste water treatment apparatus 100 is an apparatus that performs a process including an aerobic process by aeration. The wastewater treatment apparatus 100 includes a granule sludge generation apparatus 10 together with a first sedimentation tank 1, a biological treatment tank (aerobic tank) 2 </ b> A, and a final sedimentation tank 3. Here, in this embodiment, the first sedimentation tank 1 corresponds to a first solid-liquid separation tank, and the final sedimentation tank 3 corresponds to a second solid-liquid separation tank.
排水処理装置100にあっては、下水処理施設の粗目スクリーンにて粗大な木切れ等が除去され、沈砂池で比較的粒径が大きい固形物が沈降分離され、布、空き缶、ビニール類等の篩渣がスクリーンにて除去され、ポンプ井よりポンプアップされた流入下水(有機性排水)が、ラインL1を通じて最初沈殿池1に導入される。   In the wastewater treatment apparatus 100, coarse wood chips and the like are removed by a coarse screen of a sewage treatment facility, and solids having a relatively large particle size are settled and separated in a sand basin, such as cloth, empty cans, vinyls, etc. The sewage is removed with a screen, and the inflow sewage (organic waste water) pumped up from the pump well is first introduced into the settling tank 1 through the line L1.
この流入下水は、ラインL1より最初沈殿池1に導入され、重力沈降により最初沈殿池1の底部に沈降する生汚泥とそれ以外の上澄み水とに分離される。ここで沈降した生汚泥は図示しない汚泥掻寄機で汚泥溜まり部1aに掻き寄せられて、ラインL11を通じてグラニュール汚泥生成装置10に送られる。詳細は後述するが、グラニュール汚泥生成装置10は、生汚泥を酸発酵して有機酸(例えば、酢酸、プロピオン酸、酪酸)を生成し、これを含んだ有機酸溶液を原料液として使用し、グラニュール汚泥を生成する装置である。このグラニュール汚泥生成装置10で生成した好気性のグラニュール汚泥はライン(第1のグラニュール供給ライン)L19Aを通じて生物処理槽2A内に導入される。   The inflowing sewage is introduced into the first sedimentation basin 1 from the line L1, and separated into raw sludge and other supernatant water that settles to the bottom of the first sedimentation basin 1 by gravity sedimentation. The raw sludge settled here is scraped to the sludge reservoir 1a by a sludge scraper (not shown) and sent to the granule sludge generation apparatus 10 through the line L11. Although the details will be described later, the granule sludge generating apparatus 10 generates organic acids (for example, acetic acid, propionic acid, butyric acid) by acid fermentation of raw sludge, and uses an organic acid solution containing this as a raw material liquid. It is a device that produces granular sludge. The aerobic granule sludge produced | generated with this granule sludge production | generation apparatus 10 is introduce | transduced in the biological treatment tank 2A through line (1st granule supply line) L19A.
生物処理槽2Aは、ラインL2から導入された上澄み水(被処理水)を好気条件下にて好気処理するための曝気槽であり、槽内に設けられた散気装置2dと、この散気装置2dに空気を供給するブロア2eとを備えている。生物処理槽2Aは、ラインL19Aからの好気性のグラニュール汚泥を収容しており、被処理水に対してグラニュール汚泥による好気処理が行われる。好気処理が施された生物処理水は、ラインL3を介して最終沈殿池3に送られる。   The biological treatment tank 2A is an aeration tank for aerobically treating the supernatant water (treated water) introduced from the line L2 under aerobic conditions, and an aeration device 2d provided in the tank, And a blower 2e for supplying air to the air diffuser 2d. The biological treatment tank 2A accommodates the aerobic granular sludge from the line L19A, and aerobic treatment with the granular sludge is performed on the water to be treated. The biologically treated water that has been subjected to the aerobic treatment is sent to the final sedimentation basin 3 via the line L3.
生物処理槽2Aに接続されたラインL3の基端側にはグラニュール汚泥が生物処理水と共に槽外に流出することを防止するためのフィルター(グラニュール流出防止手段)2fが設置されている。なお、フィルター2fの開口サイズは、使用するグラニュール汚泥の粒径(0.5ミリから数ミリ程度)や活性汚泥(グラニュール汚泥を除く)の粒径に応じて適宜設定すればよい。   On the base end side of the line L3 connected to the biological treatment tank 2A, a filter (granule outflow prevention means) 2f for preventing the granular sludge from flowing out of the tank together with the biological treatment water is installed. In addition, what is necessary is just to set the opening size of the filter 2f suitably according to the particle size (about 0.5 millimeters-about several millimeters) of the granular sludge to be used and the particle size of activated sludge (except granule sludge).
ラインL3を介して最終沈殿池3に送られた生物処理水は、浮遊する活性汚泥を沈降分離させた後、ラインL5を通じて排出され、図示しない設備において三次処理や滅菌処理が行われた後、河川等に放流される。沈降した活性汚泥は図示しない汚泥掻寄機で汚泥溜まり部3aに掻き寄せられて、ラインL6から排出され、その一部はライン(分離汚泥返送ライン)L7を通じて生物処理槽2A内に導入され、残りは、図示しない汚泥処理槽に送られて処理される。   The biologically treated water sent to the final settling basin 3 via the line L3 is discharged through the line L5 after settling and separating the suspended activated sludge, and after the tertiary treatment and sterilization treatment are performed in an unillustrated facility, Released into rivers. The sedimented activated sludge is scraped to the sludge reservoir 3a by a sludge scraper (not shown) and discharged from the line L6. A part of the sludge is introduced into the biological treatment tank 2A through the line (separated sludge return line) L7. The rest is sent to a sludge treatment tank (not shown) for processing.
グラニュール汚泥生成装置10は、生汚泥貯留槽11、酸生成槽12及び固液分離槽13をこの順にラインL12及びラインL13を介して備えると共に、この固液分離槽13の上澄み水側にラインL17を介して回分式のグラニュール生成槽20を備えている。このグラニュール生成槽20には、上記ラインL19Aを介して生物処理槽2Aが接続されている。   The granule sludge generation apparatus 10 includes a raw sludge storage tank 11, an acid generation tank 12, and a solid-liquid separation tank 13 in this order via a line L12 and a line L13, and a line on the supernatant water side of the solid-liquid separation tank 13. A batch-type granule production tank 20 is provided via L17. The granule generation tank 20 is connected to the biological treatment tank 2A via the line L19A.
生汚泥貯留槽11は、ラインL11を介して導入された生汚泥を一旦貯留するための槽である。生汚泥貯留槽11は、槽内に汚泥攪拌機11aを備える。この汚泥攪拌機11aによって攪拌されて汚泥濃度が十分に均一となった生汚泥は、ラインL12に配設されたポンプP1によって酸生成槽12に移送される。   The raw sludge storage tank 11 is a tank for temporarily storing the raw sludge introduced through the line L11. The raw sludge storage tank 11 includes a sludge stirrer 11a in the tank. The raw sludge stirred by the sludge stirrer 11a and having a sufficiently uniform sludge concentration is transferred to the acid generation tank 12 by a pump P1 disposed in the line L12.
酸生成槽12は、ラインL12を通じて供給された生汚泥中の有機物を酸生成菌により酸発酵させて有機酸を生成するものである。酸生成槽12は、槽内に滞留する被発酵処理液を攪拌する攪拌機12aを備える。また、図1には示していないが、酸生成槽12は、被発酵処理液のpH及び酸化還元電位をそれぞれ測定するpHセンサ及びORP測定センサ、被発酵処理液に酸又はアルカリを添加して被発酵処理液のpHを調整するpH調整装置並びに被発酵処理液の酸化還元電位を調整する空気供給装置を備える。   The acid production tank 12 produces an organic acid by subjecting organic matter in raw sludge supplied through the line L12 to acid fermentation with acid producing bacteria. The acid generation tank 12 includes a stirrer 12a that stirs the to-be-fermented processing liquid staying in the tank. Moreover, although not shown in FIG. 1, the acid production tank 12 adds an acid or an alkali to the pH sensor and ORP measurement sensor which each measure the pH of a to-be-fermented process liquid, and an oxidation reduction potential, and a to-be-fermented process liquid. A pH adjusting device that adjusts the pH of the liquid to be fermented and an air supply device that adjusts the oxidation-reduction potential of the liquid to be fermented are provided.
固液分離槽13は、酸生成槽12で生成した発酵処理液を有機酸溶液と酸生成菌体を含有する酸生成菌体含有汚泥とに分離する沈殿槽である。なお、この沈殿槽に代えて例えば膜分離槽(膜分離装置)等の固液分離装置を用いることができる。   The solid-liquid separation tank 13 is a precipitation tank that separates the fermentation treatment liquid produced in the acid production tank 12 into an organic acid solution and acid-producing bacterial cell-containing sludge containing acid-producing bacterial cells. In addition, it can replace with this precipitation tank and can use solid-liquid separation apparatuses, such as a membrane separation tank (membrane separation apparatus), for example.
固液分離槽13で分離された有機酸溶液(原料液)は、途中にバルブV1が配設されたラインL17を通じて回分式のグラニュール生成槽20に供給される。一方、沈降した酸生成菌体含有汚泥はラインL15から排出され、その一部は途中にポンプP2が配設されたラインL14を通じて酸生成槽12に導入され、残りは、例えば脱水−焼却等の処理に供される。   The organic acid solution (raw material liquid) separated in the solid-liquid separation tank 13 is supplied to the batch-type granule production tank 20 through a line L17 in which a valve V1 is arranged on the way. On the other hand, the precipitated acid-producing bacterial cell-containing sludge is discharged from the line L15, a part of which is introduced into the acid generation tank 12 through the line L14 in which the pump P2 is disposed in the middle, and the rest is, for example, dehydration-incineration Provided for processing.
回分式のグラニュール生成槽20は、ラインL17を通じて供給される有機酸溶液を原料液として使用し、微生物汚泥が集合して粒状化してなるグラニュール汚泥を生成するための槽である。グラニュール生成槽20には、返送汚泥の一部を導入するためのラインL7aが接続されている。このラインL7aは、ラインL7から分岐したもので、途中にバルブV4が配設されている。   The batch-type granule production tank 20 is a tank for producing granule sludge obtained by using an organic acid solution supplied through a line L17 as a raw material liquid and collecting microbial sludge and granulating it. A line L7a for introducing a part of the returned sludge is connected to the granule generation tank 20. The line L7a is branched from the line L7, and a valve V4 is disposed in the middle.
グラニュール生成槽20は、エアリフト型の半回分式リアクター(SBR:sequencing batch reactor)であり、所定の基本周期を繰り返し行うことで微生物汚泥から徐々にグラニュールを形成する。以下のグラニュール生成槽20についての説明においては、微生物汚泥及びグラニュール汚泥を含めて活性汚泥とも称す。   The granule production tank 20 is an airlift type semi-batch reactor (SBR), and gradually forms granules from microbial sludge by repeating a predetermined basic cycle. In the following description of the granule generation tank 20, the activated sludge including microbial sludge and granule sludge is also referred to.
図2〜図5は、グラニュール生成槽20のグラニュール生成工程の各操作中の状態をそれぞれ示す図である。図2〜図5に示すように、グラニュール生成槽20は、液体を収容するための円筒状の槽21を備えている。   2-5 is a figure which shows the state in each operation of the granule production | generation process of the granule production | generation tank 20, respectively. As shown in FIGS. 2-5, the granule production | generation tank 20 is equipped with the cylindrical tank 21 for accommodating a liquid.
槽21の底部には、槽21内で生成したグラニュール汚泥を生物処理槽2Aへと供給するためのラインL19Aが接続されている。一方、槽21の側壁部には、槽21内の処理水Wを排出するためのラインL18が接続されている。ラインL18及びラインL19Aの途中にはそれぞれバルブV2及びバルブV3がそれぞれ配設されている。   A line L19A for supplying granular sludge generated in the tank 21 to the biological treatment tank 2A is connected to the bottom of the tank 21. On the other hand, a line L <b> 18 for discharging the treated water W in the tank 21 is connected to the side wall portion of the tank 21. A valve V2 and a valve V3 are provided in the middle of the line L18 and the line L19A, respectively.
また、槽21内には内筒22が配置されており、内筒22の下部には槽21内を曝気するための散気手段として散気球23が設けられている。散気球23には、ブロア25が接続されており、ブロア25からの空気が散気球23に送風されることで槽21内に散気される。   Further, an inner cylinder 22 is disposed in the tank 21, and an aeration bulb 23 is provided at the lower portion of the inner cylinder 22 as an aeration means for aeration of the tank 21. A blower 25 is connected to the air diffuser 23, and the air from the blower 25 is blown into the air diffuser 23 to be diffused into the tank 21.
このように構成されたグラニュール生成槽20にあっては、好気条件下において有機酸を微生物汚泥が捕食して増殖するに従い、グラニュール汚泥の粒径が徐々に大きくなる。   In the granule production tank 20 configured as described above, the particle size of the granule sludge gradually increases as the organic acid is engulfed and propagated by the microbial sludge under aerobic conditions.
本実施形態においては、槽21内を効率よく循環させるために内筒22を用いているが、この形状については、本実施形態に限定されず、槽21内を効率よく循環させるような形状であればどのようなものでもよい。   In the present embodiment, the inner cylinder 22 is used in order to circulate the tank 21 efficiently. However, this shape is not limited to the present embodiment, and the shape is such that the tank 21 is circulated efficiently. Anything is acceptable.
次に、本実施形態に係る排水処理装置100によって有機性排水を処理する方法について説明する。   Next, a method for treating organic wastewater by the wastewater treatment apparatus 100 according to the present embodiment will be described.
まず、最初沈殿池1において流入下水を生汚泥と被処理水とに分離する(固液分離工程)。被処理水を生物処理槽2Aに導入し、好気条件下において生物処理する(好気処理工程)。この生物処理槽2A内には、後述のグラニュール生成工程を経て得られたグラニュール汚泥が収容されている。   First, inflow sewage is first separated into raw sludge and treated water in the settling basin 1 (solid-liquid separation step). Water to be treated is introduced into the biological treatment tank 2A and biologically treated under aerobic conditions (aerobic treatment step). In this biological treatment tank 2A, granule sludge obtained through a granule generation step described later is accommodated.
生物処理槽2AからラインL3を通じて生物処理水を最終沈殿池3に導入し、最終沈殿池3において生物処理水を分離水と分離汚泥とに固液分離する。最終沈殿池3からラインL5を通じて排出される分離水に対して滅菌処理等を施した後、分離水を河川等に放流する。ラインL6を通じて排出される分離汚泥の一部をラインL7を通じて生物処理槽2Aに返送し、残りの分離汚泥(余剰汚泥)は系外に排出する。   Biologically treated water is introduced into the final sedimentation basin 3 from the biological treatment tank 2A through the line L3, and the biologically treated water is solid-liquid separated into separated water and separated sludge in the final sedimentation basin 3. After the sterilization process is performed on the separated water discharged from the final sedimentation tank 3 through the line L5, the separated water is discharged into a river or the like. A part of the separated sludge discharged through the line L6 is returned to the biological treatment tank 2A through the line L7, and the remaining separated sludge (surplus sludge) is discharged out of the system.
他方、最初沈殿池1で分離された生汚泥をグラニュール汚泥生成装置10に導入する。生汚泥貯留槽11において攪拌され、汚泥濃度が十分に均一な生汚泥を酸生成槽12に導入し、生汚泥中の有機物を酸生成菌によって酸発酵させて有機酸を生成する(酸生成工程)。酸生成槽12内の被発酵処理液の酸化還元電位は約−300〜−200mVであることが好ましく、pHは約4〜6.5であることが好ましい。なお、1〜4日程度の期間の発酵処理を実施することにより、有機物濃度100〜3000質量ppm程度の有機酸溶液を得ることができる。   On the other hand, the raw sludge first separated in the settling basin 1 is introduced into the granule sludge generating apparatus 10. Raw sludge stirred in the raw sludge storage tank 11 is introduced into the acid generation tank 12 and the sludge concentration is sufficiently uniform, and the organic matter in the raw sludge is acid-fermented by acid-producing bacteria to produce an organic acid (acid generation step). ). The oxidation-reduction potential of the to-be-fermented processing solution in the acid production tank 12 is preferably about −300 to −200 mV, and the pH is preferably about 4 to 6.5. In addition, the organic acid solution with an organic substance density | concentration of about 100-3000 mass ppm can be obtained by implementing the fermentation process for the period of about 1-4 days.
酸生成工程を経て得られた発酵処理液を固液分離槽13で分離処理し、得られた有機酸溶液をグラニュール生成槽20に導入する。グラニュール生成槽20では、有機酸溶液を原料液として使用し、グラニュール汚泥を生成する(グラニュール生成工程)。生成したグラニュール汚泥をラインL19Aを介して生物処理槽2Aに供給する。生物処理槽2Aへのグラニュール汚泥の供給は、グラニュール汚泥が破砕等によって小粒化し、生物処理槽2A内から流出することで当該槽内のグラニュール汚泥濃度が低下した場合に行ってもよく、あるいは連続的に行ってもよい。   The fermentation treatment liquid obtained through the acid production step is separated in the solid-liquid separation tank 13, and the obtained organic acid solution is introduced into the granule production tank 20. In the granule production | generation tank 20, an organic acid solution is used as a raw material liquid, and granule sludge is produced | generated (granule production | generation process). The generated granular sludge is supplied to the biological treatment tank 2A via the line L19A. The supply of granule sludge to the biological treatment tank 2A may be performed when the granule sludge is reduced in size by crushing or the like and flows out of the biological treatment tank 2A, so that the granule sludge concentration in the tank is lowered. Alternatively, it may be performed continuously.
グラニュール生成工程は、図6に示すように、注入工程S1、散気工程S2、静置工程S3及び排出工程S4からなる基本周期を繰り返す半回分式処理によって行われるものである。以下、各工程について説明する。   As shown in FIG. 6, the granule generation process is performed by a semi-batch process that repeats the basic cycle including the injection process S1, the air diffusion process S2, the stationary process S3, and the discharge process S4. Hereinafter, each step will be described.
注入工程S1では、図2に示すように、有機酸溶液及び微生物汚泥を含有する返送汚泥を槽21に導入する。図2は、グラニュール生成工程の基本周期(後述)を少なくとも1回実施後、有機酸溶液及び返送汚泥を再び各ライン(ラインL17,ラインL7a)から注入している状態を示している。活性汚泥Gのハッチングは、微生物汚泥G1やそれが粒状化したグラニュールG2が沈殿し堆積した状態を示すものである。   In the injection step S1, the return sludge containing the organic acid solution and the microbial sludge is introduced into the tank 21 as shown in FIG. FIG. 2 shows a state in which the organic acid solution and the returned sludge are again injected from each line (line L17, line L7a) after performing a basic period (described later) of the granule generation process at least once. The hatching of the activated sludge G indicates a state where the microbial sludge G1 and the granulated granule G2 are precipitated and deposited.
ラインL17及びラインL7aの途中にそれぞれ配設されたバルブV1,V4を開き、両流体を槽21内に導入する。なお、微生物汚泥の集合体であるグラニュールを効率的に生成する観点から、微生物汚泥を含有する返送汚泥をラインL7aから槽21に注入することが好ましいが、槽21内に微生物汚泥が十分に増殖している場合などは必ずしも返送汚泥を注入しなくてもよい。   Valves V1 and V4 arranged in the middle of the line L17 and the line L7a are opened, and both fluids are introduced into the tank 21. In addition, from the viewpoint of efficiently generating granules which are aggregates of microbial sludge, it is preferable to inject return sludge containing microbial sludge from the line L7a into the tank 21, but the microbial sludge is sufficiently contained in the tank 21. Returning sludge does not necessarily have to be injected when it is growing.
続く散気工程S2では、図3に示すように、ブロア25を駆動して散気球23に送風し、散気球23から散気せしめて槽21内の液体を曝気する。グラニュールG2を効率的に生成させる観点から、槽21内の循環流速が0.5〜10m/分程度となるように散気量を調整することが好ましい。微生物汚泥G1は上記範囲の循環流速で流動する過程で集合して小さなグラニュールを形成し、次第に成長する。   In the subsequent air diffusion step S2, as shown in FIG. 3, the blower 25 is driven to blow air to the air diffuser bulb 23, and the liquid in the tank 21 is aerated by being diffused from the air diffuser bulb 23. From the viewpoint of efficiently generating granules G2, it is preferable to adjust the amount of air diffused so that the circulation flow rate in the tank 21 is about 0.5 to 10 m / min. The microbial sludge G1 gathers in the process of flowing at a circulation flow rate in the above range to form small granules and grows gradually.
散気工程S2の後の静置工程S3では、図4に示すように、ブロア25を停止して曝気を止めて静置する。これにより、槽21内の液体中に浮遊する固形物(活性汚泥G)が沈降し、槽21の底部に活性汚泥Gが堆積する。続いて、排出工程S4では、図5に示すように、上澄み液である処理水WをラインL18から排出する。   In the stationary step S3 after the air diffusing step S2, as shown in FIG. 4, the blower 25 is stopped and aeration is stopped and left standing. Thereby, the solid substance (activated sludge G) floating in the liquid in the tank 21 is settled, and the activated sludge G is deposited on the bottom of the tank 21. Subsequently, in the discharge step S4, as shown in FIG. 5, the treated water W, which is a supernatant, is discharged from the line L18.
上記注入工程S1、散気工程S2、静置工程S3及び排出工程S4からなる基本周期を繰り返す。基本周期を繰り返すことで、散気工程S2で曝気された際に、微生物汚泥G1が自己造粒して粒径の大きなグラニュールG2が生成される。生成するグラニュールG2の粒径は処理条件により変化するが、通常、0.5mmから数mm程度である。   The basic cycle consisting of the injection step S1, the air diffusion step S2, the stationary step S3, and the discharge step S4 is repeated. By repeating the basic period, when aeration is performed in the aeration step S2, the microbial sludge G1 is self-granulated to generate granules G2 having a large particle size. The particle size of the granules G2 to be produced varies depending on the processing conditions, but is usually about 0.5 mm to several mm.
注入工程S1、散気工程S2、静置工程S3及び排出工程S4のうち、注入工程S1及び排出工程S4に要する時間は装置の規模(槽21の内容積等)に依存する。一方、散気工程S2及び静置工程S3に要する時間は装置の規模に対する依存性は低い。例えば、散気工程S2における曝気時間は、数時間から24時間程度とすればよく、静置工程S3における静置時間は数十分から数時間程度とすればよい。   Of the injection step S1, the diffusion step S2, the stationary step S3, and the discharge step S4, the time required for the injection step S1 and the discharge step S4 depends on the scale of the apparatus (the internal volume of the tank 21, etc.). On the other hand, the time required for the air diffusion process S2 and the stationary process S3 is less dependent on the scale of the apparatus. For example, the aeration time in the air diffusion step S2 may be about several hours to about 24 hours, and the standing time in the standing step S3 may be about several tens of minutes to several hours.
上記基本周期を繰り返すグラニュール生成工程では、注入工程S1において有機酸溶液がラインL17を通じて供給される。したがって、微生物汚泥G1には、有機酸溶液に含まれる有機酸が間欠的に付与されることとなる。そのため、微生物汚泥G1にとっては、栄養が豊富にある状態(飽食状態)と栄養が不足している状態(飢餓状態)とが繰り返えされることになる。このように、飢餓状態を経た後に飽食状態となると、微生物汚泥G1がより多くの栄養素を摂取するので、細胞外ポリマーが形成され易く、微生物汚泥G1が自己造粒し易くなると考えられる。   In the granule generation process that repeats the basic period, the organic acid solution is supplied through the line L17 in the injection process S1. Therefore, the organic acid contained in the organic acid solution is intermittently given to the microbial sludge G1. Therefore, for the microbial sludge G1, a state in which nutrition is abundant (satiated state) and a state in which nutrition is insufficient (starvation state) are repeated. Thus, when it becomes satiety after going through a starvation state, the microbial sludge G1 ingests more nutrients, so that an extracellular polymer is likely to be formed, and the microbial sludge G1 is likely to self-granulate.
第1実施形態によれば、微生物汚泥が密に集合したグラニュール汚泥を生物処理槽2Aにおいて使用するため、通常の活性汚泥を使用した場合と比較し、生物処理槽2A内の汚泥濃度を高濃度に維持できる。そのため、有機性排水中の有機物(BOD成分)の分解処理効率を著しく向上できる。その結果、生物処理槽2Aの容積を大幅に低減できる。   According to the first embodiment, since granular sludge in which microbial sludge is densely gathered is used in the biological treatment tank 2A, the sludge concentration in the biological treatment tank 2A is higher than that in the case where normal activated sludge is used. Concentration can be maintained. Therefore, the decomposition treatment efficiency of the organic matter (BOD component) in the organic waste water can be remarkably improved. As a result, the volume of the biological treatment tank 2A can be significantly reduced.
(第2実施形態)
図7は、本発明の第2実施形態に係る排水処理装置を示す概略構成図である。同図に示す排水処理装置200は、下水に対して生物学的脱窒及び生物学的脱リンを含む高度処理を行う装置である点において第1実施形態の排水処理装置100と相違する。この排水処理装置200は、最初沈殿池1、生物処理槽2B、最終沈殿池3と共にグラニュール汚泥生成装置10を備えている。本実施形態では、最初沈殿池1が第3の固液分離槽に相当し、最終沈殿池3が第4の固液分離槽に相当する。
(Second Embodiment)
FIG. 7 is a schematic configuration diagram showing a wastewater treatment apparatus according to the second embodiment of the present invention. The wastewater treatment apparatus 200 shown in the figure is different from the wastewater treatment apparatus 100 of the first embodiment in that it is an apparatus that performs advanced treatment including biological denitrification and biological dephosphorization on sewage. The waste water treatment apparatus 200 includes a granule sludge generation apparatus 10 together with a first sedimentation tank 1, a biological treatment tank 2 </ b> B, and a final sedimentation tank 3. In the present embodiment, the first sedimentation tank 1 corresponds to a third solid-liquid separation tank, and the final sedimentation tank 3 corresponds to a fourth solid-liquid separation tank.
より具体的には、排水処理装置200は、以下の(1)〜(5)の点において第1実施形態の排水処理装置100と相違する。
(1)生物処理槽2Bは嫌気槽2a、無酸素槽2b、好気槽2cをこの順に備え、A2O法と呼ばれる活性汚泥法による生物処理を行うものである。なお、嫌気槽2aにおける処理を経た処理液は無酸素槽2bに送られ、無酸素槽2bにおける処理を経た処理液は好気槽2cに送られる。
(2)最初沈殿池1からの被処理水がラインL2を通じて無酸素槽2bに供給される。
(3)好気槽2c内の処理液及びグラニュール汚泥の一部を無酸素槽2bに返送するラインL4を備えている。
(4)嫌気槽2aに有機酸溶液の一部を供給するライン(有機酸供給ライン)L16を備えている。
(5)グラニュール生成槽20で生成したグラニュール汚泥を無酸素槽2b及び/又は好気槽2cに供給するライン(第2のグラニュール供給ライン)L19Bを備えている。
More specifically, the waste water treatment apparatus 200 is different from the waste water treatment apparatus 100 of the first embodiment in the following points (1) to (5).
(1) The biological treatment tank 2B includes an anaerobic tank 2a, an oxygen-free tank 2b, and an aerobic tank 2c in this order, and performs biological treatment by an activated sludge method called A2O method. The treatment liquid that has undergone the treatment in the anaerobic tank 2a is sent to the anaerobic tank 2b, and the treatment liquid that has undergone the treatment in the anaerobic tank 2b is sent to the aerobic tank 2c.
(2) The treated water from the first sedimentation tank 1 is supplied to the anoxic tank 2b through the line L2.
(3) A line L4 is provided for returning a part of the processing liquid and granule sludge in the aerobic tank 2c to the anoxic tank 2b.
(4) A line (organic acid supply line) L16 for supplying a part of the organic acid solution to the anaerobic tank 2a is provided.
(5) A line (second granule supply line) L19B for supplying the granular sludge generated in the granule generation tank 20 to the anoxic tank 2b and / or the aerobic tank 2c is provided.
上記(1)の構成を採用することにより、下水に対して生物学的脱窒及び生物学的脱リンを含む高度処理を行うことができる。   By adopting the configuration of (1) above, it is possible to perform advanced treatment including biological denitrification and biological dephosphorization on sewage.
上記(2)の構成を採用することにより、被処理水に含まれる有機物(BOD成分)の存在下、無酸素槽2b内の脱窒細菌によって硝酸態窒素(NO −N)を窒素ガスに還元し、被処理水中から窒素を除去できる。なお、被処理水の有機物濃度が高い場合や被処理水量の変動が小さい場合には、最初沈殿池1からの被処理水を嫌気槽2aに導入してもよく、あるいは嫌気槽2a及び無酸素槽2bの両方に適宜分割して導入してもよい。 By adopting the configuration of (2) above, nitrate nitrogen (NO 3 −N) is converted to nitrogen gas by denitrifying bacteria in the anoxic tank 2b in the presence of organic matter (BOD component) contained in the water to be treated. To reduce nitrogen from the water to be treated. In addition, when the organic substance density | concentration of to-be-processed water is high, or when the fluctuation | variation of to-be-processed water amount is small, you may introduce the to-be-processed water from the sedimentation tank 1 into the anaerobic tank 2a first, or the anaerobic tank 2a and anaerobic oxygen You may divide and introduce into both tanks 2b suitably.
上記(3)の構成を採用することにより、好気槽2c内で生成する硝酸態窒素(NO ―N)を無酸素槽2bに供給できる。ここで、硝酸態窒素は、主に被処理水中のアンモニア態窒素(NH −N)が好気槽2c内の硝化細菌によって酸化されたものである。 By adopting the above configuration (3), nitrate nitrogen produced in the aerobic tank 2c (NO 3 - -N) can be supplied to the anoxic tank 2b. Here, nitrate nitrogen is obtained by oxidizing ammonia nitrogen (NH 4 + -N) mainly in water to be treated by nitrifying bacteria in the aerobic tank 2c.
上記(4)の構成を採用することにより、嫌気槽2a内に有機酸を供給することができ、嫌気槽2a内にあってはラインL7を介して導入された返送汚泥の微生物菌体に有機酸が取り込まれると同時に、微生物菌体がリンを効率的に放出する。また、嫌気槽2a内の嫌気条件下に曝されたリン蓄積細菌が後段の無酸素槽2b内及び好気槽2c内を順に通過することにより、リン蓄積細菌が優先的に増殖するため、脱リン処理が促進される。   By adopting the configuration of (4) above, an organic acid can be supplied into the anaerobic tank 2a, and in the anaerobic tank 2a, organic matter is returned to the microbial cells of the returned sludge introduced via the line L7. At the same time as the acid is taken in, the microbial cells efficiently release phosphorus. In addition, the phosphorus accumulating bacteria exposed under anaerobic conditions in the anaerobic tank 2a pass through the anaerobic tank 2b and the aerobic tank 2c in order to proliferate the phosphorus accumulating bacteria preferentially. Phosphorus treatment is promoted.
上記(5)の構成を採用することにより、グラニュール生成槽20で生成したグラニュール汚泥を、運転条件などに応じて適宜無酸素槽2b及び/又は好気槽2cに供給できる。   By adopting the configuration of (5) above, the granular sludge generated in the granule generation tank 20 can be appropriately supplied to the anoxic tank 2b and / or the aerobic tank 2c according to the operating conditions.
嫌気槽2a内の酸化還元電位は、微生物菌体からのリンの放出に適した嫌気状態を保つ観点から約−450〜−150mV程度に保持することが好ましい。無酸素槽2b内の酸化還元電位は、被処理水の脱窒反応を促進させる観点から約−300〜−100mV程度に保持することが好ましい。   The oxidation-reduction potential in the anaerobic tank 2a is preferably maintained at about -450 to -150 mV from the viewpoint of maintaining an anaerobic state suitable for phosphorus release from the microbial cells. The oxidation-reduction potential in the anoxic tank 2b is preferably maintained at about −300 to −100 mV from the viewpoint of promoting the denitrification reaction of the water to be treated.
第2実施形態によれば、微生物汚泥が密に集合したグラニュール汚泥を無酸素槽2b及び好気槽2cにおいて使用するため、通常の活性汚泥を使用した場合と比較し、両槽内の汚泥濃度を高濃度に維持できる。そのため、無酸素槽2bにあっては硝酸態窒素を窒素ガスに変換する脱窒素反応が促進され、好気槽2cにあってはアンモニア態窒素を硝酸態窒素に変換する硝化反応及び有機物(BOD成分)の分解処理が促進される。その結果、生物処理槽2Bの容積を大幅に低減できる。特に、一般に大きな容積を要する好気槽2cにおける硝化反応の速度が高まることにより、好気槽2cの容積を大幅に低減できる。   According to the second embodiment, the granular sludge in which microbial sludge is densely gathered is used in the anoxic tank 2b and the aerobic tank 2c, so that the sludge in both tanks is compared with the case where normal activated sludge is used. The concentration can be maintained at a high concentration. Therefore, in the anaerobic tank 2b, the denitrification reaction for converting nitrate nitrogen to nitrogen gas is promoted, and in the aerobic tank 2c, the nitrification reaction and organic matter (BOD) for converting ammonia nitrogen to nitrate nitrogen are promoted. The decomposition process of the component) is promoted. As a result, the volume of the biological treatment tank 2B can be greatly reduced. In particular, by increasing the speed of the nitrification reaction in the aerobic tank 2c that generally requires a large volume, the volume of the aerobic tank 2c can be greatly reduced.
以上、説明した第1及び第2実施形態によれば、原料液として有機酸溶液を使用することにより、好気性グラニュール汚泥をグラニュール生成槽20において安定的且つ効率的に生成することができる。このグラニュール生成槽20で生成したグラニュール汚泥を生物処理槽2A,2Bにおいて使用することで、有機性排水を十分に安定的且つ効率的に生物処理できる。   As described above, according to the first and second embodiments described above, the aerobic granule sludge can be stably and efficiently generated in the granule generation tank 20 by using the organic acid solution as the raw material liquid. . By using the granule sludge generated in the granule generation tank 20 in the biological treatment tanks 2A and 2B, the organic waste water can be biologically treated sufficiently stably and efficiently.
好気性グラニュール汚泥を生成する場合、原料液の有機物濃度(BOD)は約200〜1000mg/L程度であることが好ましく、本実施形態によれば、生汚泥を発酵させることにより有機物濃度が上記範囲の有機酸溶液を容易に得ることができる。なお、通常の下水は有機物濃度が約50〜200mg/L程度と低く、また変動も大きいため、好気性グラニュール汚泥を安定的且つ効率的に生成することは困難である。   When producing aerobic granule sludge, the organic matter concentration (BOD) of the raw material liquid is preferably about 200 to 1000 mg / L. According to this embodiment, the organic matter concentration is obtained by fermenting raw sludge. A range of organic acid solutions can be easily obtained. Note that normal sewage has a low organic substance concentration of about 50 to 200 mg / L and a large fluctuation, so that it is difficult to stably and efficiently generate aerobic granular sludge.
また、上記実施形態によれば、最初沈殿池1で分離された生汚泥をグラニュール汚泥の原料として有効利用できる。これにより、当該排水処理装置から排出される汚泥を低減できるという利点がある。   Moreover, according to the said embodiment, the raw sludge isolate | separated by the sedimentation tank 1 initially can be used effectively as a raw material of granule sludge. Thereby, there exists an advantage that the sludge discharged | emitted from the said waste water treatment apparatus can be reduced.
以上、本発明の実施形態について説明したが、本発明の上記実施形態に限定されず、下記のようなものであってもよい。   As mentioned above, although embodiment of this invention was described, it is not limited to the said embodiment of this invention, The following may be sufficient.
上記実施態に係る排水処理装置は、最初沈殿池1で分離された生汚泥を貯留する生汚泥貯留槽11を具備するが、この生汚泥貯留槽11を設置せず、ラインL11からの生汚泥を酸生成槽12に直接導入してもよい。また、酸生成槽12に導入される生汚泥の汚泥濃度が低い場合は、生汚泥濃縮槽を設置し、当該濃縮槽で濃縮された濃縮汚泥を生汚泥貯留槽11又は酸生成槽12に導入してもよい。   The wastewater treatment apparatus according to the above embodiment includes a raw sludge storage tank 11 that stores the raw sludge separated in the first sedimentation basin 1, but does not install this raw sludge storage tank 11, and the raw sludge from the line L11. May be directly introduced into the acid generation tank 12. Moreover, when the sludge density | concentration of the raw sludge introduced into the acid production tank 12 is low, a raw sludge concentration tank is installed, and the concentrated sludge concentrated with the said concentration tank is introduced into the raw sludge storage tank 11 or the acid production tank 12 May be.
また、上記実施形態においては、ラインL7aを通じてグラニュール生成槽20に返送汚泥を導入する構成としたが、微生物汚泥がグラニュール生成槽20に供給されればよいため、ラインL3で移送される生物処理液、ラインL6から排出される余剰汚泥またはラインL15から排出される酸生成菌体含有汚泥をグラニュール生成槽20に導入してもよい。また、有機酸溶液に微生物汚泥が十分に含まれている場合には、グラニュール生成槽20に微生物汚泥を供給しなくてもよい。   Moreover, in the said embodiment, although it was set as the structure which introduce | transduces return sludge to the granule production tank 20 through the line L7a, since microorganisms sludge should just be supplied to the granule production tank 20, the organism transferred by the line L3 The treatment liquid, surplus sludge discharged from the line L6 or acid-producing cell-containing sludge discharged from the line L15 may be introduced into the granule generation tank 20. Further, when the organic acid solution contains sufficient microbial sludge, the microbial sludge does not have to be supplied to the granule generation tank 20.
更に、上記実施形態においては、生物処理槽2A,2Bからグラニュール汚泥が流出することを防止する手段としてフィルター2fを例示したが、このフィルター2fの代わりに、生物処理槽2A,2Bから生物処理水と共に流出したグラニュール汚泥を回収するグラニュール回収手段を設けてもよい。図8は、グラニュール回収手段の一例を示す概略構成図である。同図に示すグラニュール回収手段は、ラインL3の途中に設けられた小型のグラニュール分離槽2gと、回収したグラニュール汚泥を生物処理槽(好気槽及び/又は無酸素槽)内へと返送するグラニュール返送ラインL2gとを備える。   Furthermore, in the said embodiment, although the filter 2f was illustrated as a means to prevent a granular sludge from flowing out from biological treatment tank 2A, 2B, instead of this filter 2f, biological treatment from biological treatment tank 2A, 2B. You may provide the granule collection | recovery means which collect | recovers the granule sludge which flowed out with water. FIG. 8 is a schematic configuration diagram showing an example of the granule collecting means. The granule recovery means shown in the figure is a small granule separation tank 2g provided in the middle of the line L3 and the recovered granule sludge into a biological treatment tank (aerobic tank and / or anoxic tank). And a granule return line L2g for return.
また、上記第1実施形態では活性汚泥法(O法)を、上記第2実施形態では生物学的脱窒・脱リン(A2O法)をそれぞれ例示したが、嫌気処理と好気処理とを行う(AO法)に本発明を適用してもよい。更に、上記第2実施形態では、嫌気槽2a、無酸素槽2b及び好気槽2cをそれぞれ単独で備える生物処理槽2Bを例示したが、窒素含有化合物及びリン含有化合物をより高度に除去するため、好気槽2cの後段に、更に無酸素槽・好気槽の系列を付加してもよい。この場合、これらの無酸素槽・好気槽にもグラニュール生成槽20で生成したグラニュール汚泥を導入することが好ましい。   Further, although the activated sludge method (O method) is exemplified in the first embodiment and the biological denitrification / dephosphorization (A2O method) is exemplified in the second embodiment, anaerobic treatment and aerobic treatment are performed. The present invention may be applied to (AO method). Furthermore, in the said 2nd Embodiment, although the biological treatment tank 2B provided with the anaerobic tank 2a, the anaerobic tank 2b, and the aerobic tank 2c each was illustrated, in order to remove a nitrogen containing compound and a phosphorus containing compound more highly. Further, a series of anaerobic tanks and aerobic tanks may be added after the aerobic tank 2c. In this case, it is preferable to introduce the granular sludge generated in the granule generation tank 20 into these anaerobic tank and aerobic tank.
本発明の第1実施形態に係る排水処理装置を示す概略構成図である。1 is a schematic configuration diagram illustrating a wastewater treatment apparatus according to a first embodiment of the present invention. グラニュール生成槽の注入工程における状態を示す図である。It is a figure which shows the state in the injection process of a granule production tank. グラニュール生成槽の散気工程における状態を示す図である。It is a figure which shows the state in the air diffusion process of a granule production tank. グラニュール生成槽の静置工程における状態を示す図である。It is a figure which shows the state in the stationary process of a granule production tank. グラニュール生成槽の排出工程における状態を示す図である。It is a figure which shows the state in the discharge process of a granule production tank. グラニュール生成工程の基本周期を示すフローチャートである。It is a flowchart which shows the basic period of a granule production | generation process. 本発明の第2実施形態に係る排水処理装置を示す概略構成図である。It is a schematic block diagram which shows the waste water treatment apparatus which concerns on 2nd Embodiment of this invention. グラニュール回収手段の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a granule collection | recovery means.
符号の説明Explanation of symbols
1…最初沈殿池(第1,第3の固液分離槽)、2A…生物処理槽(好気槽)、2B…生物処理槽、2a…嫌気槽、2b…無酸素槽、2c…好気槽、2f…フィルター(グラニュール流出防止手段)、2g…グラニュール分離槽(グラニュール回収手段)、3…最終沈殿池(第2,第4の固液分離槽)、12…酸生成槽、20…グラニュール生成槽、100,200…排水処理装置、L2g…グラニュール返送ライン(グラニュール回収手段)、L7…分離汚泥返送ライン、L16…有機酸供給ライン、L19A…第1のグラニュール供給ライン、L19B…第2のグラニュール供給ライン。 DESCRIPTION OF SYMBOLS 1 ... First sedimentation basin (1st, 3rd solid-liquid separation tank), 2A ... Biological treatment tank (aerobic tank), 2B ... Biological treatment tank, 2a ... Anaerobic tank, 2b ... Anoxic tank, 2c ... Aerobic Tank, 2f ... filter (granule outflow prevention means), 2g ... granule separation tank (granule recovery means), 3 ... final sedimentation tank (second and fourth solid-liquid separation tank), 12 ... acid generation tank, DESCRIPTION OF SYMBOLS 20 ... Granule production tank, 100,200 ... Waste water treatment apparatus, L2g ... Granule return line (granule recovery means), L7 ... Separation sludge return line, L16 ... Organic acid supply line, L19A ... First granule supply Line, L19B ... Second granule supply line.

Claims (8)

  1. 微生物汚泥が集合して粒状化してなるグラニュール汚泥を利用した排水処理装置であって、
    有機性排水を生汚泥と被処理水とに分離する第1の固液分離槽と、
    前記グラニュール汚泥を収容し、好気条件下において前記被処理水を生物処理する好気槽と、
    前記好気槽における処理を経た生物処理水を分離水と分離汚泥とに分離する第2の固液分離槽と、
    前記生汚泥を発酵させて有機酸を生成する酸生成槽と、
    前記有機酸を含有する原料液から前記グラニュール汚泥を生成するグラニュール生成槽と、
    前記グラニュール生成槽で生成した前記グラニュール汚泥を前記好気槽に供給する第1のグラニュール供給ラインと、
    を備えることを特徴とする排水処理装置。
    A wastewater treatment device that uses granulated sludge that is formed by granulating microbial sludge.
    A first solid-liquid separation tank for separating organic wastewater into raw sludge and treated water;
    An aerobic tank for containing the granular sludge and biologically treating the treated water under aerobic conditions;
    A second solid-liquid separation tank that separates biologically treated water that has been treated in the aerobic tank into separated water and separated sludge;
    An acid production tank for fermenting the raw sludge to produce an organic acid;
    A granule production tank for producing the granule sludge from the raw material liquid containing the organic acid;
    A first granule supply line for supplying the granule sludge generated in the granule generation tank to the aerobic tank;
    A wastewater treatment apparatus comprising:
  2. 微生物汚泥が集合して粒状化してなるグラニュール汚泥を利用した排水処理装置であって、
    有機性排水を生汚泥と被処理水とに分離する第3の固液分離槽と、
    前記グラニュール汚泥を収容し、好気条件下において前記被処理水に含まれる有機物を低減させると共に、当該被処理水に含まれるアンモニア態窒素を酸化して硝酸態窒素を生成する好気槽と、
    前記好気槽内の処理水及び前記グラニュール汚泥の一部が供給され、無酸素条件下において当該処理水に含まれる硝酸態窒素を還元して窒素ガスを生成する無酸素槽と、
    前記好気槽及び前記無酸素槽における処理を経た生物処理水を分離水と分離汚泥とに分離する第4の固液分離槽と、
    前記生汚泥を発酵させて有機酸を生成する酸生成槽と、
    前記有機酸を含有する原料液から前記グラニュール汚泥を生成するグラニュール生成槽と、
    前記グラニュール生成槽で生成した前記グラニュール汚泥を前記無酸素槽及び/又は前記好気槽に供給する第2のグラニュール供給ラインと、
    を備えることを特徴とする排水処理装置。
    A wastewater treatment device that uses granulated sludge that is formed by granulating microbial sludge.
    A third solid-liquid separation tank that separates organic wastewater into raw sludge and treated water;
    An aerobic tank that contains the granular sludge, reduces organic matter contained in the water to be treated under aerobic conditions, and generates nitrate nitrogen by oxidizing ammonia nitrogen contained in the water to be treated; ,
    An anaerobic tank in which a part of the treated water in the aerobic tank and the granular sludge is supplied, and generates nitrogen gas by reducing nitrate nitrogen contained in the treated water under anoxic conditions;
    A fourth solid-liquid separation tank that separates the biologically treated water that has been treated in the aerobic tank and the oxygen-free tank into separated water and separated sludge;
    An acid production tank for fermenting the raw sludge to produce an organic acid;
    A granule production tank for producing the granule sludge from the raw material liquid containing the organic acid;
    A second granule supply line for supplying the granule sludge generated in the granule generation tank to the anoxic tank and / or the aerobic tank;
    A wastewater treatment apparatus comprising:
  3. 微生物汚泥の菌体内に蓄積したリンを嫌気条件下で放出させる嫌気槽と、前記第4の固液分離槽から排出される前記分離汚泥の一部を前記嫌気槽に返送する分離汚泥返送ラインと、を更に備え、前記嫌気槽における処理を経た嫌気処理水が前記無酸素槽へと供給されることを特徴とする、請求項2に記載の排水処理装置。   An anaerobic tank for releasing phosphorus accumulated in the microbial sludge cells under anaerobic conditions; a separation sludge return line for returning a part of the separated sludge discharged from the fourth solid-liquid separation tank to the anaerobic tank; The wastewater treatment apparatus according to claim 2, further comprising anaerobic treated water that has been treated in the anaerobic tank and is supplied to the anaerobic tank.
  4. 前記酸生成槽で生成した有機酸の一部を前記嫌気槽へと供給する有機酸供給ラインを更に備えることを特徴とする、請求項3に記載の排水処理装置。   The wastewater treatment apparatus according to claim 3, further comprising an organic acid supply line for supplying a part of the organic acid generated in the acid generation tank to the anaerobic tank.
  5. 前記第3の固液分離槽から前記被処理水を排出するラインは、前記無酸素槽に接続されていることを特徴とする、請求項2〜4のいずれか一項に記載の排水処理装置。   The waste water treatment apparatus according to any one of claims 2 to 4, wherein a line for discharging the water to be treated from the third solid-liquid separation tank is connected to the anoxic tank. .
  6. 前記好気槽は、槽内のグラニュール汚泥が槽外に流出することを防止するグラニュール流出防止手段を備えることを特徴とする、請求項1〜5のいずれか一項に記載の排水処理装置。   The said aerobic tank is equipped with the granule outflow prevention means which prevents that the granular sludge in a tank flows out of a tank, The waste water treatment as described in any one of Claims 1-5 characterized by the above-mentioned. apparatus.
  7. 前記好気槽から前記生物処理水と共に流出した前記グラニュール汚泥を回収し、前記好気槽へと返送するグラニュール回収手段を更に備えることを特徴とする、請求項1〜5のいずれか一項に記載の排水処理装置。   The granule sludge which collected the granular sludge which flowed out with the biological treatment water from the aerobic tank is further provided, The granule recovery means which returns to the aerobic tank is provided, The any one of Claims 1-5 characterized by the above-mentioned. The waste water treatment apparatus as described in the item.
  8. 微生物汚泥が集合して粒状化してなるグラニュール汚泥を利用した排水処理方法であって、
    有機性排水を生汚泥と被処理水とに分離する固液分離工程と、
    前記生汚泥を発酵させて有機酸を得る酸生成工程と、
    前記有機酸を含有する原料液から前記グラニュール汚泥を得るグラニュール生成工程と、
    前記グラニュール生成工程を経て得られた前記グラニュール汚泥によって前記被処理水を好気条件下において生物処理する好気処理工程と、
    を備えることを特徴とする排水処理方法。
    It is a wastewater treatment method using granule sludge formed by aggregation and granulation of microbial sludge,
    A solid-liquid separation process for separating organic wastewater into raw sludge and treated water;
    An acid generation step of fermenting the raw sludge to obtain an organic acid;
    A granule producing step for obtaining the granule sludge from the raw material liquid containing the organic acid;
    An aerobic treatment step of biologically treating the treated water under aerobic conditions with the granule sludge obtained through the granule generation step;
    A wastewater treatment method comprising:
JP2007129694A 2007-05-15 2007-05-15 Apparatus and method for treating waste water Pending JP2008284427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007129694A JP2008284427A (en) 2007-05-15 2007-05-15 Apparatus and method for treating waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007129694A JP2008284427A (en) 2007-05-15 2007-05-15 Apparatus and method for treating waste water

Publications (1)

Publication Number Publication Date
JP2008284427A true JP2008284427A (en) 2008-11-27

Family

ID=40144661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007129694A Pending JP2008284427A (en) 2007-05-15 2007-05-15 Apparatus and method for treating waste water

Country Status (1)

Country Link
JP (1) JP2008284427A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066505A (en) * 2007-09-12 2009-04-02 Japan Organo Co Ltd Method of forming aerobic granule, water treatment method and water treatment apparatus
NL2008598C2 (en) * 2012-04-03 2013-10-07 Dhv B V Hybrid wastewater treatment.
KR101378539B1 (en) * 2012-03-14 2014-03-27 주식회사 블루뱅크 Apparatus and for Method Treating Concetrating Water Reverse Osmosis
JP2014100679A (en) * 2012-11-21 2014-06-05 Kuraray Co Ltd Anaerobic wastewater treatment method using carrier
JP2014124625A (en) * 2012-12-27 2014-07-07 Japan Organo Co Ltd Effluent treatment method
JP2014136188A (en) * 2013-01-16 2014-07-28 Japan Organo Co Ltd Wastewater treatment method
JP2016087595A (en) * 2014-11-11 2016-05-23 オルガノ株式会社 Waste water treatment device and waste water treatment method
JP2016093787A (en) * 2014-11-14 2016-05-26 オルガノ株式会社 Waste water treatment device and waste water treatment method
CN105980313A (en) * 2012-11-27 2016-09-28 汉普顿道路环境卫生区 Method and apparatus for wastewater treatment using gravimetric selection
WO2016159091A1 (en) * 2015-03-31 2016-10-06 オルガノ株式会社 Method for forming aerobic granules, device for forming aerobic granules, method for treating wastewater, and device for treating wastewater
JP2016193384A (en) * 2015-03-31 2016-11-17 オルガノ株式会社 Method for forming aerobic granule, apparatus for forming aerobic granule, wastewater treatment method, and wastewater treatment apparatus
JP2016193396A (en) * 2015-03-31 2016-11-17 オルガノ株式会社 Wastewater treatment method and wastewater treatment apparatus
JP2016193388A (en) * 2015-03-31 2016-11-17 オルガノ株式会社 Dehydration method, wastewater treatment method and wastewater treatment apparatus
WO2017025345A1 (en) * 2015-08-10 2017-02-16 Haskoningdhv Nederland B.V. Continuous process for the treatment of wastewater
JP2017077523A (en) * 2015-10-20 2017-04-27 株式会社神鋼環境ソリューション Biological waste water treatment method
WO2019156144A1 (en) * 2018-02-09 2019-08-15 オルガノ株式会社 Water treatment method and water treatment device

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262996A (en) * 1988-04-13 1989-10-19 Japan Organo Co Ltd Method and apparatus for aerobic treatment of organic waste water
JPH04354596A (en) * 1991-05-31 1992-12-08 Okumura Corp Aerobic self-granulated material and production thereof
JPH05261385A (en) * 1992-01-22 1993-10-12 Sankyo Co Ltd Granulation method by aerobic biological treatment of organic waste water and aerobic biological treatment of organic waste water
WO1998037027A1 (en) * 1997-02-21 1998-08-27 Technische Universiteit Delft Method for acquiring grain-shaped growth of a microorganism in a reactor
JPH11156387A (en) * 1997-11-21 1999-06-15 Nishihara Environ Sanit Res Corp Wastewater treatment apparatus
JP2000325986A (en) * 1999-05-19 2000-11-28 Nishihara Environ Sanit Res Corp Waste water treatment apparatus having phosphorus removing process
JP2001009498A (en) * 1999-06-28 2001-01-16 Nkk Corp Treatment of waste water and treating device therefor
JP2002336885A (en) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd Method for aerobic treatment of waste water
JP2003094084A (en) * 2001-09-25 2003-04-02 Sumitomo Heavy Ind Ltd Method for treating waste water
WO2004024638A1 (en) * 2002-09-16 2004-03-25 Dhv Water Bv Method for the treatment of waste water with sludge granules
JP2004298766A (en) * 2003-03-31 2004-10-28 Sumitomo Heavy Ind Ltd Production apparatus and production method of granular sludge
JP2004298726A (en) * 2003-03-31 2004-10-28 Sumitomo Heavy Ind Ltd Production apparatus and production method of granular sludge
JP2004330152A (en) * 2003-05-12 2004-11-25 Ebara Engineering Service Co Ltd Wastewater treatment method and apparatus therefor
JP2005517532A (en) * 2002-02-22 2005-06-16 スット・セラヤ・ピーティーイー・リミテッド Aerobic biomass granules for wastewater treatment
JP2006043512A (en) * 2004-07-30 2006-02-16 Sumitomo Heavy Ind Ltd Sewage treatment method
JP2006297263A (en) * 2005-04-19 2006-11-02 Sumitomo Heavy Ind Ltd Organic acid production method, organic acid production device, and waste water treatment equipment
JP2006297262A (en) * 2005-04-19 2006-11-02 Sumitomo Heavy Ind Ltd Organic acid production method, organic acid production device, and waste water treatment equipment
JP2006334534A (en) * 2005-06-03 2006-12-14 Sumitomo Heavy Ind Ltd Method and apparatus for producing granular sludge and method for treating waste water
WO2007007609A1 (en) * 2005-07-07 2007-01-18 Sumitomo Heavy Industries, Ltd. Microbial support, method of producing microbial support, method of treating waste water and waste water-treating system
JP2007098275A (en) * 2005-10-04 2007-04-19 Sumitomo Heavy Ind Ltd Method and apparatus for producing organic acid
JP2007136363A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method
JP2007136365A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Method for producing granular microbe sludge
JP2007136367A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Biological wastewater treatment apparatus and biological wastewater treatment method
JP2007136360A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method and apparatus
JP2007136366A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Biological wastewater treatment apparatus and biological wastewater treatment method
JP2007136368A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Apparatus and method for biologically treating drainage
JP2007275845A (en) * 2006-04-11 2007-10-25 Sumitomo Heavy Industries Environment Co Ltd Granular microorganism sludge preparation arrangement and granular microorganism sludge producing method
JP2008212878A (en) * 2007-03-06 2008-09-18 Sumitomo Heavy Ind Ltd Waste water treatment apparatus

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262996A (en) * 1988-04-13 1989-10-19 Japan Organo Co Ltd Method and apparatus for aerobic treatment of organic waste water
JPH04354596A (en) * 1991-05-31 1992-12-08 Okumura Corp Aerobic self-granulated material and production thereof
JPH05261385A (en) * 1992-01-22 1993-10-12 Sankyo Co Ltd Granulation method by aerobic biological treatment of organic waste water and aerobic biological treatment of organic waste water
WO1998037027A1 (en) * 1997-02-21 1998-08-27 Technische Universiteit Delft Method for acquiring grain-shaped growth of a microorganism in a reactor
JPH11156387A (en) * 1997-11-21 1999-06-15 Nishihara Environ Sanit Res Corp Wastewater treatment apparatus
JP2000325986A (en) * 1999-05-19 2000-11-28 Nishihara Environ Sanit Res Corp Waste water treatment apparatus having phosphorus removing process
JP2001009498A (en) * 1999-06-28 2001-01-16 Nkk Corp Treatment of waste water and treating device therefor
JP2002336885A (en) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd Method for aerobic treatment of waste water
JP2003094084A (en) * 2001-09-25 2003-04-02 Sumitomo Heavy Ind Ltd Method for treating waste water
JP2005517532A (en) * 2002-02-22 2005-06-16 スット・セラヤ・ピーティーイー・リミテッド Aerobic biomass granules for wastewater treatment
WO2004024638A1 (en) * 2002-09-16 2004-03-25 Dhv Water Bv Method for the treatment of waste water with sludge granules
JP2004298766A (en) * 2003-03-31 2004-10-28 Sumitomo Heavy Ind Ltd Production apparatus and production method of granular sludge
JP2004298726A (en) * 2003-03-31 2004-10-28 Sumitomo Heavy Ind Ltd Production apparatus and production method of granular sludge
JP2004330152A (en) * 2003-05-12 2004-11-25 Ebara Engineering Service Co Ltd Wastewater treatment method and apparatus therefor
JP2006043512A (en) * 2004-07-30 2006-02-16 Sumitomo Heavy Ind Ltd Sewage treatment method
JP2006297263A (en) * 2005-04-19 2006-11-02 Sumitomo Heavy Ind Ltd Organic acid production method, organic acid production device, and waste water treatment equipment
JP2006297262A (en) * 2005-04-19 2006-11-02 Sumitomo Heavy Ind Ltd Organic acid production method, organic acid production device, and waste water treatment equipment
JP2006334534A (en) * 2005-06-03 2006-12-14 Sumitomo Heavy Ind Ltd Method and apparatus for producing granular sludge and method for treating waste water
WO2007007609A1 (en) * 2005-07-07 2007-01-18 Sumitomo Heavy Industries, Ltd. Microbial support, method of producing microbial support, method of treating waste water and waste water-treating system
JP2007098275A (en) * 2005-10-04 2007-04-19 Sumitomo Heavy Ind Ltd Method and apparatus for producing organic acid
JP2007136365A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Method for producing granular microbe sludge
JP2007136363A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method
JP2007136367A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Biological wastewater treatment apparatus and biological wastewater treatment method
JP2007136360A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method and apparatus
JP2007136366A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Biological wastewater treatment apparatus and biological wastewater treatment method
JP2007136368A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Apparatus and method for biologically treating drainage
JP2007275845A (en) * 2006-04-11 2007-10-25 Sumitomo Heavy Industries Environment Co Ltd Granular microorganism sludge preparation arrangement and granular microorganism sludge producing method
JP2008212878A (en) * 2007-03-06 2008-09-18 Sumitomo Heavy Ind Ltd Waste water treatment apparatus

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066505A (en) * 2007-09-12 2009-04-02 Japan Organo Co Ltd Method of forming aerobic granule, water treatment method and water treatment apparatus
KR101378539B1 (en) * 2012-03-14 2014-03-27 주식회사 블루뱅크 Apparatus and for Method Treating Concetrating Water Reverse Osmosis
WO2013151434A1 (en) * 2012-04-03 2013-10-10 Haskoningdhv Nederland B.V. Hybrid wastewater treatment
US9758405B2 (en) 2012-04-03 2017-09-12 Haskoningdhv Nederland B.V. Hybrid wastewater treatment
NL2008598C2 (en) * 2012-04-03 2013-10-07 Dhv B V Hybrid wastewater treatment.
JP2014100679A (en) * 2012-11-21 2014-06-05 Kuraray Co Ltd Anaerobic wastewater treatment method using carrier
CN105980313A (en) * 2012-11-27 2016-09-28 汉普顿道路环境卫生区 Method and apparatus for wastewater treatment using gravimetric selection
EP3483123A1 (en) * 2012-11-27 2019-05-15 Hampton Roads Sanitation District Method and apparatus for wastewater treatment using gravimetric selection
EP2925676A4 (en) * 2012-11-27 2016-10-05 Hampton Roads Sanitation Distr Method and apparatus for wastewater treatment using gravimetric selection
US10112856B2 (en) 2012-11-27 2018-10-30 Hampton Roads Sanitation District Method and apparatus for wastewater treatment using gravimetric selection
JP2014124625A (en) * 2012-12-27 2014-07-07 Japan Organo Co Ltd Effluent treatment method
JP2014136188A (en) * 2013-01-16 2014-07-28 Japan Organo Co Ltd Wastewater treatment method
JP2016087595A (en) * 2014-11-11 2016-05-23 オルガノ株式会社 Waste water treatment device and waste water treatment method
JP2016093787A (en) * 2014-11-14 2016-05-26 オルガノ株式会社 Waste water treatment device and waste water treatment method
JP2016193396A (en) * 2015-03-31 2016-11-17 オルガノ株式会社 Wastewater treatment method and wastewater treatment apparatus
CN107531525B (en) * 2015-03-31 2021-01-01 奥加诺株式会社 Method for forming aerobic granules, apparatus for forming aerobic granules, method for treating wastewater, and wastewater treatment apparatus
US10590018B2 (en) 2015-03-31 2020-03-17 Organo Corporation Method for forming aerobic granules, device for forming aerobic granules, method for treating wastewater, and device for treating wastewater
WO2016159091A1 (en) * 2015-03-31 2016-10-06 オルガノ株式会社 Method for forming aerobic granules, device for forming aerobic granules, method for treating wastewater, and device for treating wastewater
JP2016193384A (en) * 2015-03-31 2016-11-17 オルガノ株式会社 Method for forming aerobic granule, apparatus for forming aerobic granule, wastewater treatment method, and wastewater treatment apparatus
CN107531525A (en) * 2015-03-31 2018-01-02 奥加诺株式会社 The forming method of aerobic grain, the forming apparatus of aerobic grain, drainage processing method and drain treatment apparatus
JP2016193388A (en) * 2015-03-31 2016-11-17 オルガノ株式会社 Dehydration method, wastewater treatment method and wastewater treatment apparatus
CN108137360A (en) * 2015-08-10 2018-06-08 豪斯康宁Dhv荷兰有限公司 The continuation method of sewage disposal
NL2015286B1 (en) * 2015-08-10 2017-02-28 Haskoningdhv Nederland Bv Continuous process for the treatment of wastewater.
US10807894B2 (en) 2015-08-10 2020-10-20 Haskoningdhv Nederland B.V. Continuous process for the treatment of wastewater
WO2017025345A1 (en) * 2015-08-10 2017-02-16 Haskoningdhv Nederland B.V. Continuous process for the treatment of wastewater
CN108137360B (en) * 2015-08-10 2021-03-09 豪斯康宁Dhv荷兰有限公司 Continuous process for sewage treatment
JP2017077523A (en) * 2015-10-20 2017-04-27 株式会社神鋼環境ソリューション Biological waste water treatment method
WO2019156144A1 (en) * 2018-02-09 2019-08-15 オルガノ株式会社 Water treatment method and water treatment device

Similar Documents

Publication Publication Date Title
US8894855B2 (en) Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US20160023935A1 (en) Treatment of municipal wastewater with anaerobic digestion
AU2002301606B2 (en) Batch Style Wastewater Treatment Apparatus Using Biological Filtering Process and Wastewater Treatment Method Using The Same
US9045356B2 (en) Sewage treatment process and system
JP5213647B2 (en) Method and system for treatment of wastewater containing organic compounds
US6811700B2 (en) Integrated hydroponic and fixed-film wastewater treatment systems and associated methods
CA1307059C (en) Method of treating waste water and equipment therefor
CN102858696B (en) Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
CA2083199C (en) Method for the treatment of sewage and installation to be used for this method
US7931808B2 (en) Sequencing batch reactor with continuous membrane filtration and solids reduction
US5702604A (en) Apparatus and method for waste water treatment utilizing granular sludge
US6926830B2 (en) Combined activated sludge-biofilm sequencing batch reactor and process
Tawfik et al. Sewage treatment in a combined up-flow anaerobic sludge blanket (UASB)–down-flow hanging sponge (DHS) system
JP3737410B2 (en) High concentration organic wastewater treatment method and apparatus using biomaker
JP4801256B2 (en) Surge anoxic mixed continuous batch reaction system
TWI316923B (en) System and method for treating carbon, nitrogen, phosphorous containing wastewater
CN1204061C (en) Controlling of wastewater treatment by monitoring oxygen utilisation rates
EP1259465B1 (en) Method and system for sustainable treatment of municipal and industrial wastewater
Werner et al. Denitrification with biogas as external carbon source
US6605220B2 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (ESR)
JP4997460B2 (en) Wastewater treatment system
US6982036B2 (en) Chemically enhanced primary sludge fermentation method
JP2011502776A (en) Wastewater treatment method and plant including control of dissolved oxygen concentration
JP4212588B2 (en) Waste water treatment apparatus and waste water treatment method
KR100951184B1 (en) Method for recycling and purifying livestock wastewater or high concentration wastewater by microbial high rate reactor

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20090713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308