WO1996037444A1 - Method of aerobically treating wastewater and treatment tank - Google Patents

Method of aerobically treating wastewater and treatment tank Download PDF

Info

Publication number
WO1996037444A1
WO1996037444A1 PCT/JP1996/001365 JP9601365W WO9637444A1 WO 1996037444 A1 WO1996037444 A1 WO 1996037444A1 JP 9601365 W JP9601365 W JP 9601365W WO 9637444 A1 WO9637444 A1 WO 9637444A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment tank
carrier
sewage
tank
aeration
Prior art date
Application number
PCT/JP1996/001365
Other languages
French (fr)
Japanese (ja)
Inventor
Noboru Katsukura
Takehiko Yamada
Kouji Mishima
Akinori Nishii
Souta Nakagawa
Eiji Tochikubo
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP14695995A external-priority patent/JPH08318290A/en
Priority claimed from JP20856295A external-priority patent/JP3228455B2/en
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to DE1996626864 priority Critical patent/DE69626864T2/en
Priority to US08/952,609 priority patent/US6077424A/en
Priority to EP96914409A priority patent/EP0933334B1/en
Publication of WO1996037444A1 publication Critical patent/WO1996037444A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • C02F3/085Fluidized beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2334Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements provided with stationary guiding means surrounding at least partially the stirrer
    • B01F23/23342Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements provided with stationary guiding means surrounding at least partially the stirrer the stirrer being of the centrifugal type, e.g. with a surrounding stator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an aerobic treatment method for sewage and a treatment tank therefor, and more particularly to a method for holding sewage, human waste, organic industrial wastewater, etc., by holding a microorganism-immobilized carrier in an aerobic treatment tank.
  • the present invention relates to a biologically aerobic treatment method and a treatment tank therefor. (Conventional technology)
  • sewage treatment technology In recent years, activated sludge method, biofilm method, immobilized microorganisms method, etc. are known as sewage treatment technology, but from the viewpoint of efficient use of land, development of sewage treatment method with a smaller area is awaited. Aerobic treatment of sewage using a carrier on which microorganisms are immobilized is attracting attention, coupled with improved performance of the carrier material.
  • the present inventors have also previously developed a sewage treatment apparatus shown in FIG. 9 using a carrier on which microorganisms are immobilized.
  • sewage is introduced from the inflow pipe 7 to one end of the treatment tank 1, aerated in the treatment tank 1, becomes treated water, and flows out through the outflow pipe 8.
  • the carrier 2 on which the microorganisms are immobilized is maintained in a floating state by the fine bubbles supplied from the diffusing means 3 such as a diffuser and a diffuser tube.
  • the air diffuser 3 is disposed on the bottom of the treatment tank 1 and is supplied with pressurized air from the blower 4 via the air pipe 5, and supplies countless fine bubbles to the sewage from near the bottom of the treatment tank.
  • the myriad of fine bubbles rise up in the sewage and partially dissolve in the sewage.
  • the carrier 2 in the sewage is pushed by the rising fine bubbles and rises in the treatment tank 1, and sinks by its own weight in an area where the fine bubbles do not rise, circulates in the wastewater and is maintained in a floating state.
  • a carrier separator 6 is arranged at the other end of the treatment tank 1 and separates the carrier from the treated water flowing out of the treatment tank.
  • the carrier 2 on which microorganisms are immobilized flows in the horizontal direction from the inflow end of the treatment tank 1 (the left end of the treatment tank in Fig. 10) to the outflow end together with the water to be treated.
  • the treatment tank 1 becomes uneven and the treatment capacity of the treatment tank is low.
  • the carrier separator 6 was subjected to a force for preventing the flow of a large amount of the carrier, and a large amount of the carrier was gathered in the vicinity of the carrier separator 6, which hindered the separation of the carrier and the treated water.
  • the air diffuser 3 must be provided with an air supply pipe at the bottom of the tank, and it has a large area with many small holes and is easily clogged. It was necessary to replace the guard, but when replacing the air diffuser 3, it was necessary to remove a large amount of carrier outside the treatment tank.
  • the immobilized carrier when used in an aerobic treatment tank (deep aeration tank) having a large water depth, for example, a water depth of about 10 m, the carrier precipitates at the bottom and the treatment performance is remarkable. Dropped. Installing a diffuser at the bottom of the treatment tank to prevent carrier sedimentation has the disadvantage that a high-pressure blower is required to spray a fine air stream at a large water depth, which increases equipment costs. Furthermore, when a fine air stream was injected into the wastewater from a large water depth of about 1 Om, there was a problem that nitrogen gas was excessively dissolved in the wastewater and sludge floated up in the final sedimentation basin.
  • an object of the present invention to provide a method and a tank for aerobic treatment of sewage, which eliminates the disadvantages of the prior art. More specifically, an object of the present invention is to sufficiently stir and circulate the sewage and the microorganism-immobilized carrier (or activated sludge when coexisting with activated sludge) in the aerobic treatment tank and circulate the carrier (and activated sludge). ) Is to be evenly distributed in sewage. Another object of the present invention is to prevent carriers from accumulating on the bottom surface of the processing tank. Another object of the present invention is to make it possible to replace the air diffusing means without removing the carrier out of the treatment tank.
  • Still another object of the present invention is to provide a deep aeration tank which prevents the bottom of the carrier from being settled in a treatment tank having a large depth, and also prevents a problem associated with dissolution of excessive nitrogen gas in sewage. It is. Still another object of the present invention is to provide an aerobic treatment method and a treatment tank which are energy-saving and have high oxygen dissolving efficiency.
  • a method for treating sewage by using a carrier on which microorganisms are immobilized includes a submerged stirring type aeration device (submerged air cleaner) in which an aeration mechanism is arranged on the discharge side of an impeller. Placed and operated in the treatment tank, mix air into sewage and make it finer, and circulate carrier and sewage in the treatment tank through a submerged agitating aerator to distribute carrier almost uniformly in the treatment tank It is to let.
  • a carrier in which microorganisms are immobilized and activated sludge together.
  • the underwater stirring type aeration device is configured so that the carrier and wastewater circulate through the treatment tank through it.
  • the carrier is substantially uniformly suspended and distributed in the sewage in the treatment tank.
  • the underwater stirring type aeration apparatus preferably has a discharge port disposed near the bottom surface of the treatment tank and directed downward or laterally.
  • the underwater stirring type aeration device is installed so that the discharge port opens upward in the middle water depth of the aeration tank.
  • intermediate water depth refers to an arbitrary position between the water surface and the bottom of the tank. In practice, a distance of 5 m to 6 m from the water surface is the most efficient and preferable.
  • the underwater stirring type aeration device is equipped with a draft tube extending to the bottom of the deep aeration tank, and sucks the carrier and sewage from near the bottom of the aeration tank.
  • the present invention solves the disadvantage of the prior art that the carrier accumulates at the end of the aerobic treatment tank due to the flow inside the treatment tank, and is based on a general aeration method using fine bubbles supplied from a diffuser or a diffuser.
  • a submerged stirring type aerator with excellent ability to form a stirring flow is provided.
  • Underwater agitation type aerators are provided with an appropriate number of units at appropriate positions so that a uniform agitated flow is generated according to the shape of the processing tank, so that the suspended carriers continue to be uniformly dispersed in the tank. Such carrier bias is unlikely to occur.
  • the aerobic sewage treatment tank and the deep aeration tank of the present invention can be incorporated into a treatment device for denitrifying sewage or a treatment device for denitrifying and dephosphorizing sewage.
  • sewage is subjected to anaerobic treatment and aerobic treatment, it is preferable to return the carrier to the aerobic treatment tank and return the sewage to the anaerobic treatment tank.
  • the pump capacity increases.
  • a transfer pump provided at the outflow end of the aerobic treatment tank, an air lift pump, a non-blocking vortex pump, or a single screw pump can be used so that the carrier or the biofilm is not destroyed. It is desirable that the amount of water transferred can be arbitrarily changed, for example, by changing the motor speed by frequency control.
  • the aerobic treatment method and the treatment tank of the present invention include, for example, sequentially connecting an oxygen-free process, an aerobic process, and a sedimentation process, circulating the effluent of the aerobic process to the anoxic process, A circulating nitrification denitrification method and apparatus for returning sludge to the anoxic process, or an anaerobic process is provided before the anoxic process, and the settled sludge from the settling process is returned to the anaerobic process, and denitrification It can be used in the aerobic treatment step and the aerobic treatment tank in the dephosphorization activated sludge method.
  • one or more underwater stirring type aerators are installed in the aerobic treatment tank. If the vertical cross section of the processing tank is rectangular in the vertical direction, install multiple underwater stirring aerators so that the flow in the tank does not shift, stir the inside of the processing tank evenly, and change to a submerged stirring aerator.
  • the microorganism-immobilized carrier usable in the present invention is preferably a particulate carrier composed of sand, activated carbon, polyurethane foam, polyvinyl alcohol, polypropylene, polyethylene, polyethylene glycol, cellulose, etc., but is not necessarily limited to these carriers. .
  • the apparent specific gravity of the carrier is preferably a little heavier than the sewage of the liquid to be treated, for example, about 1.02.
  • an adhesion immobilization method is generally used, but an inclusive immobilization method is also applicable.
  • a carrier outflow prevention means such as a net, a grating, a punching plate, or an edge wire screen for preventing the outflow of the carrier is provided.
  • an upper discharge type submerged mechanical stirring type aeration apparatus having a discharge port in a deep part of the intermediate water of the aeration tank is arranged. Then, the suction part of the aeration apparatus and the tank bottom are connected by a draft tube.
  • a plurality of aeration devices are installed, and they are arranged in a single row or multiple rows in the longitudinal direction of the aeration tank.
  • the aeration tank is designed such that the bottom of the tank faces the suction port of the draft tube, It can be tilted for easy movement.
  • a submerged stirring type aeration apparatus having an excellent stirring function is used.
  • the carrier can be greatly improved in bias.
  • the use of a submerged stirring type aerator in the aerobic treatment tank reduces the oxygen dissolving efficiency due to the secular change due to clogging of the aeration means as compared with the conventional full aeration method using fine bubbles. Therefore, high processing performance can be obtained in an aerobic processing tank. Furthermore, it is not necessary to remove the carrier during maintenance of the aeration apparatus.
  • FIG. 1 is a plan view showing a first embodiment of the aerobic treatment tank of the present invention.
  • FIG. 2 is a vertical longitudinal sectional view of the processing tank of FIG.
  • FIG. 3 is a schematic vertical sectional view of a nitrification denitrification apparatus incorporating the aerobic treatment tank of the present invention.
  • FIG. 4 is a configuration diagram showing a deep aeration tank according to a second embodiment of the present invention.
  • FIG. 4a is a plan view
  • FIG. 4b is a cross-sectional view taken along line AA of FIG. 4a
  • FIG. 4B is a sectional view taken along line BB of FIG. 4A.
  • FIG. 5 is a configuration diagram showing a deep aeration tank according to a third embodiment of the present invention.
  • FIG. 5A is a plan view
  • FIG. 5B is a sectional view taken along line AA of FIG. 5A
  • Figure 6 is a schematic vertical cross-sectional view of a nitrification denitrification system incorporating a deep aeration tank.
  • FIG. 7 is a schematic vertical sectional view of the first embodiment of the underwater stirring type aeration apparatus used in the present invention.
  • FIG. 8 is a schematic vertical sectional view of a second embodiment of the underwater stirring type aeration apparatus used in the present invention.
  • FIG. 9 is a schematic vertical sectional view showing a conventional aerobic treatment tank using a carrier. (Best mode for carrying out the invention)
  • FIG. 1 is a plan view showing an embodiment of an aerobic treatment tank of the present invention, and FIG. It is a longitudinal section of a tank.
  • One underwater stirring type aeration device 30 is arranged in each of the first half and the second half of the plane of the processing tank 1 which is bisected by the broken line 16 in FIG.
  • the broken line 16 is for explaining the position, and does not mean that a partition plate is provided in the processing tank 1 or the like.
  • the vertical and horizontal dimensions of each half of the plane of the processing tank 1 are preferably 1: 1.
  • a circulating flow F is formed in the processing tank 1, and the microorganism-immobilized carrier 2 is substantially uniform throughout the processing tank 1 by such a circulating flow F regardless of the presence of the partition plate. Disperses and floats.
  • a carrier transfer pump 10 can be installed at the outflow end of the treatment tank 1 to prevent the concentration of the carrier at the outflow end due to the flow of the water to be treated (sewage) in the treatment tank 1.
  • the carrier transfer pump 10 sucks the carrier 2 near the outflow end and transfers it to the inflow end via the conduit 11.
  • the provision of the carrier pump enables fine adjustment of the carrier concentration in the processing tank 1. 1 and 2 is equipped with a carrier separator 6, a treated water outflow pipe 8, a blower 4, an air pipe 5, an air flow meter 9, and the like.
  • FIG. 3 is a schematic vertical cross-sectional view of a nitrification denitrification treatment apparatus incorporating an aerobic treatment tank.
  • the aerobic treatment tank 1 has the same configuration as the aerobic treatment tank 1 in FIG. 2, and is used in combination with the oxygen-free tank 12.
  • sewage flows from the inflow pipe 7 to the oxygen-free tank 12 together with the nitrification circulating fluid after being separated into the carrier and the nitrifying circulating fluid by the separator 13 and denitrated. After being subjected to the nitrogen treatment, it flows into the aerobic treatment tank 1 from the inlet provided at the upper part of the wall 15 separating the anoxic tank and the aerobic treatment tank 1.
  • a circulating flow is generated by a submerged stirring type aeration apparatus, and the sewage undergoes a sufficient nitrification treatment.
  • the sewage treated in the treatment tank 1 flows out of the treatment tank 1 through the carrier separator 6.
  • the carrier plus nitrifying circulating fluid transferred by the carrier transfer pump 10 is separated into the carrier 2 and the nitrifying circulating fluid 14 by the separator 13, and the nitrifying circulating fluid 14 is circulated to the oxygen-free tank 12. .
  • Oxygen-free tank 4 Q Om 3 (residence time 4.0 hours)
  • Aerobic treatment tank 400m 3 (residence time 4.0 hours)
  • Nitrification liquid circulation 20 Om 3 / hour
  • Aeration volume Treatment tank A part; 300 Nm 3 , hour
  • both treatment tanks A and B one agitated underwater aerator with an oxygen dissolution efficiency of 15% is installed.
  • a circulating flow was formed by the underwater stirring type aeration device, and that the mixture was mixed uniformly.
  • the deviation of the carrier in the treatment tank was within ⁇ 5%.
  • the nitrification performance could be kept high in the entire treatment tanks A and B, and the ammonia nitrogen in the treated water was always less than 1 mg / liter.
  • the draft tube 35 extending between the aeration device 30 and the bottom surface of the aeration tank 50 generally has a diameter of 40 mm to 240 mm, and has a diameter capable of securing a liquid rising flow rate at which the carrier 2 can stably rise.
  • the carrier 2 is a granular hydrophilic gel having a particle size of lmm to 10 mm, a plastic piece, a polymer carrier having fibers entangled in a marimo shape, a sponge, a foamable ceramic, or the like.
  • the deep aeration tank 50 can be used as an air tank in the standard activated sludge method, a nitrification tank (aerobic tank) in the nitrification denitrification method, or an aerobic tank in the anaerobic-anoxic-aerobic method.
  • a known aerator 30 can be used, but if the carrier is soft, the propeller installation position, rotation speed, Alternatively, it is necessary to take measures to prevent destruction, such as finishing the flow path smoothly.
  • the deep aeration tank 50 in FIG. 4 has a width of 8 mx a length of 24 mx water depth (H ⁇ 1 Om) and has a raw water inflow section 32 and a treated water outflow section 38.
  • underwater agitation type aeration apparatus 30 those 15 kW installed three in the longitudinal direction of the aeration tank 50, installed water depth H 2 is 5
  • the aeration device 30 is a top discharge type, and the suction part at the bottom of the aeration device and the tank bottom 39 are connected by a draft tube 35 having an inner diameter of 136 Omm. It is a hydrophilic gel with a specific gravity of 1.02, and its usage is 15 VZV% by volume.
  • the stirring blade that excites the circulating flow rotates, and near the blade, air is ventilated from the air pipe 5 at a rate of 8 to 18 Nm 3 / hour.
  • a flow pattern as shown by an arrow F in FIG. 1B is formed in the aeration tank, and the carrier 2 flows smoothly in the aeration tank without settling on the bottom surface 39.
  • the liquid ascending flow velocity in the draft tube 35 at this time is 30 m to 4 OmZ. Since the sedimentation velocity of the carrier 2 is 2 m to 3 m / min, the carrier 2 stably rises in the draft tube 35.
  • FIG. 5 is a configuration diagram showing a deep aeration tank 50 according to the third embodiment of the present invention.
  • FIG. 5A is a plan view
  • FIG. 5B is a cross-sectional view taken along line AA of FIG. 5A
  • FIG. 5B is a sectional view taken along line BB of FIG. 5A.
  • FIG deep aeration tank 50 of 5 is the width 8mx length 20mx water depth (H ⁇ ) 10m, 2 units over 5 kW discharge type underwater agitation type aeration apparatus 30 7., which was placed in a water depth (H 2) 5 m It is.
  • the carrier 2 was settled at the corner of the aeration tank 50, so a 30-degree inclined surface 37 was provided on the bottom of the tank toward the suction port of the draft tube 35.
  • the underwater stirring type aeration device 30 can reduce the aeration power as compared with the swirling flow type.
  • the underwater stirring type aeration device 30 must have strong stirring and mixing power in the tank. Therefore, the tank can be maintained in a completely mixed state. As a result, the carrier concentration in the tank can be made uniform, and the ability of the carrier can be maximized.
  • FIG. 6 is a schematic vertical cross-sectional view of a nitrification denitrification device incorporating a deep aeration tank.
  • a deep aeration tank 50 was adopted as a nitrification tank (aerobic tank) 42 of a circulating nitrification denitrification device, and operated as follows.
  • Denitrification tank 41 width 6.5mx length 31mx water depth 10m,
  • Nitrification tank 42 width 6.5mx length 23mx water depth 10m,
  • Underwater stirring type aerator 30 DSR-140UP (EBARA, 1 kw) x 3 units,
  • Aeration volume 12 NmV (min ⁇ unit) X 3 units
  • hydrophilic gel made of polyethylene glycol
  • a flow pattern as shown by arrow F in Fig. 6 was formed in the aeration tank, and the carrier flowed in the tank at a uniform concentration (15%) without settling on the bottom surface.
  • the average water quality of the water is BOD 5.4 mg / litre, T—N 9 .S mg Z litre, NH 4 —N 0.4 mg Z litre. Yes, very good.
  • FIG. 7 is a schematic vertical sectional view ′ of the first embodiment of the underwater stirring type aeration apparatus used in the present invention.
  • the aeration device 60 in FIG. 7 is of a lower discharge type, and an impeller 59 provided with a blade 58 rotated by a motor 56 via a gear reducer 57 is housed in the outer casing 52. .
  • the aeration device 60 sucks sewage and carrier from the suction port 51 opening upward, flows through the flow path 55 by the rotating blades 58, and the discharge port 62 opens laterally below. Discharge.
  • the air casing 54 provided on the discharge side of the impeller 59 is supplied with pressurized air from the air pipe 5 and passes through the air discharge port 53 into the sewage flowing in the flow path 55 to form fine air. Supply air bubbles.
  • the distance between the outer casing 52 and the tip of the blade 58 is made larger than the diameter of the carrier, and the blade 58 is finished with a grinder in order to prevent the carrier from being destroyed by the aeration device 60 and the separation of microorganisms.
  • the peripheral speed of the tip of the blade 58 is set to about 1 OmZ second or less.
  • FIG. 8 is a schematic vertical sectional view of a second embodiment of the underwater stirring type aeration apparatus used in the present invention.
  • the aeration device 70 in FIG. 8 is of a top discharge type, and an impeller 59 having a blade 58 rotated by a motor 56 via a gear reducer 57 is housed in the outer casing 52. .
  • the aeration device 70 sucks sewage and carrier from the suction port 71 opening downward, passes through the flow path 55 by the rotating blades 58, and the discharge port ⁇ 2 opening laterally upward. Discharge.
  • An air casing 74 arranged at a part of the outer casing 52 on the discharge side of the impeller 59 is supplied with pressurized air from the air pipe 5, and flows through the air discharge port 53 through the flow path 55. Supply fine air bubbles into flowing treated water.
  • the same measures as in the aeration apparatus 60 in FIG. 7 are taken to prevent the carrier from being destroyed by the aeration apparatus 70 and the microorganisms from being peeled off.
  • the carrier is substantially uniformly distributed in the treatment tank in a floating distribution. Therefore, the sewage treatment capacity is improved, and the carrier is treated with the carrier in the carrier separator. The occurrence of a separation failure with water is prevented.
  • strong agitation prevents the carrier from settling and accumulating between the vertical position of the air supply opening of the air diffuser arranged at the bottom of the processing tank and the bottom of the processing tank. Since the part can be fluidized and effectively used, the amount of carrier used can be reduced to the minimum necessary.
  • the underwater stirring type aerator equipped with an aeration mechanism on the discharge side of the impeller used in the present invention has a relatively small surface area and does not have many small holes. There is no need to remove it outside the processing tank. According to the aerobic treatment tank of the present invention, since prevention walls and agitation transfer means are not required, costs such as equipment costs and operation costs can be reduced. In addition, a region in which the carrier does not circulate is not generated in the processing tank, and high processing performance can be obtained in the entire processing tank.
  • a submerged stirring type aerator with a draft tube connected to a lower portion bottom sedimentation of the immobilized carrier can be prevented. Furthermore, since the amount of aerated air can be reduced, energy-saving treatment can be performed, and the concentration of the carrier in the tank can be equalized, so that the capacity of the carrier can be maximized.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

A method of treating wastewater with a microorganism immobilized on carriers and an aerobic treatment tank for use therein. One or more submerged agitation aerators provided with an air-diffusing mechanism on the delivery side of an impeller are disposed in the treatment tank to atomize a mixture of air and wastewater and circulate the carriers and wastewater in the treatment tank through the aerators, thus distributing the carriers nearly uniformly in a suspended state in the tank. The delivery port of the aerator is disposed so as to open in the vicinity of the bottom or the intermediate section of the tank. In the latter case, the aerator sucks up the carriers and wastewater from the vicinity of the tank bottom through a draft tube extending toward the bottom.

Description

明 細 書  Specification
汚水の好気性処理方法及び処理槽  Aerobic treatment method and treatment tank for sewage
(発明の属する技術分野)  (Technical field to which the invention belongs)
本発明は、 汚水の好気性処理方法及びそのための処理槽に係り、 特に、 好気性 処理槽内に、 微生物を固定化した担体を保持して、 下水、 し尿、 有機性産業排水 等の汚水を生物学的に好気性処理する方法及びそのための処理槽に関する。 (従来の技術)  The present invention relates to an aerobic treatment method for sewage and a treatment tank therefor, and more particularly to a method for holding sewage, human waste, organic industrial wastewater, etc., by holding a microorganism-immobilized carrier in an aerobic treatment tank. The present invention relates to a biologically aerobic treatment method and a treatment tank therefor. (Conventional technology)
近年、 汚水処理技術としては、 活性汚泥法、 生物膜法、 固定化微生物法等が知 られるが、 土地の効率的利用の観点から、 より省面積の汚水処理方法の開発が待 たれており、 微生物を固定化した担体を利用する汚水の好気性処理方法が、 担体 素材の性能向上と相まって注目を集めている。 本発明者らにおいても、 先に、 微 生物を固定化した担体を利用する図 9に示す汚水処理装置を開発した。 図 9の処 理装置において、 汚水は、 流入管 7から処理槽 1の一端へ導入され、 処理槽 1内 で曝気処理され、 処理水となって流出管 8を通り流出される。 処理槽 1内におい ては、 微生物を固定化した担体 2が、 ディフューザ、 散気管等の散気手段 3から 供給される微細気泡により浮遊状態に維持される。  In recent years, activated sludge method, biofilm method, immobilized microorganisms method, etc. are known as sewage treatment technology, but from the viewpoint of efficient use of land, development of sewage treatment method with a smaller area is awaited. Aerobic treatment of sewage using a carrier on which microorganisms are immobilized is attracting attention, coupled with improved performance of the carrier material. The present inventors have also previously developed a sewage treatment apparatus shown in FIG. 9 using a carrier on which microorganisms are immobilized. In the treatment apparatus shown in FIG. 9, sewage is introduced from the inflow pipe 7 to one end of the treatment tank 1, aerated in the treatment tank 1, becomes treated water, and flows out through the outflow pipe 8. In the treatment tank 1, the carrier 2 on which the microorganisms are immobilized is maintained in a floating state by the fine bubbles supplied from the diffusing means 3 such as a diffuser and a diffuser tube.
散気手段 3は、 処理槽 1の底面に配置され、 ブロワ 4から空気管 5を経て圧力 空気を供給され、 処理槽の底面付近から、 汚水中へ無数の微細気泡を供給する。 無数の微細気泡は、 汚水中を上昇すると共に、 部分的に汚水中に溶解する。 汚水 中の担体 2は、 上昇する微細気泡に押されて処理槽 1内を上昇し、 微細気泡の上 昇しない区域において自重により沈降して、 汚水中を循環し浮遊状態に維持され る。 担体分離器 6が、 処理槽 1の他端に配置され、 処理槽から流出する処理水と 担体を分離させる。  The air diffuser 3 is disposed on the bottom of the treatment tank 1 and is supplied with pressurized air from the blower 4 via the air pipe 5, and supplies countless fine bubbles to the sewage from near the bottom of the treatment tank. The myriad of fine bubbles rise up in the sewage and partially dissolve in the sewage. The carrier 2 in the sewage is pushed by the rising fine bubbles and rises in the treatment tank 1, and sinks by its own weight in an area where the fine bubbles do not rise, circulates in the wastewater and is maintained in a floating state. A carrier separator 6 is arranged at the other end of the treatment tank 1 and separates the carrier from the treated water flowing out of the treatment tank.
従来技術において、 汚水処理のため汚水中へ空気を散気混合する曝気装置とし て、 汚水表面を攪拌するもの、 汚水中へ多数の小孔から空気を散気するものに加 え、 羽根車の吐出側に散気機構を設けた水中攪拌式曝気装置 (羽根付きエアレー タ) が、 例えば、 特公昭 6 1 - 3 6 4 7 5号公報、 特公昭 6 1— 3 6 4 7 6号公 報、 特公昭 6 1— 3 8 0 0 0号公報、 米国特許第 4, 5 1 2 , 9 3 6号明細書等 により知られる。 図 9の処理槽 1は、 散気手段 3の酸素溶存効率が高いこと、 散気手段 3による 攪拌力が小さ t、故に担体 2が破壊されな t、等の利点を有するが、 以下に記述する 短所を有するものであった。 In the prior art, as an aerator that diffuses and mixes air into sewage for sewage treatment, there are aerators that stir the surface of sewage and those that diffuse air through a number of small holes into sewage. Underwater agitation type aerators with air diffusers on the discharge side (airers with blades) are disclosed in, for example, Japanese Patent Publication No. 61-36475, Japanese Patent Publication No. 61-364746 And JP-B-61-380000, and U.S. Pat. No. 4,512,936. The treatment tank 1 in FIG. 9 has the advantages that the oxygen dissolving efficiency of the diffusing means 3 is high, the stirring power by the diffusing means 3 is small t, and thus the carrier 2 is not destroyed t. Had disadvantages.
( 1 ) 微生物を固定化した担体 2が、 被処理水と一緒に処理槽 1の流入端 (図 1 0の処理槽の左端) から流出端へ水平方向に流動することにより、 担体の濃度 力 処理槽 1の流入端付近で低く流出端付近で高く不均一となり、 処理槽の処理 能力が低卞する。 また、 担体分離器 6が、 多量の担体の流動を阻止する力を受け、 また多量の担体が担体分離器 6付近に集まり担体と処理水との分離の障害となつ た。  (1) The carrier 2 on which microorganisms are immobilized flows in the horizontal direction from the inflow end of the treatment tank 1 (the left end of the treatment tank in Fig. 10) to the outflow end together with the water to be treated. Low near the inflow end of the treatment tank 1 and high near the outflow end, the treatment tank 1 becomes uneven and the treatment capacity of the treatment tank is low. Further, the carrier separator 6 was subjected to a force for preventing the flow of a large amount of the carrier, and a large amount of the carrier was gathered in the vicinity of the carrier separator 6, which hindered the separation of the carrier and the treated water.
( 2 ) 処理槽 1の底面に配置した散気手段 3の空気供給開口の垂直方向位置と 処理槽底面との間へ、 担体が沈降し堆積して、 それらが汚水中を循環しないため、 担体の一部が機能しない。  (2) Carriers settle and accumulate between the vertical position of the air supply opening of the air diffuser 3 located on the bottom of the treatment tank 1 and the bottom of the treatment tank, and they do not circulate in the wastewater. Does not work.
これら (1 ) 及び (2 ) の理由により、 処理槽に所定の処理能力を発生させる ためには、 計画予想担体量を大幅に上回る担体を供給することが必要であった。  For these reasons (1) and (2), it was necessary to supply a carrier that greatly exceeded the planned and expected carrier volume in order to generate the required treatment capacity in the treatment tank.
( 3 ) 散気手段 3は、 槽底部に空気供給配管を付設することが必須であり、 ま た、 広い面積に多数の小孔を備え、 目詰まりし易い構造であるため、 定期的な保 守交換が必要であつたが、 散気手段 3を交換する際には、 大量の担体を処理槽外 へ撤去することが必要であつた。  (3) The air diffuser 3 must be provided with an air supply pipe at the bottom of the tank, and it has a large area with many small holes and is easily clogged. It was necessary to replace the guard, but when replacing the air diffuser 3, it was necessary to remove a large amount of carrier outside the treatment tank.
( 4 ) 上記 (1 ) 及び (3 ) の短所を解消するため、 担体が水平方向に流動す ることを防止する防止壁の設置や攪拌移送手段を配備することが検討されたが、 処理槽の処理容量、 設備費、 運転費の点において問題を有するものであった (特 開平 7— 1 2 4 5 8 2号公報、 特開平 7— 1 3 6 6 7 8号公報、 特開平 7— 1 3 6 6 7 9号公報、 特開平 7— 1 3 6 6 8 0号公報) 。  (4) In order to solve the disadvantages of (1) and (3) above, it was considered to install a barrier to prevent the carrier from flowing in the horizontal direction and to install a stirring and transferring means. Had problems in terms of processing capacity, equipment costs, and operating costs (Japanese Unexamined Patent Publication No. 7-124,582, Japanese Unexamined Patent Publication No. Hei 7-136678, Japanese Unexamined Patent Publication No. No. 1,366,799, Japanese Patent Application Laid-Open No. Hei 7-136,680).
( 5 ) 上記 (2 ) の短所を解消するため、 散気手段 3の空気供給開口の垂直方 向位置と処理槽底面との間の担体の循環しない領域 (デッ ドゾーン) をモルタル で埋めることゃデッ ドゾーンへの担体の沈降を防止するための沈降防止板の設置 が検討されたが、 施工が困難であり、 費用が高い等の問題を有した。  (5) In order to solve the disadvantage of the above (2), mortar is used to fill the area (dead zone) where the carrier does not circulate between the vertical position of the air supply opening of the air diffuser 3 and the bottom of the processing tank. The installation of a sedimentation prevention plate to prevent the sedimentation of the carrier in the dead zone was considered, but the construction was difficult and the cost was high.
また、 大きな水深、 例えば水深 1 0 m程度、 を有する好気性処理槽 (深層曝気 槽) において固定化担体を使用した場合、 担体が底部に沈殿し、 処理性能が著し く低下した。 担体の沈殿を防止すベく散気装置を処理槽の底部に設置することは、 大きな水深で微細空気流を噴射するため高圧ブロワが必要であり、 設備費がかさ む短所があった。 更に、 1 O m程度の大きな水深から汚水中へ微細空気流を噴射 した場合、 窒素ガスが汚水中に過剰に溶解し、 最終沈殿池で汚泥が浮上する等の 問題を有した。 Also, when the immobilized carrier is used in an aerobic treatment tank (deep aeration tank) having a large water depth, for example, a water depth of about 10 m, the carrier precipitates at the bottom and the treatment performance is remarkable. Dropped. Installing a diffuser at the bottom of the treatment tank to prevent carrier sedimentation has the disadvantage that a high-pressure blower is required to spray a fine air stream at a large water depth, which increases equipment costs. Furthermore, when a fine air stream was injected into the wastewater from a large water depth of about 1 Om, there was a problem that nitrogen gas was excessively dissolved in the wastewater and sludge floated up in the final sedimentation basin.
(発明が解決しょうとする課題)  (Problems to be solved by the invention)
本発明の'目的は、 従来技術の短所を解消した汚水の好気性処理方法及び処理槽 を提供することである。 より詳しぐは、 本発明の目的は、 好気性処理槽内の汚水 及び微生物固定化担体 (活性汚泥と共存させる場合は、 更に活性汚泥) を十分に 攪拌し循環させてび担体 (及び活性汚泥) を汚水中に均一に浮遊分布させること である。 本発明の他の目的は、 処理槽の底面に担体が堆積しないようにすること である。 本発明の別の目的は、 担体を処理槽外へ撤去することなく散気手段を交 換可能にすることである。 本発明の更に別の目的は、 深さの大きな処理槽におい て、 担体の底部沈殿を防止すると共に、 汚水中への過剰な窒素ガスの溶解に伴う 問題を防止する深層曝気槽を提供することである。 本発明の更に別の目的は、 省 エネルギー的で且つ酸素溶解効率の高い好気性処理方法及び処理槽を提供するこ とである。 本発明のその他の目的及び利点は、 以下の説明及び添付の図面におい て明らかにされる。  It is an object of the present invention to provide a method and a tank for aerobic treatment of sewage, which eliminates the disadvantages of the prior art. More specifically, an object of the present invention is to sufficiently stir and circulate the sewage and the microorganism-immobilized carrier (or activated sludge when coexisting with activated sludge) in the aerobic treatment tank and circulate the carrier (and activated sludge). ) Is to be evenly distributed in sewage. Another object of the present invention is to prevent carriers from accumulating on the bottom surface of the processing tank. Another object of the present invention is to make it possible to replace the air diffusing means without removing the carrier out of the treatment tank. Still another object of the present invention is to provide a deep aeration tank which prevents the bottom of the carrier from being settled in a treatment tank having a large depth, and also prevents a problem associated with dissolution of excessive nitrogen gas in sewage. It is. Still another object of the present invention is to provide an aerobic treatment method and a treatment tank which are energy-saving and have high oxygen dissolving efficiency. Other objects and advantages of the present invention will become apparent in the following description and accompanying drawings.
(課題を解決するための手段)  (Means for solving the problem)
本発明の好気性処理槽内で、 微生物を固定化した担体を用いて汚水を処理する 方法は、 羽根車の吐出側に散気機構を配置した水中攪拌式曝気装置 (水中エアレ 一夕) を処理槽内に配置し作動させ、 空気を汚水中へ混合し微細化すると共に、 担体及び汚水を水中攪拌式曝気装置を介し処理槽内で循環させ、 処理槽内に担体 をほぼ均一に浮遊分布させるものである。 本発明の方法においては、 微生物を固 定化した担体と活性汚泥を共存させて用いることが好ましい。  In the aerobic treatment tank of the present invention, a method for treating sewage by using a carrier on which microorganisms are immobilized includes a submerged stirring type aeration device (submerged air cleaner) in which an aeration mechanism is arranged on the discharge side of an impeller. Placed and operated in the treatment tank, mix air into sewage and make it finer, and circulate carrier and sewage in the treatment tank through a submerged agitating aerator to distribute carrier almost uniformly in the treatment tank It is to let. In the method of the present invention, it is preferable to use a carrier in which microorganisms are immobilized and activated sludge together.
本発明の微生物を固定化した担体を汚水中に浮遊状態に保持し汚水を曝気処理 する好気性汚水処理槽においては、 羽根車の吐出側に散気機構を備える水中攪拌 式曝気装置が、 処理槽内に 1基又は複数基配置される。 水中攪拌式曝気装置は、 それを介し担体及び汚水が処理槽内を循環するように構成され、 水中攪拌式曝気 装置の運転により処理槽内の汚水中に担体がほぼ均一に浮遊分布される。 比較的 浅い水深を有する処理槽の場合、 水中攪拌式曝気装置は、 処理槽の底面付近に配 置され下方乃至横方向に向けられた吐出口を備えることが好ましい。 In the aerobic sewage treatment tank for aerating the sewage by holding the carrier in which the microorganisms are immobilized in the sewage and aerating the sewage, a submerged stirring type aeration apparatus equipped with an aeration mechanism on the discharge side of the impeller comprises: One or more units are placed in the tank. The underwater stirring type aeration device is configured so that the carrier and wastewater circulate through the treatment tank through it. By the operation of the apparatus, the carrier is substantially uniformly suspended and distributed in the sewage in the treatment tank. In the case of a treatment tank having a relatively shallow water depth, the underwater stirring type aeration apparatus preferably has a discharge port disposed near the bottom surface of the treatment tank and directed downward or laterally.
比較的深い水深を有する深層曝気槽の場合、 水中攪拌式曝気装置は、 曝気槽の 中間水深部に吐出口が上向きに開口するように設けられる。 ここで言う中間水深 部とは、 水表面と槽底面の間の任意の位置を指すが、 実用上は、 水表面からの距 離が 5 m〜 6 mが最も効率が良く、 好ましい。 深層曝気槽の場合、 水中攪拌式曝 気装置は、 深層曝気槽の底面へ伸長するドラフトチューブを具備し、 曝気槽の底 面付近から担体及び汚水を吸込む。  In the case of a deep aeration tank with a relatively deep water depth, the underwater stirring type aeration device is installed so that the discharge port opens upward in the middle water depth of the aeration tank. The term “intermediate water depth” as used herein refers to an arbitrary position between the water surface and the bottom of the tank. In practice, a distance of 5 m to 6 m from the water surface is the most efficient and preferable. In the case of a deep aeration tank, the underwater stirring type aeration device is equipped with a draft tube extending to the bottom of the deep aeration tank, and sucks the carrier and sewage from near the bottom of the aeration tank.
本発明は、 処理槽内流により好気性処理槽の流末部に担体が集積してしまうと いう従来技術の短所を解決するため、 ディフューザや散気管から供給される微細 気泡による全面曝気方式や片側旋回流方式ではなく、 攪拌流を形成する能力に優 れた水中攪拌式曝気装置を配備するものである。 水中攪拌式曝気装置は、 処理槽 の形状に応じて均一な攪拌流が生じるように、 適当な台数を適当な位置に設ける ことにより、 浮遊担体は、 槽内に均一に分散され続け、 従来のような担体の偏り は生じ難い。  The present invention solves the disadvantage of the prior art that the carrier accumulates at the end of the aerobic treatment tank due to the flow inside the treatment tank, and is based on a general aeration method using fine bubbles supplied from a diffuser or a diffuser. Instead of a one-sided swirling flow system, a submerged stirring type aerator with excellent ability to form a stirring flow is provided. Underwater agitation type aerators are provided with an appropriate number of units at appropriate positions so that a uniform agitated flow is generated according to the shape of the processing tank, so that the suspended carriers continue to be uniformly dispersed in the tank. Such carrier bias is unlikely to occur.
また、 水中攪拌式曝気装置のメンテナンスゃ曝気槽を清掃する場合においても、 散気管やデフィ一ザと異なり、 底面に空気配管を付設する必要がないので、 水中 攪拌式曝気装置のみをクレーン等で吊り上げ、 降ろすだけで良い。  In addition, unlike the diffuser and the diffuser, there is no need to attach an air pipe to the bottom of the aeration device when cleaning the aeration tank. Just lift and lower.
本発明の好気性汚処理槽及び深層曝気槽は、 汚水を脱窒素処理する処理装置又 は汚水を脱窒素脱燐処理する処理装置に組込まれ得る。 汚水が嫌気処理と好気処 理をなされる場合、 担体が好気性処理槽へ、 汚水が嫌気性処理槽へ戻るようにす ることが好ましい。 このように分別して返送するとポンプ能力は増大する。 また、 好気性処理槽の流出端に設備する移送ポンプとしては、 担体又は生物膜が破壊さ れないように、 エアリフトポンプ、 無閉塞ボルテック型ポンプ、 一軸ねじポンプ が使用され得る。 移送水量は、 周波数制御によるモータ回転数の変更等で、 任意 に変更できるものが望ましい。  The aerobic sewage treatment tank and the deep aeration tank of the present invention can be incorporated into a treatment device for denitrifying sewage or a treatment device for denitrifying and dephosphorizing sewage. When sewage is subjected to anaerobic treatment and aerobic treatment, it is preferable to return the carrier to the aerobic treatment tank and return the sewage to the anaerobic treatment tank. When the liquid is separated and returned in this way, the pump capacity increases. Further, as a transfer pump provided at the outflow end of the aerobic treatment tank, an air lift pump, a non-blocking vortex pump, or a single screw pump can be used so that the carrier or the biofilm is not destroyed. It is desirable that the amount of water transferred can be arbitrarily changed, for example, by changing the motor speed by frequency control.
担体及び汚水の移送においては、 ポンプ以外にも、 担体及び生物膜の破壊なし に移送できる手段が適宜使用され得る。 更に、 特開平 5— 2 6 1 3 9 3号公報に 開示された装置のように担体移送管途中に液体サイクロンやトロンメル篩のよう な担体の分離手段を配備し、 水を前段に設けた各処理装置へ、 担体を好気性処理 槽へ分配してもよい。. また、 本発明の好気性処理方法及び処理槽は、 例えば、 無 酸素工程、 好気工程、 沈殿工程を順次連結し、 好気工程の流出水を無酸素工程へ 循環し、 沈殿工程の沈殿汚泥を無酸素工程へ返送する循環式硝化脱窒素法及びそ の装置、 または、 更に前記無酸素工程の前に嫌気工程を設け、 沈殿工程の沈殿汚 泥を嫌気工程へ返送し、 脱窒素 ·脱りん活性汚泥法における好気性処理工程及び 好気性処理槽に用いることができる。 In transporting the carrier and sewage, other than pumps, means capable of transporting the carrier and biofilm without destruction may be appropriately used. Furthermore, Japanese Patent Application Laid-Open No. Hei 5-2-2613 Even if a carrier separating means such as a hydrocyclone or a trommel sieve is provided in the middle of the carrier transfer pipe as in the disclosed device, water is distributed to each treatment device provided in the preceding stage, and the carrier is distributed to the aerobic treatment tank. Good. The aerobic treatment method and the treatment tank of the present invention include, for example, sequentially connecting an oxygen-free process, an aerobic process, and a sedimentation process, circulating the effluent of the aerobic process to the anoxic process, A circulating nitrification denitrification method and apparatus for returning sludge to the anoxic process, or an anaerobic process is provided before the anoxic process, and the settled sludge from the settling process is returned to the anaerobic process, and denitrification It can be used in the aerobic treatment step and the aerobic treatment tank in the dephosphorization activated sludge method.
本発明においては、 好気性処理槽内に水中攪拌式曝気装置を 1台又は複数台設 置する。 処理槽の垂直長手方向断面が長方形の場合は、 槽内流が片寄らないよう に、 水中攪拌式曝気装置を複数台設置し、 処理槽内を均一に攪拌すると共に、 水 中攪拌式曝気装置への送気により処理槽内が均一に好気性条件を維持することに より、 維持管理、 定期点検作業が大幅に削減できる。 本発明において使用可能な 微生物固定化担体は、 砂、 活性炭、 ポリウレタンフォーム、 ポリビニルアルコー ノレ、 ポリプロピレン、 ポリエチレン、 ポリエチレングリコール、 セルロース等か ら成る粒子状担体が好ましいが、 必ずしも、 これらの担体に限定されない。 担体 のみかけ比重は、 被処理液の汚水よりやや重い程度、 例えば、 1 . 0 2程度が好 ましい。 担体への微生物固定化方法としては、 付着固定化法が一般的であるが、 包括固定化法も適用可能である。 好ましくは、 好気性処理槽の流出端には、 担体 の流出を防止するネッ ト、 グレーチング、 パンチングプレート、 ゥエッジワイヤ スクリーン等の多孔性部材ょりなる担体流出防止手段を配備する。  In the present invention, one or more underwater stirring type aerators are installed in the aerobic treatment tank. If the vertical cross section of the processing tank is rectangular in the vertical direction, install multiple underwater stirring aerators so that the flow in the tank does not shift, stir the inside of the processing tank evenly, and change to a submerged stirring aerator. By maintaining the aerobic condition in the treatment tank uniformly by the air supply, maintenance and periodic inspection work can be greatly reduced. The microorganism-immobilized carrier usable in the present invention is preferably a particulate carrier composed of sand, activated carbon, polyurethane foam, polyvinyl alcohol, polypropylene, polyethylene, polyethylene glycol, cellulose, etc., but is not necessarily limited to these carriers. . The apparent specific gravity of the carrier is preferably a little heavier than the sewage of the liquid to be treated, for example, about 1.02. As a method for immobilizing microorganisms on a carrier, an adhesion immobilization method is generally used, but an inclusive immobilization method is also applicable. Preferably, at the outflow end of the aerobic treatment tank, a carrier outflow prevention means such as a net, a grating, a punching plate, or an edge wire screen for preventing the outflow of the carrier is provided.
本発明の別の形態では、 流動性の徵生物固定化担体を用いた深層曝気槽におい て、 該曝気槽の中間水深部に吐出口を有する上吐出し型水中機械攪拌式曝気装置 を配置し、 該曝気装置の吸込部と槽底部をドラフ トチューブで連結する。 深層曝 気槽において、 曝気装置は、 複数基設置され、 曝気槽の長手方向に単列又は複数 列で配備され、 また、 曝気糟は、 槽底部がドラフ トチューブの吸込口に向かって、 担体が移動しやすいように傾斜され得る。  In another embodiment of the present invention, in a deep aeration tank using a fluid bioimmobilized carrier, an upper discharge type submerged mechanical stirring type aeration apparatus having a discharge port in a deep part of the intermediate water of the aeration tank is arranged. Then, the suction part of the aeration apparatus and the tank bottom are connected by a draft tube. In the deep aeration tank, a plurality of aeration devices are installed, and they are arranged in a single row or multiple rows in the longitudinal direction of the aeration tank.The aeration tank is designed such that the bottom of the tank faces the suction port of the draft tube, It can be tilted for easy movement.
(作用)  (Action)
本発明によれば、 攪拌機能に優れた水中攪拌式曝気装置を使用するので、 好気  According to the present invention, a submerged stirring type aeration apparatus having an excellent stirring function is used.
- 0 - 性処理槽の底部に沈積したまま機能を発揮しない余分な担体を投入せずに、 好気 性処理槽内を均一に攪拌することにより、 担体の片寄りを大幅に改善することが できる。 また、 本発明によって、 好気性処理槽に水中攪拌式曝気装置を使用する ことにより、 従来の微細気泡による全面曝気方式に比べると散気手段の目詰まり に伴う経年変化による酸素溶解効率の低下がないため、 好気性処理槽において高 い処理性能を得ることができる。 更に、 曝気装置のメンテナンス時に担体を排除 する等の手間を不要とすることができる。 -0- By uniformly stirring the inside of the aerobic treatment tank without adding an extra carrier that does not perform its function while being deposited at the bottom of the aerobic treatment tank, the carrier can be greatly improved in bias. In addition, according to the present invention, the use of a submerged stirring type aerator in the aerobic treatment tank reduces the oxygen dissolving efficiency due to the secular change due to clogging of the aeration means as compared with the conventional full aeration method using fine bubbles. Therefore, high processing performance can be obtained in an aerobic processing tank. Furthermore, it is not necessary to remove the carrier during maintenance of the aeration apparatus.
(図面の簡単な説明)  (Brief description of drawings)
図 1は、 本発明の好気性処理槽の第 1実施例を示す平面図。  FIG. 1 is a plan view showing a first embodiment of the aerobic treatment tank of the present invention.
図 2は、 図 1の処理槽の垂直長手方向断面図。  FIG. 2 is a vertical longitudinal sectional view of the processing tank of FIG.
図 3は、 本発明の好気性処理槽を組込んだ硝化脱窒素装置の図解的な垂直断面 図。  FIG. 3 is a schematic vertical sectional view of a nitrification denitrification apparatus incorporating the aerobic treatment tank of the present invention.
図 4は、 本発明の第 2実施例の深層曝気槽を示す構成図であり、 図 4 aは、 平 面図、 図 4 bは、 図 4 aの A— A断面図、 図 4 cは、 図 4 aの B— B断面図であ る。  FIG. 4 is a configuration diagram showing a deep aeration tank according to a second embodiment of the present invention. FIG. 4a is a plan view, FIG. 4b is a cross-sectional view taken along line AA of FIG. 4a, and FIG. 4B is a sectional view taken along line BB of FIG. 4A.
図 5は、 本発明の第 3実施例の深層曝気槽を示す構成図であり、 図 5 aは、 平. 面図、 図 5 bは、 図 5 aの A— A断面図、 図 5 cは、 図 5 aの B— B断面図であ る  FIG. 5 is a configuration diagram showing a deep aeration tank according to a third embodiment of the present invention. FIG. 5A is a plan view, FIG. 5B is a sectional view taken along line AA of FIG. 5A, and FIG. Is a cross-sectional view taken along the line BB in FIG. 5A.
図 6は、 深層曝気槽を組込んだ硝化脱窒素装置の図解的な垂直断面図。  Figure 6 is a schematic vertical cross-sectional view of a nitrification denitrification system incorporating a deep aeration tank.
図 7は、 本発明において使用される水中攪拌式曝気装置の第 1実施例の図解的 な垂直断面図。  FIG. 7 is a schematic vertical sectional view of the first embodiment of the underwater stirring type aeration apparatus used in the present invention.
図 8は、 本発明において使用される水中攪拌式曝気装置の第 2実施例の図解的 な垂直断面図。  FIG. 8 is a schematic vertical sectional view of a second embodiment of the underwater stirring type aeration apparatus used in the present invention.
図 9は、 担体を用いる従来の好気性処理槽を示す図解的垂直断面図である。 (発明を実施するための最良の形態)  FIG. 9 is a schematic vertical sectional view showing a conventional aerobic treatment tank using a carrier. (Best mode for carrying out the invention)
以下、 図面を参照し、 本発明の実施例を説明するが、 本発明は、 これらの実施 例に限定されるものではなく、 請求の範囲によって定義されるものである。 添付 図面において、 同一部材等には、 同一符号が付され、 重複説明が省略される。 図 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to these embodiments, but is defined by claims. In the accompanying drawings, the same members and the like are denoted by the same reference numerals, and redundant description will be omitted. Figure
1は、 本発明の好気性処理槽のー実施例を示す平面図であり、 図 2は図 1の処理 槽の縦断面図である。 水中攪拌式曝気装置 3 0は、 図 1の破線 1 6により 2等分 される処理槽 1の平面の前半部及び後半部に各 1台ずつ配置される。 破線 1 6は、 位置を説明するためのものであり、 処理槽 1に仕切板を設けること等を意味しな い。 処理槽 1の平面の各半部の縦寸法と横寸法は、 好ましくは、 1 : 1である。 図 2に示すように、 処理槽 1内に循環流 Fが形成され、 微生物固定化担体 2は、 このような循環流 Fによって、 仕切板がないに拘わらず、 処理槽 1内全般にほぼ 均一に分散し浮 ¾する。 1 is a plan view showing an embodiment of an aerobic treatment tank of the present invention, and FIG. It is a longitudinal section of a tank. One underwater stirring type aeration device 30 is arranged in each of the first half and the second half of the plane of the processing tank 1 which is bisected by the broken line 16 in FIG. The broken line 16 is for explaining the position, and does not mean that a partition plate is provided in the processing tank 1 or the like. The vertical and horizontal dimensions of each half of the plane of the processing tank 1 are preferably 1: 1. As shown in FIG. 2, a circulating flow F is formed in the processing tank 1, and the microorganism-immobilized carrier 2 is substantially uniform throughout the processing tank 1 by such a circulating flow F regardless of the presence of the partition plate. Disperses and floats.
処理槽 1内の被処理水 (汚水) の流下に伴う担体の流出端への集中を防止する ため、 処理槽 1の流出端に担体移送ポンプ 1 0が設置され得る。 担体移送ポンプ 1 0は、 流出端付近の担体 2を吸込み、 導管 1 1を介し流入端へ移送する。 担体 ポンプを設けたことにより、 処理槽 1内の担体濃度の微調整が可能とされる。 図 1及び図 2の処理槽 1は、 担体分離器 6、 処理水流出管 8、 ブロワ 4、 空気管 5、 空気風量計 9等を具備する。 図 1及び図 2の処理槽は、 従来の微細気泡を供袷す る散気具のかわりに、 水中攪拌式曝気装置を設置することにより、 経年変化にも 拘わらず、 安定した酸素溶解効率を得ることができる。 その結果、 高い処理性能 を得ることができるとともに、 維持管理、 点検作業が大幅に削減できる。  A carrier transfer pump 10 can be installed at the outflow end of the treatment tank 1 to prevent the concentration of the carrier at the outflow end due to the flow of the water to be treated (sewage) in the treatment tank 1. The carrier transfer pump 10 sucks the carrier 2 near the outflow end and transfers it to the inflow end via the conduit 11. The provision of the carrier pump enables fine adjustment of the carrier concentration in the processing tank 1. 1 and 2 is equipped with a carrier separator 6, a treated water outflow pipe 8, a blower 4, an air pipe 5, an air flow meter 9, and the like. The treatment tanks shown in Fig. 1 and Fig. 2 are equipped with a submersible aeration type aeration device instead of the conventional air diffuser that supplies fine air bubbles, to achieve stable oxygen dissolution efficiency despite aging. Obtainable. As a result, high processing performance can be obtained, and maintenance and inspection work can be significantly reduced.
図 3は、 好気性処理槽を組込んだ硝化脱窒素処理装置の図解的な垂直断面図で ある。 図 3において、 好気性処理槽 1は、 図 2の好気性処理槽 1と同様の構成を 有し、 無酸素タンク 1 2と組合わせて使用されている。 図 3の硝化脱窒素処理装 置において、 汚水は、 流入管 7から無酸素タンク 1 2へ、 分離器 1 3で担体と硝 化循環液に分離された後の硝化循環液と共に流入し、 脱窒素処理を受けた後、 無 酸素タンクと好気性処理槽 1を仕切る壁 1 5の上部に設けた流入口より好気性処 理槽 1内へ流入する。 処理槽 1内においては、 水中攪拌式曝気装置により循環流 が生成され、 汚水は、 充分に硝化処理を受ける。 処理槽 1で処理された汚水は、 処理槽 1から、 担体分離機 6を通り流出する。 担体移送ポンプ 1 0により移送さ れる担体プラス硝化循環液は、 分離器 1 3により担体 2と硝化循環液 1 4に分離 され、 硝化循環液 1 4は、 無酸素.タンク 1 2へ循環される。  FIG. 3 is a schematic vertical cross-sectional view of a nitrification denitrification treatment apparatus incorporating an aerobic treatment tank. In FIG. 3, the aerobic treatment tank 1 has the same configuration as the aerobic treatment tank 1 in FIG. 2, and is used in combination with the oxygen-free tank 12. In the nitrification denitrification treatment apparatus shown in Fig. 3, sewage flows from the inflow pipe 7 to the oxygen-free tank 12 together with the nitrification circulating fluid after being separated into the carrier and the nitrifying circulating fluid by the separator 13 and denitrated. After being subjected to the nitrogen treatment, it flows into the aerobic treatment tank 1 from the inlet provided at the upper part of the wall 15 separating the anoxic tank and the aerobic treatment tank 1. In the treatment tank 1, a circulating flow is generated by a submerged stirring type aeration apparatus, and the sewage undergoes a sufficient nitrification treatment. The sewage treated in the treatment tank 1 flows out of the treatment tank 1 through the carrier separator 6. The carrier plus nitrifying circulating fluid transferred by the carrier transfer pump 10 is separated into the carrier 2 and the nitrifying circulating fluid 14 by the separator 13, and the nitrifying circulating fluid 14 is circulated to the oxygen-free tank 12. .
次に、 図 3の好気性処理槽 1を組込んだ硝化脱窒素処理装置を用いて硝化脱窒 素した例を示す。 ( a )被処理水:都市下水 Next, an example of nitrification and denitrification using a nitrification and denitrification treatment apparatus incorporating the aerobic treatment tank 1 of FIG. 3 will be described. (a) Treated water: Urban sewage
(b)装置構成  (b) Device configuration
無酸素タンク : 4 Q Om3 (滞留時間 4. 0時間) Oxygen-free tank: 4 Q Om 3 (residence time 4.0 hours)
好気性処理槽: 400m3 (滞留時間 4. 0時間) Aerobic treatment tank: 400m 3 (residence time 4.0 hours)
"計 800m3 (HRT=8. 0時間) "A total of 800m 3 (HRT = 8. 0 hours)
処理水量: 100m3/時 Of treated water: 100m 3 / h
返送汚泥量 δθιη3,時 Return sludge amount δθιη 3 , hour
硝化液循環量: 20 Om3/時 Nitrification liquid circulation: 20 Om 3 / hour
ML S S: 200 Omg/リッ トル  ML S S: 200 Omg / Little
通気量:処理槽 A部分; 300 Nm3,時 Aeration volume: Treatment tank A part; 300 Nm 3 , hour
処理槽 B部分; 30 ONm3ノ時 Treatment tank B part; 30 ONm 3
処理槽 A部分及び B部分とも、 酸素溶解効率 15%の水中攪拌式曝気装置を 1 基ずつ配置。 処理槽では水中攪拌式曝気装置による循環流が形成され、 均一に混合されてい ることが確認された。 詳細調査の結果、 処理槽での担体の片寄りは、 ±5%以内 であった。 また、 硝化性能は処理槽 A及び B全体において高い状態に維持でき、 処理水のアンモニア性窒素は、 常に lmg/リッ トル以下であった。  In both treatment tanks A and B, one agitated underwater aerator with an oxygen dissolution efficiency of 15% is installed. In the treatment tank, it was confirmed that a circulating flow was formed by the underwater stirring type aeration device, and that the mixture was mixed uniformly. As a result of the detailed investigation, the deviation of the carrier in the treatment tank was within ± 5%. In addition, the nitrification performance could be kept high in the entire treatment tanks A and B, and the ammonia nitrogen in the treated water was always less than 1 mg / liter.
次に、 図 4を参照し、 本発明の第 3実施例を説明する。 水中攪拌式曝気装置 3 0の設置水深 H2は、 ブロワの吐出圧力、 窒素ガスの過飽和を考慮すると 3〜6 mが適切であり、 好ましくは、 5 m前後である。 曝気装置 30と曝気槽 50の底 面の間を伸長するドラフトチューブ 35は、 一般的には、 口径 40mm〜240 mmであり、 担体 2が安定して上昇できる液上昇流速を確保できる口径とされる c 担体 2は、 粒径 lmm〜l Ommの粒状の親水性ゲル、 プラスチック片、 繊維を マリモ状に絡めた高分子担体、 スポンジ、 発泡性セラミック等などである。 Next, a third embodiment of the present invention will be described with reference to FIG. Installation depth of H 2 water stirred aerator 3 0, the discharge pressure of the blower, considering the supersaturation of the nitrogen gas 3 to 6 m are suitable, preferably, 5 m before and after. The draft tube 35 extending between the aeration device 30 and the bottom surface of the aeration tank 50 generally has a diameter of 40 mm to 240 mm, and has a diameter capable of securing a liquid rising flow rate at which the carrier 2 can stably rise. The carrier 2 is a granular hydrophilic gel having a particle size of lmm to 10 mm, a plastic piece, a polymer carrier having fibers entangled in a marimo shape, a sponge, a foamable ceramic, or the like.
深層曝気槽 50は、 標準活性汚泥法のエアレーシヨンタンク、 硝化脱窒法にお ける硝化槽 (好気タンク) 、 あるいは嫌気一無酸素一好気法における好気タンク などに採用可能である。 曝気装置 30は、 公知のものが使用可能であるが、 担体 が柔らかい場合は、 担体の破壊が生じないようにプロペラの設置位置、 回転数、 あるいは流路画を滑らかに仕上げるなどの破壊防止処置を講じる必要がある。 図 4の深層曝気槽 50は、 幅 8mx長 24mx水深 (H^ 1 Omであり、 原 水流入部 32と処理水流出部 38を有する。 処理水流出部 38には、 担体 2の流 出を防止する目的で分離器 (担体分離スクリーン) 6が設けてある。 水中攪拌式 曝気装置 30は、 15 kWのものを曝気槽 50の長手方向に 3台設置し、 設置水 深 H2は、 5 mである。 曝気装置 30は、 上吐出型であり、 曝気装置下部の吸込 部と槽底面 39は、 内径 136 Ommのドラフトチューブ 35で連結される。 固 定化担体 2は、 粒径 4mm、 比重 1. 02の親水性ゲルであり、 その使用量は、 容積率で 15 VZV%である。 The deep aeration tank 50 can be used as an air tank in the standard activated sludge method, a nitrification tank (aerobic tank) in the nitrification denitrification method, or an aerobic tank in the anaerobic-anoxic-aerobic method. A known aerator 30 can be used, but if the carrier is soft, the propeller installation position, rotation speed, Alternatively, it is necessary to take measures to prevent destruction, such as finishing the flow path smoothly. The deep aeration tank 50 in FIG. 4 has a width of 8 mx a length of 24 mx water depth (H ^ 1 Om) and has a raw water inflow section 32 and a treated water outflow section 38. in order to prevent the separator (carrier separation screen) 6 is provided. underwater agitation type aeration apparatus 30, those 15 kW installed three in the longitudinal direction of the aeration tank 50, installed water depth H 2 is 5 The aeration device 30 is a top discharge type, and the suction part at the bottom of the aeration device and the tank bottom 39 are connected by a draft tube 35 having an inner diameter of 136 Omm. It is a hydrophilic gel with a specific gravity of 1.02, and its usage is 15 VZV% by volume.
曝気装置 30の内部では、 循環流を励起する攪拌羽根が回転し、 羽根付近にお いて、 空気管 5から空気が、 8〜18Nm3/時で通気される。 その結果、 曝気 槽内には図 1 bに矢印 Fで示すようなフローパターンが形成され、 担体 2は、 底 面 39に沈殿することなく、 曝気槽内を円滑に流動する。 この時のドラフトチュ ーブ 35内の液上昇流速は、 30m〜4 OmZ分である。 担体 2の沈降速度は、 2 m〜 3 m/分であることから、 担体 2は、 ドラフトチューブ 35内を安定して 上昇する。 Inside the aeration device 30, the stirring blade that excites the circulating flow rotates, and near the blade, air is ventilated from the air pipe 5 at a rate of 8 to 18 Nm 3 / hour. As a result, a flow pattern as shown by an arrow F in FIG. 1B is formed in the aeration tank, and the carrier 2 flows smoothly in the aeration tank without settling on the bottom surface 39. The liquid ascending flow velocity in the draft tube 35 at this time is 30 m to 4 OmZ. Since the sedimentation velocity of the carrier 2 is 2 m to 3 m / min, the carrier 2 stably rises in the draft tube 35.
図 5は、 本発明の第 3実施例の深層曝気槽 50を示す構成図であり、 図 5 aは、 平面図、 図 5 bは、 図 5 aの A— A断面図、 図 5 cは、 図 5 aの B— B断面図で ある。 図 5の深層曝気槽 50は、 幅 8mx長 20mx水深 (H^) 10mであり、 7. 5 kWの上吐出型水中攪拌式曝気装置 30を 2台、 水深 (H2) 5mに設置 したものである。 この実施例では、 担体 2が曝気槽 50の角部に沈殿することが 懸念されたために、 ドラフトチューブ 35の吸込口に向かって槽底面に 30度の 傾斜面 37を設けた。 FIG. 5 is a configuration diagram showing a deep aeration tank 50 according to the third embodiment of the present invention. FIG. 5A is a plan view, FIG. 5B is a cross-sectional view taken along line AA of FIG. 5A, and FIG. 5B is a sectional view taken along line BB of FIG. 5A. FIG deep aeration tank 50 of 5 is the width 8mx length 20mx water depth (H ^) 10m, 2 units over 5 kW discharge type underwater agitation type aeration apparatus 30 7., which was placed in a water depth (H 2) 5 m It is. In this example, the carrier 2 was settled at the corner of the aeration tank 50, so a 30-degree inclined surface 37 was provided on the bottom of the tank toward the suction port of the draft tube 35.
図 5の深層曝気槽 50に粒径 5mm、 比重 1. 03の比重調整プラスチック片 を担体 2として、 20 ノ¥%で使用し、 空気を 4〜6 Nm3 分で通気した。 その結果、 図 2 bに示すフローパターンが形成され、 担体 2は、 曝気槽内を円滑 に流動した。 この実施例では、 深層曝気槽において担体を安定に流動させること が可能である。 水中攪拌式曝気装置 30は、 旋回流方式よりも曝気動力を節減す ることが可能である。 水中攪拌式曝気装置 30は、 槽内の攪拌混合力が強いこと から、 槽内を完全混合状態に維持できる。 これによつて、 担体の槽内分布濃度を 均一化でき、 担体の能力を最大限に発揮することが可能である。 Using a specific gravity-adjusted plastic piece having a particle size of 5 mm and a specific gravity of 1.03 as a carrier 2 at 20% in the deep aeration tank 50 of FIG. 5, air was ventilated for 4 to 6 Nm 3 minutes. As a result, the flow pattern shown in FIG. 2B was formed, and the carrier 2 flowed smoothly in the aeration tank. In this embodiment, it is possible to make the carrier flow stably in the deep aeration tank. The underwater stirring type aeration device 30 can reduce the aeration power as compared with the swirling flow type. The underwater stirring type aeration device 30 must have strong stirring and mixing power in the tank. Therefore, the tank can be maintained in a completely mixed state. As a result, the carrier concentration in the tank can be made uniform, and the ability of the carrier can be maximized.
図 6は、 深層曝気槽を組込んだ硝化脱窒素装置の図解的な垂直断面図である。 図 6において、 深層曝気槽 50は、 循環式硝化脱窒装置の硝化槽 (好気タンク) 42として採用され、 次のように作動された。  FIG. 6 is a schematic vertical cross-sectional view of a nitrification denitrification device incorporating a deep aeration tank. In FIG. 6, a deep aeration tank 50 was adopted as a nitrification tank (aerobic tank) 42 of a circulating nitrification denitrification device, and operated as follows.
(a)原水 (原水流入部 32から導入される) :  (a) Raw water (introduced from raw water inlet 32):
都市下水一次処理水: B 0 D 100 m g リッ トル、  Primary municipal sewage water: B 0 D 100 mg liter,
NH4— N3 Omg/リッ トル、 NH 4 — N3 Omg / Little,
水量: 15. 00 Om3/曰 Water volume: 15.00 Om 3 /
(b) 深層曝気槽:  (b) Deep aeration tank:
脱窒槽 41 :幅 6. 5mx長さ 31 mx水深 10m、  Denitrification tank 41: width 6.5mx length 31mx water depth 10m,
有効容量: 2. 000m3. Effective volume: 2. 000m 3.
水中攪拌機 43: DSR-240UP  Underwater stirrer 43: DSR-240UP
(荏原製作所製、 30kW) x2台、  (Ebara Corporation, 30kW) x2 units,
硝化槽 42 :幅 6. 5mx長さ 23mx水深 10m、  Nitrification tank 42: width 6.5mx length 23mx water depth 10m,
有効容量: 1. 470m3 Effective volume: 1. 470m 3
水中攪拌式曝気装置 30 : DSR— 140UP (荏原製作所製、 1 kw) X 3台、  Underwater stirring type aerator 30: DSR-140UP (EBARA, 1 kw) x 3 units,
ドラフトチューブ:口径 14 Omm X 4m X 3本、  Draft tube: caliber 14 Omm X 4m X 3,
曝気風量: 12 NmV (分 ·台) X 3台  Aeration volume: 12 NmV (min · unit) X 3 units
(c)担体 2 :  (c) Carrier 2:
材質:ポリェチレングリコール製の親水性ゲル、  Material: hydrophilic gel made of polyethylene glycol,
粒径: 4mm、  Particle size: 4mm,
比重: 1. 02、  Specific gravity: 1.02,
.投入量:かさ体積として 22 Om3 (充愼率 15VZV%) 、 .Input amount: 22 Om 3 as bulk volume (15VZV%)
(d) MLSS: 2500mg/リツ トル  (d) MLSS: 2500mg / liter
( e )運転結果:  (e) Operation results:
図 6に矢印 Fで示されるようなフローパターンが曝気槽内に形成され、 担体は 底面に沈殿することなく、 槽内を均一濃度 (15%) で流動した。 その結果、 処 理水 (処理水流出部 3 8から流出する) の平均水質は、 B O D 5 . 4 m g /リツ トル、 T— N 9 . S m g Zリッ トル、 N H 4— N 0 . 4 m g Zリッ トルであり、 極めて良好であった。 A flow pattern as shown by arrow F in Fig. 6 was formed in the aeration tank, and the carrier flowed in the tank at a uniform concentration (15%) without settling on the bottom surface. As a result, The average water quality of the water (outflow from treated water outlet 38) is BOD 5.4 mg / litre, T—N 9 .S mg Z litre, NH 4 —N 0.4 mg Z litre. Yes, very good.
図 7は、 本発明において使用される水中攪拌式曝気装置の第 1実施例の図解的 な垂直断面図'である。 図 7の曝気装置 6 0は、 下吐出式であり、 歯車減速機 5 7 を介し電動機 5 6により回転される羽根 5 8を備える羽根車 5 9が、 外側ケーシ ング 5 2内に収容される。 曝気装置 6 0は、 上向きに開口する吸入口 5 1から汚 水及び担体を吸入し、 回転する羽根 5 8により流路 5 5中を流動させ、 下方で横 向きに開口する吐出口 6 2から吐出する。 羽根車 5 9の吐出側に設けた空気ケー シング 5 4が、 空気管 5から圧力空気を供給され、 空気吐出口 5 3を介し、 流路 5 5内を流動する汚水中へ、 空気の微細気泡を供給する。  FIG. 7 is a schematic vertical sectional view ′ of the first embodiment of the underwater stirring type aeration apparatus used in the present invention. The aeration device 60 in FIG. 7 is of a lower discharge type, and an impeller 59 provided with a blade 58 rotated by a motor 56 via a gear reducer 57 is housed in the outer casing 52. . The aeration device 60 sucks sewage and carrier from the suction port 51 opening upward, flows through the flow path 55 by the rotating blades 58, and the discharge port 62 opens laterally below. Discharge. The air casing 54 provided on the discharge side of the impeller 59 is supplied with pressurized air from the air pipe 5 and passes through the air discharge port 53 into the sewage flowing in the flow path 55 to form fine air. Supply air bubbles.
曝気装置 6 0による担体の破壊、 微生物の剥離等を防止するため、 外側ケーシ ング 5 2と羽根 5 8の先端との間の距離は、 担体の直径より大きくされ、 羽根 5 8は、 グラインダー仕上げ、 樹脂ライニング等により滑らかにされ、 羽根 5 8の 先端の周速は、 約 1 O mZ秒以下とされる。  The distance between the outer casing 52 and the tip of the blade 58 is made larger than the diameter of the carrier, and the blade 58 is finished with a grinder in order to prevent the carrier from being destroyed by the aeration device 60 and the separation of microorganisms. The peripheral speed of the tip of the blade 58 is set to about 1 OmZ second or less.
図 8は、 本発明において使用される水中攪拌式曝気装置の第 2実施例の図解的 な垂直断面図である。 図 8の曝気装置 7 0は、 上吐出式であり、 歯車減速機 5 7 を介し電動機 5 6により回転される羽根 5 8を備える羽根車 5 9が、 外側ケーシ ング 5 2内に収容される。 曝気装置 7 0は、 下向きに開口する吸入口 7 1から汚 水及び担体を吸入し、 回転する羽根 5 8により流路 5 5中を通過させ、 上方で横 向きに開口する吐出口 Ί 2から吐出する。 羽根車 5 9の吐出側の外側ケーシング 5 2の一部に配置される空気ケーシング 7 4が、 空気管 5から圧力空気を供給さ れ、 空気吐出口 5 3を介し、 流路 5 5内を流動する処理水中へ、 空気の微細気泡 を供給する。 曝気装置 7 0による担体の破壊、 微生物の剥離等を防止するため、 図 7の曝気装置 6 0におけると同様の対策が施される。  FIG. 8 is a schematic vertical sectional view of a second embodiment of the underwater stirring type aeration apparatus used in the present invention. The aeration device 70 in FIG. 8 is of a top discharge type, and an impeller 59 having a blade 58 rotated by a motor 56 via a gear reducer 57 is housed in the outer casing 52. . The aeration device 70 sucks sewage and carrier from the suction port 71 opening downward, passes through the flow path 55 by the rotating blades 58, and the discharge port 開口 2 opening laterally upward. Discharge. An air casing 74 arranged at a part of the outer casing 52 on the discharge side of the impeller 59 is supplied with pressurized air from the air pipe 5, and flows through the air discharge port 53 through the flow path 55. Supply fine air bubbles into flowing treated water. The same measures as in the aeration apparatus 60 in FIG. 7 are taken to prevent the carrier from being destroyed by the aeration apparatus 70 and the microorganisms from being peeled off.
(発明の効果)  (The invention's effect)
本発明によれば、 好気性処理槽の汚水及び微生物固定化担体が、 水中攪拌式曝 気装置により強い攪拌作用を受けるから、 担体が処理槽内でほぼ均一に浮遊分布 する。 従って、 汚水処理能力が向 ±すると共に、 担体分離器において担体と処理 水との間の分離障害の発生が防止される。 また、 強い攪拌作用により処理槽の底 面に配置した散気具の空気供給開口の垂直方向位置と処理槽底面との間へ、 担体 が沈降し堆積することが防止され、 投入した担体の大部分を流動させて有効に利 用できるので、 担体使用量を必要最少限に減少することができる。 According to the present invention, since the sewage and the microorganism-immobilized carrier in the aerobic treatment tank are subjected to a strong stirring action by the underwater stirring type aeration apparatus, the carrier is substantially uniformly distributed in the treatment tank in a floating distribution. Therefore, the sewage treatment capacity is improved, and the carrier is treated with the carrier in the carrier separator. The occurrence of a separation failure with water is prevented. In addition, strong agitation prevents the carrier from settling and accumulating between the vertical position of the air supply opening of the air diffuser arranged at the bottom of the processing tank and the bottom of the processing tank. Since the part can be fluidized and effectively used, the amount of carrier used can be reduced to the minimum necessary.
また、 本発 において使用される羽根車の吐出側に散気機構を配置した水中攪 拌式曝気装置は、 比較的表面積が小さく、 多数の小孔を具備しないので、 交換す る際に担体を処理槽外へ撤去する必要がない。 本発明の好気性処理槽によれば、 防止壁や攪拌移送手段が不要であるから、 設備費や運転費等の費用を低くするこ とができる。 また、 処理槽内に担体の循環しない領域が生ぜず、 処理槽全体にお いて高い処理性能を得ることができる。  In addition, the underwater stirring type aerator equipped with an aeration mechanism on the discharge side of the impeller used in the present invention has a relatively small surface area and does not have many small holes. There is no need to remove it outside the processing tank. According to the aerobic treatment tank of the present invention, since prevention walls and agitation transfer means are not required, costs such as equipment costs and operation costs can be reduced. In addition, a region in which the carrier does not circulate is not generated in the processing tank, and high processing performance can be obtained in the entire processing tank.
本発明の別の態様によれば、 微生物固定化担体を利用する深層曝気槽において、 下部にドラフトチューブを連結した水中攪拌式曝気装置を使用することで、 固定 化担体の底面沈殿を防止できる。 更に、 曝気風量を低減できることから省エネル ギ一的な処理も可能となり、 槽内の担体濃度を均等にできることから担体の能力 を最大限に発揮可能である。  According to another aspect of the present invention, in a deep aeration tank using a microorganism-immobilized carrier, by using a submerged stirring type aerator with a draft tube connected to a lower portion, bottom sedimentation of the immobilized carrier can be prevented. Furthermore, since the amount of aerated air can be reduced, energy-saving treatment can be performed, and the concentration of the carrier in the tank can be equalized, so that the capacity of the carrier can be maximized.

Claims

請 求 の 範 囲 The scope of the claims
1. 好気性処理槽内で、 微生物を固定化した担体を浮遊状態に保持して汚水を 処理する方法において、  1. In a method of treating sewage by holding a carrier in which microorganisms are immobilized in a floating state in an aerobic treatment tank,
羽根車の吐出側に散気機構を配置した水中攪拌式曝気装置を処理槽内に配置し 作動させ、 空 を汚水中へ混合し微細化し、 担体及び汚水を水中攪拌式曝気装置 を介し処理槽内で循環させ、 処理槽内に担体をほぼ均一に浮遊分布させることを 特徴とする方法。  An underwater agitation type aeration device with an aeration mechanism on the discharge side of the impeller is arranged in the treatment tank and activated, and the air is mixed into the sewage to make it finer. The method is characterized in that the carrier is circulated in the treatment tank and the carrier is suspended and distributed almost uniformly in the treatment tank.
2. 微生物を固定化した担体に加え活性汚泥を用いることを特徴とする請求項 1の方法。  2. The method according to claim 1, wherein activated sludge is used in addition to the carrier on which the microorganisms are immobilized.
3. 微生物を固定化した担体を浮遊状態に保持し汚水を曝気処理する好気性汚 水処理槽において、  3. In an aerobic sewage treatment tank where the microorganism-immobilized carrier is kept suspended and the sewage is aerated.
吸入口及び吐出口を有するケーシング内に配置した羽根車の吐出側に散気機構 を備える水中攪拌式曝気装置が、 処理槽内に 1基又は複数基配置され、 水中攪拌 式曝気装置は、 それを介し担体及び汚水が処理槽内を循環するように構成され、 水中攪拌式曝気装置が作動されることにより処理槽内に担体がほぼ均一に浮遊分 布されることを特徴とする汚水処理槽。  One or more underwater stirring type aerators equipped with a diffuser mechanism on the discharge side of the impeller arranged in a casing having an inlet and an outlet are arranged in the treatment tank. The carrier and sewage are circulated in the treatment tank via the sewage treatment tank, and the carrier is substantially uniformly suspended and distributed in the treatment tank by operating the underwater stirring type aerator. .
4. 水中攪拌式曝気装置は、 処理槽の底面付近に吐出口を備えることを特徴と する請求項 3に記載の汚水処理槽。  4. The sewage treatment tank according to claim 3, wherein the underwater stirring type aeration apparatus has a discharge port near a bottom surface of the treatment tank.
5. 水中攪拌式曝気装置の吐出口が、 処理槽の中間水深部に開口するように設 けられ、 水中攪拌式曝気装置は、 水中攪拌式曝気装置から処理槽の底面へ伸長す るドラフトチューブを介し、 処理槽の底面付近から担体及び汚水を吸込むことを 特徴とする請求項 3に記載の汚水処理槽。  5. The discharge port of the underwater stirring type aeration device is installed so as to open to the middle depth of the treatment tank. The underwater stirring type aeration device is a draft tube that extends from the underwater stirring type aeration device to the bottom of the treatment tank. 4. The sewage treatment tank according to claim 3, wherein the carrier and the sewage are sucked from near the bottom surface of the treatment tank through the fin.
6. 汚水を脱窒素処理する処理装置又は汚水を脱窒素脱燐処理する処理装置に 組込まれることを特徴とする請求項 3乃至 5のいずれか 1項に記載の汚水処理槽。  6. The sewage treatment tank according to any one of claims 3 to 5, wherein the sewage treatment tank is incorporated in a treatment device for denitrifying sewage or a treatment device for denitrifying and dephosphorizing sewage.
PCT/JP1996/001365 1995-05-23 1996-05-23 Method of aerobically treating wastewater and treatment tank WO1996037444A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE1996626864 DE69626864T2 (en) 1995-05-23 1996-05-23 Waste water basin for the aerobic treatment of waste water, including carrier
US08/952,609 US6077424A (en) 1995-05-23 1996-05-23 Method for aerobically treating wastewater and a treatment tank for such method
EP96914409A EP0933334B1 (en) 1995-05-23 1996-05-23 Treatment tank for AEROBICALLY TREATING WASTEWATER comprising carriers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP7/146959 1995-05-23
JP14695995A JPH08318290A (en) 1995-05-23 1995-05-23 Aerobic sewage treatment tank and treatment method
JP7/208562 1995-07-25
JP20856295A JP3228455B2 (en) 1995-07-25 1995-07-25 Deep aeration tank

Publications (1)

Publication Number Publication Date
WO1996037444A1 true WO1996037444A1 (en) 1996-11-28

Family

ID=26477646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001365 WO1996037444A1 (en) 1995-05-23 1996-05-23 Method of aerobically treating wastewater and treatment tank

Country Status (7)

Country Link
US (1) US6077424A (en)
EP (1) EP0933334B1 (en)
KR (1) KR100409056B1 (en)
CN (1) CN1098815C (en)
CA (1) CA2221923A1 (en)
DE (1) DE69626864T2 (en)
WO (1) WO1996037444A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100494303B1 (en) * 1997-01-13 2005-09-02 가부시키가이샤 에바라 세이사꾸쇼 Aerobic treatment tank for sewage and aerobic treatment tank with sewage
US8329035B2 (en) 2007-12-19 2012-12-11 Saudi Arabian Oil Company Suspended media granular activated carbon membrane biological reactor system and process
US8440074B2 (en) 2009-07-08 2013-05-14 Saudi Arabian Oil Company Wastewater treatment system including irradiation of primary solids
US8551341B2 (en) 2009-06-15 2013-10-08 Saudi Arabian Oil Company Suspended media membrane biological reactor system including suspension system and multiple biological reactor zones
US8557111B2 (en) 2009-07-08 2013-10-15 Saudi Arabian Oil Company Low concentration wastewater treatment system

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69928237T2 (en) * 1998-03-31 2006-08-03 Samsung Engineering Co., Ltd. METHOD OF TREATING WASTEWATER FOR REMOVING ORGANIC SUBSTANCES AND NITROGEN,
FR2821345B1 (en) * 2001-02-27 2003-11-14 Degremont PROCESS FOR THE BIOLOGICAL PURIFICATION OF WASTEWATER IN MIXED CROPS
US6527948B2 (en) * 2001-03-31 2003-03-04 Council Of Scientific And Industrial Research Apparatus for purification of waste water and a “RFLR” device for performing the same
US6544421B2 (en) * 2001-03-31 2003-04-08 Council Of Scientific And Industrial Research Method for purification of waste water and “RFLR” device for performing the same
US6616845B2 (en) * 2001-05-29 2003-09-09 Aqwise Wise Water Technologies, Ltd. Method and apparatus for biological wastewater treatment
US6726838B2 (en) 2002-01-07 2004-04-27 Agwise Wise Water Technologies Ltd. Biofilm carrier, method of manufacture thereof and waste water treatment system employing biofilm carrier
EP1401775B1 (en) * 2001-05-29 2012-11-21 Aqwise - Wise Water Technologies Ltd Method, apparatus and biomass support element for biological wastewater treatment
KR100432298B1 (en) * 2001-11-19 2004-05-22 주식회사 앤바이오 Recovery Treatment Equipment of wastewater and concentrated metabolic materials thereof
US6936446B2 (en) * 2002-06-19 2005-08-30 Eliminite, Inc. Light weight medium for growing microorganisms
US7419594B2 (en) * 2003-10-09 2008-09-02 Shaw Environmental & Infrastructure, Inc. Apparatus and method for controlling biomass growth in suspended carrier bioreactor
US7018534B2 (en) * 2003-10-09 2006-03-28 Shaw Environmental And Infrastructure, Inc. Apparatus and method for controlling biomass growth in suspended carrier bioreactor
US8146894B2 (en) 2004-06-21 2012-04-03 Hills Blair H Apparatus for mixing gasses and liquids
US7398963B2 (en) 2004-06-21 2008-07-15 Hills Blair H Apparatus and method for diffused aeration
WO2006058410A1 (en) * 2004-09-29 2006-06-08 Van Toever J Wayne Bio-filter with low density media and toroidal media stirring configuration
NZ555673A (en) * 2004-11-22 2010-12-24 Nubian Water Systems Pty Ltd Waste water treatment process system with circulating filter bed and aeration means
AU2005306597B2 (en) * 2004-11-22 2009-10-08 Nubian Water Systems Pty Limited Waste water treatment process system
US7520980B2 (en) * 2004-12-13 2009-04-21 Aquarius Environmental Technologies Ltd. Bioreactor system for multi-stage biological wastewater treatment
KR100539718B1 (en) * 2005-02-22 2005-12-29 (주)이엠엔씨코리아 Perforated tube type outflow module and outflowing system using the same in fludized biofilim process
CA2636752A1 (en) * 2006-01-30 2007-08-16 Blair H. Hills Apparatus for mixing gasses and liquids
EP2001579A4 (en) * 2006-03-31 2012-02-01 Blair H Hills Apparatus for mixing gasses and liquids
NL1034002C1 (en) * 2007-06-18 2008-12-22 Josab Nederland B V Method for recovering drinking water from a liquid fraction of human or animal faeces, bioreactor unit, storage vessel and method for cultivating a bacterial culture for use in such a method.
AU2012200776B2 (en) * 2007-12-19 2013-01-10 Saudi Arabian Oil Company Suspended media granular activated carbon membrane biological reactor system and process
WO2009149536A1 (en) * 2008-06-10 2009-12-17 Ekologix Earth-Friendly Solutions Inc. Apparatus and process for treatment of wastewater and biological nutrient removal in activated sludge systems
WO2010026564A1 (en) * 2008-09-03 2010-03-11 Aqwise - Wise Water Technologies Ltd. Integrated biological wastewater treatment and clarification
US8066879B2 (en) 2009-06-17 2011-11-29 Absolute Aeration Method for treating waste water
CA2764384C (en) * 2009-06-17 2018-01-02 Absolute Aeration Method for treating waste water
US8758613B2 (en) * 2009-10-16 2014-06-24 Aqwise-Wise Water Technologies Ltd Dynamic anaerobic aerobic (DANA) reactor
JP2011147868A (en) * 2010-01-20 2011-08-04 Hitachi Plant Technologies Ltd Waste water treatment system and method
US20150191382A1 (en) * 2012-07-19 2015-07-09 Aquanos Energy Ltd. Systems and methods for waste treatment
FR3012444B1 (en) * 2013-10-30 2016-01-01 Degremont METHOD AND SYSTEM FOR THE BIOLOGICAL TREATMENT OF EFFLUENT, ESPECIALLY WASTEWATER
CN108753587A (en) * 2018-06-06 2018-11-06 江苏联合创业环保有限公司 Pretreatment device
CN110980963B (en) * 2019-11-26 2022-04-15 浙江永续环境工程有限公司 Sewage treatment process applying active microbial inoculum

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103856A (en) * 1974-01-25 1975-08-16
JPS60197295A (en) * 1984-03-19 1985-10-05 Denka Consult & Eng Co Ltd "tater-bed" biological treatment apparatus
JPS6136476B2 (en) * 1981-07-07 1986-08-19 Ebara Seisakusho Kk
JPS6138000B2 (en) * 1982-03-01 1986-08-27 Ebara Seisakusho Kk
JPS6397293A (en) * 1986-10-14 1988-04-27 Negorogumi:Kk Treatment of barn sewage by circulating water flow contact oxidation
JPH04310298A (en) * 1991-04-08 1992-11-02 Kubota Corp Biological nitrogen removing unit
JPH05253592A (en) * 1992-03-09 1993-10-05 Mitsui Mining Co Ltd Stirring aerator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775307A (en) * 1971-04-08 1973-11-27 Union Carbide Corp System for gas sparging into liquid
CH529073A (en) * 1971-09-02 1972-10-15 Kaelin J R Process for the introduction and circulation of oxygen or oxygen-containing gas in a liquid to be clarified and equipment for carrying out the process
DE3032882A1 (en) * 1980-09-01 1982-04-15 Linde Ag, 6200 Wiesbaden METHOD AND DEVICE FOR BIOLOGICAL WASTE WATER TREATMENT
DE3137055A1 (en) * 1981-09-17 1983-03-24 Linde Ag, 6200 Wiesbaden "METHOD AND DEVICE FOR BIOLOGICAL WASTE WATER TREATMENT"
DE3228365A1 (en) * 1982-07-29 1984-02-02 Linde Ag, 6200 Wiesbaden METHOD AND DEVICE FOR BIOLOGICAL WASTE WATER TREATMENT
JPS6136476A (en) * 1983-09-28 1986-02-21 株式会社デンソー Electromotor with speed reducer
US4618426A (en) * 1983-12-22 1986-10-21 Mandt Mikkel G Retrievable jet mixing systems
JPS6138000A (en) * 1984-07-28 1986-02-22 Kanai Hiroyuki Traveler for spinning machine
DE3523844A1 (en) * 1985-07-03 1987-01-08 Linde Ag METHOD AND DEVICE FOR BIOLOGICAL WASTE WATER TREATMENT
DE3601669A1 (en) * 1986-01-21 1987-07-23 Linde Ag METHOD FOR BIOLOGICAL WASTE WATER TREATMENT
DE3900727A1 (en) * 1989-01-12 1990-07-19 Arasin Gmbh METHOD AND DEVICE FOR PURIFYING WASTEWATER OR EXHAUST GAS
JPH02214597A (en) * 1989-02-16 1990-08-27 Hitachi Plant Eng & Constr Co Ltd Device for nitrifying sewage

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103856A (en) * 1974-01-25 1975-08-16
JPS6136476B2 (en) * 1981-07-07 1986-08-19 Ebara Seisakusho Kk
JPS6138000B2 (en) * 1982-03-01 1986-08-27 Ebara Seisakusho Kk
JPS60197295A (en) * 1984-03-19 1985-10-05 Denka Consult & Eng Co Ltd "tater-bed" biological treatment apparatus
JPS6397293A (en) * 1986-10-14 1988-04-27 Negorogumi:Kk Treatment of barn sewage by circulating water flow contact oxidation
JPH04310298A (en) * 1991-04-08 1992-11-02 Kubota Corp Biological nitrogen removing unit
JPH05253592A (en) * 1992-03-09 1993-10-05 Mitsui Mining Co Ltd Stirring aerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0933334A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100494303B1 (en) * 1997-01-13 2005-09-02 가부시키가이샤 에바라 세이사꾸쇼 Aerobic treatment tank for sewage and aerobic treatment tank with sewage
US8329035B2 (en) 2007-12-19 2012-12-11 Saudi Arabian Oil Company Suspended media granular activated carbon membrane biological reactor system and process
US8551341B2 (en) 2009-06-15 2013-10-08 Saudi Arabian Oil Company Suspended media membrane biological reactor system including suspension system and multiple biological reactor zones
US8440074B2 (en) 2009-07-08 2013-05-14 Saudi Arabian Oil Company Wastewater treatment system including irradiation of primary solids
US8557111B2 (en) 2009-07-08 2013-10-15 Saudi Arabian Oil Company Low concentration wastewater treatment system
US8721889B2 (en) 2009-07-08 2014-05-13 Saudi Arabian Oil Company Wastewater treatment process including irradiation of primary solids
US9073764B2 (en) 2009-07-08 2015-07-07 Saudi Arabian Oil Company Low concentration wastewater treatment system and process
US9290399B2 (en) 2009-07-08 2016-03-22 Saudi Arabian Oil Company Wastewater treatment process including irradiation of primary solids
US9340441B2 (en) 2009-07-08 2016-05-17 Saudi Arabian Oil Company Wastewater treatment system including irradiation of primary solids

Also Published As

Publication number Publication date
EP0933334A4 (en) 1999-09-15
DE69626864D1 (en) 2003-04-24
US6077424A (en) 2000-06-20
CA2221923A1 (en) 1996-11-28
KR19990021838A (en) 1999-03-25
EP0933334A1 (en) 1999-08-04
CN1188462A (en) 1998-07-22
KR100409056B1 (en) 2004-03-22
CN1098815C (en) 2003-01-15
EP0933334B1 (en) 2003-03-19
DE69626864T2 (en) 2004-02-05

Similar Documents

Publication Publication Date Title
WO1996037444A1 (en) Method of aerobically treating wastewater and treatment tank
US6592762B2 (en) Process for treating BOD-containing wastewater
US9095826B2 (en) Apparatus and process for wastewater treatment and biological nutrient removal in activated sludge systems
WO2011065520A1 (en) Organic wastewater treatment device and organic wastewater treatment method
CA2718851C (en) Apparatus and process for treatment of wastewater and biological nutrient removal in activated sludge systems
JP2006007033A (en) Biological treatment tank for waste water and biologically treating method
KR101019092B1 (en) Advanced water-treating apparatus and method for removing phosphorus
JP3894606B2 (en) Aeration apparatus for sewage aerobic treatment tank and aerobic treatment tank of sewage equipped with the aeration apparatus
JPS59112894A (en) Aerator
JP3150530B2 (en) Biological nitrogen removal equipment
KR100246814B1 (en) Nutrition eliminating apparatus from sewage
JP3269722B2 (en) Sewage treatment tank
JPH08187494A (en) Purifying tank
JPH11290882A (en) Nitrogen removing apparatus
KR200456162Y1 (en) Underwater airation and underwater agitating device by control of rotating·backlashing
JPH0212638B2 (en)
KR20020086777A (en) Waste Water Treatment Equipment and Sequencing Batch Reactor System with using This
JP3228455B2 (en) Deep aeration tank
KR102300414B1 (en) High efficiency advanced wastewater treatment system
JPH07136678A (en) Wastewater treatment method and tank
JPH1170390A (en) Waste water treatment method and apparatus therefor
JPH1147786A (en) Device for removing nitrogen
JP3269723B2 (en) Sewage treatment tank
JPH08318290A (en) Aerobic sewage treatment tank and treatment method
WO1999044950A1 (en) Method and apparatus for treating waste water

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96194979.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2221923

Country of ref document: CA

Ref document number: 2221923

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970708312

Country of ref document: KR

Ref document number: 1996914409

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08952609

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1019970708312

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1996914409

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996914409

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970708312

Country of ref document: KR