JP2008155080A - Sewage treatment apparatus and its method - Google Patents

Sewage treatment apparatus and its method Download PDF

Info

Publication number
JP2008155080A
JP2008155080A JP2006343686A JP2006343686A JP2008155080A JP 2008155080 A JP2008155080 A JP 2008155080A JP 2006343686 A JP2006343686 A JP 2006343686A JP 2006343686 A JP2006343686 A JP 2006343686A JP 2008155080 A JP2008155080 A JP 2008155080A
Authority
JP
Japan
Prior art keywords
tank
membrane separation
membrane
aerobic
aerobic tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006343686A
Other languages
Japanese (ja)
Other versions
JP5217159B2 (en
Inventor
Shoji Watanabe
昭二 渡辺
Takeshi Takemoto
剛 武本
Koji Kageyama
晃治 陰山
Ichiro Enbutsu
伊智朗 圓佛
Naoki Hara
直樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006343686A priority Critical patent/JP5217159B2/en
Priority to CN2007101865687A priority patent/CN101205110B/en
Publication of JP2008155080A publication Critical patent/JP2008155080A/en
Application granted granted Critical
Publication of JP5217159B2 publication Critical patent/JP5217159B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sewage treatment apparatus and method which effectively perform membrane surface cleaning and allow advanced treatment for removing nitrogen and phosphorus to satisfactorily function by effectively utilizing energy in MBR of sewage. <P>SOLUTION: A membrane separation tank 35 that communicates with an aerobic tank 34 at the bottom, has an aeration means 4d in the lower part, and has an immersed filtration membrane 10 for filtering and separating a mixture liquid of the aerobic tank 34 flowing into above the aeration means 4d, and a storage tank 36 that partially communicates with the membrane separation tank 35 and receives inflow of the membrane-separated mixture liquid of the aerobic tank are installed on the downstream side of the aerobic tank 34. The mixture liquid of the storage tank 36 is circulated to an anaerobic tank 32. The upper parts of the membrane separation tank 35 and the storage tank 36 are opened to atmosphere. The mixture liquid of the aerobic tank spontaneously flows into and fills the membrane separation tank 35 and the storage tank 36 in conjunction with the circulating liquid so that the water levels of the membrane separation tank and the storage tank maintains the water level of the aerobic tank. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、膜ろ過による固液分離方式を利用し、有機物に加えて窒素やリンを含有した汚水を活性汚泥で生物学的に処理する汚水処理装置及びその方法に関する。   The present invention relates to a sewage treatment apparatus and method for biologically treating sewage containing nitrogen and phosphorus in addition to organic matter with activated sludge using a solid-liquid separation method by membrane filtration.

下水処理場では、活性汚泥と呼ばれる微生物群を利用して有機物に加えて窒素やリンも除去する高度処理方式が導入されている。図10は、A2Oと沈殿池方式を併用した高度処理の装置構成を示す図で、この装置では、前処理された汚水11は、嫌気槽32,無酸素槽33と好気槽34で構成される生物反応槽1に流入し、高濃度の活性汚泥を含有する返送汚泥18と混合して所定の生物処理がなされて有機物や窒素,リンが除去される。生物連通管12は、沈殿池5で固液分離され、活性汚泥が重力沈降し、上澄液が処理水16として放流される。   In sewage treatment plants, advanced treatment methods have been introduced that use microorganisms called activated sludge to remove nitrogen and phosphorus in addition to organic matter. FIG. 10 is a diagram showing a configuration of an advanced treatment apparatus using both A2O and a sedimentation basin system. In this apparatus, the pretreated sewage 11 is composed of an anaerobic tank 32, an anaerobic tank 33, and an aerobic tank 34. Into the biological reaction tank 1 and mixed with the return sludge 18 containing the high-concentration activated sludge and subjected to a predetermined biological treatment to remove organic matter, nitrogen and phosphorus. The biological communication pipe 12 is solid-liquid separated in the sedimentation basin 5, the activated sludge is gravity settled, and the supernatant is discharged as treated water 16.

この高度処理方式で、好気槽34から無酸素槽33に還流される循環液17は、窒素除去率に直接影響するため、汚水流量の数倍量に設定されるケースもある。返送汚泥18は生物反応槽1の汚泥濃度を調節,維持するために、通常は、汚水流量以下で運転される。プロセス内で増殖した汚泥は、余剰汚泥19として系外に排出され、プロセス全体の汚泥量が管理される。   In this advanced processing method, the circulating liquid 17 that is refluxed from the aerobic tank 34 to the anoxic tank 33 directly affects the nitrogen removal rate, and therefore may be set to several times the sewage flow rate. In order to adjust and maintain the sludge concentration in the biological reaction tank 1, the return sludge 18 is usually operated at a sewage flow rate or less. The sludge grown in the process is discharged out of the system as surplus sludge 19, and the amount of sludge in the entire process is managed.

一方、膜分離活性汚泥方式(以下、MBRと称す)は、処理水が良質で、沈殿池が不要であることや高汚泥濃度処理による小型化の期待があるため、適用されつつある。この方式には、図10に示す従来の反応槽の汚泥濃度(〜3g/L)の数倍に高めた生物反応槽にろ過膜を直接浸漬する方式や、生物反応槽と別にろ過膜を浸漬した膜分離槽を設けて固液分離する方式など種々提案されている。   On the other hand, the membrane separation activated sludge method (hereinafter referred to as MBR) is being applied because the treated water is of good quality, a sedimentation basin is not required, and there is an expectation of downsizing by high sludge concentration treatment. This method includes a method of directly immersing the filtration membrane in a biological reaction tank that is several times the sludge concentration (˜3 g / L) of the conventional reaction tank shown in FIG. Various methods have been proposed, such as a solid-liquid separation by providing a membrane separation tank.

高度処理を対象とした浸漬膜方式では、〔特許文献1〕に記載のように、膜分離装置を配した曝気槽の散気管下方から汚泥を引抜いて、無酸素槽に循環する提案がある。この循環汚泥は、図10に示す循環液と返送汚泥を併せたものである。   In the submerged membrane method for advanced treatment, as described in [Patent Document 1], there is a proposal of extracting sludge from below the aeration tube of an aeration tank provided with a membrane separator and circulating it to an oxygen-free tank. This circulating sludge is a combination of the circulating fluid and return sludge shown in FIG.

また、MBRの大きな課題は、膜面に付着する汚泥を剥離し、目詰りを抑制する膜洗浄を効率よく行い、安定した運転を維持することである。浸漬膜の場合、ろ過膜下方から空気曝気し、エアーリフト作用で被分離液の上昇流を形成させ、その上昇流のせん断力を利用して汚泥の膜面付着を抑制する洗浄が広く実施されている。その一例として、高度処理を対象としたものではないが、〔特許文献2〕に記載のように、2つ以上のろ過膜を仕切壁を介在させて配した膜分離槽を生物反応槽と別に設置し、ろ過設備を交互にろ過と散気(洗浄)し、混合液を元の反応槽に返送しているものがある。又、気泡浮上による上昇流のみでは十分な洗浄流速が得られないため、〔特許文献3〕に記載のように、散気部とろ過膜の間に上昇流を増強する撹拌手段を新たに設置する方式が提案されている。   Moreover, the big subject of MBR is peeling the sludge adhering to a film surface, performing the film | membrane washing | cleaning which suppresses clogging efficiently, and maintaining the stable driving | operation. In the case of a submerged membrane, air is aerated from below the filtration membrane, an upward flow of the liquid to be separated is formed by an air lift action, and cleaning that suppresses the adhesion of the sludge to the membrane surface is performed using the shear force of the upward flow. ing. As an example, although not intended for advanced treatment, as described in [Patent Document 2], a membrane separation tank in which two or more filtration membranes are arranged with a partition wall interposed is separated from a biological reaction tank. Some are installed and the filtration equipment is alternately filtered and diffused (washed), and the mixed solution is returned to the original reaction tank. In addition, since a sufficient cleaning flow rate cannot be obtained only by the upward flow due to the bubble rising, a stirring means for enhancing the upward flow is newly installed between the air diffuser and the filtration membrane as described in [Patent Document 3]. A method has been proposed.

特開2004−835号公報JP 2004-835 JP 特開2001−276874号公報JP 2001-276874 A 特開2003−251386号公報JP 2003-251386 A

〔特許文献1〕に記載の従来の技術は、嫌気槽あるいは無酸素槽は酸素のない雰囲気で微生物反応が進行するため、できるだけ酸素の少ない好気槽混合液を循環液とする提案であり、ろ過膜の洗浄には空気曝気のみを使用している。   The conventional technology described in [Patent Document 1] is a proposal in which an anaerobic tank or an anaerobic tank is used as a circulating liquid in an aerobic tank mixed solution with as little oxygen as possible because a microbial reaction proceeds in an oxygen-free atmosphere. Only air aeration is used to clean the membrane.

〔特許文献2〕に記載の従来の技術は、洗浄のための散気で得られる旋回流でろ過側にクロスフローを形成させてろ過膜の洗浄機能を持たせているが、返送ラインが設置されている側のろ過膜がろ過処理中の場合は、旋回流が弱まり、洗浄効率が低下するという問題がある。〔特許文献1〕,〔特許文献2〕に記載の従来の技術は、いずれも曝気空気のみで上昇流あるいは旋回流を形成させており、洗浄効果を増強するには上昇流の増加、すなわち、曝気空気量を増加する必要がある。   The conventional technology described in [Patent Document 2] has a cleaning function for the filtration membrane by forming a cross flow on the filtration side with a swirling flow obtained by aeration for cleaning, but a return line is installed. When the filtration membrane on the side that is being used is being filtered, there is a problem that the swirling flow is weakened and the cleaning efficiency is reduced. In the conventional techniques described in [Patent Document 1] and [Patent Document 2], the rising flow or the swirling flow is formed only by aerated air. It is necessary to increase the amount of aerated air.

〔特許文献3〕に記載の従来の技術は、上昇流を形成する撹拌機を設けるため、上昇流速を確実に増加させて洗浄効果を向上できるが、新たな設備費やランニングコストが発生するという問題がある。   Since the conventional technique described in [Patent Document 3] is provided with a stirrer that forms an upward flow, it is possible to improve the cleaning effect by surely increasing the upward flow velocity, but new equipment costs and running costs are generated. There's a problem.

本発明の目的は、エネルギを有効に利用して膜面の洗浄を効果的に実施し、窒素やリンを除去する高度処理を良好に機能させる汚水処理装置及びその方法を提供することにある。   An object of the present invention is to provide a sewage treatment apparatus and a method for effectively performing an advanced treatment for effectively removing energy such as nitrogen and phosphorus by effectively using energy to clean a membrane surface.

上記目的を達成するために、本発明の汚水処理装置及び方法は、少なくとも嫌気槽に、好気槽の活性汚泥混合液を循環するものであって、好気槽の後段に、底部が好気槽と連通し、下方に散気手段を設け、散気手段の上方に流入した好気槽混合液をろ過分離するろ過膜を浸漬した膜分離槽、及び一部が膜分離槽と連通し、膜分離後の好気槽混合液が流入する滞留槽を設け、滞留槽の混合液を嫌気槽に循環するように構成したものである。   In order to achieve the above object, the sewage treatment apparatus and method of the present invention circulates an activated sludge mixed liquid in an aerobic tank at least in an anaerobic tank, and the bottom part is aerobic at the rear stage of the aerobic tank. A membrane separation tank in which a filtration membrane for filtering and separating the aerobic tank mixed liquid flowing into the upper part of the aeration tank is immersed, and a part of the membrane separation tank communicates with the tank. A residence tank into which the aerobic tank mixed liquid after membrane separation flows is provided, and the mixed liquid in the residence tank is circulated to the anaerobic tank.

又、膜分離槽及び滞留槽は上部を大気開放構造とすることで、両槽の水面位置が、好気槽の水面位置を保持するように、循環液に連動して膜分離槽及び滞留槽に好気槽混合液が自然に流入し、補充される。   In addition, the membrane separation tank and the retention tank are open to the atmosphere at the top, so that the water surface position of both tanks keeps the water surface position of the aerobic tank in conjunction with the circulating liquid. The aerobic tank mixture naturally flows into the tank and is replenished.

又、複数の膜分離槽とし、膜分離混合液を順次後方の膜分離槽に流入させ、最後方の膜分離槽から流出する膜分離液を流入する滞留槽を設け、この滞留槽の底部から膜分離混合液を少なくとも嫌気槽に循環することで、ろ過膜を流通する混合液の流速を向上するものである。   In addition, a plurality of membrane separation tanks are provided, and a membrane separation liquid mixture is sequentially introduced into the rear membrane separation tank, and a retention tank is provided for introducing the membrane separation liquid flowing out from the rearmost membrane separation tank. By circulating the membrane separation liquid mixture at least in the anaerobic tank, the flow rate of the liquid mixture flowing through the filtration membrane is improved.

本発明によれば、高度処理で不可欠な循環液を、循環液の機能を損なうことなく浸漬膜の洗浄に有効に利用でき、設備コスト及び運転コストを低減できる効果がある。   ADVANTAGE OF THE INVENTION According to this invention, the circulating fluid indispensable by an advanced process can be utilized effectively for washing | cleaning of an immersion film, without impairing the function of a circulating fluid, and there exists an effect which can reduce an installation cost and an operating cost.

以下、実施例1から実施例3について図面を参照して説明する。   Examples 1 to 3 will be described below with reference to the drawings.

本発明の実施例1を図1から図3により説明する。図1は、本実施例の汚水処理装置の構成図、図2,図3はその変形例である。本実施例では、硝化液循環型の活性汚泥方式を対象としている。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of a sewage treatment apparatus according to the present embodiment, and FIGS. 2 and 3 are modifications thereof. In this embodiment, the activated sludge system of nitrification liquid circulation type is targeted.

図1に示すように、生物反応槽1は、汚水11,循環液17が注入される無酸素槽33と、好気槽34と膜分離槽35と滞留槽36で構成されている。   As shown in FIG. 1, the biological reaction tank 1 includes an oxygen-free tank 33 into which sewage 11 and circulating liquid 17 are injected, an aerobic tank 34, a membrane separation tank 35, and a retention tank 36.

無酸素槽33と好気槽34は、整流機能のある仕切壁2bで分けられており、無酸素槽33には撹拌手段3bが設けられ、好気槽34には底部に設置された散気管4cから空気14が曝気されて、夫々の混合液を撹拌する。好気槽34には溶存酸素濃度計21が設置され、溶存酸素濃度計21の計測値は、散気管4cに接続された空気調整手段14cにフィードバックされる。   The anaerobic tank 33 and the aerobic tank 34 are separated by a partition wall 2b having a rectifying function. The anaerobic tank 33 is provided with a stirring means 3b, and the aerobic tank 34 is provided with a diffuser pipe installed at the bottom. Air 14 is aerated from 4c, and each liquid mixture is stirred. The dissolved oxygen concentration meter 21 is installed in the aerobic tank 34, and the measured value of the dissolved oxygen concentration meter 21 is fed back to the air adjusting means 14c connected to the air diffuser 4c.

好気槽34と膜分離槽35との間には、底部が一部開口している以外は完全に仕切る仕切壁2cが設けられる。膜分離槽35には、ろ過膜10が浸漬され、ろ過膜10の下方には散気管4dが設置されている。ろ過膜10には配管により吸引手段6が接続され、配管には圧力計22が取り付けられている。吸引手段6により吸引されたろ過液が処理水16として採取される。散気管4dは空気調整手段14dに接続され、空気14の一部がろ過膜10に散気される。   A partition wall 2c is provided between the aerobic tank 34 and the membrane separation tank 35, except that the bottom is partially opened. A filtration membrane 10 is immersed in the membrane separation tank 35, and an air diffuser 4 d is installed below the filtration membrane 10. A suction means 6 is connected to the filtration membrane 10 by piping, and a pressure gauge 22 is attached to the piping. The filtrate sucked by the suction means 6 is collected as treated water 16. The air diffusing pipe 4d is connected to the air adjusting means 14d, and a part of the air 14 is diffused to the filtration membrane 10.

膜分離槽35と滞留槽36との間には、上部が水面下に位置する仕切壁2dが設けられている。滞留槽36内には、配管が設けられ、配管に接続された循環手段7により、滞留槽36の下方部から活性汚泥混合液が循環液17として吸引されて無酸素槽33に戻される。   Between the membrane separation tank 35 and the retention tank 36, a partition wall 2d having an upper portion located below the water surface is provided. A pipe is provided in the staying tank 36, and the activated sludge mixed liquid is sucked as the circulating liquid 17 from the lower part of the staying tank 36 by the circulation means 7 connected to the pipe and returned to the oxygen-free tank 33.

無酸素槽33では、撹拌手段3bにより、汚水11と循環液17が攪拌され、汚水11中の有機物を利用して循環液17中に含まれる硝酸あるいは亜硝酸性窒素を還元し、脱窒素化する。好気槽34では、散気管4cからの曝気空気により酸素が供給され、活性汚泥の有機物分解や硝化作用が促進される。   In the oxygen-free tank 33, the sewage 11 and the circulating liquid 17 are stirred by the stirring means 3b, and nitric acid or nitrite nitrogen contained in the circulating liquid 17 is reduced using the organic matter in the sewage 11 to denitrify it. To do. In the aerobic tank 34, oxygen is supplied by the aerated air from the diffuser 4c, and organic matter decomposition and nitrification of activated sludge are promoted.

本実施例において、生物反応槽1の活性汚泥濃度は流下方向で変化するが、凡そ5000から50000mg/Lで運転される。循環液17は、活性汚泥の循環作用(汚泥返送ともいう)のためであるが、プロセス全体の脱窒素率を左右する操作量である。   In this embodiment, the activated sludge concentration in the biological reaction tank 1 varies in the flow direction, but is operated at about 5000 to 50000 mg / L. The circulating liquid 17 is an operation amount that influences the denitrification rate of the entire process, although it is for the circulating action of activated sludge (also referred to as sludge return).

例えば、汚水11中の全窒素が40mg/Lで、処理水16の窒素を10mg/L以下にし、好気槽34で完全に硝化をするとした場合は、循環液17の流量は汚水11の流量の3倍以上にする必要がある。   For example, when the total nitrogen in the sewage 11 is 40 mg / L, the nitrogen in the treated water 16 is 10 mg / L or less, and complete nitrification is performed in the aerobic tank 34, the flow rate of the circulating liquid 17 is the flow rate of the sewage 11. It is necessary to make more than 3 times.

また、散気空気でろ過膜10を洗浄する場合は、一般的に汚水11の流量に対して10から40倍量の散気空気を供給している。   In addition, when the filtration membrane 10 is washed with diffused air, generally 10 to 40 times the amount of diffused air is supplied with respect to the flow rate of the sewage 11.

本実施例では、膜分離槽35と滞留槽36とは、上部が水面下に位置する仕切壁2dで仕切られているので、水面は同じ位置であり、生物反応槽1全体で水面は同じレベルに維持される迂流式構造となっているため、滞留槽36から循環液17が吸引されると、同じ量だけ好気槽34の混合液が膜分離槽35に流入する。膜分離槽35に流入する混合液は、好気槽34と膜分離槽35との間に設けられた仕切壁2cの底部から流入し、ろ過膜
10の1次側流路を上昇する。
In this embodiment, since the membrane separation tank 35 and the retention tank 36 are partitioned by the partition wall 2d whose upper part is located below the water surface, the water surface is at the same position, and the water surface is the same level in the entire biological reaction tank 1. Therefore, when the circulating liquid 17 is sucked from the retention tank 36, the mixed liquid in the aerobic tank 34 flows into the membrane separation tank 35 by the same amount. The liquid mixture flowing into the membrane separation tank 35 flows in from the bottom of the partition wall 2 c provided between the aerobic tank 34 and the membrane separation tank 35, and ascends the primary flow path of the filtration membrane 10.

この混合液の上昇流速は、例えば0.02m/s となる。すなわち、処理水量が3000
3/day、循環液流量を処理水量の3倍とする9000m3/day であり、ろ過膜には
0.5*1m の平膜を用いて2枚のろ過膜でろ過面積1m2とし、5mmの距離を空けて1次側流路幅が5mmで平膜を設置し、ろ過流束0.5m/dとした場合、平膜は6000枚必要で、これを3層構造とすると、ろ過膜全体の流路面積は5m2であるので、膜間流速は0.02m/sとなる。
The ascending flow rate of this mixed solution is, for example, 0.02 m / s. That is, the amount of treated water is 3000
m 3 / day, the circulating fluid flow rate is 9000 m 3 / day, which is 3 times the amount of treated water, a flat membrane of 0.5 * 1 m is used for the filtration membrane, the filtration area is 1 m 2 with two filtration membranes, If a flat membrane is installed with a primary flow path width of 5 mm at a distance of 5 mm and a filtration flux of 0.5 m / d, 6,000 flat membranes are required. Since the channel area of the entire membrane is 5 m 2 , the flow rate between the membranes is 0.02 m / s.

膜面洗浄のための膜間流速は0.1から最大でも1.0m/sであるので、循環液の利用で20%から2%の流速を確保でき、この流速向上分に相当する散気管4dからの空気量を低減できる。   Since the flow rate between membranes for membrane cleaning is 0.1 to 1.0 m / s at the maximum, a flow rate of 20% to 2% can be secured by using the circulating fluid. The amount of air from 4d can be reduced.

このように、循環液の操作量に連動して膜分離槽に新たに好気槽混合液が流入するため、循環液量に見合って膜分離槽内ろ過膜の膜間流速が向上する。返送汚泥分も合わせて循環液は汚水の数倍量で操作されるため、ろ過膜の膜間流速は大幅に増加し、膜洗浄用にろ過膜の下方から曝気される空気を低減することができる。特に、既設の高度処理プロセスでは、循環手段が敷設されており、膜分離槽や滞留槽を設けるなどの一部改造することで対応でき、既設設備を有効に利用できる。   Thus, since the aerobic tank mixed liquid newly flows into the membrane separation tank in conjunction with the operation amount of the circulating liquid, the flow rate between the membranes in the membrane separation tank is improved in accordance with the amount of the circulating liquid. Since the circulating fluid is operated with several times the amount of sewage, including the return sludge, the flow rate between the membranes of the membrane is greatly increased, and the air aerated from below the membrane for membrane cleaning can be reduced. it can. In particular, in the existing advanced treatment process, a circulation means is laid, which can be dealt with by a partial modification such as provision of a membrane separation tank or a retention tank, and the existing equipment can be used effectively.

滞留槽36には膜分離後の混合液が膜分離槽35から越流する。この越流時に混合液中に浮遊している気泡は大気放散され、溶解している酸素も循環液17となる底部に到達するまでに、好気槽34より30%程度高濃度となった活性汚泥で急速に消費される。このため、空気気泡や溶存酸素の少ない循環液17が得られ、無酸素槽33の機能を損なわず、安定した生物処理を維持できる。   The mixed liquid after membrane separation overflows from the membrane separation tank 35 into the retention tank 36. The air bubbles floating in the mixed solution at the time of overflowing are diffused to the atmosphere, and the dissolved oxygen also reaches the bottom which becomes the circulating liquid 17 and has an activity that is about 30% higher than the aerobic tank 34. Consumed rapidly with sludge. For this reason, the circulating liquid 17 with few air bubbles and dissolved oxygen is obtained, and the stable biological treatment can be maintained without impairing the function of the oxygen-free tank 33.

このように、滞留槽は膜分離槽で曝気された空気気泡を大気放散させるとともに、高汚泥濃度であるために溶解した酸素も低減できるので、嫌気槽あるいは無酸素槽の機能を低下させない循環液を還流できる。   In this way, the retention tank dissipates air bubbles aerated in the membrane separation tank to the atmosphere and can also reduce dissolved oxygen because of its high sludge concentration. Can be refluxed.

なお、図1では、空気調節手段14c,14dを設置しているが、調節手段14cは好気槽1cに設置した溶存酸素濃度計21の実測値と目標値の偏差で、調節手段14dはろ過膜の吸引側に設置した圧力計22の実測値と目標値の偏差、あるいは循環液量で補正する操作を適用できる。   In FIG. 1, the air adjusting means 14c and 14d are installed. However, the adjusting means 14c is a deviation between the measured value and the target value of the dissolved oxygen concentration meter 21 installed in the aerobic tank 1c, and the adjusting means 14d is filtered. An operation of correcting the deviation between the actual value of the pressure gauge 22 installed on the suction side of the membrane and the target value or the amount of circulating fluid can be applied.

図2は、図1に示す実施例の変形例で、滞留槽36から循環液と余剰汚泥を引抜くために、循環液17の引抜きラインに余剰汚泥引抜手段9を設け、余剰汚泥19を系外に排出するようにしている。余剰汚泥19の引抜き位置は、循環液17と同じ位置に設けられており、図1に示す実施例との変更が容易にできる、このように、膜分離後の混合液を余剰汚泥19とすることで、循環液17に余剰汚泥分が加算された流量が膜分離槽35を流れるので、膜間流速が増加し、洗浄効果が向上する。また、膜分離後の混合液は汚泥濃度が高まっており、この混合液を余剰汚泥とすることで、後工程の汚泥処理工程(図示せず)の処理流量が軽減される相乗効果がある。   FIG. 2 is a modification of the embodiment shown in FIG. 1. In order to extract the circulating fluid and excess sludge from the retention tank 36, surplus sludge extraction means 9 is provided in the extraction line of the circulating fluid 17, and the excess sludge 19 is used as a system. I try to discharge outside. The surplus sludge 19 is drawn out at the same position as the circulating liquid 17 and can be easily changed from the embodiment shown in FIG. 1. Thus, the mixed liquid after membrane separation is used as the surplus sludge 19. Thus, since the flow rate obtained by adding excess sludge to the circulating liquid 17 flows through the membrane separation tank 35, the flow rate between the membranes is increased, and the cleaning effect is improved. Moreover, the mixed liquid after membrane separation has an increased sludge concentration. By using this mixed liquid as excess sludge, there is a synergistic effect that reduces the processing flow rate of the subsequent sludge treatment process (not shown).

なお、余剰汚泥19はプロセス全体の活性汚泥量で操作されるもので、例えば、生物反応槽1の汚泥濃度計23や循環液17あるいは余剰汚泥19中の汚泥濃度を考慮して設定される。   The surplus sludge 19 is operated by the amount of activated sludge in the entire process, and is set in consideration of, for example, the sludge concentration meter 23 of the biological reaction tank 1, the circulating liquid 17 or the sludge concentration in the surplus sludge 19.

図3は、図1に示す実施例の変形例であり、A2O方式に適用した例である。図3に示すように、無酸素槽33の前段には嫌気槽32が設けられ、滞留槽36内に設けられた配管に接続された循環手段7により、滞留槽36の下方部から循環液17が吸引されて嫌気槽32と無酸素槽33に戻されるようになっている。嫌気槽32と無酸素槽33への循環液の配分は、各槽の活性汚泥濃度や窒素除去率を考慮して操作される。このように構成することにより、嫌気槽32へ活性汚泥を返送することができる。   FIG. 3 is a modification of the embodiment shown in FIG. 1, and is an example applied to the A2O system. As shown in FIG. 3, an anaerobic tank 32 is provided in front of the anaerobic tank 33, and the circulating liquid 17 is provided from the lower part of the staying tank 36 by the circulation means 7 connected to a pipe provided in the staying tank 36. Is sucked and returned to the anaerobic tank 32 and the anaerobic tank 33. The distribution of the circulating fluid to the anaerobic tank 32 and the anaerobic tank 33 is operated in consideration of the activated sludge concentration and the nitrogen removal rate of each tank. By comprising in this way, activated sludge can be returned to the anaerobic tank 32. FIG.

また、散気空気と循環液の組合せで膜間流速を向上させる第1から第3の実施形態において、膜分離槽35とろ過膜10間に旋回流路を形成させる必要がある。本実施例では、旋回流路を特に規定するものでないが、旋回流路幅をあまり広くすると、循環液による膜間流速は向上しない。向上効果を発揮させるには旋回流路の断面積をろ過膜断面積の1から50分の1にすることが望ましい。   In the first to third embodiments in which the flow rate between the membranes is improved by the combination of the diffused air and the circulating fluid, it is necessary to form a swirl flow path between the membrane separation tank 35 and the filtration membrane 10. In this embodiment, the swirl flow path is not particularly defined, but if the swirl flow path width is too wide, the intermembrane flow velocity by the circulating fluid is not improved. In order to exert the improvement effect, it is desirable that the cross-sectional area of the swirl flow path is 1 to 1/50 of the cross-sectional area of the filtration membrane.

本発明の実施例2を図4から図7により説明する。図4は、本実施例の汚水処理装置の構成図、図5から図7はその変形例である。   A second embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a configuration diagram of the sewage treatment apparatus according to the present embodiment, and FIGS. 5 to 7 are modifications thereof.

本実施例は、図1と同様に構成されているが、本実施例では、膜分離槽35と滞留槽
36で構成した膜ろ過処理槽31を生物反応槽1の後段に別に設置している。生物反応槽1と膜ろ過処理槽31とは連通管12により底部で連通しており、好気槽34からの処理水が膜ろ過処理槽31の底部に流入するようになっている。膜分離槽35と滞留槽36の運転操作は図1に示す実施例と同様である。
The present embodiment is configured in the same manner as in FIG. 1, but in this embodiment, a membrane filtration treatment tank 31 constituted by a membrane separation tank 35 and a retention tank 36 is separately provided at the subsequent stage of the biological reaction tank 1. . The biological reaction tank 1 and the membrane filtration treatment tank 31 communicate with each other at the bottom through the communication pipe 12, and treated water from the aerobic tank 34 flows into the bottom of the membrane filtration treatment tank 31. The operation of the membrane separation tank 35 and the retention tank 36 is the same as in the embodiment shown in FIG.

本実施例では、複数の生物反応槽1を有する汚水処理場も多く、このように膜ろ過処理槽31を生物反応槽1とを分離して設置することで、保守や清掃、種々のトラブル対応など維持管理を個別に実施できる。また、既設プラントの生物処理運転を停止することなく、MBR方式の改良が可能である。また、増設など拡張性があり、流入汚水の変動やろ過膜の目詰り対策で実施される薬品洗浄をプラントを停止させることなく、順次実施できる。   In this embodiment, there are many sewage treatment plants having a plurality of biological reaction tanks 1, and thus installing the membrane filtration treatment tank 31 separately from the biological reaction tank 1 enables maintenance, cleaning, and handling various troubles. Maintenance management can be performed individually. Further, the MBR system can be improved without stopping the biological treatment operation of the existing plant. In addition, there is expandability such as expansion, and chemical cleaning that is implemented to prevent fluctuations in influent sewage and clogging of filtration membranes can be performed sequentially without stopping the plant.

本実施例においても循環液17による膜間流速の向上に伴う散気空気量の低減効果は第1の実施形態と同様である。   Also in this example, the effect of reducing the amount of diffused air accompanying the improvement of the intermembrane flow velocity by the circulating fluid 17 is the same as that of the first embodiment.

本実施例の変形例を図5により説明する。図5は、本実施例の汚水処理装置の構成図である。   A modification of this embodiment will be described with reference to FIG. FIG. 5 is a configuration diagram of the sewage treatment apparatus of the present embodiment.

本実施例は、図4に示す実施例と同様に構成されているが、本実施例では、膜分離槽
35が複数配置され、隣の膜分離槽35との間には、上部が水面下に位置する仕切壁2d、底部が一部開口している以外は完全に仕切る仕切壁2cが順に設けられ、仕切壁2dと仕切壁2cとの間に迂流槽37が形成されている。膜ろ過処理槽31の最後方には滞留槽36が設けられている。
This embodiment is configured in the same manner as the embodiment shown in FIG. 4, but in this embodiment, a plurality of membrane separation tanks 35 are arranged, and the upper part is below the water surface between adjacent membrane separation tanks 35. The partition wall 2d located at the bottom and a partition wall 2c that completely partitions except for a part of the bottom opening are sequentially provided, and a bypass tank 37 is formed between the partition wall 2d and the partition wall 2c. A retention tank 36 is provided at the end of the membrane filtration processing tank 31.

各膜分離槽35にはろ過膜10とろ過膜10の下方に散気管4dが設置され、各散気管4dは、空気14が供給される。吸引手段6により吸引された各ろ過膜10のろ過液が処理水16として採取される。   Each membrane separation tank 35 is provided with a filtration membrane 10 and an air diffuser 4d below the filter membrane 10, and each air diffuser 4d is supplied with air 14. The filtrate of each filtration membrane 10 sucked by the suction means 6 is collected as treated water 16.

膜ろ過処理槽31の最上流部の下方に処理水を流入させ、滞留槽36の底部から循環液17を引抜く。各膜分離槽35の散気管4dは主空気14から分岐された空気14Aを散気し、ろ過膜10は流入した循環液17と同じ量の処理水が最上流部の膜分離槽35に入り、下流の迂流槽37に越流し、迂流槽37の下部から次の膜分離槽35に入り、順次繰り返されて最終的に滞留槽36に到達する。   The treated water is allowed to flow below the uppermost stream portion of the membrane filtration treatment tank 31, and the circulating liquid 17 is drawn out from the bottom of the retention tank 36. The air diffuser 4d of each membrane separation tank 35 diffuses air 14A branched from the main air 14, and the filtration membrane 10 enters the same amount of treated water as the inflowing circulating liquid 17 into the most upstream membrane separation tank 35. Then, it overflows into the downstream bypass tank 37, enters the next membrane separation tank 35 from the lower part of the bypass tank 37, is sequentially repeated, and finally reaches the retention tank 36.

このように、複数の膜分離槽35を設け、直列的に混合液を通水することで膜間流速をさらに増速させ、洗浄空気を低減させることができる。実施例1での計算で、膜分離槽
35を5段にした場合、膜間流速は5倍になり、循環液流量は同一で、膜面洗浄用散気空気を大幅に低減できるとともに、散気を必要としない状態も発生する。
As described above, by providing a plurality of membrane separation tanks 35 and passing the mixed liquid in series, the flow rate between the membranes can be further increased, and the cleaning air can be reduced. In the calculation in Example 1, when the membrane separation tank 35 has five stages, the flow rate between the membranes is 5 times, the flow rate of the circulating fluid is the same, and the aeration air for cleaning the membrane surface can be greatly reduced. There are also situations where care is not required.

本実施例の変形例を図6により説明する。本実施例は、図4に示す実施例と同様に構成されているが、本実施例では、膜分離槽35が複数配置され、隣の膜分離槽35との間には、上部が水面下に位置する仕切壁2d、底部が一部開口している以外は完全に仕切る仕切壁2cが交互に設けられ、上向流と下向流による膜分離を交互に実施し、最後方の膜分離槽35における膜分離混合液を循環手段7で引抜き、嫌気槽34あるいは無酸素槽33に還流する。   A modification of this embodiment will be described with reference to FIG. This embodiment is configured in the same manner as the embodiment shown in FIG. 4, but in this embodiment, a plurality of membrane separation tanks 35 are arranged, and the upper part is below the water surface between adjacent membrane separation tanks 35. The partition wall 2d located at the bottom and the partition wall 2c that completely partitions except for a part of the bottom opening are alternately provided, and the membrane separation by the upward flow and the downward flow is alternately performed, and the rearmost membrane separation The membrane separation mixed liquid in the tank 35 is drawn out by the circulation means 7 and refluxed to the anaerobic tank 34 or the oxygen-free tank 33.

このように複数の膜分離槽35を設け、直列的に混合液を通水することでダイナミックろ過方式の場合にも膜間流速をさらに向上させることができる。   Thus, by providing a plurality of membrane separation tanks 35 and passing the mixed liquid in series, the flow rate between the membranes can be further improved even in the case of the dynamic filtration method.

本実施例の変形例を図7により説明する。本実施例は、図4に示す実施例と同様に構成されているが、本実施例では、膜分離槽35を垂直方向に積層しており、それぞれの膜分離槽35は下方の膜分離混合液が流入する開口部を設けた仕切壁2cで仕切り、最終の膜分離槽35は一部が大気に開口された仕切壁2eで形成している。膜ろ過処理槽31に流入した処理水は、連通管12で膜ろ過処理槽31に流入し、順次固液分離され、最終の膜分離槽35の大気開口部から循環液を引抜いて還流する。   A modification of this embodiment will be described with reference to FIG. This embodiment is configured in the same manner as the embodiment shown in FIG. 4, but in this embodiment, the membrane separation tanks 35 are stacked in the vertical direction, and each membrane separation tank 35 has a lower membrane separation mixing. A partition wall 2c provided with an opening through which the liquid flows is partitioned, and the final membrane separation tank 35 is formed by a partition wall 2e partially opened to the atmosphere. The treated water that has flowed into the membrane filtration tank 31 flows into the membrane filtration tank 31 through the communication pipe 12 and is sequentially separated into solid and liquid, and the circulating liquid is withdrawn from the atmosphere opening of the final membrane separation tank 35 to be refluxed.

このように複数の膜分離槽35を設け、直列的に混合液を通水することでダイナミックろ過方式の場合にも膜間流速をさらに向上させることができる。   Thus, by providing a plurality of membrane separation tanks 35 and passing the mixed liquid in series, the flow rate between the membranes can be further improved even in the case of the dynamic filtration method.

本発明の実施例3を図8,図9により説明する。図8は、本実施例の汚水処理装置の構成図であり、図9は、その変形例である。   A third embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a configuration diagram of the sewage treatment apparatus of the present embodiment, and FIG. 9 is a modification thereof.

図8に示すように、本実施例の汚水処理装置は、生物反応槽1は、汚水11が注入される無酸素槽33と、好気槽34と膜分離槽35で構成されている。無酸素槽33と好気槽34は、整流機能のある仕切壁2bで分けられており、無酸素槽33には撹拌手段3bが設けられ、好気槽34には底部に設置された散気管4cから空気14が曝気されて、夫々の混合液を撹拌する。   As shown in FIG. 8, in the sewage treatment apparatus of the present embodiment, the biological reaction tank 1 is constituted by an anoxic tank 33 into which sewage 11 is injected, an aerobic tank 34 and a membrane separation tank 35. The anaerobic tank 33 and the aerobic tank 34 are separated by a partition wall 2b having a rectifying function. The anaerobic tank 33 is provided with a stirring means 3b, and the aerobic tank 34 is provided with a diffuser pipe installed at the bottom. Air 14 is aerated from 4c, and each liquid mixture is stirred.

好気槽34と膜分離槽35との間には、底部が一部開口している以外は完全に仕切る仕切壁2cが設けられる。膜分離槽35には、ろ過膜10が浸漬されている。ろ過膜10には配管により吸引手段6が接続され、吸引手段6により吸引されたろ過液が処理水16として採取される。膜分離槽35内のろ過膜10の上部には、配管が設けられ、配管に接続された循環手段7により、循環液17が吸引されて無酸素槽33に戻される。   A partition wall 2c is provided between the aerobic tank 34 and the membrane separation tank 35, except that the bottom is partially opened. The filtration membrane 10 is immersed in the membrane separation tank 35. A suction means 6 is connected to the filtration membrane 10 by piping, and the filtrate sucked by the suction means 6 is collected as treated water 16. A pipe is provided above the filtration membrane 10 in the membrane separation tank 35, and the circulating liquid 17 is sucked back by the circulation means 7 connected to the pipe and returned to the oxygen-free tank 33.

このように、本実施例では、膜分離槽35内に散気管を設置していない膜分離槽35とし、滞留槽がないことが実施例1と相違する。本実施例では、底部が一部開口している以外は好気槽34と完全に仕切る仕切壁2cで膜分離槽35を形成し、循環液17を浸漬したろ過膜10の上方から引抜いているので、上方から引抜かれる循環液17と当量の好気槽混合液が仕切壁2cの開口部から膜分離槽35に流入し、循環液量とろ過膜10の流路面積に対応した上向流速が得られる。   As described above, the present embodiment is different from the first embodiment in that the membrane separation tank 35 is not provided with an air diffuser in the membrane separation tank 35 and there is no residence tank. In this embodiment, the membrane separation tank 35 is formed by the partition wall 2c that is completely partitioned from the aerobic tank 34 except that the bottom part is partially opened, and is drawn from above the filtration membrane 10 in which the circulating liquid 17 is immersed. Therefore, the aerobic tank mixed liquid equivalent to the circulating liquid 17 drawn from above flows into the membrane separation tank 35 from the opening of the partition wall 2c, and the upward flow velocity corresponding to the amount of the circulating liquid and the flow passage area of the filtration membrane 10 Is obtained.

本実施例の変形例を図9により説明する。本実施例は、図8に示す実施例と同様に構成されているが、本実施例では、好気槽34と膜分離槽35との間には、上部が水面下に位置する以外は完全に仕切る仕切壁2cが設けられ、循環液17を浸漬したろ過膜10の下方から引抜くようになっている。   A modification of this embodiment will be described with reference to FIG. This embodiment is configured in the same manner as the embodiment shown in FIG. 8, but in this embodiment, the upper portion is located below the water surface between the aerobic tank 34 and the membrane separation tank 35. A partition wall 2c is provided so as to be pulled out from below the filtration membrane 10 in which the circulating fluid 17 is immersed.

下方から引抜かれる循環液17と当量の好気槽混合液が膜分離槽1dに越流し、循環液量とろ過膜10の流路面積に対応した下向流速が得られる。   The aerobic tank mixed liquid equivalent to the circulating liquid 17 drawn from below flows into the membrane separation tank 1d, and a downward flow velocity corresponding to the amount of the circulating liquid and the flow path area of the filtration membrane 10 is obtained.

これらの上向流速及び下向流速は膜分離槽35が1段であれば、実施例1で試算した値となる。この流速は膜面を洗浄するには低いが、膜面に汚泥層(ケーキ層)を形成させてろ過する、いわゆるダイナミックろ過方式の場合に効果がある。   These upward flow velocity and downward flow velocity are the values calculated in Example 1 when the membrane separation tank 35 has one stage. This flow rate is low for cleaning the membrane surface, but is effective in the case of a so-called dynamic filtration method in which a sludge layer (cake layer) is formed on the membrane surface for filtration.

この方式では余分に厚くなったケーキ層を剥離させる必要がある。流速を高めると必要なケーキ層も剥離させてしまうので、比較的低流速での運転が要求されるためである。必要流速に応じて、実施例2のように膜分離槽35を複数設置することもできる。膜分離槽35で散気しないので、酸素濃度が十分に低い循環液17となり、滞留槽36を必要としない。   In this method, it is necessary to peel off the cake layer that has become excessively thick. This is because, when the flow rate is increased, the necessary cake layer is also peeled off, so that operation at a relatively low flow rate is required. Depending on the required flow rate, a plurality of membrane separation tanks 35 may be installed as in the second embodiment. Since air is not diffused in the membrane separation tank 35, the circulating liquid 17 has a sufficiently low oxygen concentration, and the retention tank 36 is not required.

本発明の実施例1を示す汚水処理装置の構成図である。It is a block diagram of the sewage treatment apparatus which shows Example 1 of this invention. 本実施例の変形例を示す構成図である。It is a block diagram which shows the modification of a present Example. 本実施例の変形例を示す構成図である。It is a block diagram which shows the modification of a present Example. 本発明の実施例2を示す汚水処理装置の構成図である。It is a block diagram of the sewage treatment apparatus which shows Example 2 of this invention. 本実施例の変形例を示す構成図である。It is a block diagram which shows the modification of a present Example. 本実施例の変形例を示す構成図である。It is a block diagram which shows the modification of a present Example. 本実施例の変形例を示す構成図である。It is a block diagram which shows the modification of a present Example. 本発明の実施例3を示す汚水処理装置の構成図である。It is a block diagram of the sewage treatment apparatus which shows Example 3 of this invention. 本実施例の変形例を示す構成図である。It is a block diagram which shows the modification of a present Example. 従来の高度処理方式の構成図である。It is a block diagram of the conventional advanced processing system.

符号の説明Explanation of symbols

1 生物反応槽
2 仕切壁
4 散気管
10 ろ過膜
11 汚水
12 連通管
14 空気
16 処理水
17 循環液
19 余剰汚泥
21 溶存酸素濃度計
22 圧力計
23 汚泥濃度計
31 膜ろ過処理槽
32 嫌気槽
33 無酸素槽
34 好気槽
35 膜分離槽
36 滞留槽
37 迂流槽
DESCRIPTION OF SYMBOLS 1 Biological reaction tank 2 Partition wall 4 Aeration pipe 10 Filtration membrane 11 Sewage 12 Communication pipe 14 Air 16 Treated water 17 Circulating liquid 19 Excess sludge 21 Dissolved oxygen concentration meter 22 Pressure gauge 23 Sludge concentration meter 31 Membrane filtration treatment tank 32 Anaerobic tank 33 Anaerobic tank 34 Aerobic tank 35 Membrane separation tank 36 Residence tank 37 Diversion tank

Claims (12)

汚水が流入する無酸素槽と、該無酸素槽の後段に設置され仕切壁で分けられた好気槽と、該好気槽の後段に設置され底部の一部が前記好気槽と連通し、下方に散気手段を設け、該散気手段の上方にろ過膜を浸漬した膜分離槽と、該膜分離槽の後段に設置され上部の一部が前記膜分離槽と連通する仕切壁で分けられた滞留槽と、該滞留槽の下方部から循環液として前記好気槽に戻すための循環手段を備えた汚水処理装置。   An anaerobic tank into which sewage flows, an aerobic tank installed downstream of the anaerobic tank and divided by a partition wall, and a part of the bottom installed downstream of the aerobic tank communicated with the aerobic tank A membrane separation tank in which a diffuser is provided below, and a filtration membrane is immersed above the diffuser, and a partition wall that is installed at a subsequent stage of the membrane separator and communicates with the membrane separator. A sewage treatment apparatus comprising a divided retention tank and a circulation means for returning to the aerobic tank as a circulating liquid from a lower part of the retention tank. 汚水が流入する無酸素槽と、該無酸素槽の後段に設置され仕切壁で分けられた好気槽と、該好気槽の後段に設置され底部の一部が前記好気槽と連通し、ろ過膜を浸漬した膜分離槽と、該膜分離槽の前記ろ過膜の上方部又は下方部から循環液として前記好気槽に戻すための循環手段を備えた汚水処理装置。   An anaerobic tank into which sewage flows, an aerobic tank installed downstream of the anaerobic tank and divided by a partition wall, and a part of the bottom installed downstream of the aerobic tank communicated with the aerobic tank A sewage treatment apparatus comprising a membrane separation tank in which a filtration membrane is immersed, and circulation means for returning the membrane separation tank to the aerobic tank as a circulating liquid from an upper part or a lower part of the filtration membrane. 前記循環手段が余剰汚泥を引抜くための余剰汚泥引抜手段に接続されている請求項1又は2に記載の汚水処理装置。   The sewage treatment apparatus according to claim 1 or 2, wherein the circulation means is connected to excess sludge extraction means for extracting excess sludge. 前記無酸素槽の前段に嫌気槽が設けられ、前記循環手段が、前記滞留槽の下方部から循環液として前記嫌気槽に循環するように構成されている請求項1に記載の汚水処理装置。   The sewage treatment apparatus according to claim 1, wherein an anaerobic tank is provided in front of the anaerobic tank, and the circulation means is configured to circulate to the anaerobic tank as a circulating liquid from a lower part of the staying tank. 前記好気槽と、膜分離槽及び滞留槽が別設置され、底部の一部が連通管によって接続される請求項1に記載の汚水処理装置。   The sewage treatment apparatus according to claim 1, wherein the aerobic tank, the membrane separation tank, and the retention tank are separately installed, and a part of the bottom is connected by a communication pipe. 前記膜分離槽が複数の膜分離槽で構成され、複数の膜分離槽間に活性汚泥混合液を底部に導いて下流側の膜分離槽に流入させる迂流槽を設け、最後方の膜分離槽の活性汚泥混合液が前記滞留槽に流入する請求項5に記載の汚水処理装置。   The membrane separation tank is composed of a plurality of membrane separation tanks, and a bypass tank is provided between the plurality of membrane separation tanks to guide the activated sludge mixed liquid to the bottom and flow into the downstream membrane separation tank, and the last membrane separation. The sewage treatment apparatus according to claim 5, wherein the activated sludge mixed liquid in the tank flows into the staying tank. 前記膜分離槽が、複数の膜分離槽を水平方向あるいは垂直方向に設置するものであって、初段に前記好気槽からの好気槽混合液を流入させ、該活性汚泥混合液を順次後方あるいは上方の膜分離槽に直列的に通水させ、最後方の膜分離槽の膜分離混合液を前記無酸素槽に循環する請求項5に記載の汚水処理装置。   The membrane separation tank is provided with a plurality of membrane separation tanks in a horizontal direction or a vertical direction, and the aerobic tank mixed liquid from the aerobic tank is introduced into the first stage, and the activated sludge mixed liquid is sequentially moved backward. Alternatively, the sewage treatment apparatus according to claim 5, wherein water is serially passed through an upper membrane separation tank, and a membrane separation mixed solution in the rearmost membrane separation tank is circulated to the anoxic tank. 前記膜分離槽及び滞留槽の上部が大気開放され、前記膜分離槽及び滞留槽の水面位置が、前記好気槽の水面位置となるものである請求項1,3〜7に記載の汚水処理装置。   The sewage treatment according to claim 1, wherein the upper part of the membrane separation tank and the retention tank is open to the atmosphere, and the water surface position of the membrane separation tank and the retention tank becomes the water surface position of the aerobic tank. apparatus. 前記膜分離槽のろ過膜間に形成される旋回流路の断面積をろ過膜断面積の1から50分の1に設定した請求項1〜7に記載の汚水処理装置。   The sewage treatment apparatus according to any one of claims 1 to 7, wherein a cross-sectional area of a swirling flow path formed between the filtration membranes of the membrane separation tank is set to 1 to 1/50 of the cross-sectional area of the filtration membrane. 汚水が流入する無酸素槽により脱窒素化し、該無酸素槽の後段に、一部が連通する仕切壁で分けられた好気槽により活性汚泥の有機物分解,硝化作用で好気槽混合液とし、該好気槽の後段に底部の一部が好気槽と連通し、下方に散気手段を設け、該散気手段の上方にろ過膜を浸漬した膜分離槽により流入した好気槽混合液を固液分離し、上部の一部が前記膜分離槽と連通し、前記膜分離槽の活性汚泥混合液が流入する滞留槽の下方側から膜分離混合液を嫌気槽に循環させる汚水処理方法。   Denitrified by an anaerobic tank into which sewage flows, and an aerobic tank separated by a partition wall that partially communicates with the latter part of the anaerobic tank to decompose the organic matter of activated sludge and convert it into an aerobic tank mixture by nitrification The aerobic tank mixing was introduced by a membrane separation tank in which a part of the bottom part communicated with the aerobic tank at the rear stage of the aerobic tank, and a diffuser was provided below, and a filter membrane was immersed above the diffuser Sewage treatment that separates the liquid into solid and liquid, part of the upper part communicates with the membrane separation tank, and the membrane separation mixed liquid is circulated to the anaerobic tank from the lower side of the retention tank into which the activated sludge mixed liquid of the membrane separation tank flows. Method. 前記好気槽と、膜分離槽及び滞留槽が別設置され、底部の一部が連通管によって接続される請求項10に記載の汚水処理方法。   The sewage treatment method according to claim 10, wherein the aerobic tank, the membrane separation tank, and the retention tank are separately installed, and a part of the bottom is connected by a communication pipe. 汚水が流入する無酸素槽により脱窒素化し、該無酸素槽の後段に、一部が連通する仕切壁で分けられた好気槽により活性汚泥の有機物分解,硝化作用で好気槽混合液とし、該好気槽の後段に底部の一部が好気槽と連通し、ろ過膜を浸漬した膜分離槽により流入した好気槽混合液を固液分離し、前記膜分離槽の前記ろ過膜の上方部又は下方部から循環手段により好気槽混合液を循環液として前記好気槽に戻す汚水処理方法。   Denitrified by an anaerobic tank into which sewage flows, and an aerobic tank separated by a partition wall that partially communicates with the latter part of the anaerobic tank to decompose the organic matter of activated sludge and convert it into an aerobic tank mixture by nitrification In addition, a part of the bottom communicates with the aerobic tank at the rear stage of the aerobic tank, and the aerobic tank mixed liquid flowing in by the membrane separation tank in which the filtration membrane is immersed is solid-liquid separated, and the filtration membrane of the membrane separation tank A sewage treatment method for returning an aerobic tank mixed liquid as a circulating liquid to the aerobic tank from the upper part or the lower part of the aerobic tank as a circulating liquid.
JP2006343686A 2006-12-21 2006-12-21 Sewage treatment apparatus and method Expired - Fee Related JP5217159B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006343686A JP5217159B2 (en) 2006-12-21 2006-12-21 Sewage treatment apparatus and method
CN2007101865687A CN101205110B (en) 2006-12-21 2007-12-12 Sewage water treatment device and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006343686A JP5217159B2 (en) 2006-12-21 2006-12-21 Sewage treatment apparatus and method

Publications (2)

Publication Number Publication Date
JP2008155080A true JP2008155080A (en) 2008-07-10
JP5217159B2 JP5217159B2 (en) 2013-06-19

Family

ID=39565620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006343686A Expired - Fee Related JP5217159B2 (en) 2006-12-21 2006-12-21 Sewage treatment apparatus and method

Country Status (2)

Country Link
JP (1) JP5217159B2 (en)
CN (1) CN101205110B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101851046A (en) * 2010-06-21 2010-10-06 吴静璇 Device for deep treatment and complete recovery of coking wastewater and application method thereof
JP2010253354A (en) * 2009-04-22 2010-11-11 Sumitomo Electric Ind Ltd Membrane separation type activated sludge treatment apparatus
JP2010253428A (en) * 2009-04-28 2010-11-11 Asahi Kasei Chemicals Corp Wastewater treatment apparatus and wastewater treatment method
JP2011000555A (en) * 2009-06-19 2011-01-06 Kubota Corp Wastewater treatment facility and method of rebuilding the same
CN102336499A (en) * 2010-07-15 2012-02-01 株式会社日立工业设备技术 Water drainage processing system and water drainage processing method
KR101353401B1 (en) * 2011-07-15 2014-01-22 (주)필로스 Membrane bioreactors which are in response to the high processing load fluctuations effectively
KR101473622B1 (en) * 2014-09-30 2014-12-17 코오롱환경서비스주식회사 Treatment appratus of swage and waste water
JP2016140783A (en) * 2015-01-30 2016-08-08 株式会社クボタ Organic wastewater treatment method and apparatus
JP2017012994A (en) * 2015-06-30 2017-01-19 水ing株式会社 Activated sludge processing device and activated sludge processing method
CN107739087A (en) * 2017-10-31 2018-02-27 安徽舜禹水务股份有限公司 One kind vortex membrane bioreactor pollution control device
CN110078297A (en) * 2019-04-02 2019-08-02 浦华环保有限公司 Ecological wastewater treatment system and method
JP2020028823A (en) * 2018-08-21 2020-02-27 新日本技研株式会社 Water treatment device
WO2022270447A1 (en) * 2021-06-22 2022-12-29 前澤工業株式会社 Wastewater treatment device and wastewater treatment method
WO2023074681A1 (en) * 2021-10-26 2023-05-04 国立大学法人北海道大学 Wastewater treatment apparatus, and waste water treatment method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077586B2 (en) * 2009-03-25 2012-11-21 株式会社日立プラントテクノロジー Wastewater treatment water reuse system
JP5196326B2 (en) * 2009-04-02 2013-05-15 株式会社日立プラントテクノロジー Wastewater treatment water reuse system
WO2015008346A1 (en) * 2013-07-17 2015-01-22 三菱重工業株式会社 Water treatment device
WO2015141455A1 (en) * 2014-03-17 2015-09-24 住友電気工業株式会社 Filtration apparatus, and immersion-type filtration method using same
CN104556550B (en) * 2014-04-09 2016-06-29 高吁萍 A kind of efficiently mental retardation lessening membrane fouling MBR devices and methods therefor
CN106396254A (en) * 2016-08-31 2017-02-15 圣堃环保科技(上海)有限公司 Sewage index increasing treatment system and sewage treatment method
WO2019039008A1 (en) * 2017-08-24 2019-02-28 三菱電機株式会社 Water treatment control system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136357A (en) * 1977-05-02 1978-11-28 Ebara Infilco Co Ltd Process for biochemical denitrification of organic wastewater
JPH0398697A (en) * 1989-09-11 1991-04-24 Kubota Corp Water treatment apparatus
JPH03262600A (en) * 1990-03-13 1991-11-22 Kubota Corp Treating equipment of discharged water containing nitrogen
JPH03275196A (en) * 1990-03-23 1991-12-05 Kurita Water Ind Ltd Nitrous acid type nitrifying and denitrifying treatment device
JPH11333495A (en) * 1998-05-25 1999-12-07 Sekisui Chem Co Ltd Water treatment device
JP2001314890A (en) * 2000-05-10 2001-11-13 Kurita Water Ind Ltd Wastewater treatment method
JP2003019496A (en) * 2001-07-09 2003-01-21 Kubota Corp Water treatment equipment performing nitrogen removal
JP2004130249A (en) * 2002-10-11 2004-04-30 Mitsubishi Rayon Co Ltd Biological dephosphorization accelerating method in anaerobic-aerobic circulation activated sludge treatment method
JP2006035099A (en) * 2004-07-27 2006-02-09 Kobelco Eco-Solutions Co Ltd Activated sludge treatment equipment and its operation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6946073B2 (en) * 2003-09-02 2005-09-20 Ch2M Hill, Inc. Method for treating wastewater in a membrane bioreactor to produce a low phosphorus effluent
CN1648071A (en) * 2004-01-20 2005-08-03 中国科学院生态环境研究中心 Separated membrane biological reactor
CN100357197C (en) * 2006-01-12 2007-12-26 上海大学 Integral membrane biological reaction device for water treatment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136357A (en) * 1977-05-02 1978-11-28 Ebara Infilco Co Ltd Process for biochemical denitrification of organic wastewater
JPH0398697A (en) * 1989-09-11 1991-04-24 Kubota Corp Water treatment apparatus
JPH03262600A (en) * 1990-03-13 1991-11-22 Kubota Corp Treating equipment of discharged water containing nitrogen
JPH03275196A (en) * 1990-03-23 1991-12-05 Kurita Water Ind Ltd Nitrous acid type nitrifying and denitrifying treatment device
JPH11333495A (en) * 1998-05-25 1999-12-07 Sekisui Chem Co Ltd Water treatment device
JP2001314890A (en) * 2000-05-10 2001-11-13 Kurita Water Ind Ltd Wastewater treatment method
JP2003019496A (en) * 2001-07-09 2003-01-21 Kubota Corp Water treatment equipment performing nitrogen removal
JP2004130249A (en) * 2002-10-11 2004-04-30 Mitsubishi Rayon Co Ltd Biological dephosphorization accelerating method in anaerobic-aerobic circulation activated sludge treatment method
JP2006035099A (en) * 2004-07-27 2006-02-09 Kobelco Eco-Solutions Co Ltd Activated sludge treatment equipment and its operation method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253354A (en) * 2009-04-22 2010-11-11 Sumitomo Electric Ind Ltd Membrane separation type activated sludge treatment apparatus
JP2010253428A (en) * 2009-04-28 2010-11-11 Asahi Kasei Chemicals Corp Wastewater treatment apparatus and wastewater treatment method
JP2011000555A (en) * 2009-06-19 2011-01-06 Kubota Corp Wastewater treatment facility and method of rebuilding the same
CN101851046A (en) * 2010-06-21 2010-10-06 吴静璇 Device for deep treatment and complete recovery of coking wastewater and application method thereof
CN102336499A (en) * 2010-07-15 2012-02-01 株式会社日立工业设备技术 Water drainage processing system and water drainage processing method
KR101353401B1 (en) * 2011-07-15 2014-01-22 (주)필로스 Membrane bioreactors which are in response to the high processing load fluctuations effectively
KR101473622B1 (en) * 2014-09-30 2014-12-17 코오롱환경서비스주식회사 Treatment appratus of swage and waste water
JP2016140783A (en) * 2015-01-30 2016-08-08 株式会社クボタ Organic wastewater treatment method and apparatus
JP2017012994A (en) * 2015-06-30 2017-01-19 水ing株式会社 Activated sludge processing device and activated sludge processing method
CN107739087A (en) * 2017-10-31 2018-02-27 安徽舜禹水务股份有限公司 One kind vortex membrane bioreactor pollution control device
JP2020028823A (en) * 2018-08-21 2020-02-27 新日本技研株式会社 Water treatment device
CN110078297A (en) * 2019-04-02 2019-08-02 浦华环保有限公司 Ecological wastewater treatment system and method
WO2022270447A1 (en) * 2021-06-22 2022-12-29 前澤工業株式会社 Wastewater treatment device and wastewater treatment method
WO2023074681A1 (en) * 2021-10-26 2023-05-04 国立大学法人北海道大学 Wastewater treatment apparatus, and waste water treatment method

Also Published As

Publication number Publication date
JP5217159B2 (en) 2013-06-19
CN101205110B (en) 2012-06-20
CN101205110A (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP5217159B2 (en) Sewage treatment apparatus and method
JP5665307B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
US6790347B2 (en) Batch style wastewater treatment apparatus using biological filtering process and wastewater treatment method using the same
US6787035B2 (en) Bioreactor for treating wastewater
JP5260417B2 (en) Sewage treatment facilities and methods for renovating sewage treatment facilities
JP2010253428A (en) Wastewater treatment apparatus and wastewater treatment method
JP2009131854A (en) Sewage treatment apparatus
JP6181003B2 (en) Membrane separation activated sludge treatment apparatus and operation method thereof
KR100489728B1 (en) Wastewater treatment system by multiple sequencing batch reactor and its operation methods
JP2005028266A (en) Sewage treatment method and sewage treatment equipment
KR100760816B1 (en) Advanced wastewater treatment process using up &amp; down aerobic??anaerobic basin of channel type in a unit basin with recycle
JP4438529B2 (en) Biological treatment tank and biological treatment method
JP5743448B2 (en) Sewage treatment equipment
KR20080089799A (en) A wastewater transaction system
JP2005246308A (en) Method for bio-treating wastewater
JP6624926B2 (en) Organic wastewater treatment apparatus and organic wastewater treatment method
JP4709792B2 (en) Wastewater treatment system
JPH11290882A (en) Nitrogen removing apparatus
CN107381817A (en) A kind of micro- oxygen denitrification reactor of cavitation-preventive
JP2000140886A (en) Equipment for treatment of nitrogen-containing drainage
JP2000301184A (en) Nitrogen removing apparatus
JP4307275B2 (en) Wastewater treatment method
JP2005254207A (en) Water treatment apparatus
JP6243804B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JPH10165984A (en) Nitrogen removing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5217159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees