JP4438529B2 - Biological treatment tank and biological treatment method - Google Patents

Biological treatment tank and biological treatment method Download PDF

Info

Publication number
JP4438529B2
JP4438529B2 JP2004185350A JP2004185350A JP4438529B2 JP 4438529 B2 JP4438529 B2 JP 4438529B2 JP 2004185350 A JP2004185350 A JP 2004185350A JP 2004185350 A JP2004185350 A JP 2004185350A JP 4438529 B2 JP4438529 B2 JP 4438529B2
Authority
JP
Japan
Prior art keywords
biological treatment
tank
treatment tank
water
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004185350A
Other languages
Japanese (ja)
Other versions
JP2006007033A (en
Inventor
剛 織田
明 石山
弘幸 水口
昌造 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kobelco Eco Solutions Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2004185350A priority Critical patent/JP4438529B2/en
Publication of JP2006007033A publication Critical patent/JP2006007033A/en
Application granted granted Critical
Publication of JP4438529B2 publication Critical patent/JP4438529B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

この発明は、微生物固定化担体または浮遊状態の微生物を利用して被処理水を生物学的に処理する生物処理槽およびこの生物処理槽を用いた生物処理方法に関する。 The present invention relates to a biological treatment tank that biologically treats water to be treated using a microorganism-immobilized carrier or floating microorganisms, and a biological treatment method using the biological treatment tank .

排水の新しい生物処理法の一つとして、担体に微生物を固定し、窒素やりん等の富栄養化成分を除去する微生物包括固定法が開発されている。この方法では、一例を図7に示すように、一般に、排水等の被処理水が充満した処理槽31に、ペレット状の担体Aが投入され、この担体Aに排水を処理する微生物が固定され、処理槽31中への微生物が高濃度に維持されるようになっている(特許文献1参照)。   As one of the new biological treatment methods for wastewater, a microorganism entrapping method has been developed in which microorganisms are fixed on a carrier and eutrophication components such as nitrogen and phosphorus are removed. In this method, as shown in FIG. 7, a pellet-shaped carrier A is generally charged into a treatment tank 31 filled with water to be treated such as waste water, and microorganisms for treating the waste water are fixed to the carrier A. The microorganisms in the treatment tank 31 are maintained at a high concentration (see Patent Document 1).

図7に示した処理槽31では、その底部に空気供給源に連通した曝気装置32が配設され、また、その内部には、傾斜したスクリーン33を有する微生物を固定した担体の分離装置が設けられ、さらに、スクリーン33に対向してほぼ並行に、モータ34の駆動軸に連結されたプーリ35、35aに、無端状のベルト36を巻き掛けた移動壁装置が設けられ、担体Aの攪拌とスクリーン33の目詰まり抑制を行なっている。   In the treatment tank 31 shown in FIG. 7, an aeration device 32 communicating with an air supply source is disposed at the bottom, and a carrier separation device having a microorganism having an inclined screen 33 is disposed therein. Furthermore, a moving wall device in which an endless belt 36 is wound around pulleys 35, 35 a connected to the drive shaft of the motor 34 is provided substantially in parallel to the screen 33, and the carrier A is stirred. The clogging of the screen 33 is suppressed.

前記曝気装置32から細やかに散気された空気により被処理水が攪拌されると、担体に固定された微生物に酸素が供給され、かつ、被処理水と担体Aとが混合した状態で流動し、被処理水中の窒素などが生物学的に処理され、被処理水は移動壁装置の上端を越えてスクリーン33とベルト36の対向面36Aとの間を下降し、このスクリーンを通過して、流出口38から排水される。   When the water to be treated is stirred by air finely diffused from the aeration apparatus 32, oxygen is supplied to the microorganisms fixed to the carrier, and the water to be treated and the carrier A flow in a mixed state. Nitrogen in the treated water is biologically treated, and the treated water descends between the screen 33 and the opposed surface 36A of the belt 36 over the upper end of the moving wall device, passes through this screen, Drained from the outlet 38.

また、他の例では、図8に示すように、上部と下部に開口を設けた阻流板42を配置し、下部開口に、支柱43に支持されてプロペラ式攪拌機44をそれぞれ配備した汚水処理槽41が開示されている(特許文献2参照)。この汚水処理槽41では、プロペラ式攪拌機44を作動させることにより、阻流板42によって区分された区画ごとに、阻流板42を挟んで上下に、流入口45から流入した被処理水の循環流が形成されるため、担体Aが流出口46に偏らずに、処理槽41の全体に分散される。また、ブロワ47を運転し、曝気装置48から散気させることにより、阻流板42によって区分された区画ごとに旋回流が発生し、充分に生物学的に処理された被処理水が、スクリーンを備えた流出口46から流出する。   In another example, as shown in FIG. 8, a sewage treatment system in which a baffle plate 42 having openings at the upper and lower portions is disposed, and a propeller-type stirrer 44 supported by a column 43 is disposed at the lower opening, respectively. A tank 41 is disclosed (see Patent Document 2). In this sewage treatment tank 41, by operating a propeller-type stirrer 44, the water to be treated that has flowed in from the inflow port 45 is vertically moved across the baffle plate 42 for each section divided by the baffle plate 42. Since the flow is formed, the carrier A is not distributed to the outlet 46 and is dispersed throughout the processing tank 41. Further, when the blower 47 is operated and diffused from the aeration device 48, a swirl flow is generated for each section divided by the baffle plate 42, and the water to be treated that has been sufficiently biologically treated is transferred to the screen. It flows out from the outlet 46 provided with.

さらに、スクリーンに付着した担体を分離する装置として、水中攪拌曝気装置による吸引動力および循環ポンプにより誘起したスクリーン全面の下降流によるせん断力で、前記担体を除去する装置も開発されている(非特許文献1参照)。   Furthermore, as an apparatus for separating the carrier attached to the screen, an apparatus for removing the carrier with a suction force by an underwater agitating and aeration device and a shearing force caused by a downward flow of the entire screen surface induced by a circulation pump has been developed (non-patent). Reference 1).

一方、図9に示した廃水処理装置では、被処理液(有機成分を含む廃水)を生物学的に処理する処理槽51が、廃水より比重が小さい生物担体Aと廃水を共存させて生物学的脱窒または硝化処理を行なわせる領域として設けられ、この処理槽51の終端部に、処理液から生物担体Aを分離し、浮上・集合させる担体分離部52を備えている。処理水は導出口53から排出されて沈殿池に、生物担体Aは浮上して担体分離部52の上部に集合し、エアリフトポンプなどの担体駆動装置54によって処理槽51に返送される(特許文献3参照)。   On the other hand, in the wastewater treatment apparatus shown in FIG. 9, the treatment tank 51 for biologically treating the liquid to be treated (wastewater containing organic components) is biologically mixed with the biological carrier A and wastewater having a specific gravity smaller than that of the wastewater. A carrier separation unit 52 is provided at a terminal portion of the treatment tank 51 to separate the biological carrier A from the treatment liquid, and float and collect it. The treated water is discharged from the outlet 53 and settled in the sedimentation basin, and the biological carrier A floats and gathers at the upper part of the carrier separating unit 52 and is returned to the treatment tank 51 by a carrier driving device 54 such as an air lift pump (Patent Document). 3).

また、図10に示す生物処理装置は、処理槽が脱窒槽62および硝化槽63からなり、分離装置として沈殿槽64を備えている。前記処理槽には、担体に固定された微生物と固定されていない浮遊微生物が共存しており、前記処理槽はブロワ65および散気部材66、67を用いてガス攪拌され、脱窒素および硝化反応処理により、処理槽に流入する廃水61が浄化されて処理水68となる。前記微生物は泥状物となって沈殿槽64に沈殿する。そして、この微生物の泥状物69は、例えば、エアリフトポンプなどの返送ポンプ70により、前記処理槽に返送される(特許文献4参照)。   Further, in the biological treatment apparatus shown in FIG. 10, the treatment tank includes a denitrification tank 62 and a nitrification tank 63, and includes a sedimentation tank 64 as a separation apparatus. In the treatment tank, microorganisms fixed on the carrier and non-fixed floating microorganisms coexist, and the treatment tank is gas-stirred using the blower 65 and the diffuser members 66 and 67 to remove nitrogen and nitrification reaction. By the treatment, the waste water 61 flowing into the treatment tank is purified to become treated water 68. The microorganisms become mud and settle in the sedimentation tank 64. The microorganism mud 69 is returned to the treatment tank by a return pump 70 such as an air lift pump (see Patent Document 4).

特開2002−86177号公報([0006]〜[0026])JP 2002-86177 A ([0006] to [0026]) 特開平7−136679号公報([0005]〜[0015])JP-A-7-136679 ([0005] to [0015]) 特開平9−253689号公報([0018]〜[0021])JP-A-9-253589 ([0018] to [0021]) 特開平7−163995号公報([0009]〜[0014])Japanese Unexamined Patent Publication No. 7-163395 ([0009] to [0014]) 第36回下水道研究発表会講演集(1999)、P.577〜P.579Proceedings of the 36th Sewerage Research Conference (1999), P.577 to P.579

しかし、特開2002−86177号公報および特開平7−136679号公報に記載された装置(処理槽)では、担体の沈降を防止するために必要な攪拌や担体に固定された微生物に酸素を供給する曝気に必要な動力以上に余分な動力を必要とし、前記処理槽への担体の戻りや分散を良好にするために移動壁装置やプロペラ式攪拌装置などの装置を新たに設置する必要がある。また、特開平9−253689号公報および特開平7−163995号公報に記載された装置でも、微生物を固定した担体や浮遊微生物を処理槽に返送するためにエアリフトポンプなどの駆動装置が設置され、やはり、余分な動力が必要である。このため、これらの装置類を新たに設置することでイニシャルコストが増大し、その運転・管理を行なうことでランニングコストが増大するなど、設備コストおよびエネルギ消費の観点から問題がある。なお、非特許文献1に記載された担体分離のために水中曝気装置を用いる場合でも、曝気に必要な動力以外に、循環ポンプによる攪拌動力が必要である。   However, in the apparatus (treatment tank) described in Japanese Patent Application Laid-Open No. 2002-86177 and Japanese Patent Application Laid-Open No. 7-136679, oxygen is supplied to the microorganisms agitated and fixed to the carrier necessary to prevent the carrier from settling. It is necessary to install a new device such as a moving wall device or a propeller type stirring device in order to require extra power more than the power required for aeration and to improve the return and dispersion of the carrier to the treatment tank. . In addition, in the apparatuses described in Japanese Patent Laid-Open Nos. 9-253589 and 7-163959, a driving device such as an air lift pump is installed to return the carrier to which the microorganisms are fixed and the floating microorganisms to the treatment tank, After all, extra power is required. For this reason, there is a problem from the viewpoint of equipment cost and energy consumption, such as the initial cost is increased by newly installing these devices, and the running cost is increased by operating and managing the devices. In addition, even when using an underwater aeration apparatus for the support | carrier separation described in the nonpatent literature 1, in addition to the power required for aeration, the stirring power by a circulation pump is required.

また、停電が発生した場合、非常電源が起動するまでに数秒から数十秒の時間を必要とするため、前記担体の分離にスクリ−ンを用いる場合には、この停電の間にスクリーンから担体を除去する被処理水の流れがなくなると、瞬時にスクリーンの目詰まりが発生して処理槽から汚水と担体とが溢れ出すおそれがある。また、処理層への担体や浮遊微生物の返送にエアリフトポンプなどの駆動装置も瞬時に停止し、いずれの場合も、生物処理に支障を来たすようになる。   In addition, when a power failure occurs, it takes several seconds to several tens of seconds until the emergency power supply is activated. Therefore, when a screen is used for separating the carrier, the carrier is removed from the screen during the power failure. If there is no flow of water to be treated to remove the clogging, the screen may be clogged instantly, and the sewage and the carrier may overflow from the treatment tank. In addition, a drive device such as an air lift pump is instantaneously stopped for returning the carrier and suspended microorganisms to the treatment layer, and in any case, the biological treatment is hindered.

そこで、この発明の課題は、外部から担体沈降防止および曝気以外には動力供給を必要とせずに生物処理槽内に循環流を形成し、微生物固定担体または浮遊状態の微生物の戻りが良好な生物処理槽および生物処理方法を提供することである。 Therefore, an object of the present invention is to form a circulation flow in the biological treatment tank without requiring power supply other than the carrier sedimentation prevention and aeration from the outside, and to return the microorganism-fixed carrier or the microorganisms in the floating state with good return. It is to provide a treatment tank and a biological treatment method.

前記の課題を解決するために、この発明では以下の構成を採用したのである。   In order to solve the above problems, the present invention employs the following configuration.

即ち、請求項1に係る生物処理槽は、被処理水が微生物を固定した担体を浮遊状態で含み、槽内の被処理水流出側に担体分離用のスクリーンと担体を含んだ被処理水の取り入れ口とが設けられており、槽内に前記取り入れ口から槽内の被処理水流入側へ連通する循環ダクトを備え、被処理水を生物学的に処理する生物処理槽であって、前記循環ダクトにおける槽内の被処理水流入側位置に、当該生物処理槽とその上流側槽との水位差による上流側槽被処理水の持つ位置エネルギを運動エネルギに変換するためのエジェクタ管を設けて、前記循環ダクト内に槽内の被処理水流出側から槽内の被処理水流入側に担体を含んだ被処理水の流れを形成するとともに、該被処理水の流れと上流側から槽内に流入する被処理水とを混合するエジェクタ型混合域が槽内の被処理水流入側に形成されるようにしたことを特徴とする。 That is, the biological treatment tank according to claim 1 includes a carrier in which microorganisms are fixed in the treated water in a floating state, and the treated water containing the carrier separation screen and the carrier on the treated water outflow side in the tank. inlet and is provided with, comprising a circulation duct which communicates from the inlet in the tank to the treatment water inflow side of the tank, a biological treatment tank for treating water biologically, the An ejector pipe for converting the potential energy of the upstream tank treated water due to the difference in water level between the biological treatment tank and the upstream tank to a kinetic energy at the position of the circulating duct in the treated water inflow side. In the circulation duct, a flow of treated water containing a carrier is formed from the treated water outflow side in the tank to the treated water inflow side in the tank, and the flow of treated water and the tank from the upstream side are formed. ejector-type mixing for mixing the treated water flowing into the inner Band is characterized in that so as to be formed into treated water inflow side of the tank.

前記生物処理槽は、通常、複数直列に配置されて汚水等の被処理水が生物処理され、上流側の処理槽の方の水位が高いため、例えば、図1に示すように、通常、隣接する処理槽間には水位差Δhが存在する。この水位差Δhにより、生物処理槽1の流入側壁面2に設けた下部開口3から、隣接する上流側の処理槽1jの被処理水が流入する。その際に、上流側処理槽1jの持つ位置エネルギが、下部開口3を被処理水が通過する際に、運動エネルギに変換され、被処理水の運動量が処理槽1内の周囲の流体を引き込む、吸引流れが形成される。 The biological treatment tanks are usually arranged in series, and treated water such as sewage is biologically treated, and the upstream treatment tank has a higher water level. For example, as shown in FIG. There is a water level difference Δh between treatment tanks. Due to this water level difference Δh, the water to be treated of the adjacent upstream treatment tank 1 j flows from the lower opening 3 provided on the inflow side wall surface 2 of the biological treatment tank 1. At that time, the potential energy of the upstream treatment tank 1 j is converted into kinetic energy when the treated water passes through the lower opening 3, and the momentum of the treated water draws the surrounding fluid in the treatment tank 1. A suction flow is formed.

このように、生物処理槽1に着目すれば、流入した被処理水の吸引流れが、流入側壁面2と流入側に下部開口3に対向して設けた仕切り板Tとで形成される流路で上方向に生じることにより、流入側にエジェクタ型混合域Mが形成される。そして、この被処理水は、循環ダクト4の外壁面4a、4b、4cで形成された反応域5で水中攪拌機6により攪拌されながら、担体Aと混合接触して生物処理され、流出側の上部に設けたスクリーン7の前面側では、担体Aが混合した被処理水の下降流が形成される。この下降流により、電力などの外部エネルギを供給しなくても生物処理された被処理水がスクリーン7を通過して下流側の処理槽1kの方へ流出するとともに、担体Aを含んだ被処理水の一部が、スクリーン7の前面側に対向するダクト壁面を設けなくても、流出側壁面2aの前方に設けた担体Aの取り入れ口8から取り込まれ、循環ダクト4の戻り流となって担体Aを生物処理槽1の流入側まで流動させることができる。このように、流入側に形成されたエジェクタ型混合域Mで被処理水と返送された担体Aとが混合され、生物処理槽1内に循環流が形成される。そして、循環ダクト4内を生物処理槽1の流入側まで流動してきた担体Aを含む戻り流は、流入側での吸引流れの作用、即ちエジェクタ効果により形成されるエジェクタ型混合域Mで、被処理水と混合されて反応域5に送られ、このエジェクタ型混合域Mでの被処理水と担体Aとの混合効果により、反応域5での被処理水の生物処理が効果的に行なわれる。また、循環ダクト4における槽内の被処理水流入側位置にエジェクタ管を設けることにより、前記エジェクタ管から生物処理槽内に流出する被処理水の流速が、流入側壁面に生物処理槽の幅に亘って流入口を設けた場合よりも大きくなり、前述の吸引流れにより、エジェクタ型混合域での被処理水と、生物処理槽内の被処理水流出側から循環ダクトを介して戻された担体との混合がより効果的に行なわれる。 In this way, when paying attention to the biological treatment tank 1, the flow path formed by the inflow side water suction flow is formed by the inflow side wall surface 2 and the partition plate T provided on the inflow side facing the lower opening 3. As a result, the ejector type mixing zone M is formed on the inflow side. And this to-be-processed water is biologically processed by mixing contact with the carrier A while being stirred by the underwater stirrer 6 in the reaction zone 5 formed by the outer wall surfaces 4a, 4b and 4c of the circulation duct 4, and the upper part on the outflow side. On the front side of the screen 7 provided on the bottom, a downward flow of the water to be treated mixed with the carrier A is formed. Due to this downward flow, the water to be treated which has been biologically treated without supplying external energy such as electric power passes through the screen 7 and flows out toward the treatment tank 1k on the downstream side, and also includes the carrier A. A part of the water is taken in from the intake 8 of the carrier A provided in front of the outflow side wall surface 2 a without providing a duct wall surface facing the front side of the screen 7, and becomes a return flow of the circulation duct 4. The carrier A can be flowed to the inflow side in the biological treatment tank 1. In this way, the treated water and the returned carrier A are mixed in the ejector-type mixing zone M formed on the inflow side, and a circulation flow is formed in the biological treatment tank 1. Then, the return flow including the carrier A that has flowed through the circulation duct 4 to the inflow side in the biological treatment tank 1 is an ejector-type mixing zone M formed by the action of the suction flow on the inflow side, that is, the ejector effect. It is mixed with the water to be treated and sent to the reaction zone 5, and the biological treatment of the water to be treated in the reaction zone 5 is effectively performed by the mixing effect of the water to be treated and the carrier A in the ejector type mixing zone M. It is. Further, by providing an ejector pipe at the position of the circulation duct 4 at the treated water inflow side in the tank, the flow speed of the treated water flowing out from the ejector pipe into the biological treatment tank is reduced to the width of the biological treatment tank on the inflow side wall surface. It is larger than the case where the inlet is provided over the area, and the above-described suction flow returns the treated water in the ejector type mixing zone and the treated water outflow side in the biological treatment tank through the circulation duct. Mixing with the carrier is effected more effectively.

なお、前記水位差Δhは、下部開口3の断面積、即ちエジェクタ部の面積と被処理水の処理流量から決まり、生物処理槽内での循環流の形成に必要な吸引流れが発生するように、処理水の流量に対応して、エジェクタ部断面積が設計される。また、上流側の処理槽1jから横方向に被処理水を導入して、吸引流れを生じさせることもできる。 The water level difference Δh is determined from the cross-sectional area of the lower opening 3, that is, the area of the ejector portion and the treatment flow rate of the water to be treated, so that a suction flow necessary for forming a circulation flow in the biological treatment tank is generated. The ejector section sectional area is designed in accordance with the flow rate of the treated water. Further, the water to be treated can be introduced in the lateral direction from the upstream treatment tank 1j to generate a suction flow.

請求項2に係る生物処理槽は、被処理水が微生物を固定した担体を浮遊状態で含み、複数の分割生物処理槽が被処理水の通過部を設けた隔壁を介して直列に連結されるとともに、最下流分割生物処理槽内の被処理水流出側に担体分離用のスクリーンと担体を含んだ被処理水の取り入れ口とが設けられており、槽内に前記取り入れ口から最上流分割生物処理槽内の被処理水流入側へ連通する循環ダクトを備え、被処理水を生物学的に処理する生物処理槽であって、前記循環ダクトにおける前記最上流分割生物処理槽内の被処理水流入側位置に、当該最上流分割生物処理槽とその上流側槽との水位差による上流側槽被処理水の持つ位置エネルギを運動エネルギに変換するためのエジェクタ管を設けて、前記循環ダクト内に前記最下流分割生物処理槽内の被処理水流出側から前記最上流分割生物処理槽内の被処理水流入側に担体を含んだ被処理水の流れを形成するとともに、該被処理水の流れと上流側から前記最上流分割生物処理槽内に流入する被処理水とを混合するエジェクタ型混合域が前記最上流分割生物処理槽内の被処理水流入側に形成されるようにしたことを特徴とする。 The biological treatment tank according to claim 2 includes a carrier in which the treated water fixes microorganisms in a floating state, and the plurality of divided biological treatment tanks are connected in series via a partition wall provided with a passage for treated water. In addition, a screen for separating the carrier and an inlet for treated water containing the carrier are provided on the treated water outflow side in the most downstream divided biological treatment tank. A biological treatment tank comprising a circulation duct communicating with the treated water inflow side in the treatment tank and biologically treating the treated water , wherein the treated water in the uppermost divided biological treatment tank in the circulation duct An ejector pipe is provided at the inflow side position to convert the potential energy of the upstream tank treated water due to the difference in water level between the upstreammost divided biological treatment tank and the upstream tank into kinetic energy . The most downstream divided biological treatment A flow of treated water containing a carrier is formed from the treated water outflow side to the treated water inflow side in the uppermost stream divided biological treatment tank. An ejector type mixing zone for mixing the water to be treated flowing into the divided biological treatment tank is formed on the treated water inflow side in the uppermost stream divided biological treatment tank .

このような装置構成では、最上流分割生物処理槽内の流入側での、位置エネルギを運動エネルギに変換する手段により吸引流れを生じさせるために必要な水位差Δhは、この最上流分割生物処理槽該最上流分割生物処理槽に隣接する上流側処理槽との間で確保できればよいため、生物処理槽全体の水位差を低く抑えることができる。また、前記スクリーンは、最下流分割生物処理槽にのみ設ければよく、前記エジェクタ混合域も、最上流分割生物処理槽内の被処理水流入側のみに設ければよいため、複数の分割生物処理槽を連結した場合の装置構成が簡便となり、経済的である。さらに、前記循環ダクトにより、最下流分割生物処理槽から最上流分割生物処理槽に担体が返送されるので、最下流分割生物処理槽への担体の偏在が防止される。 In such an apparatus configuration, the difference in water level Δh necessary for generating a suction flow by means for converting potential energy into kinetic energy on the inflow side in the most upstream divided biological treatment tank is the highest flow divided biological treatment. Since it is sufficient to ensure between the tank and the upstream processing tank adjacent to the most upstream divided biological treatment tank , the water level difference of the entire biological treatment tank can be suppressed low. Also, the screen may be provided only on the most downstream splitting biological treatment tank, the ejector mixing zone also, since it is sufficient to provide only the water to be treated inflow side of the most upstream splitting biological treatment tank, a plurality of split organism The apparatus configuration when the processing tanks are connected is simple and economical. Furthermore, since the carrier is returned from the most downstream divided biological treatment tank to the most upstream divided biological treatment tank by the circulation duct, uneven distribution of the carrier in the most downstream divided biological treatment tank is prevented.

請求項3に係る生物処理槽は、被処理水が微生物を担体に固定することなく浮遊状態で含み、槽内の被処理水流出側に被処理水の取り入れ口が設けられており、槽内に前記取り入れ口から槽内の被処理水流入側へ連通する循環ダクトを備え、被処理水を生物学的に処理する生物処理槽であって、前記循環ダクトにおける槽内の被処理水流入側位置に、当該生物処理槽とその上流側槽との水位差による上流側槽被処理水の持つ位置エネルギを運動エネルギに変換するためのエジェクタ管を設けて、前記循環ダクト内に槽内の被処理水流出側から槽内の被処理水流入側に微生物を含んだ被処理水の流れを形成するとともに、該被処理水の流れと上流側から槽内に流入する被処理水とを混合するエジェクタ型混合域が槽内の被処理水流入側に形成されるようにしたことを特徴とする。 The biological treatment tank according to claim 3 includes the treated water in a floating state without fixing the microorganisms to the carrier, the treated water outflow side in the tank is provided with an inlet for the treated water, A biological treatment tank for biologically treating the treated water from the intake port to the treated water inflow side in the tank , wherein the treated water inflow side in the tank in the circulation duct At the position, an ejector pipe for converting the potential energy of the upstream tank treated water due to the water level difference between the biological treatment tank and the upstream tank to kinetic energy is provided , and the covered duct in the tank is disposed in the circulation duct. A flow of treated water containing microorganisms is formed from the treated water outflow side to the treated water inflow side in the tank, and the treated water flow and the treated water flowing into the tank from the upstream side are mixed. is formed on the treated water inflow side of the ejector-type mixing zone is in the tank Characterized in that the so that.

このようにすれば、微生物を担体に固定せずに、浮遊状態で含む生物処理槽についても、前述のように(図1参照)、槽内流入側にエジェクタ型混合域Mが形成され、前記反応域5で被処理水は水中攪拌機6により攪拌されながら、浮遊微生物と混合接触して生物処理され、スクリーン7を設置せずに流出口のみを設けた槽内流出側では浮遊微生物を含んだ下降流が形成される。この下降流により、電力などの外部エネルギを供給しなくても、生物処理された被処理水が前記流出口を通過して下流側の処理槽1kの方へ流出するとともに、浮遊微生物を含んだ被処理水の一部が、流出側に設けた取り入れ口8から取り込まれ、循環ダクト4の戻り流となって浮遊微生物を生物処理槽1の流入側まで流動させることができる。そして、循環ダクト4内を生物処理槽1内の流入側まで流動してきた浮遊微生物を含む戻り流は、流入側でのエジェクタ型混合域Mで、被処理水と混合されて反応域5に送られ、反応域5での被処理水の生物処理が効果的に行なわれる。また、前記エジェクタ管から生物処理槽内に流出する被処理水の流速が、流入側壁面に生物処理槽の幅に亘って流入口を設けた場合よりも大きくなり、前述の吸引流れにより、エジェクタ型混合域での被処理水と、生物処理槽内の被処理水流出側から循環ダクトを介して戻された浮遊微生物との混合がより効果的に行なわれる。 Thus, the microorganisms without fixing on a carrier, for the biological treatment tank containing in suspension, as described above (see FIG. 1), the ejector-type mixing zone M is formed in the tank inflow side, the In the reaction zone 5, the water to be treated is mixed and contacted with floating microorganisms while being stirred by the underwater stirrer 6, and the floating microorganisms are included on the outflow side in the tank where only the outflow port is provided without installing the screen 7. A downward flow is formed. By this downward flow, the biologically treated water passes through the outlet and flows toward the downstream treatment tank 1k without supplying external energy such as electric power, and contains floating microorganisms. A part of the water to be treated is taken in from the intake 8 provided on the outflow side, and becomes a return flow of the circulation duct 4 to allow the floating microorganisms to flow to the inflow side in the biological treatment tank 1. Then, the return flow containing the floating microorganisms flowing in the circulation duct 4 to the inflow side in the biological treatment tank 1 is mixed with the water to be treated in the ejector type mixing area M on the inflow side and sent to the reaction area 5. Thus, biological treatment of the water to be treated in the reaction zone 5 is effectively performed. In addition, the flow rate of the water to be treated flowing out from the ejector pipe into the biological treatment tank is larger than the case where an inlet is provided across the width of the biological treatment tank on the inflow side wall surface. The water to be treated in the mold mixing zone and the floating microorganisms returned from the treated water outflow side in the biological treatment tank through the circulation duct are more effectively mixed.

請求項4に係る生物処理槽は、被処理水が微生物を担体に固定することなく浮遊状態で含み、複数の分割生物処理槽が被処理水の通過部を設けた隔壁を介して直列に連結されるとともに、最下流分割生物処理槽内の被処理水流出側に被処理水の取り入れ口が設けられており、槽内に前記取り入れ口から最上流分割生物処理槽内の被処理水流入側へ連通する循環ダクトを備え、被処理水を生物学的に処理する生物処理槽であって、前記循環ダクトにおける前記最上流分割生物処理槽内の被処理水流入側位置に、当該最上流分割生物処理槽とその上流側槽との水位差による上流側槽被処理水の持つ位置エネルギを運動エネルギに変換するためのエジェクタ管を設けて、前記循環ダクト内に前記最下流分割生物処理槽内の被処理水流出側から前記最上流分割生物処理槽内の被処理水流入側に微生物を含んだ被処理水の流れを形成するとともに、該被処理水の流れと上流側から前記最上流分割生物処理槽内に流入する被処理水とを混合するエジェクタ型混合域が前記最上流分割生物処理槽内の被処理水流入側に形成されるようにしたことを特徴とする。 In the biological treatment tank according to claim 4, the water to be treated includes floating microorganisms without fixing the microorganisms to the carrier, and the plurality of divided biological treatment tanks are connected in series via a partition wall provided with a passage for the water to be treated. In addition, a treated water inlet is provided on the treated water outflow side in the most downstream divided biological treatment tank, and the treated water inflow side in the most upstream divided biological treatment tank is provided in the tank from the intake. A biological treatment tank having a circulation duct communicating with the biological treatment of the treated water, the uppermost flow division at the position of the treated water inflow side in the uppermost flow divided biological treatment tank in the circulation duct An ejector pipe is provided for converting the potential energy of the upstream tank treated water due to the water level difference between the biological treatment tank and the upstream tank to kinetic energy, and the inside of the most downstream divided biological treatment tank is in the circulation duct. From the outflow side of the treated water A flow of treated water containing microorganisms is formed on the treated water inflow side in the flow divided biological treatment tank, and the treated water flows into the uppermost flow divided biological treatment tank from the flow and upstream side of the treated water. An ejector type mixing zone for mixing water is formed on the treated water inflow side in the most upstream divided biological treatment tank .

このようにすれば、担体を用いる前述の場合と同様に、複数の分割生物処理槽を連結した場合の装置構成が簡便となり、経済的である。さらに、前記循環ダクトにより、最下流分割生物処理槽から最上流分割生物処理槽に浮遊微生物が返送されるので、最下流分割生物処理槽への浮遊微生物の偏在が防止される。 In this way, as in the above-described case using a carrier, the apparatus configuration when a plurality of divided biological treatment tanks are connected becomes simple and economical. Furthermore, since the floating microorganisms are returned from the most downstream divided biological treatment tank to the most upstream divided biological treatment tank by the circulation duct, uneven distribution of the floating microorganisms in the most downstream divided biological treatment tank is prevented.

請求項5に係る生物処理槽は、請求項4記載の生物処理槽において、少なくとも前記最下流分割生物処理槽が硝化槽であり、この硝化槽の上流側に脱窒槽からなる分割生物処理槽を設けたことを特徴とする。 Biological treatment tank according to claim 5, in the biological treatment tank according to claim 4, wherein at least the most downstream splitting biological treatment tank is a nitrification tank, a division biological treatment tank made of denitrification reactor upstream of the nitrification tank It is provided.

生物処理により脱窒素を行なう生物学的脱窒素法では、後述するように、通常、反応順序とは逆に、下流側に硝化槽、上流側に脱窒槽を設ける硝化液循環型の槽配置が用いられる。この硝化・脱窒プロセスでは、硝化槽から大量に被処理水を脱窒槽に返送する必要があるが、前述の位置エネルギを運動エネルギに変換する手段により、生物処理槽内に循環流が形成され、電力などの外部エネルギを供給しなくても前記槽配置が可能となる。   In the biological denitrification method in which denitrification is performed by biological treatment, a nitrification solution circulation type tank arrangement in which a nitrification tank is provided on the downstream side and a denitrification tank is provided on the upstream side, as opposed to the reaction sequence, is generally described later. Used. In this nitrification / denitrification process, it is necessary to return a large amount of water to be treated from the nitrification tank to the denitrification tank, but a circulating flow is formed in the biological treatment tank by the means for converting the above-mentioned potential energy into kinetic energy. The tank arrangement is possible without supplying external energy such as electric power.

請求項6に係る生物処理槽は、槽内の被処理水が微生物を担体に固定することなく浮遊状態で含み、槽外下流側に微生物と生物学的に処理された処理水とを分離する分離手段を備えており、槽内に前記分離手段に設けられた微生物の取り入れ口から槽内の被処理水流入側へ連通する循環ダクトを備え、被処理水を生物学的に処理する生物処理槽であって、前記循環ダクトにおける槽内の被処理水流入側位置に、当該生物処理槽とその上流側槽との水位差による上流側槽被処理水の持つ位置エネルギを運動エネルギに変換するためのエジェクタ管を設けて、前記循環ダクト内に前記分離手段から分離された微生物の流れを形成するとともに、該微生物の流れと上流側から槽内に流入する被処理水とを混合するエジェクタ型混合域が槽内の被処理水流入側に形成されるようにしたことを特徴とする。 The biological treatment tank which concerns on Claim 6 contains the to-be-processed water in a tank in the floating state, without fixing a microorganism to a support | carrier, and isolate | separates the microorganisms and the biologically treated treated water on the downstream side outside a tank. A biological treatment comprising a separation means, and a circulation duct that communicates from a microbial intake provided in the separation means to a treated water inflow side in the tank, and biologically treats the treated water. The position energy of the upstream tank treated water due to the difference in water level between the biological treatment tank and the upstream tank is converted into kinetic energy at the treated water inflow side position in the tank in the circulation duct. An ejector type for providing an ejector pipe for forming a flow of microorganisms separated from the separation means in the circulation duct and mixing the flow of microorganisms and water to be treated flowing into the tank from the upstream side treated in the mixing zone is in the tank Characterized in that so as to be formed on the inflow side.

このようにすれば、微生物(汚泥)と処理水とが固液分離され、外部からエネルギを供給しなくても、汚泥を生物処理槽に返送でき、再利用が可能となる。また、また、前記エジェクタ管から生物処理槽内に流出する被処理水の流速が、流入側壁面に生物処理槽の幅に亘って流入口を設けた場合よりも大きくなり、前述の吸引流れにより、エジェクタ型混合域での被処理水と、槽内の被処理水流出側から循環ダクトを介して戻された微生物(汚泥)との混合がより効果的に行なわれる。 In this way, microorganisms (sludge) and treated water are separated into solid and liquid, and sludge can be returned to the biological treatment tank and reused without supplying energy from the outside. In addition, the flow rate of the water to be treated flowing out from the ejector pipe into the biological treatment tank is larger than the case where an inlet is provided on the inflow side wall surface across the width of the biological treatment tank, The water to be treated in the ejector type mixing zone and the microorganisms (sludge) returned from the treated water outflow side in the tank through the circulation duct are more effectively mixed.

請求項7に係る生物処理槽は、請求項1から6のいずれかに記載の生物処理槽において、前記エジェクタ型混合域に曝気装置を組み入れたことを特徴とする。 A biological treatment tank according to a seventh aspect is the biological treatment tank according to any one of the first to sixth aspects, wherein an aeration apparatus is incorporated in the ejector-type mixing zone .

このようにすれば、曝気装置により、エジェクタ型混合域に供給される空気が、本来の曝気作用に加えて、エアリフト効果を発揮するため、所要の水位差Δhを確保できない場合などでも、前記吸引流れを生じさせるに必要な吸引力を補うことができ、また、担体や浮遊微生物の均一混合が促進される。   In this way, the air supplied to the ejector-type mixing zone by the aeration device exerts an air lift effect in addition to the original aeration action, so that even if the required water level difference Δh cannot be secured, the suction is performed. The suction force required to generate the flow can be supplemented, and the uniform mixing of the carrier and the suspended microorganisms is promoted.

請求項8に係る生物処理槽は、請求項1から7のいずれかに記載の生物処理槽において、前記エジェクタ管が流量調整手段を備えていることを特徴とする。 A biological treatment tank according to an eighth aspect is the biological treatment tank according to any one of the first to seventh aspects, wherein the ejector pipe includes a flow rate adjusting means.

前記循環ダクト内の流速は、ダクト内の圧力損失を防止する観点からは30mm/s以下に、担体がダクト内に沈降し、滞留することを防止する観点からは10cm/s以上にする必要があることから、通常、10〜30cm/sと低速であり、排水中の繊維質などの異物や微生物が分泌する膜などによって循環ダクト内が閉塞する危険性がある。前記流量調整手段により、一方のエジェクタ管を閉じると、閉じた方の循環ダクトも流動が停止するため、生物処理槽の流入側での水位差(Δh)が増加する。この水位差(Δh)の増加により、他方のエジェクタ管から流出する被処理水が増加し、それに伴って循環ダクト内の流速も増加するため、ダクト内面に付着している前記異物や分泌膜の除去が可能となる。 The flow velocity in the circulation duct must be 30 mm / s or less from the viewpoint of preventing pressure loss in the duct, and 10 cm / s or more from the viewpoint of preventing the carrier from sinking and staying in the duct. For this reason, it is usually at a low speed of 10 to 30 cm / s, and there is a risk that the inside of the circulation duct is blocked by foreign matters such as fibers in the drainage or a membrane secreted by microorganisms. When one of the ejector pipes is closed by the flow rate adjusting means, the flow of the closed circulation duct stops, so that the water level difference (Δh) on the inflow side of the biological treatment tank increases. Due to the increase in the water level difference (Δh), the amount of water to be treated flowing out from the other ejector pipe increases, and the flow velocity in the circulation duct increases accordingly. Removal is possible.

請求項9に係る生物処理槽は、請求項1から8のいずれかに記載の生物処理槽において、前記循環ダクトに、一端側がこの循環ダクトに連通し、他端側が槽内水面から突出するように空気抜き管を設けたことを特徴とする。 The biological treatment tank according to claim 9 is the biological treatment tank according to any one of claims 1 to 8, wherein one end side of the biological treatment tank communicates with the circulation duct, and the other end side protrudes from the water surface in the tank. It is characterized by providing an air vent pipe.

このようにすれば、循環ダクト内での空気溜まりの発生を防止できるため、戻り流が円滑に流動し、担体あるいは微生物の返送が阻害されずに済む。 In this way, it is possible to prevent the accumulation of air in the circulation duct, so that the return flow smoothly flows and the return of the carrier or microorganisms is not hindered.

請求項10に係る生物処理方法は、請求項1又は2に記載の生物処理槽を用いた生物処理方法であって、前記エジェクタ管を通過する際の被処理水の運動量により、生物処理槽内の被処理水流出側の周囲の流体を生物処理槽内の被処理水流入側へ向けて前記循環ダクトに引き込むエジェクタ効果による吸引流れを発生させ、このエジェクタ効果による吸引流れにより、生物処理槽内の被処理水流入側と被処理水流出側との間に循環流を形成して前記スクリーンへの担体の付着を防止し、かつ、前記担体を、前記循環ダクトを介して生物処理槽内の被処理水流入側へ戻し、上流側から生物処理槽内に流入する被処理水と混合するようにしたことを特徴とする。 A biological treatment method according to claim 10 is a biological treatment method using the biological treatment tank according to claim 1 or 2, wherein the biological treatment tank includes an amount of water to be treated when passing through the ejector pipe . A suction flow is generated by an ejector effect that draws fluid around the outflow side of the treated water toward the inflow side of the treated water in the biological treatment tank into the circulation duct, and the suction flow by the ejector effect causes a suction flow in the biological treatment tank. Forming a circulation flow between the treated water inflow side and the treated water outflow side to prevent the carrier from adhering to the screen, and the carrier in the biological treatment tank through the circulation duct . It returns to the to- be-processed water inflow side , It was made to mix with the to- be-processed water which flows in into a biological treatment tank from the upstream .

請求項11に係る生物処理方法は、請求項3〜5のいずれか1項に記載の生物処理槽を用いた生物処理方法であって、前記エジェクタ管を通過する際の被処理水の運動量により、生物処理槽内の被処理水流出側の周囲の流体を生物処理槽内の被処理水流入側へ向けて前記循環ダクトに引き込むエジェクタ効果による吸引流れを発生させ、このエジェクタ効果による吸引流れにより、前記微生物を、前記循環ダクトを介して生物処理槽内の被処理水流入側へ戻し、上流側から生物処理槽内に流入する被処理水と混合するようにしたことを特徴とする。 The biological treatment method according to claim 11 is a biological treatment method using the biological treatment tank according to any one of claims 3 to 5, and is based on the momentum of the water to be treated when passing through the ejector pipe. A suction flow is generated by the ejector effect that draws the fluid around the treated water outflow side in the biological treatment tank toward the treated water inflow side in the biological treatment tank into the circulation duct, and the suction flow by the ejector effect , said microorganism, back through said circulation duct to the treatment water inflow side of the biological treatment tank, to the upstream side, characterized in that so as to mix with the treated water flowing into the biological treatment tank.

請求項12係る生物処理方法は、請求項6に記載の生物処理槽を用いた生物処理方法であって、前記エジェクタ管を通過する際の被処理水の運動量により、前記分離手段からの微生物を生物処理槽内の被処理水流入側へ向けて前記循環ダクトに引き込むエジェクタ効果による吸引流れを発生させ、このエジェクタ効果による吸引流れにより、前記微生物を、前記循環ダクトを介して生物処理槽内の被処理水流入側へ戻し、上流側から生物処理槽内に流入する被処理水と混合するようにしたことを特徴とする。 A biological treatment method according to a twelfth aspect is the biological treatment method using the biological treatment tank according to the sixth aspect , wherein microorganisms from the separation means are obtained by the momentum of the water to be treated when passing through the ejector pipe. the toward treatment water inflow side of the biological treatment tank to generate a suction flow by ejector effect to draw in the circulating duct, the suction flow by the ejector effect, the microorganism, biological treatment tank through the circulation duct It returns to the to- be-processed water inflow side , and it mixes with the to- be-processed water which flows in into a biological treatment tank from the upstream .

以上のように、この発明の生物処理槽又は生物処理方法によれば、微生物を固定した担体または浮遊微生物を用いて被処理水を生物学的に処理するに際し被処理水流出側から槽内の被処理水流入側へ連通する循環ダクトを備えた生物処理槽の前記循環ダクトにおける槽内の被処理水流入側位置にエジェクタ管を設けて、上流側から生物処理槽内に流入する被処理水が前記エジェクタ管を通過する際の被処理水の運動量により、被処理水流出側の周囲の流体を槽内の被処理水流入側に向けて前記循環ダクトに引き込むエジェクタ効果による吸引流れを発生させ、この吸引流れにより、生物処理槽内に被処理水流入側と被処理水流出側との間に循環ダクトによる循環流を形成するとともに、槽内の被処理水流入側に、上流側から生物処理槽内に流入する被処理水と前記循環ダクトからの被処理水の流れとを混合するエジェクタ型混合域を形成するようにしたので、電力などの外部エネルギを供給しなくても、循環ダクト内を沈降・滞留せずに流入側へ戻された担体または浮遊微生物と上流側から生物処理槽内に流入する被処理水とが混合される。そして、これらの混合流が生物処理槽の反応域へ供給されて、生物処理槽内での担体または浮遊微生物の分布を均一にすることができ、生物処理が効果的に行なわれ、攪拌動力も節減することができる。また、外部エネルギを必要とせずに担体または浮遊微生物を流入側へ返送できるため、停電発生時にも生物処理槽内に循環流を形成することができ、生物処理を継続できる。 As described above, according to the biological treatment tank or the biological treatment method of the present invention , when biologically treating water to be treated using a carrier or floating microorganisms in which microorganisms are immobilized , Of the biological treatment tank provided with a circulation duct communicating with the inflow side of the treated water , provided with an ejector pipe at the position of the treated water inflow side in the tank in the circulation duct , to be treated to flow into the biological treatment tank from the upstream side Due to the momentum of the water to be treated when water passes through the ejector pipe, a suction flow is generated by the ejector effect that draws the fluid around the treated water outflow side toward the treated water inflow side in the tank into the circulation duct. By this suction flow, a circulation flow is formed by a circulation duct between the treated water inflow side and the treated water outflow side in the biological treatment tank, and from the upstream side to the treated water inflow side in the tank. In the biological treatment tank Since so as to form an ejector type mixing zone for mixing the flow of the water to be treated from the circulation duct and the for-treatment water to enter, without supplying external energy such as electricity, settler through the circulation duct The carrier or suspended microorganism returned to the inflow side without staying and the water to be treated flowing into the biological treatment tank from the upstream side are mixed. Then, these mixed stream is fed to the reaction zone of the biological treatment tank, it is possible to make uniform the distribution of the carrier or suspended microorganisms in the biological treatment tank, biological treatment is effectively carried out, stirring power also You can save. Further, since the carrier or the floating microorganism can be returned to the inflow side without requiring external energy, a circulation flow can be formed in the biological treatment tank even when a power failure occurs, and the biological treatment can be continued.

以下に、この発明の実施形態を添付の図2〜図6に基づいて説明する。   Embodiments of the present invention will be described below with reference to FIGS.

図2は本発明の第1の実施形態による生物処理槽の構成を示す斜視図である。生物処理槽は、複数の分割生物処理槽を、即ち3つの分割生物処理槽1a、1b、1cを、被処理水の通過口9、9aをそれぞれ設けた隔壁10、10aを介して直列に連結した連結型の生物処理槽である。最下流分割生物処理槽1cの流出側壁面11には、担体分離用のスクリーン12が、前面側に対向するダクト壁面を設けずに設置されている。最下流分割生物処理槽1cの底部両側には微生物を固定した担体(図示省略)を含んだ被処理水を取り入れるための取り入れ口13、13aがそれぞれ設けられ、この取り入れ口13、13aから循環ダクト本体14、14aが最上流分割生物処理槽1aの流入側にまで延び、流入側壁面15に沿って上方に延びたディフューザ16、16aにそれぞれ接続されて循環ダクト17、17aが形成されている。取り入れ口13、13aは、担体を取り入れ易いように、その端面の断面積が循環ダクト本体14、14aの断面積よりも大きく、この端面からなだらかに縮径してダクト本体14、14aと一体に形成されている。ディフューザ16、16a、即ち上方に延びた循環ダクト17、17aの内部にはエジェクタ管18、18aが挿入されて上流側から流入した被処理水がディフューザ16、16a内を流れるようになっており、エジェクタ管18、18aの入側に、流入する被処理水の流量調節手段のバルブ19、19aが設けられている。このバルブ19、19aとしては、仕切り弁、蝶型弁、偏心鋳造弁などを用いることができる。 FIG. 2 is a perspective view showing the configuration of the biological treatment tank according to the first embodiment of the present invention. The biological treatment tank connects a plurality of divided biological treatment tanks, that is, three divided biological treatment tanks 1a, 1b, and 1c in series through partition walls 10 and 10a provided with passages 9 and 9a for water to be treated, respectively. This is a connected biological treatment tank. A carrier separation screen 12 is installed on the outflow side wall surface 11 of the most downstream divided biological treatment tank 1c without providing a duct wall surface facing the front side . On the both sides of the bottom of the most downstream divided biological treatment tank 1c, intakes 13 and 13a for taking in water to be treated containing a carrier (not shown) in which microorganisms are fixed are provided, and circulation ducts are provided from the intakes 13 and 13a. The main bodies 14 and 14a extend to the inflow side in the most upstream divided biological treatment tank 1a , and are connected to diffusers 16 and 16a extending upward along the inflow side wall surface 15 to form circulation ducts 17 and 17a. . The intake ports 13 and 13a have a cross-sectional area larger than that of the circulation duct bodies 14 and 14a so that the carrier can be easily taken in, and the diameter is gradually reduced from this end face so as to be integrated with the duct bodies 14 and 14a. Is formed. Ejector pipes 18 and 18a are inserted into the diffusers 16 and 16a, that is, the circulation ducts 17 and 17a extending upward, and the water to be treated flowing from the upstream side flows through the diffusers 16 and 16a. Valves 19 and 19a serving as flow rate adjusting means for the treated water to flow into are provided on the inlet side of the ejector pipes 18 and 18a. As the valves 19 and 19a, a gate valve, a butterfly valve, an eccentric casting valve, or the like can be used.

前記最上流分割生物処理槽1aの流入側に、ブロワから空気を送り込むための曝気装置(散気装置)を設けることもでき、また、破線で示したように、循環ダクト本体14の中程に、一端側がこの循環ダクト本体14に連通し、他端側が処理槽内の水面から突出した空気抜き管20を設けることもできる。この空気抜き管20は、もう一方の循環ダクト本体14aにも同様にして設けることができる。最上流分割生物処理槽1aには、硝酸菌などの微生物が固定された、PEG(ポリエチレングリコール)などのペレット状の担体が投入され、各分割生物処理槽1a、1b、1cには担体の沈降を防止、均一混合を促進するための水中攪拌機(図示省略)が設置されている。 An aeration device (aeration device) for sending air from the blower can be provided on the inflow side in the most upstream divided biological treatment tank 1a. Further , as shown by a broken line, the middle of the circulation duct main body 14 is provided. Further, an air vent pipe 20 whose one end side communicates with the circulation duct main body 14 and whose other end side protrudes from the water surface in the treatment tank may be provided. This air vent pipe 20 can be provided in the same manner in the other circulation duct body 14a. A pellet-like carrier such as PEG (polyethylene glycol) to which microorganisms such as nitrate bacteria are fixed is placed in the uppermost divided biological treatment tank 1a, and sedimentation of the carrier is set in each divided biological treatment tank 1a, 1b, 1c. An underwater stirrer (not shown) is installed to prevent the above and promote uniform mixing.

この発明の第1の実施形態は以上のような構成であり、以下にその機能について説明する。   The first embodiment of the present invention is configured as described above, and the function thereof will be described below.

上流側の担体を投入していない水槽、または上流側の生物処理槽から被処理水が流入すると、上流側の水槽または処理槽の持つ位置エネルギがエジェクタ管18、18aを通過する際に運動エネルギに変換され、被処理水の運動量により、最下流分割生物処理槽1c内の取り入れ口13、13aの周囲の流体を循環ダクト本体14、14aに引き込む吸引流れが生じ、前記エジェクタ管18(18a)とディフューザ16(16a)とで、一種のポンプ(エジェクタポンプ)が形成される。このようなエジェクタポンプの作動について、図3に示すような生物処理槽モデルを用いて以下に説明する。 When water to be treated flows from a water tank in which no upstream carrier is introduced or an upstream biological treatment tank, the kinetic energy of the potential energy of the upstream water tank or treatment tank passes through the ejector pipes 18 and 18a. In accordance with the momentum of the water to be treated, a suction flow that draws the fluid around the intake ports 13 and 13a in the most downstream divided biological treatment tank 1c into the circulation duct bodies 14 and 14a is generated, and the ejector pipe 18 (18a) The diffuser 16 (16a) forms a kind of pump (ejector pump). The operation of such an ejector pump will be described below using a biological treatment tank model as shown in FIG.

図3に示した生物処理槽モデルは、流入側分割生物処理槽(第1区画)にエジェクタノズル(エジェクタ管18)とディフューザ16が設置され、流出側分割生物処理槽(第2区画)にスクリーン7が設置され、その下方から取り入れ口13を有する返送管17bが流入側分割生物処理槽(第1区画)の方へ延びて前記デ゛ィフューザ16に接続し、流入側にエジェクタ部Eが形成されている。このエジェクタ部Eによる、即ちエジェクタポンプの作動による生物処理槽内の全圧力分布や返送流量比(循環ダクト内返送流量/エジェクタ管内流量)などの特性は、運動量保存式(1)、ディフューザ圧力回復式(2)、返送管内圧力損失式(3)、ノズル圧力損失式(4)から求めることができる。
(数1)
(ρU +P)+A(ρU +P)=A(ρU +P) (1)
=P−η1/2ρ(U −U ) (2)
=P+λ(L/D)1/2ρU +ρgΔh1−2 (3)
(1−ζ)1/2ρU =ρgΔh0−1 (4)
ここに、A:流路面積、U:流速、P:圧力、L:循環ダクト本体(返送管)の長さ、D:返送管径、g:重力加速度、Δh:水位差、ρ:密度、η:ディフューザ回復率、λ:管摩擦係数、ζ:管曲がり係数、(添え字)0−1:上流側槽と流入側分割生物処理槽(第1区画)間、1−2:第1区画と第2区画間、1:エジェクタ管、2:エジェクタ吸引側管、3:ディフューザ入口、4:ディフューザ出口、5:返送管(循環ダクト)
Biological treatment tank model shown in Figure 3, the diffuser 16 ejector nozzle (ejector tube 18) is installed in the inflow-side partition biological treatment tank (the first compartment), the screen on the outflow side dividing the biological treatment tank (second compartment) 7 is installed, and a return pipe 17b having an intake port 13 extends from the lower side thereof toward the inflow side divided biological treatment tank (first section) and is connected to the diffuser 16, and an ejector portion E is formed on the inflow side. Has been. The characteristics such as the total pressure distribution in the biological treatment tank and the return flow ratio (return flow rate in the circulation duct / flow rate in the ejector pipe) by the ejector part E, that is, the operation of the ejector pump, are stored in the momentum conservation formula (1) and diffuser pressure recovery. It can be obtained from the equation (2), the return pipe pressure loss equation (3), and the nozzle pressure loss equation (4).
(Equation 1)
A 1 (ρU 1 2 + P 1 ) + A 2 (ρU 2 2 + P 2 ) = A 3 (ρU 3 2 + P 3 ) (1)
P 3 = P 4 −η D 1 / 2ρ (U 3 2 −U 4 2 ) (2)
P 4 = P 2 + λ (L / D) 1 / 2ρU 5 2 + ρgΔh 1-2 (3)
(1-ζ) 1 / 2ρU 1 2 = ρgΔh 0-1 (4)
Here, A: flow path area, U: flow velocity, P: pressure, L: length of circulation duct body (return pipe), D: return pipe diameter, g: gravitational acceleration, Δh: water level difference, ρ: density, η D : Diffuser recovery rate, λ: pipe friction coefficient, ζ: pipe bending coefficient, (subscript) 0-1: between upstream tank and inflow side divided biological treatment tank (first section), 1-2: first Between section and second section, 1: ejector pipe, 2: ejector suction side pipe, 3: diffuser inlet, 4: diffuser outlet, 5: return pipe (circulation duct)

図2に示した、3区画の分割生物処理槽1a、1b、1cからなる生物処理槽について、前記式(1)〜式(4)から数値解析により、前記分割生物処理槽内の全圧力分布および返送流量比を求めた結果、取り入れ口13(13a)からエジェクタ管18(18a)にかけて圧力が降下して吸引流れが生成していること、および、返送管17b(循環ダクト)内の平均圧力は、解析例では、最上流分割生物処理槽(第1区画)の圧力よりも300Pa程度低いことが確認された。また、ノズル流速(エジェクタ管18、18aからの吐出速度)が0.8〜2.0m/sの範囲で、返送流量比がおよそ50〜60%となり、生物処理槽内に所要の循環流が形成されることが上記数値解析とともに、模型水槽実験でも確認された。 The total pressure distribution in the divided biological treatment tank of the biological treatment tank composed of the divided biological treatment tanks 1a, 1b, and 1c shown in FIG. 2 by numerical analysis from the equations (1) to (4). As a result of obtaining the return flow rate ratio, the pressure drops from the intake port 13 (13a) to the ejector pipe 18 (18a) to generate a suction flow, and the average pressure in the return pipe 17b (circulation duct) In the analysis example, it was confirmed that the pressure was about 300 Pa lower than the pressure in the most upstream divided biological treatment tank (first section). Further, when the nozzle flow rate (discharge speed from the ejector pipes 18 and 18a) is in the range of 0.8 to 2.0 m / s, the return flow rate ratio is about 50 to 60%, and the necessary circulating flow is generated in the biological treatment tank. The formation was confirmed in the model water tank experiment together with the numerical analysis.

前記解析結果で確認されたように、吸引流れの作用、即ちエジェクタ効果により、取り入れ口13、13aから被処理水が担体とともに循環ダクト17、17a内に取り入れられ、生物処理槽の最上流分割生物処理槽1aと最下流分割生物処理槽1cとの間に循環流が形成されて、微生物を固定した担体が最上流分割生物処理槽1aに返送され、エジェクタ混合域M(図1参照)で、循環ダクト17、17aを介して流入側へ戻された担体と被処理水とが混合され、最上流分割生物処理槽1a内での担体の分布を均一化することができる。この循環流により、被処理水が担体とともに最上流分割生物処理槽1aから通過口9を経て次の分割生物処理槽1bに流入し、さらに、この担体を含む被処理水が通過口9aを経て最下流分割生物処理槽1cに流入する生物反応処理過程で、担体が最下流分割生物処理槽1cに偏在・滞留することが防止され、また、スクリーン12から担体が分離されて目詰まりも防止されて、被処理水の生物処理を効果的に行なうことができる。前記担体の返送に電力などの外部エネルギを必要としないため、停電発生時でも循環流が形成され、スクリーン12に目詰まりも発生せず、生物反応処理を継続することができる The analysis results as confirmed by the action of the suction flow, i.e. by ejector effect, the water to be treated from the inlet 13,13a are taken into the circulation duct 17,17a with a carrier, most upstream splitting organisms biological treatment tank A circulation flow is formed between the treatment tank 1a and the most downstream divided biological treatment tank 1c, and the carrier on which the microorganisms are fixed is returned to the most upstream divided biological treatment tank 1a, and in the ejector mixing zone M (see FIG. 1), The carrier returned to the inflow side through the circulation ducts 17 and 17a and the water to be treated are mixed, and the carrier distribution in the most upstream divided biological treatment tank 1a can be made uniform. By this circulating flow, the water to be treated flows together with the carrier from the uppermost divided biological treatment tank 1a through the passage port 9 into the next divided biological treatment tank 1b, and further, the water to be treated containing this carrier passes through the passage opening 9a. In the biological reaction treatment process that flows into the most downstream divided biological treatment tank 1c, the carrier is prevented from being unevenly distributed and staying in the lowest downstream divided biological treatment tank 1c, and the carrier is separated from the screen 12 to prevent clogging. Thus, biological treatment of the water to be treated can be performed effectively. Since external energy such as electric power is not required for returning the carrier, a circulation flow is formed even when a power failure occurs, and the biological reaction process can be continued without clogging the screen 12.

また、エジェクタ管18、18aの入側にバルブ19、19aを設けることにより、例えば、バルブ19を全閉にして、エジェクタ管18からの最上流分割生物処理槽1a内への流れおよび循環ダクト17内での戻り流を停止させると、流入側壁面15での水位差は4倍に増加する。それにより、バルブ19aが開放しているエジェクタ管18aからの最上流分割生物処理槽1a内への流速が増加し、このエジェクタ効果による吸引流れによって、循環ダクト17a内の流速も増加するため、循環ダクト17aの内面に付着している繊維質や微生物が分泌する膜などの異物の除去が可能となる。同様の操作により、循環ダクト17内面の清掃も行なうことができる。さらに、担体の戻流が循環ダクト17、17aを通過する過程で、空気抜き管20から生物処理槽外に排気されるため、空気溜まりの発生を防止でき、戻流が円滑に流動し、担体の返送が阻害されずに済む。 Further, by providing the valves 19 and 19a on the inlet side of the ejector pipes 18 and 18a, for example, the valve 19 is fully closed, and the flow from the ejector pipe 18 into the uppermost divided biological treatment tank 1a and the circulation duct 17 When the return flow inside is stopped, the water level difference at the inflow side wall surface 15 increases four times. As a result, the flow velocity from the ejector pipe 18a with the valve 19a open into the uppermost divided biological treatment tank 1a increases, and the flow velocity in the circulation duct 17a also increases due to the suction flow due to this ejector effect. Foreign matters such as fibers adhering to the inner surface of the duct 17a and a membrane secreted by microorganisms can be removed. The inner surface of the circulation duct 17 can be cleaned by the same operation. Further, since the return flow of the carrier passes through the circulation ducts 17 and 17a, it is exhausted from the air vent pipe 20 to the outside of the biological treatment tank, so that the occurrence of air pockets can be prevented and the return flow smoothly flows, Return is not hindered.

図4は本発明の第2の実施形態による生物処理槽の構成を示す斜視図である。この生物処理槽は、硝化・脱窒素プロセスにより、排水中のアンモニア態窒素を生物学的に除去するための生物処理槽であり、排水の流入側から最上流分割生物処理槽としての脱窒槽1d、中間の分割生物処理槽としての硝化槽1eおよび最下流分割生物処理槽としての硝化槽1fが、被処理水の通過口9、9aをそれぞれ設けた隔壁10、10aを介して直列に連結され、最下流の硝化槽1fの流出側壁面11の上部には、生物処理された処理水の流出口21が形成されている。硝化槽1e、1fの流入側には、ブロワから槽内に空気を送り込むための図示を省略した曝気装置(散気装置)が設けられている。好気槽の硝化槽1e、1fでは、硝酸菌および亜硝酸菌が担体に固定されずに浮遊状態の微生物として働き、嫌気槽の脱窒槽1dでは脱窒素菌が浮遊状態の微生物として働く。第1の実施形態の場合と同様に、硝化槽1fの底部両側には、硝化槽1eおよび1fの硝化工程で硝化された被処理水(硝化液)の取り入れ口13、13aがそれぞれ設けられ、この取り入れ口13、13aから循環ダクト本体14、14aが生物処理槽の脱窒槽1dの流入側にまで延び、流入側壁面15に沿って上方に延びたディフューザ16、16aにそれぞれ接続されて循環ダクト17、17aが形成されている。取り入れ口13、13aは、被処理水を取り入れ易いように、その端面の断面積が循環ダクト本体14、14aの断面積よりも大きく、この端面からなだらかに縮径してダクト本体14、14aと一体に形成されている。ディフューザ16、16a、即ち上方に延びた循環ダクト17、17aの内部にはエジェクタ管18、18aが挿入され、上流側から流入した被処理水がディフューザ16、16a内を流れるようになっており、エジェクタ管18、18aの入側に、流入する被処理水の流量調節手段のバルブ19、19aが設けられている。また、第1の実施形態(図2参照)で示したように、循環ダクト本体14、14aの中程に、一端側がこの循環ダクト本体14、14aに連通し、他端側が処理槽内の水面から突出した空気抜き管20(ダクト本体14a側は図示省略)をそれぞれ設けることもできる。各分割生物処理槽1d、1e、1fには水中攪拌機(図示省略)が設置されている。なお、流出口21の出側には、図示を省略した沈殿槽が設置されている。また、前記取り入れ口13、13aから、浮遊状態の微生物群を取り入れて、流入側の処理槽に戻して微生物を再利用することもできる。 FIG. 4 is a perspective view showing a configuration of a biological treatment tank according to the second embodiment of the present invention. The biological treatment tank, the nitrification and denitrification process, a biological treatment tank for removing ammonia nitrogen in waste water biologically, denitrification 1d as the most upstream dividing the biological treatment tank from the inlet side of the drainage A nitrification tank 1e as an intermediate divided biological treatment tank and a nitrification tank 1f as a most downstream divided biological treatment tank are connected in series via partition walls 10 and 10a provided with passages 9 and 9a for treated water, respectively. An outflow port 21 of biologically treated water is formed at the upper part of the outflow side wall surface 11 of the most downstream nitrification tank 1f. On the inflow side of the nitrification tanks 1e and 1f, an aeration device (aeration device) (not shown) for sending air from the blower into the tank is provided. In the nitrification tanks 1e and 1f of the aerobic tank, nitrate bacteria and nitrite bacteria are not fixed to the carrier and work as floating microorganisms, and in the denitrification tank 1d of the anaerobic tank, denitrifying bacteria work as floating microorganisms. Similarly to the case of the first embodiment, intake sides 13 and 13a for water to be treated (nitrification liquid) nitrified in the nitrification process of the nitrification tanks 1e and 1f are provided on both sides of the bottom of the nitrification tank 1f, respectively. The circulation duct bodies 14 and 14a extend from the intakes 13 and 13a to the inflow side in the denitrification tank 1d of the biological treatment tank , and are connected to the diffusers 16 and 16a extending upward along the inflow side wall surface 15 to circulate. Ducts 17 and 17a are formed. The intake ports 13 and 13a have a cross-sectional area larger than the cross-sectional area of the circulation duct bodies 14 and 14a so that the water to be treated can be easily taken in. It is integrally formed. Ejector pipes 18 and 18a are inserted into the diffusers 16 and 16a, that is, the circulation ducts 17 and 17a extending upward, so that the water to be treated flowing from the upstream side flows through the diffusers 16 and 16a. Valves 19 and 19a serving as flow rate adjusting means for inflowing water to be treated are provided on the inlet side of the ejector pipes 18 and 18a. In addition, as shown in the first embodiment (see FIG. 2), one end side communicates with the circulation duct bodies 14 and 14a in the middle of the circulation duct bodies 14 and 14a, and the other end side is the water surface in the treatment tank. An air vent tube 20 (not shown on the duct main body 14a side) protruding from the above can also be provided. Each divided biological treatment tank 1d, 1e, 1f is provided with an underwater agitator (not shown). A precipitation tank (not shown) is installed on the outlet side of the outlet 21. In addition, floating microorganisms can be taken in from the intakes 13 and 13a and returned to the treatment tank on the inflow side to reuse the microorganisms.

この発明の第2の実施形態は以上のような構成であり、以下にその機能について説明する。   The second embodiment of the present invention is configured as described above, and the function thereof will be described below.

上流側の水槽からエジェクタ管18、18aおよびディフューザ16、16aを介して被処理水が生物処理槽の脱窒槽1dに流入すると、脱窒槽1dでは除去すべき被処理水中のアンモニア態窒素成分は何ら変化せず、即ち生物反応を生ぜずに、通過口9および9aをそれぞれ経て、硝化槽1e、1fに流入する。そして、この硝化槽1e、1fで、アンモニアは、式(1)に示すように、好気性の亜硝酸菌の働きにより酸化されて、亜硝酸になる。次に、この亜硝酸は、式(2)に示すように、好気性の硝酸菌の働きにより酸化され、式(1)と式(2)を加算して式(3)に示すように硝酸になる。
(数2)
NH +3/2O→NO +2H+HO (1)
NO +1/2O→NO(2)
NH +2O→NO +HO+2H(3)
When the water to be treated flows into the denitrification tank 1d of the biological treatment tank from the upstream water tank through the ejector pipes 18 and 18a and the diffusers 16 and 16a, what is the ammonia nitrogen component in the treated water to be removed in the denitrification tank 1d? It does not change, that is, does not cause a biological reaction, and flows into the nitrification tanks 1e and 1f through the passages 9 and 9a, respectively. In the nitrification tanks 1e and 1f, ammonia is oxidized into nitrous acid by the action of aerobic nitrite bacteria as shown in the formula (1). Next, the nitrous acid is oxidized by the action of an aerobic nitric acid bacterium as shown in the formula (2), and the formula (1) and the formula (2) are added to form a nitric acid as shown in the formula (3). become.
(Equation 2)
NH 4 + + 3 / 2O 2 → NO 2 + 2H + + H 2 O (1)
NO 2 + 1 / 2O 2 → NO 3 (2)
NH 4 + + 2O 2 → NO 3 + H 2 O + 2H + (3)

前述の第1実施形態の場合と同様に、エジェクタ管18、18aに、上流側の水槽から被処理水が流入すると、上流側の水槽の持つ位置エネルギがエジェクタ管18、18aを通過する際に運動エネルギに変換され、被処理水の運動量により、硝化槽1f内の取り入れ口13、13aの周囲の流体を循環ダクト本体14、14aに引き込む吸引流れが生じる。 As in the case of the first embodiment, when the water to be treated flows into the ejector pipes 18 and 18a from the upstream water tank, the potential energy of the upstream water tank passes through the ejector pipes 18 and 18a. The suction flow that draws the fluid around the intake ports 13 and 13a in the nitrification tank 1f into the circulation duct bodies 14 and 14a is generated by the kinetic energy converted into the kinetic energy.

この吸引流れの作用、即ちエジェクタ効果により、取り入れ口13、13aから被処理水が循環ダクト14、14a内に取り入れられ、生物処理槽の最上流分割生物処理槽としての脱窒槽1dと最下流分割生物処理槽としての硝化槽1fとの間に循環流が形成される。この循環流により、硝化処理された被処理水(硝化液)が脱窒槽1dに返送され、式(4)および式(5)に示すように、脱窒素反応によって硝酸が窒素ガスに還元される。
(数3)
NO +2(H)→2NO +2HO (4)
2NO +3(H)→N↑+2OH+2HO (5)
式(4)および式(5)におけるHは有機物の分解により供給されるもので、被処理水(原水)中のBOD成分がこの水素供与体にあたる。
By the action of this suction flow, that is, the ejector effect, the water to be treated is taken into the circulation ducts 14 and 14a from the intake ports 13 and 13a, and the denitrification tank 1d as the uppermost division biological treatment tank of the biological treatment tank and the most downstream division. A circulation flow is formed between the nitrification tank 1f as a biological treatment tank . By this circulation flow, the water to be treated (nitrification liquid) subjected to nitrification is returned to the denitrification tank 1d, and as shown in the formulas (4) and (5), nitric acid is reduced to nitrogen gas by the denitrification reaction. .
(Equation 3)
NO 3 +2 (H 2 ) → 2NO 2 + 2H 2 O (4)
2NO 2 +3 (H 2 ) → N 2 ↑ + 2OH + 2H 2 O (5)
H 2 in the formulas (4) and (5) is supplied by the decomposition of the organic substance, and the BOD component in the treated water (raw water) corresponds to this hydrogen donor.

このように、前記硝化・脱窒プロセスでは、硝化槽1fから硝化された被処理水を大量に脱窒槽1dに返送する必要がある。前記エジェクタ管18、18aによる吸引流れにより生物処理槽内に循環流が形成されるため、返送用ポンプを設けなくても硝化された被処理水を脱窒槽1dへ返送できるため、設備費およびエネルギ費が節減され、また、停電発生時でも、硝化・脱窒処理を継続することができる。なお、前記生物処理槽では、硝化槽1e、1fの前に脱窒槽1dが配置され、反応順序とは逆配置となっているが、このような槽配置にして硝化液を循環させることにより、脱窒素反応に被処理水(原水)中のBOD成分を利用することができ、外部から加えるBOD成分を節約できる利点がある。このため、硝化液循環型の槽配置がよく用いられる。なお、前記硝酸菌、亜硝酸菌、脱窒素菌はいずれも被処理水(原水)中に多数含まれるものであり、通常運転では自然増殖するため、外部からとくに供給する必要はない。   As described above, in the nitrification / denitrification process, it is necessary to return a large amount of the water to be treated nitrified from the nitrification tank 1f to the denitrification tank 1d. Since the circulation flow is formed in the biological treatment tank by the suction flow by the ejector pipes 18 and 18a, the water to be treated that has been nitrified can be returned to the denitrification tank 1d without providing a return pump. Costs are reduced, and nitrification and denitrification can be continued even when a power failure occurs. In the biological treatment tank, a denitrification tank 1d is arranged in front of the nitrification tanks 1e and 1f, and is reverse to the reaction order. By circulating the nitrification liquid in such a tank arrangement, The BOD component in the treated water (raw water) can be used for the denitrification reaction, and there is an advantage that the BOD component added from the outside can be saved. For this reason, a nitrification liquid circulation type tank arrangement is often used. The nitrate bacteria, nitrite bacteria, and denitrifying bacteria are all contained in the water to be treated (raw water) and grow naturally in normal operation, so there is no need to supply them from the outside.

図5は本発明の第3の実施形態による生物処理槽の構成を示す斜視図である。この生物処理槽は、第1の実施形態(図2参照)と同様に、複数の分割生物処理槽を、即ち3つの分割生物処理槽1g、1h、1iを、被処理水の通過口9、9aをそれぞれ設けた隔壁10、10aを介して直列に連結した連結型の生物処理槽である。最下流分割生物処理槽1iの流出側壁面11の上部には、生物処理された処理水の流出口21が配置されており、この流出口21の出側には、流路22を介して、生物的に処理された清澄な処理水と微生物群とを固液分離する分離手段としての沈殿槽23が設置されている。この沈殿槽23の底部には排出管24が接続され、この排出管24は生物処理槽の両側方向に分岐して、前記生物処理槽の底部の高さまで立ち上がり、この底部両側から最上流分割生物処理槽1gにまで延びた循環ダクト本体14、14aに連結されている。この循環ダクト本体14、14aは、流入側壁面15に沿って上方に延びたディフューザ16、16aにそれぞれ接続されて循環ダクト17、17aが形成されている。ディフューザ16、16aの内部には、上流側からの被処理水が流入するエジェクタ管18、18aが挿入され、その入側には流入する被処理水の流量調節手段のバルブ19、19aが設けられている。また、最上流分割生物処理槽1gの流入側に、ブロワから空気を送り込むための曝気装置(散気装置)を設けることもできる。さらに、循環ダクト本体14、14aの中程に空気抜き管20(ダクト本体14a側は図示省略)をそれぞれ設けることもできる。各分割生物処理槽1g、1h、1iには水中攪拌機(図示省略)が設置されている。 FIG. 5 is a perspective view showing a configuration of a biological treatment tank according to the third embodiment of the present invention. As in the first embodiment (see FIG. 2), this biological treatment tank includes a plurality of divided biological treatment tanks, that is, three divided biological treatment tanks 1g, 1h, and 1i, and a water treatment port 9, This is a connected biological treatment tank connected in series via partition walls 10 and 10a each provided with 9a. On the upper part of the outflow side wall surface 11 of the most downstream divided biological treatment tank 1i, an outlet 21 for biologically treated water is disposed, and on the outlet side of the outlet 21 via a flow path 22, A sedimentation tank 23 is installed as a separation means for separating the biologically treated clear treated water and the microorganism group into solid and liquid. At the bottom of the settling tank 23 is connected discharge pipe 24, the discharge pipe 24 is branched into both sides direction of the biological treatment tank, rising to the height of the bottom of the biological treatment tank, the most upstream splitting organisms from the bottom sides It connects with the circulation duct main bodies 14 and 14a extended to the processing tank 1g. The circulation duct bodies 14 and 14a are respectively connected to diffusers 16 and 16a extending upward along the inflow side wall surface 15 to form circulation ducts 17 and 17a. Ejector pipes 18 and 18a into which treated water from the upstream side flows are inserted into the diffusers 16 and 16a, and valves 19 and 19a for adjusting the flow rate of the treated water that flows in are provided on the inlet side. ing. Moreover, the aeration apparatus (aeration apparatus) for sending air from a blower can also be provided in the inflow side in the most upstream division | segmentation biological treatment tank 1g. Furthermore, an air vent pipe 20 (the duct body 14a side is not shown) can be provided in the middle of the circulation duct bodies 14 and 14a. Each divided biological treatment tank 1g, 1h, 1i is provided with an underwater agitator (not shown).

この発明の第3の実施形態は以上のような構成であり、以下にその機能について説明する。   The third embodiment of the present invention has the above configuration, and the function thereof will be described below.

前記の各分割生物処理槽1g、1h、1iで、被処理水は浮遊状態の好気性微生物群と混合接触し、被処理水中のBOD成分は溶存酸素の存在下で酸化分解され、この混合液は流出口21から流路22を介して沈殿槽23に流れ込む。沈殿槽23で、微生物群は凝集して沈降し、上澄みの処理水と固液分離する。一方、上流側の水槽からエジェクタ管18、18aおよびディフューザ16、16aを介して被処理水が最上流分割生物処理槽1gに流入すると、上流側の水槽または処理槽の持つ位置エネルギがエジェクタ管18、18aを通過する際に運動エネルギに変換され、被処理水の運動量により、沈殿槽23の底部からの微生物群を循環ダクト本体14、14aに引き込む吸引流れが生じる。 In each of the divided biological treatment tanks 1g, 1h, and 1i, the water to be treated is brought into contact with the suspended aerobic microorganism group, and the BOD component in the water to be treated is oxidized and decomposed in the presence of dissolved oxygen. Flows into the sedimentation tank 23 from the outlet 21 through the flow path 22. In the sedimentation tank 23, the microorganism group aggregates and settles, and is separated from the supernatant treated water by solid-liquid separation. On the other hand, when the water to be treated flows from the upstream water tank into the most upstream divided biological treatment tank 1g through the ejector pipes 18 and 18a and the diffusers 16 and 16a, the potential energy of the upstream water tank or the treatment tank is changed to the ejector pipe 18. , 18a is converted into kinetic energy, and a suction flow that draws a group of microorganisms from the bottom of the sedimentation tank 23 into the circulation duct bodies 14, 14a is generated by the momentum of the water to be treated.

この吸引流れの作用、即ちエジェクタ効果により、沈降した微生物群が沈殿槽23の底部から排出管24を通り、立ち上がり部24aを経て循環ダクト17、17a内に取り入れられ、最上流分割生物処理槽1gと沈殿槽23との間に凝集した微生物群、即ち汚泥を含む循環流が形成され、前記汚泥が最上流分割生物処理槽1gに返送される。そして、返送された汚泥は、生物応処理槽で再び被処理水のBOD成分の除去の働きを行なう。このように、エジェクタ管18、18aによる吸引流れにより循環流が形成され、返送用ポンプを設けなくても、汚泥が沈殿槽23からの流入側へ返送されるため、返送用ポンプ設置などの設備費およびエネルギ費が節減され、また、停電発生時でも、硝化・脱窒処理を継続することができる。 Due to the action of this suction flow, that is, the ejector effect, the settled microorganism group passes through the discharge pipe 24 from the bottom of the sedimentation tank 23 and is taken into the circulation ducts 17 and 17a via the rising part 24a, and the most upstream divided biological treatment tank 1g. A circulated flow containing a group of microorganisms, that is, sludge, is formed between the slag and the sedimentation tank 23, and the sludge is returned to the most upstream divided biological treatment tank 1g. The returned sludge functions to remove the BOD component of the water to be treated again in the biological treatment tank. Thus, a circulation flow is formed by the suction flow by the ejector pipes 18 and 18a, and sludge is returned to the inflow side from the sedimentation tank 23 without providing a return pump. Costs and energy costs are saved, and nitrification / denitrification can be continued even when a power failure occurs.

図6は、図2と図4に示す生物処理槽における循環ダクト及びエジェクタ管に代わる循環系を示す斜視図であって、その(a)はトラフ及びエジェクタからなる循環系を示す拡大斜視図、その(b)は(a)に示す循環系を備えた生物処理槽の要部を示す斜視図である。図6(a)に示すように、この循環系は、トラフ25、25aから下方に向かう連結管26を介してディフーザ16、16aを、処理槽下流側に向くように横方向に接続し、このディフューザ16、16aの入側に、前記エジェクタ管18、18aを挿入するものである。図6(b)に示すように、前記トラフ25、25aは水面レベル近傍の高さで槽内の両側に設けられており、トラフ25、25aに接続されたディフューザ16、16aの入側にエジェクタ管18、18aが挿入されている。また、トラフ25、25aの開放端Rは、図示省略した最下流分割生物処理槽に至り、前記担体または処理水(硝化液)の取り入れ口となっている。 FIG. 6 is a perspective view showing a circulation system in place of the circulation duct and the ejector pipe in the biological treatment tank shown in FIGS. 2 and 4, and (a) is an enlarged perspective view showing the circulation system composed of a trough and an ejector. The (b) is a perspective view which shows the principal part of the biological treatment tank provided with the circulation system shown to (a). As shown in FIG. 6 (a), this circulation system connects the diffusers 16, 16a laterally so as to face the downstream side of the processing tank through the connecting pipes 26 extending downward from the troughs 25, 25a. The ejector tubes 18 and 18a are inserted into the entrance sides of the diffusers 16 and 16a. As shown in FIG. 6 (b), the troughs 25, 25a are provided on both sides of the tank at a height near the water surface level, and ejectors are disposed on the entry side of the diffusers 16, 16a connected to the troughs 25, 25a. Tubes 18 and 18a are inserted. The open ends R of the troughs 25 and 25a reach the most downstream divided biological treatment tank (not shown) and serve as intakes for the carrier or treated water (nitrification liquid).

図2に示した3区画の分割生物処理槽1a、1b、1cからなる生物処理槽についての前述の数値解析結果から、循環ダクト17、17a(返送管)内の平均圧力は、最上流分割生物処理槽1a(第1区画)の圧力よりも300Pa程度低いため、図6(b)に示したように、返送管としてトラフ25、25aを設けると、トラフ内の水位はその周囲の槽内の水位よりも30mm程度低くなる。このため、最下流分割生物処理槽の取り入れ口13(13a)に相当するトラフ25、25aの開放した端部R(図6(a)参照)から、担体または処理水が流入して流入側処理槽に向かう循環流れが形成される。このように、循環ダクトとして上部が開放したトラフを水面レベル近傍に設けると、ダクトの詰まりや汚れなどに対するメインテナンス性が大幅に向上する。 Dividing the biological treatment tank 1a of 3 sections shown in FIG. 2, 1b, the numerical results of the foregoing for biological treatment tank made of 1c, the average pressure in the circulation duct 17, 17a (return pipe) is most upstream splitting organisms Since the pressure is about 300 Pa lower than the pressure in the processing tank 1a (first section), as shown in FIG. 6B, when troughs 25 and 25a are provided as return pipes, the water level in the trough is in the surrounding tank. It is about 30 mm lower than the water level. For this reason, carrier or treated water flows from the open end R (see FIG. 6 (a)) of the troughs 25, 25a corresponding to the intake port 13 (13a) of the most downstream divided biological treatment tank, and the inflow side treatment is performed. A circulating flow toward the tank is formed. As described above, when a trough having an open top as a circulation duct is provided in the vicinity of the water surface level, maintenance against duct clogging and dirt is greatly improved.

なお、前述の第1から第3の実施形態および上記他の実施形態で、循環ダクト17、17aまたはトラフ25、25aは、前記生物処理槽の底部両側または水面レベル近傍にそれぞれ沿った合計2本のみならず、それよりも多い複数本設けることができ、従って、前記エジェクタ管も前記複数本設けることができる。また、前記エジェクタ管の総断面積は、生物処理槽内に循環流が生じるために必要な上流側との水位差を確保できるように、前記式(1)から式(4)に示したエネルギーおよび圧力バランスを考慮して、被処理水の流量に対応して設計することができる。   In the first to third embodiments and the other embodiments described above, the circulation ducts 17, 17a or troughs 25, 25a are two in total along the bottom side of the biological treatment tank or near the water surface level. In addition, a plurality of more than that can be provided, and thus the plurality of ejector tubes can also be provided. In addition, the total cross-sectional area of the ejector pipe is the energy shown in the equations (1) to (4) so as to ensure a water level difference from the upstream side necessary for the circulation flow to occur in the biological treatment tank. And considering the pressure balance, it can be designed corresponding to the flow rate of the water to be treated.

この発明は、微生物固定化担体や汚泥の返送および硝化・脱窒素プロセスでの硝化液の循環等に、電力等の外部エネルギを必要としない、装置構成を簡素化した、経済的な生物処理槽の構築に利用することができる。 This invention is an economical biological treatment tank that does not require external energy such as electric power for returning microorganism support, sludge, and circulating nitrification liquid in nitrification / denitrogenation process, etc. Can be used to build

本発明による生物処理槽での吸引流れについての説明図である。 It is explanatory drawing about the suction flow in the biological treatment tank by this invention . 本発明の第1の実施形態による生物処理槽の構成を示す斜視図である。 It is a perspective view which shows the structure of the biological treatment tank by the 1st Embodiment of this invention . 本発明の第1の実施形態による生物処理槽をモデル化した説明図である。It is explanatory drawing which modeled the biological treatment tank by the 1st Embodiment of this invention . 本発明の第2の実施形態による生物処理槽の構成を示す斜視図である。 It is a perspective view which shows the structure of the biological treatment tank by the 2nd Embodiment of this invention . 本発明の第3の実施形態による生物処理槽の構成を示す斜視図である。 It is a perspective view which shows the structure of the biological treatment tank by the 3rd Embodiment of this invention . 図2と図4に示す生物処理槽における循環ダクト及びエジェクタ管に代わる循環系を示す斜視図であって、その(a)はトラフ及びエジェクタからなる循環系を示す拡大斜視図、その(b)は(a)に示す循環系を備えた生物処理槽の要部を示す斜視図である。FIG. 5 is a perspective view showing a circulation system in place of the circulation duct and the ejector pipe in the biological treatment tank shown in FIGS. 2 and 4, wherein (a) is an enlarged perspective view showing the circulation system composed of a trough and an ejector, (b). FIG. 3 is a perspective view showing a main part of a biological treatment tank provided with the circulation system shown in FIG. 従来技術の一例の生物処理槽を示す断面図である。 It is sectional drawing which shows the biological treatment tank of an example of a prior art . 従来技術の他の例の生物処理槽を示す断面図である。 It is sectional drawing which shows the biological treatment tank of the other example of a prior art . 従来技術の他の例の生物処理槽を示す断面図である。 It is sectional drawing which shows the biological treatment tank of the other example of a prior art . 従来技術の他の例の生物処理槽を示す断面図である。 It is sectional drawing which shows the biological treatment tank of the other example of a prior art .

1…生物処理槽 1a〜1i…分割生物処理槽
2、15…流入側壁面
2a、11…流出側壁面
3…下部開口
4、17、17a…循環ダクト
4a、4b…外壁面
5…反応域
6…水中攪拌機
7、12…スクリーン
8、13、13a…取り入れ口
9、9a…通過口
10、10a…隔壁
14,14a…循環ダクト本体
16、16a…ディフューザ
17b…返送管
18、18a…エジェクタ管
19、19a…バルブ
20…空気抜き管
21…流出口
22…流路
23…沈殿槽
24…排出管
24a…立ち上がり部
25、25a…トラフ
26・・・連結管
DESCRIPTION OF SYMBOLS 1 ... Biological treatment tank 1a-1i ... Division | segmentation biological treatment tank 2, 15 ... Inflow side wall surface 2a, 11 ... Outflow side wall surface 3 ... Lower opening 4, 17, 17a ... Circulation duct 4a, 4b ... Outer wall surface 5 ... Reaction zone 6 ... underwater agitator 7, 12 ... screen 8, 13, 13a ... intake port 9, 9a ... passage port 10, 10a ... partition wall 14, 14a ... circulation duct body 16, 16a ... diffuser 17b ... return pipe 18, 18a ... ejector pipe 19 , 19a ... Valve 20 ... Air vent pipe 21 ... Outlet 22 ... Flow path 23 ... Precipitation tank 24 ... Discharge pipe 24a ... Rising part 25, 25a ... Trough 26 ... Connecting pipe

Claims (12)

被処理水が微生物を固定した担体を浮遊状態で含み、槽内の被処理水流出側に担体分離用のスクリーンと担体を含んだ被処理水の取り入れ口とが設けられており、槽内に前記取り入れ口から槽内の被処理水流入側へ連通する循環ダクトを備え、被処理水を生物学的に処理する生物処理槽であって、
前記循環ダクトにおける槽内の被処理水流入側位置に、当該生物処理槽とその上流側槽との水位差による上流側槽被処理水の持つ位置エネルギを運動エネルギに変換するためのエジェクタ管を設けて、前記循環ダクト内に槽内の被処理水流出側から槽内の被処理水流入側に担体を含んだ被処理水の流れを形成するとともに、該被処理水の流れと上流側から槽内に流入する被処理水とを混合するエジェクタ型混合域が槽内の被処理水流入側に形成されるようにしたことを特徴とする生物処理槽
The treated water includes a carrier in which microorganisms are fixed in a floating state, and a screen for separating the carrier and an inlet for treated water containing the carrier are provided on the treated water outflow side in the tank. A biological treatment tank comprising a circulation duct communicating from the intake to the treated water inflow side in the tank, and biologically treating the treated water ,
An ejector pipe for converting the potential energy of the upstream tank treated water due to the difference in water level between the biological treatment tank and the upstream tank to kinetic energy at the position of the circulating duct in the treated water inflow side. Providing a flow of treated water containing a carrier from the treated water outflow side in the tank to the treated water inflow side in the tank in the circulation duct, and from the upstream side of the treated water flow A biological treatment tank , characterized in that an ejector-type mixing zone for mixing the treated water flowing into the tank is formed on the treated water inflow side in the tank .
被処理水が微生物を固定した担体を浮遊状態で含み、複数の分割生物処理槽が被処理水の通過部を設けた隔壁を介して直列に連結されるとともに、最下流分割生物処理槽内の被処理水流出側に担体分離用のスクリーンと担体を含んだ被処理水の取り入れ口とが設けられており、槽内に前記取り入れ口から最上流分割生物処理槽内の被処理水流入側へ連通する循環ダクトを備え、被処理水を生物学的に処理する生物処理槽であって、
前記循環ダクトにおける前記最上流分割生物処理槽内の被処理水流入側位置に、当該最上流分割生物処理槽とその上流側槽との水位差による上流側槽被処理水の持つ位置エネルギを運動エネルギに変換するためのエジェクタ管を設けて、前記循環ダクト内に前記最下流分割生物処理槽内の被処理水流出側から前記最上流分割生物処理槽内の被処理水流入側に担体を含んだ被処理水の流れを形成するとともに、該被処理水の流れと上流側から前記最上流分割生物処理槽内に流入する被処理水とを混合するエジェクタ型混合域が前記最上流分割生物処理槽内の被処理水流入側に形成されるようにしたことを特徴とする生物処理槽
The treated water includes a carrier in which microorganisms are fixed in a floating state, and a plurality of divided biological treatment tanks are connected in series via a partition wall provided with a passage portion of the treated water, and in the most downstream divided biological treatment tank A screen for separating the carrier and an intake of treated water containing the carrier are provided on the treated water outflow side, and the intake is provided in the tank from the intake to the treated water inflow side in the uppermost divided biological treatment tank. A biological treatment tank having a circulation duct communicating therewith and biologically treating the water to be treated ;
The position energy of the upstream side tank treated water due to the difference in water level between the upstreammost divided biological treatment tank and the upstream tank is moved to the treated water inflow side position in the uppermost stream divided biological treatment tank in the circulation duct. An ejector pipe for converting to energy is provided, and a carrier is included in the circulation duct from the treated water outflow side in the most downstream divided biological treatment tank to the treated water inflow side in the uppermost divided biological treatment tank. An ejector type mixing zone that forms a flow of water to be treated and mixes the flow of water to be treated and the water to be treated flowing from the upstream side into the most upstream divided biological treatment tank includes the uppermost flow divided biological treatment. A biological treatment tank characterized by being formed on the treated water inflow side in the tank .
被処理水が微生物を担体に固定することなく浮遊状態で含み、槽内の被処理水流出側に被処理水の取り入れ口が設けられており、槽内に前記取り入れ口から槽内の被処理水流入側へ連通する循環ダクトを備え、被処理水を生物学的に処理する生物処理槽であって、
前記循環ダクトにおける槽内の被処理水流入側位置に、当該生物処理槽とその上流側槽との水位差による上流側槽被処理水の持つ位置エネルギを運動エネルギに変換するためのエジェクタ管を設けて、前記循環ダクト内に槽内の被処理水流出側から槽内の被処理水流入側に微生物を含んだ被処理水の流れを形成するとともに、該被処理水の流れと上流側から槽内に流入する被処理水とを混合するエジェクタ型混合域が槽内の被処理水流入側に形成されるようにしたことを特徴とする生物処理槽
The treated water contains microorganisms in a floating state without fixing them to the carrier, and an inlet for treated water is provided on the treated water outflow side in the tank. A biological treatment tank having a circulation duct communicating with the water inflow side and biologically treating the water to be treated ,
An ejector pipe for converting the potential energy of the upstream tank treated water due to the difference in water level between the biological treatment tank and the upstream tank to kinetic energy at the position of the circulating duct in the treated water inflow side. And forming a flow of treated water containing microorganisms from the treated water outflow side in the tank to the treated water inflow side in the tank in the circulation duct, and from the upstream of the treated water flow A biological treatment tank , characterized in that an ejector-type mixing zone for mixing the treated water flowing into the tank is formed on the treated water inflow side in the tank .
被処理水が微生物を担体に固定することなく浮遊状態で含み、複数の分割生物処理槽が被処理水の通過部を設けた隔壁を介して直列に連結されるとともに、最下流分割生物処理槽内の被処理水流出側に被処理水の取り入れ口が設けられており、槽内に前記取り入れ口から最上流分割生物処理槽内の被処理水流入側へ連通する循環ダクトを備え、被処理水を生物学的に処理する生物処理槽であって、
前記循環ダクトにおける前記最上流分割生物処理槽内の被処理水流入側位置に、当該最上流分割生物処理槽とその上流側槽との水位差による上流側槽被処理水の持つ位置エネルギを運動エネルギに変換するためのエジェクタ管を設けて、前記循環ダクト内に前記最下流分割生物処理槽内の被処理水流出側から前記最上流分割生物処理槽内の被処理水流入側に微生物を含んだ被処理水の流れを形成するとともに、該被処理水の流れと上流側から前記最上流分割生物処理槽内に流入する被処理水とを混合するエジェクタ型混合域が前記最上流分割生物処理槽内の被処理水流入側に形成されるようにしたことを特徴とする生物処理槽
The treated water contains microorganisms in a floating state without being fixed to the carrier, and a plurality of divided biological treatment tanks are connected in series via a partition wall provided with a passage for treated water, and the most downstream divided biological treatment tank A treated water inlet is provided on the treated water outflow side, and a circulation duct is provided in the tank to communicate from the intake to the treated water inflow side in the most upstream divided biological treatment tank. A biological treatment tank for biologically treating water ,
The position energy of the upstream side tank treated water due to the difference in water level between the upstreammost divided biological treatment tank and the upstream tank is moved to the treated water inflow side position in the uppermost stream divided biological treatment tank in the circulation duct. An ejector pipe for converting to energy is provided, and microorganisms are contained in the circulation duct from the treated water outflow side in the most downstream divided biological treatment tank to the treated water inflow side in the uppermost divided biological treatment tank. An ejector type mixing zone that forms a flow of water to be treated and mixes the flow of water to be treated and the water to be treated flowing from the upstream side into the most upstream divided biological treatment tank includes the uppermost flow divided biological treatment. A biological treatment tank characterized by being formed on the treated water inflow side in the tank .
少なくとも前記最下流分割生物処理槽が硝化槽であり、この硝化槽の上流側に脱窒槽からなる分割生物処理槽を設けたことを特徴とする請求項4に記載の生物処理槽 At least the most downstream splitting biological treatment tank is nitrification tank, biological treatment tank according to claim 4, characterized in that a dividing biological treatment tank made of denitrification reactor upstream of the nitrification tank. 槽内の被処理水が微生物を担体に固定することなく浮遊状態で含み、槽外下流側に微生物と生物学的に処理された処理水とを分離する分離手段を備えており、槽内に前記分離手段に設けられた微生物の取り入れ口から槽内の被処理水流入側へ連通する循環ダクトを備え、被処理水を生物学的に処理する生物処理槽であって、
前記循環ダクトにおける槽内の被処理水流入側位置に、当該生物処理槽とその上流側槽との水位差による上流側槽被処理水の持つ位置エネルギを運動エネルギに変換するためのエジェクタ管を設けて、前記循環ダクト内に前記分離手段から分離された微生物の流れを形成するとともに、該微生物の流れと上流側から槽内に流入する被処理水とを混合するエジェクタ型混合域が槽内の被処理水流入側に形成されるようにしたことを特徴とする生物処理槽
The treated water in the tank contains microorganisms in a floating state without fixing them to the carrier, and is equipped with a separating means for separating the microorganisms and the biologically treated treated water on the downstream side outside the tank. A biological treatment tank for biologically treating the water to be treated, comprising a circulation duct communicating with the treated water inflow side in the tank from the microorganism inlet provided in the separation means ;
An ejector pipe for converting the potential energy of the upstream tank treated water due to the difference in water level between the biological treatment tank and the upstream tank to kinetic energy at the position of the circulating duct in the treated water inflow side. An ejector-type mixing zone for forming a flow of microorganisms separated from the separation means in the circulation duct and mixing the flow of microorganisms and water to be treated flowing from the upstream side into the tank. A biological treatment tank formed on the inflow side of water to be treated .
前記エジェクタ型混合域に曝気装置を組み入れたことを特徴とする請求項1から6のいずれかに記載の生物処理槽 The biological treatment tank according to any one of claims 1 to 6, wherein an aeration apparatus is incorporated in the ejector-type mixing area . 前記エジェクタ管が流量調整手段を備えていることを特徴とする請求項1からのいずれかに記載の生物処理槽 Biological treatment tank according to any one of 7 to claim 1, characterized in that the ejector tube is provided with a flow regulating means. 前記循環ダクトに、一端側がこの循環ダクトに連通し、他端側が槽内水面から突出するように空気抜き管を設けたことを特徴とする請求項1から8のいずれかに記載の生物処理槽 The biological treatment tank according to any one of claims 1 to 8, wherein an air vent pipe is provided in the circulation duct so that one end side communicates with the circulation duct and the other end side protrudes from the water surface in the tank . 請求項1又は2に記載の生物処理槽を用いた生物処理方法であって、前記エジェクタ管を通過する際の被処理水の運動量により、生物処理槽内の被処理水流出側の周囲の流体を生物処理槽内の被処理水流入側へ向けて前記循環ダクトに引き込むエジェクタ効果による吸引流れを発生させ、このエジェクタ効果による吸引流れにより、生物処理槽内の被処理水流入側と被処理水流出側との間に循環流を形成して前記スクリーンへの担体の付着を防止し、かつ、前記担体を、前記循環ダクトを介して生物処理槽内の被処理水流入側へ戻し、上流側から生物処理槽内に流入する被処理水と混合するようにしたことを特徴とする生物処理方法 It is a biological treatment method using the biological treatment tank of Claim 1 or 2, Comprising: The fluid around the to-be-processed water outflow side in a biological treatment tank by the momentum of the to-be-processed water at the time of passing the said ejector pipe | tube. the generate a suction flow by ejector effect to draw in the circulating duct toward the treatment water inflow side of the biological treatment tank, the suction flow by the ejector effect, the treatment water inflow side and treated water biological treatment tank between the outlet side to form a circulating flow to prevent adhesion of the carrier to the screen, and the carrier, back through the circulation duct to the treatment water inflow side of the biological treatment tank, the upstream side A biological treatment method characterized in that it is mixed with water to be treated flowing into the biological treatment tank . 請求項3〜5のいずれか1項に記載の生物処理槽を用いた生物処理方法であって、前記エジェクタ管を通過する際の被処理水の運動量により、生物処理槽内の被処理水流出側の周囲の流体を生物処理槽内の被処理水流入側へ向けて前記循環ダクトに引き込むエジェクタ効果による吸引流れを発生させ、このエジェクタ効果による吸引流れにより、前記微生物を、前記循環ダクトを介して生物処理槽内の被処理水流入側へ戻し、上流側から生物処理槽内に流入する被処理水と混合するようにしたことを特徴とする生物処理方法 It is a biological treatment method using the biological treatment tank of any one of Claims 3-5, Comprising: Outflow of the to-be-processed water in a biological treatment tank by the momentum of the to-be-processed water at the time of passing the said ejector pipe | tube towards the fluid around the sides to the treatment water inflow side of the biological treatment tank to generate a suction flow by ejector effect to draw in the circulating duct, the suction flow by the ejector effect, the microorganism through the circulation duct The biological treatment method is characterized in that it is returned to the treated water inflow side in the biological treatment tank and mixed with the treated water flowing into the biological treatment tank from the upstream side . 請求項6に記載の生物処理槽を用いた生物処理方法であって、前記エジェクタ管を通過する際の被処理水の運動量により、前記分離手段からの微生物を生物処理槽内の被処理水流入側へ向けて前記循環ダクトに引き込むエジェクタ効果による吸引流れを発生させ、このエジェクタ効果による吸引流れにより、前記微生物を、前記循環ダクトを介して生物処理槽内の被処理水流入側へ戻し、上流側から生物処理槽内に流入する被処理水と混合するようにしたことを特徴とする生物処理方法 It is a biological treatment method using the biological treatment tank of Claim 6, Comprising: The microorganisms from the said isolation | separation means flow into the to-be-processed water in a biological treatment tank by the momentum of the to-be-processed water at the time of passing the said ejector pipe | tube. to generate a suction flow by ejector effect to draw in the circulating duct toward the side, the suction flow by the ejector effect, the microorganism, back through the circulation duct to the treatment water inflow side of the biological treatment tank, upstream A biological treatment method characterized by mixing with water to be treated flowing into a biological treatment tank from the side .
JP2004185350A 2004-06-23 2004-06-23 Biological treatment tank and biological treatment method Expired - Fee Related JP4438529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004185350A JP4438529B2 (en) 2004-06-23 2004-06-23 Biological treatment tank and biological treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004185350A JP4438529B2 (en) 2004-06-23 2004-06-23 Biological treatment tank and biological treatment method

Publications (2)

Publication Number Publication Date
JP2006007033A JP2006007033A (en) 2006-01-12
JP4438529B2 true JP4438529B2 (en) 2010-03-24

Family

ID=35774852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004185350A Expired - Fee Related JP4438529B2 (en) 2004-06-23 2004-06-23 Biological treatment tank and biological treatment method

Country Status (1)

Country Link
JP (1) JP4438529B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106115899A (en) * 2016-08-05 2016-11-16 郑州碧兴环保科技有限公司 A kind of potential energy reoxygenation sewage-treatment plant and parallel system thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5003999B2 (en) * 2007-02-13 2012-08-22 株式会社日立プラントテクノロジー Waste water treatment method and apparatus
JP4871821B2 (en) * 2007-09-20 2012-02-08 株式会社神鋼環境ソリューション Air diffusion evaluation method
JP5468251B2 (en) * 2008-12-26 2014-04-09 株式会社西原環境 Supporting bioreactor
CN103508524B (en) * 2012-06-19 2014-12-17 中国市政工程西北设计研究院有限公司浙江分院 Wave vibration type mixed reaction pond using differential potential energies of water flow
JP6394977B2 (en) * 2015-03-24 2018-09-26 Jfeエンジニアリング株式会社 Carrier input type sewage treatment equipment
JP6394976B2 (en) * 2015-03-24 2018-09-26 Jfeエンジニアリング株式会社 Carrier input type sewage treatment equipment
JP6394980B2 (en) * 2015-04-21 2018-09-26 Jfeエンジニアリング株式会社 Carrier input type sewage treatment equipment
CN117509924B (en) * 2024-01-02 2024-04-02 华电水务装备(天津)有限公司 Biomembrane carrier and biomembrane reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106115899A (en) * 2016-08-05 2016-11-16 郑州碧兴环保科技有限公司 A kind of potential energy reoxygenation sewage-treatment plant and parallel system thereof
CN106115899B (en) * 2016-08-05 2018-10-16 郑州碧兴环保科技有限公司 A kind of potential energy reoxygenation sewage-treatment plant and its parallel system

Also Published As

Publication number Publication date
JP2006007033A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP5665307B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
JP5217159B2 (en) Sewage treatment apparatus and method
US7674380B2 (en) Apparatus for treating sewage using a semi-batch process and associated method
WO1996037444A1 (en) Method of aerobically treating wastewater and treatment tank
JP4438529B2 (en) Biological treatment tank and biological treatment method
KR101097144B1 (en) Advanced batch equipment and the method thereof for sewage-wastewater using an anoxic/anaerobic bioreactor
JP2011000555A (en) Wastewater treatment facility and method of rebuilding the same
CN114230007A (en) Improved oxidation ditch upgrading and transforming method
KR102171365B1 (en) Advanced biological sewage and wastewater treatment facility of continuous flow using double tank structure
CN110550813A (en) Sewage treatment device
CN105293701A (en) Carbon source reserve type immobilized bioreactor (IBR)
JP4328102B2 (en) Wastewater biological treatment tank and biological treatment method
WO2012049909A1 (en) Waste water treatment equipment
KR100882818B1 (en) An aeration apparatus
JP3150530B2 (en) Biological nitrogen removal equipment
CN212292986U (en) Mud film biochemical sewage treatment system
KR101634292B1 (en) Wastewater treatment system using carrier based on modified a2o
JPH08506267A (en) Method and apparatus for wastewater treatment with biological activated sludge
KR101928327B1 (en) Waste water treatment apparatus of sequencing batch reactor activated sludge type and method thereof using bidirectional agitating circulator
JPH11290882A (en) Nitrogen removing apparatus
RU98997U1 (en) INSTALLATION OF BIOLOGICAL SEWAGE TREATMENT
KR100446107B1 (en) Bioreactor for Treating Wastewater
KR100540549B1 (en) An Apparatus for Advanced Wastewater Treatment Using Vertical Type Membrane Bio-Reactor
JPH10216787A (en) Waste water treatment equipment
JPH08252596A (en) Nitrating and denitrifying method and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4438529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees