JP2016140783A - Organic wastewater treatment method and apparatus - Google Patents

Organic wastewater treatment method and apparatus Download PDF

Info

Publication number
JP2016140783A
JP2016140783A JP2015016475A JP2015016475A JP2016140783A JP 2016140783 A JP2016140783 A JP 2016140783A JP 2015016475 A JP2015016475 A JP 2015016475A JP 2015016475 A JP2015016475 A JP 2015016475A JP 2016140783 A JP2016140783 A JP 2016140783A
Authority
JP
Japan
Prior art keywords
water
treated
membrane separation
flow rate
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015016475A
Other languages
Japanese (ja)
Other versions
JP6522966B2 (en
Inventor
仁志 柳瀬
Hitoshi Yanase
仁志 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2015016475A priority Critical patent/JP6522966B2/en
Publication of JP2016140783A publication Critical patent/JP2016140783A/en
Application granted granted Critical
Publication of JP6522966B2 publication Critical patent/JP6522966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic wastewater treatment method and apparatus which can avoid fouling of a membrane separator used in a membrane separation step even if the circulation ratio of a nitrified liquid to a denitrification step is set to a small value.SOLUTION: An organic wastewater treatment method that performs biological treatment of organic wastewater containing nitrogen as water to be treated having been mixed with activated sludge by at least a denitrification step, a nitrification step, and a membrane separation step using an immersion type membrane separator in this order includes: a first return step of returning at least the water to be treated not having been taken out as a membrane permeate to remain in the membrane separation step; a second return step of returning the water to be treated, not having been taken out as the membrane permeate to remain in the membrane separation step, to a step subsequent to the denitrification step; and a return flow rate adjustment step of adjusting the flow rates of the water to be treated returned in the first and second return steps using as an index the nitrogen concentration of one of the organic wastewater, either water to be treated, and the membrane permeate membrane-separated in the membrane separation step.SELECTED DRAWING: Figure 1

Description

本発明は、窒素を含有する有機性排水を、少なくとも脱窒工程、硝化工程、及び浸漬型膜分離装置を使用した膜分離工程の順に活性汚泥と混合された被処理水として生物処理する有機性排水の処理方法及びその処理装置に関する。   The present invention organically treats organic wastewater containing nitrogen as treated water mixed with activated sludge in the order of at least a denitrification step, a nitrification step, and a membrane separation step using a submerged membrane separation device. The present invention relates to a wastewater treatment method and a treatment apparatus therefor.

特許文献1には、原液流入部を有する脱窒素部と、処理液流出部を有する硝化部とを連通状態に設けた生物学的処理槽を備え、処理槽内または外部に酸素含有ガス送入管のあるエアリフト部を配備するとともに、脱窒素部内の脱窒素液を強制的に硝化部へ移送させる循環流路と、硝化部内の硝化液を脱窒素部内に流入させる連通流路とでリサイクル経路を構成し、脱窒素率を向上させる生物学的脱窒素装置が開示されている。硝化部でアンモニアが硝化される硝化工程が実行され、硝化液が返送された脱窒素部で硝酸態窒素が窒素ガスとして還元分離される脱窒工程が実行される。   Patent Document 1 includes a biological treatment tank in which a denitrification part having a stock solution inflow part and a nitrification part having a treatment liquid outflow part are in communication with each other, and an oxygen-containing gas is introduced into or outside the treatment tank. An air lift unit with a pipe is installed, and a recycle route is provided with a circulation channel for forcibly transferring the denitrification liquid in the denitrification unit to the nitrification unit and a communication channel for allowing the nitrification solution in the nitrification unit to flow into the denitrification unit And a biological denitrification apparatus that improves the denitrification rate is disclosed. A nitrification step in which ammonia is nitrified in the nitrification unit is executed, and a denitrification step in which nitrate nitrogen is reduced and separated as nitrogen gas is executed in the denitrification unit in which the nitrification liquid is returned.

特許文献2には、生活排水のような一般的な都市下水や産業廃水等の汚水の浄化処理のために構築された従来の標準活性汚泥法を採用した汚水処理装置の老朽化に伴って、汚水からリンや窒素等を効果的に除去するべく膜分離活性汚泥法を用いた汚水処理装置への改築が進行していることが開示されている。沈殿槽に代えて膜分離槽を備えることによりA−SRTを長くすることができ、硝化処理を促進することができるようになる。   According to Patent Document 2, along with the aging of the sewage treatment apparatus adopting the conventional standard activated sludge method constructed for the purification treatment of sewage such as general municipal sewage and industrial wastewater such as domestic wastewater, It is disclosed that refurbishment to a sewage treatment apparatus using a membrane separation activated sludge method is in progress in order to effectively remove phosphorus, nitrogen and the like from sewage. By providing a membrane separation tank instead of the precipitation tank, the A-SRT can be lengthened and the nitrification treatment can be promoted.

特許文献3には、図5に示すように、嫌気槽、脱窒槽、及び分離膜が浸漬された曝気槽の順番に設置された生物処理設備の上流側の嫌気槽に廃水を流入させて生物処理する膜分離活性汚泥法を用いた廃水処理方法が開示されている。   In Patent Document 3, as shown in FIG. 5, an anaerobic tank, a denitrification tank, and an aeration tank in which a separation membrane is immersed are placed in the order of biological treatment equipment, and waste water is introduced into an anaerobic tank upstream. A wastewater treatment method using a membrane separation activated sludge method for treatment is disclosed.

当該廃水処理方法は、廃水を活性汚泥の存在下にリン放出工程、脱窒工程、及び曝気工程の順に通水し、該曝気工程の混合液中に浸漬された分離膜により被処理水を分離する廃水の処理方法で、曝気工程の混合液の一部を脱窒工程へ返送するとともに、脱窒工程の混合液をリン放出工程へ返送するように構成されている。   In the wastewater treatment method, wastewater is passed in the order of a phosphorus release step, a denitrification step, and an aeration step in the presence of activated sludge, and the water to be treated is separated by a separation membrane immersed in the liquid mixture of the aeration step. In the wastewater treatment method, a part of the liquid mixture in the aeration process is returned to the denitrification process, and the liquid mixture in the denitrification process is returned to the phosphorus release process.

曝気工程で硝酸態窒素及び亜硝酸態窒素に硝化処理された混合液の一部が脱窒工程に返送されて窒素ガスに還元されて分離除去され、脱窒工程で無酸素化された混合液がリン放出工程へ返送されてリン化合物が正リン酸として放出される。尚、放出された正リン酸は曝気工程で好気性微生物に取り込まれる。   A part of the mixed solution nitrified to nitrate nitrogen and nitrite nitrogen in the aeration process is returned to the denitrification process, reduced to nitrogen gas, separated and removed, and deoxygenated in the denitrification process Is returned to the phosphorus release step and the phosphorus compound is released as normal phosphoric acid. The released orthophosphoric acid is taken up by aerobic microorganisms in the aeration process.

上述の膜分離活性汚泥法を用いる場合、窒素を含有する有機性排水は、少なくとも脱窒工程、硝化工程、及び浸漬型膜分離装置を使用した膜分離工程の順に活性汚泥と混合された被処理水として生物処理され、必要に応じて脱窒工程の前段にリン放出工程が組み込まれる。   When using the membrane separation activated sludge method described above, the organic wastewater containing nitrogen is treated with activated sludge in the order of at least the denitrification step, the nitrification step, and the membrane separation step using the submerged membrane separation device. It is biologically treated as water, and if necessary, a phosphorus release step is incorporated before the denitrification step.

生物処理後の処理水に含まれる窒素濃度を低下するためには、硝化工程で硝化された被処理水の脱窒工程への硝化液循環比Rを大きくすればよく、通常、硝化液循環比Rは2から4の間に設定されている。   In order to reduce the concentration of nitrogen contained in the treated water after biological treatment, the nitrification liquid circulation ratio R to the denitrification process of the water treated in the nitrification process should be increased. R is set between 2 and 4.

硝化液循環比Rは、被処理水の流入量を1、または処理水(膜分離活性汚泥法を用いる場合は、膜分離装置から排水される膜透過水)の流量を1とする場合の硝化液の循環量の比であり、膜透過水の窒素濃度である処理水窒素濃度は以下の数式1で求まる。尚、硝化対象窒素濃度は原水である有機性排水に含まれる全窒素から余剰活性汚泥として引き抜かれる窒素成分を除いた値である。
(処理水窒素濃度) = (硝化対象窒素濃度)/(R+1) ・・・数式1
The nitrification liquid circulation ratio R is nitrification when the flow rate of treated water is 1 or the flow rate of treated water (membrane permeated water drained from the membrane separation device when using the membrane separation activated sludge method) is 1. The treated water nitrogen concentration, which is the ratio of the circulation rate of the liquid and is the nitrogen concentration of the membrane permeated water, is obtained by the following formula 1. The nitrogen concentration to be nitrified is a value obtained by removing nitrogen components extracted as surplus activated sludge from the total nitrogen contained in the organic wastewater as raw water.
(Treatment water nitrogen concentration) = (nitrogen concentration to be nitrified) / (R + 1) (1)

特開昭55−45357号公報JP 55-45357 A 特開2013−664号公報JP 2013-664 A 特開2001−314890号公報JP 2001-314890 A

膜分離活性汚泥法を用いた汚水処理装置で生物処理された処理水は、必要に応じてCOD除去等の高度処理が行なわれた後に、例えば河川に放流されて海に流下するが、環境保護という観点で処理水窒素濃度を低い値に調整することが好ましいとは限らない場合もある。   The treated water that has been biologically treated by the sewage treatment equipment using the membrane separation activated sludge method is subjected to advanced treatment such as COD removal as necessary, and then discharged into rivers and flow down into the sea. From this point of view, it may not always be preferable to adjust the treated water nitrogen concentration to a low value.

例えば、海水中の栄養塩濃度、特に溶存態無機窒素が養殖海苔に影響があるとされており、海苔の育苗期となる冬季から春季に養殖海苔の色素合成に必要な溶存態無機窒素等が不足することにより、海苔の色落ち現象が発生するという問題がある。   For example, the concentration of nutrients in seawater, especially dissolved inorganic nitrogen, is said to have an effect on cultured seaweed, and the dissolved inorganic nitrogen necessary for pigment synthesis of cultured seaweed from winter to spring, when the seaweed is growing. Due to the shortage, there is a problem that the laver discoloration phenomenon occurs.

そこで、冬季から春季にかけて、処理水窒素濃度をある程度高い値に調整するべく、数式1の硝化液循環比Rを小さくした有機性排水の処理方法が試行されている。   In order to adjust the nitrogen concentration of the treated water to a somewhat high value from winter to spring, an organic wastewater treatment method in which the nitrification liquid circulation ratio R in Formula 1 is reduced has been tried.

しかし、硝化液循環比Rを小さな値に設定すると、膜分離工程への被処理水の流入量が少なくなり、被処理水の流れに沿って配置されている膜分離装置の周囲の活性汚泥濃度の濃淡のばらつきが大きくなり、膜分離性能に支障が発生するという問題があった。   However, when the nitrification liquid circulation ratio R is set to a small value, the amount of water to be treated entering the membrane separation process decreases, and the activated sludge concentration around the membrane separation apparatus disposed along the flow of the water to be treated As a result, there was a problem that the variation in the density of the liquid crystal became large and the membrane separation performance was hindered.

膜分離工程から脱窒工程へ返送される被処理水の活性汚泥浮遊物質MLSSの濃度をXmg/Lとすると、膜分離工程に流入するMLSS濃度は以下の数式2で求まる。数式2に基づけば、硝化液循環比Rを小さくするほど、膜分離工程に流入する被処理水と膜分離工程から脱窒工程へ返送される被処理水のMLSS濃度差が大きくなることが理解できる。
MLSS(mg/L) = R/(R+1)*X ・・・数式2
When the concentration of the activated sludge suspended matter MLSS to be treated returned from the membrane separation process to the denitrification process is X mg / L, the MLSS concentration flowing into the membrane separation process is obtained by the following formula 2. Based on Formula 2, it is understood that the smaller the nitrification liquid circulation ratio R, the larger the difference in MLSS concentration between the treated water flowing into the membrane separation process and the treated water returned from the membrane separation process to the denitrification process. it can.
MLSS (mg / L) = R / (R + 1) * X Equation 2

つまり、膜分離工程の被処理水の流れに沿う下流側でMLSS濃度が高くなり、膜分離装置の分離膜に活性汚泥が堆積して、膜分離できなくなる虞があった。   In other words, the MLSS concentration is increased on the downstream side along the flow of the water to be treated in the membrane separation step, and activated sludge is deposited on the separation membrane of the membrane separation device, which may cause membrane separation.

また、膜分離工程の被処理水の流れに沿う下流側でのMLSS濃度が高くなりすぎないように、処理工程全体のMLSS濃度を低くすると、特に、MLSS濃度が低い膜分離工程の上流側で未分解のアンモニア等が膜透過水に流出したり、未分解の難溶性成分や高分子の溶質等に起因する分離膜のファウリングが生じて分離膜が閉塞する虞があった。   In addition, if the MLSS concentration in the entire treatment process is lowered so that the MLSS concentration on the downstream side along the flow of the water to be treated in the membrane separation process does not become too high, especially on the upstream side of the membrane separation process in which the MLSS concentration is low. There is a possibility that undecomposed ammonia or the like flows out into the permeated water of the membrane, or fouling of the separation membrane due to undegraded hardly soluble components or polymer solutes occurs and the separation membrane is clogged.

本発明の目的は、上述した問題点に鑑み、脱窒工程への硝化液循環比を小さな値に設定しても、膜分離工程で用いられる膜分離装置のファウリングを回避可能な有機性排水の処理方法及びその処理装置を提供する点にある。   In view of the above-mentioned problems, the object of the present invention is an organic wastewater capable of avoiding fouling of a membrane separation apparatus used in a membrane separation process even if the nitrification liquid circulation ratio to the denitrification process is set to a small value. It is in the point which provides the processing method and its processing apparatus.

上述の目的を達成するため、本発明による有機性排水の処理方法の第一特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、窒素を含有する有機性排水を、少なくとも脱窒工程、硝化工程、及び浸漬型膜分離装置を使用した膜分離工程の順に活性汚泥と混合された被処理水として生物処理する有機性排水の処理方法であって、前記膜分離工程で膜透過水として取り出されずに残った被処理水を前記脱窒工程へ返送する第一返送工程と、前記膜分離工程で膜透過水として取り出されずに残った被処理水を前記脱窒工程の後の工程へ返送する第二返送工程と、前記有機性排水、何れかの被処理水、及び前記膜分離工程で膜分離した膜透過水の何れかの窒素濃度を指標として、前記第一返送工程で返送する被処理水の流量、及び前記第二返送工程で返送する被処理水の流量を調整する返送流量調整工程と、を含む点にある。   In order to achieve the above-mentioned object, the first characteristic configuration of the organic wastewater treatment method according to the present invention is to at least remove organic wastewater containing nitrogen as described in claim 1 of the claims. A method for treating organic wastewater that is biologically treated as treated water mixed with activated sludge in the order of a nitriding step, a nitrification step, and a membrane separation step using a submerged membrane separation device. A first return step for returning the water to be treated that has not been taken out as water to the denitrification step, and a step after the denitrification step for the water to be treated that has not been taken out as membrane permeated water in the membrane separation step Returned in the first return step, using as an indicator the nitrogen concentration of the second return step to return to the organic waste water, any of the water to be treated, and the membrane permeated water separated in the membrane separation step Flow rate of water to be treated, and the second In that it includes a return flow rate adjusting step for adjusting the flow rate of the water to be treated, the sending back by the feeding step.

上述の構成によれば、第一返送工程で返送される膜分離工程で膜透過水として取り出されずに残った被処理水の返送量に基づいて窒素の除去率を調整可能としながらも、第二返送工程で返送される膜分離工程で膜透過水として取り出されずに残った被処理水の返送量により脱窒工程の後の工程に流入する活性汚泥の濃度が調整可能になる。即ち、返送流量調整工程では、原水となる有機性排水、生物処理中の被処理水、または膜透過水の何れかの窒素濃度を指標として、第一返送工程で返送される被処理水の返送量が調整され、その返送量に応じて第二返送工程で返送される被処理水の返送量が適切な値に調整される。   According to the above-described configuration, the nitrogen removal rate can be adjusted based on the return amount of the water to be treated which is not taken out as membrane permeated water in the membrane separation step returned in the first return step, but the second removal rate can be adjusted. The concentration of activated sludge flowing into the process after the denitrification process can be adjusted by the return amount of the water to be treated that is not taken out as the membrane permeate in the membrane separation process returned in the return process. In other words, in the return flow rate adjustment step, the return of the treated water returned in the first return step using the organic drainage as raw water, the treated water during biological treatment, or the nitrogen concentration of membrane permeated water as an index. The amount is adjusted, and the return amount of the water to be treated returned in the second return step is adjusted to an appropriate value according to the return amount.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、前記返送流量調整工程は、前記窒素濃度を指標として、前記膜透過水の窒素濃度が目標窒素濃度となるように前記第一返送工程で返送する被処理水の流量を調整するとともに、前記膜分離工程へ流入する被処理水の流量が目標流量となるように前記第二返送工程で返送する被処理水の流量を調整する工程である点にある。   In the second characteristic configuration, as described in claim 2, in addition to the first characteristic configuration described above, the return flow rate adjustment step uses the nitrogen concentration as an index to determine the nitrogen concentration of the membrane permeated water. In the second return step, the flow rate of the water to be treated returned in the first return step is adjusted so as to become the target nitrogen concentration, and the flow rate of the water to be treated flowing into the membrane separation step becomes the target flow rate. This is a process for adjusting the flow rate of the water to be returned.

返送流量調整工程では、原水となる有機性排水、生物処理中の被処理水、または膜透過水の何れかの窒素濃度を指標として、目標となる処理水窒素濃度を得るために必要な硝化液循環比Rが求められ、硝化液循環比Rに基づいて第一返送工程で返送される被処理水の返送量が調整される。さらに、その返送量に応じて第二返送工程で返送される被処理水の返送量が適切な値に調整される。そのため、処理水窒素濃度がどのような値であっても、膜分離工程で分離膜のファウリングの発生を回避することができるようになる。   In the return flow rate adjustment process, the nitrification liquid necessary to obtain the target treated water nitrogen concentration using the nitrogen concentration of organic wastewater as raw water, treated water during biological treatment, or membrane permeated water as an index The circulation ratio R is obtained, and the return amount of the water to be treated returned in the first return step is adjusted based on the nitrification solution circulation ratio R. Furthermore, the return amount of the treated water returned in the second return step is adjusted to an appropriate value according to the return amount. Therefore, it is possible to avoid occurrence of fouling of the separation membrane in the membrane separation step regardless of the value of the treated water nitrogen concentration.

同第三の特徴構成は、同請求項3に記載した通り、上述の第二の特徴構成に加えて、前記目標流量は、処理対象となる前記有機性排水の流入量の3倍以上かつ6倍以下の範囲に調整される点にある。   In the third feature configuration, in addition to the second feature configuration described above, the target flow rate is more than three times the inflow amount of the organic waste water to be treated and 6 It is in the point which is adjusted to the range below double.

膜分離工程へ流入する被処理水の流量が、原水となる有機性排水の流入量の3倍以上かつ6倍以下の範囲に調整されると、膜分離槽内のMLSS濃度分布比を、1:1.2から1:1.5までの範囲に収めることができるようになる。その結果、第一返送工程で返送する被処理水の流量を減らして膜透過水の窒素濃度を高めに設定する場合でも、分離膜のファウリングの発生を効果的に抑制できるようになる。尚、1:1.2から1:1.5までの範囲のMLSS濃度分布比に対応できる分離膜は、標準的で安価に入手しやすい。さらに、前記膜分離工程へ流入する被処理水の流量の制御範囲が、処理対象となる前記有機性排水の流量の3倍以上かつ6倍以下の範囲と比較的広いため、流量制御にあまり困難を伴わない。   When the flow rate of the water to be treated flowing into the membrane separation step is adjusted to a range of 3 to 6 times the inflow of organic waste water as raw water, the MLSS concentration distribution ratio in the membrane separation tank is set to 1 : It becomes possible to be within the range of 1.2 to 1: 1.5. As a result, generation of fouling of the separation membrane can be effectively suppressed even when the flow rate of water to be treated returned in the first return step is reduced and the nitrogen concentration of the membrane permeated water is set high. A separation membrane that can handle the MLSS concentration distribution ratio in the range of 1: 1.2 to 1: 1.5 is standard and easily available at low cost. Furthermore, since the control range of the flow rate of the water to be treated flowing into the membrane separation process is relatively wide, ranging from 3 to 6 times the flow rate of the organic waste water to be treated, it is very difficult to control the flow rate. Without.

同第四の特徴構成は、同請求項4に記載した通り、上述の第二の特徴構成に加えて、前記目標流量は、処理対象の前記有機性排水の流入量の3倍以上かつ6倍以下の範囲の一定値に調整される点にある。   In the fourth feature configuration, in addition to the second feature configuration described above, the target flow rate is three times or more and six times the inflow amount of the organic waste water to be treated. The point is that it is adjusted to a constant value in the following range.

膜分離工程へ流入する被処理水の流量が、原水となる有機性排水の流入量の3倍以上かつ6倍以下の範囲の一定値に調整されると、膜分離槽内のMLSS濃度分布比を、1:1.2から1:1.5までの範囲の好ましい一定値に収めることができるようになる。その結果、第一返送工程で返送する被処理水の流量を減らして膜透過水の窒素濃度を高めに設定する場合でも、分離膜のファウリングの発生をより一層効果的に抑制できるようになる。   When the flow rate of treated water flowing into the membrane separation process is adjusted to a constant value in the range of 3 to 6 times the inflow of organic wastewater that is the raw water, the MLSS concentration distribution ratio in the membrane separation tank Can be kept within a preferable constant value in the range of 1: 1.2 to 1: 1.5. As a result, even when the flow rate of the treated water returned in the first return process is reduced and the nitrogen concentration of the membrane permeated water is set higher, the occurrence of fouling of the separation membrane can be more effectively suppressed. .

本発明による有機性排水処理装置の第一特徴構成は、同請求項5に記載した通り、窒素を含有する有機性排水を、活性汚泥と混合された被処理水として生物処理する少なくとも脱窒槽、硝化槽、及び浸漬型膜分離装置が配設された膜分離槽を備えている有機性排水処理装置であって、前記膜分離槽中の被処理水を前記脱窒槽へ返送する第一返送機構と、前記膜分離槽中の被処理水を前記脱窒槽より後段へ返送する第二返送機構と、前記有機性排水、何れかの被処理水、及び前記浸漬型膜分離装置により取り出される膜透過水の何れかの窒素濃度を測定する窒素濃度測定装置と、前記窒素濃度測定装置により取得された窒素濃度を指標として、前記第一返送機構を介して返送する被処理水の流量、及び前記第二返送機構を介して返送する被処理水の流量を調整する制御部と、を備えている点にある。   The first characteristic configuration of the organic wastewater treatment apparatus according to the present invention is, as described in claim 5, at least a denitrification tank that biologically treats organic wastewater containing nitrogen as treated water mixed with activated sludge, An organic wastewater treatment apparatus comprising a nitrification tank and a membrane separation tank provided with a submerged membrane separation apparatus, wherein the first return mechanism returns the treated water in the membrane separation tank to the denitrification tank And a second return mechanism for returning the treated water in the membrane separation tank to the subsequent stage from the denitrification tank, the organic waste water, any treated water, and the membrane permeation taken out by the submerged membrane separation apparatus. A nitrogen concentration measuring device for measuring any nitrogen concentration of water, a flow rate of water to be returned to the first returning mechanism using the nitrogen concentration acquired by the nitrogen concentration measuring device as an index, and the first Processed to be returned via the two-return mechanism In that it includes a control unit for adjusting the flow rate.

同第二の特徴構成は、同請求項6に記載した通り、上述の第一の特徴構成に加えて、前記制御部は、前記窒素濃度測定装置により取得された窒素濃度を指標として、前記膜透過水の窒素濃度が目標窒素濃度となるように前記第一返送機構を介して返送する被処理水の流量を調整するとともに、前記膜分離槽へ流入する被処理水の流量が目標流量となるように前記第二返送機構を介して返送する被処理水の流量を調整する点にある。   In the second feature configuration, as described in claim 6, in addition to the first feature configuration described above, the control unit uses the nitrogen concentration acquired by the nitrogen concentration measurement device as an index. The flow rate of the water to be treated returned through the first return mechanism is adjusted so that the nitrogen concentration of the permeated water becomes the target nitrogen concentration, and the flow rate of the water to be treated flowing into the membrane separation tank becomes the target flow rate. In this way, the flow rate of the water to be treated returned through the second return mechanism is adjusted.

同第三の特徴構成は、同請求項7に記載した通り、上述の第二の特徴構成に加えて、前記目標流量は、処理対象となる前記有機性排水の流入量の3倍以上かつ6倍以下の範囲に調整される点にある。   In the third feature configuration, in addition to the second feature configuration described above, the target flow rate is more than three times the inflow amount of the organic waste water to be treated and 6 It is in the point which is adjusted to the range below double.

同第四の特徴構成は、同請求項8に記載した通り、上述の第二の特徴構成に加えて、前記目標流量は、処理対象の前記有機性排水の流入量の3倍以上かつ6倍以下の範囲の一定値に調整される点にある。   In the fourth feature configuration, in addition to the second feature configuration described above, the target flow rate is at least three times and six times the inflow amount of the organic waste water to be treated. The point is that it is adjusted to a constant value in the following range.

同第五の特徴構成は、同請求項9に記載した通り、上述の第一の特徴構成に加えて、前記膜分離槽内の被処理水のMLSS濃度を測定するMLSS濃度測定装置をさらに備え、前記制御部は、前記窒素濃度測定装置により取得された窒素濃度を指標として、前記膜透過水の窒素濃度が目標窒素濃度となるように前記第一返送機構を介して返送する被処理水の流量を調整するとともに、前記MLSS濃度測定装置により取得されたMLSS濃度が所定の範囲に入るように、前記第一の返送機構を介して返送される被処理水の流量に応じて前記第二返送機構を介して返送する被処理水の流量を調整する点にある。   The fifth characteristic configuration further includes an MLSS concentration measuring device that measures the MLSS concentration of the water to be treated in the membrane separation tank, in addition to the first characteristic configuration described above, as described in claim 9. The control unit uses the nitrogen concentration acquired by the nitrogen concentration measuring device as an index, and the treated water is returned via the first return mechanism so that the nitrogen concentration of the membrane permeated water becomes the target nitrogen concentration. While adjusting the flow rate, the second return according to the flow rate of the water to be treated returned through the first return mechanism so that the MLSS concentration acquired by the MLSS concentration measuring device falls within a predetermined range. It exists in the point which adjusts the flow volume of the to-be-processed water returned via a mechanism.

膜分離槽内の被処理水のMLSS濃度を直接監視して、その値が所定の範囲に入るように第二返送機構を介して返送する被処理水の流量が調整されるので、第一返送工程で返送する被処理水の流量を減らして膜透過水の窒素濃度を高めに設定する場合でも、分離膜のファウリングの発生をより一層効果的に抑制できるようになる。しかも、取得したMLSS濃度に基づいて分離膜のファウリングの虞が間接的に検知でき、予防できるようになるので、分離膜のファウリングによる定期的なメンテナンスまでの時間を長くすることができる。   Since the MLSS concentration of the treated water in the membrane separation tank is directly monitored and the flow rate of the treated water returned through the second returning mechanism is adjusted so that the value falls within a predetermined range, the first return Even when the flow rate of the water to be treated returned in the process is reduced and the nitrogen concentration of the membrane permeated water is set to be high, generation of fouling of the separation membrane can be more effectively suppressed. Moreover, since the possibility of fouling of the separation membrane can be indirectly detected and prevented based on the acquired MLSS concentration, it is possible to lengthen the time until regular maintenance due to fouling of the separation membrane.

同第六の特徴構成は、同請求項10に記載した通り、上述の第一から第五の何れかの特徴構成に加えて、前記膜分離槽は、被処理水の流下方向に沿って前記浸漬型膜分離装置が複数配置され、前記第一の返送機構は、前記膜分離槽の下流側の被処理水を前記脱窒槽へ返送する返送路を備えている点にある。   In addition to any one of the first to fifth feature configurations described above, the sixth feature configuration is the above-described first to fifth feature configuration. A plurality of submerged membrane separation devices are arranged, and the first return mechanism is provided with a return path for returning treated water downstream of the membrane separation tank to the denitrification tank.

上述の構成によれば、被処理水の流下方向に沿って浸漬型膜分離装置が複数配置されるような、膜分離槽内を流れる被処理水の流路が長い形状であっても、被処理水の流下方向に沿ったMLSS濃度勾配を小さくできるので、膜分離槽の上流側から下流側にかけてほぼ均一な膜分離処理が行なえるようになる。   According to the above-described configuration, even if the flow path of the water to be treated flowing in the membrane separation tank has a long shape such that a plurality of submerged membrane separation devices are arranged along the flow direction of the water to be treated. Since the MLSS concentration gradient along the flow direction of the treated water can be reduced, a substantially uniform membrane separation process can be performed from the upstream side to the downstream side of the membrane separation tank.

以上説明した通り、本発明によれば、脱窒工程への硝化液循環比を小さな値に設定しても、膜分離工程で用いられる膜分離装置のファウリングを回避可能な有機性排水の処理方法及びその処理装置を提供することができるようになった。   As described above, according to the present invention, even if the nitrification liquid circulation ratio to the denitrification step is set to a small value, the organic wastewater treatment that can avoid fouling of the membrane separation device used in the membrane separation step. It has become possible to provide a method and a processing apparatus thereof.

本発明による有機性排水処理装置及び処理方法の説明図Explanatory drawing of the organic waste water treatment apparatus and treatment method by this invention 別実施形態を示す有機性排水処理装置及び処理方法の説明図Explanatory drawing of the organic waste water treatment apparatus and treatment method which show another embodiment 別実施形態を示す有機性排水処理装置及び処理方法の説明図Explanatory drawing of the organic waste water treatment apparatus and treatment method which show another embodiment 別実施形態を示す有機性排水処理装置及び処理方法の説明図Explanatory drawing of the organic waste water treatment apparatus and treatment method which show another embodiment 従来の排水処理装置及び処理方法の説明図Explanatory drawing of conventional waste water treatment equipment and treatment method

以下、本発明による有機性排水の処理方法及びその処理装置の実施形態を説明する。   Hereinafter, embodiments of an organic wastewater treatment method and treatment apparatus according to the present invention will be described.

図1に示すように、当該有機性排水処理装置1は、原水となる窒素を含有する有機性排水を、活性汚泥と混合された被処理水として順に生物処理する装置であり、少なくとも脱窒槽20、硝化槽21、及び浸漬型膜分離装置23を備えた膜分離槽22を備えている。   As shown in FIG. 1, the organic wastewater treatment apparatus 1 is an apparatus that sequentially biologically treats organic wastewater containing nitrogen as raw water as treated water mixed with activated sludge, and at least a denitrification tank 20. , A nitrification tank 21, and a membrane separation tank 22 provided with a submerged membrane separator 23.

窒素を含有する有機性排水とは、代表的には都市下水や固形分が除去されたし尿、さらには食品工場等から排出される有機性成分及びアンモニア成分を含有する排水である。脱窒槽20の前段には、有機性排水に含まれる夾雑物を除去するスクリーン機構や有機性排水に含まれる固形分を除去する前処理槽等が通常設けられているが、本実施形態では説明を省略する。   Nitrogen-containing organic wastewater is typically wastewater containing municipal and sewage, human waste from which solids have been removed, and organic and ammonia components discharged from food factories and the like. The stage before the denitrification tank 20 is usually provided with a screen mechanism for removing impurities contained in the organic wastewater, a pretreatment tank for removing solids contained in the organic wastewater, etc., but this embodiment will be described. Is omitted.

脱窒槽20には撹拌機構20aが設けられ、原水である有機性排水が嫌気条件下で活性汚泥と混合処理されるように構成されている。脱窒槽20内で被処理水が活性汚泥に含まれる通性嫌気性微生物(ここでは脱窒素菌)によって嫌気処理され、被処理水に含まれる硝酸態窒素及び亜硝酸態窒素が窒素ガスに還元つまり脱窒される。還元された窒素は大気中に放出される。   The denitrification tank 20 is provided with a stirring mechanism 20a, and is configured so that organic wastewater as raw water is mixed with activated sludge under anaerobic conditions. In the denitrification tank 20, the water to be treated is anaerobically treated by a facultative anaerobic microorganism (here, denitrifying bacteria) contained in the activated sludge, and nitrate nitrogen and nitrite nitrogen contained in the water to be treated are reduced to nitrogen gas. In other words, it is denitrified. Reduced nitrogen is released into the atmosphere.

当該硝酸態窒素及び亜硝酸態窒素は、原水に含まれるアンモニア成分が硝化槽21や膜分離槽22で活性汚泥に含まれる好気性微生物により好気処理され、硝酸や亜硝酸に酸化された被処理水で、後述する第一返送機構Aを介して返送される被処理水に含まれている。   The nitrate nitrogen and nitrite nitrogen are treated by aerobic treatment of the ammonia component contained in the raw water by the aerobic microorganisms contained in the activated sludge in the nitrification tank 21 and the membrane separation tank 22, and oxidized into nitric acid and nitrous acid. The treated water is contained in the treated water returned via the first return mechanism A described later.

硝化槽21には曝気装置25が設けられ、被処理水を曝気するように構成されている。曝気された被処理水に含まれるアンモニアが好気性条件下で活性汚泥に含まれる亜硝酸菌によって亜硝酸態窒素に酸化され、硝酸菌によって亜硝酸が硝酸態窒素に酸化される硝化処理が行なわれる。また、被処理水に含まれる有機性成分は好気性微生物によって分解処理される。   The nitrification tank 21 is provided with an aeration device 25 and configured to aerate the water to be treated. Ammonia contained in the treated water that has been aerated is oxidized to nitrite nitrogen by nitrite bacteria contained in activated sludge under aerobic conditions, and nitrite is oxidized to nitrate nitrogen by nitrate bacteria. It is. Moreover, the organic component contained in to-be-treated water is decomposed by aerobic microorganisms.

膜分離槽22には複数の浸漬型膜分離装置23が被処理水の流下方向に沿って複数台浸漬配置され、浸漬型膜分離装置23によって被処理水から汚泥等の固形物が分離された膜透過水が得られるように構成されている。被処理水は上流側の処理槽から下流側の処理槽にポンプにより送水され、或いは隣接配置された処理槽の上流側から下流側に被処理水がオーバーフローするように構成されている。   A plurality of submerged membrane separators 23 are immersed in the membrane separation tank 22 along the flow direction of the water to be treated, and solid matter such as sludge is separated from the water to be treated by the submerged membrane separator 23. It is comprised so that membrane permeated water may be obtained. The treated water is pumped from the upstream treatment tank to the downstream treatment tank, or the treated water overflows from the upstream side to the downstream side of the adjacent treatment tank.

浸漬型膜分離装置23には、平膜形状の精密濾過膜でなる分離膜を採用した膜ユニット24が複数組み込まれ、各膜ユニット24の排水管にヘッダー管31aが接続されている。ヘッダー管31aに接続された吸引ポンプ31によって膜透過水が吸引され、必要に応じて高度処理が行なわれた後に河川に放流される。   The submerged membrane separation device 23 incorporates a plurality of membrane units 24 adopting a separation membrane made of a flat membrane-shaped microfiltration membrane, and a header pipe 31 a is connected to a drain pipe of each membrane unit 24. Membrane permeated water is sucked by a suction pump 31 connected to the header pipe 31a, and after advanced treatment is performed as necessary, it is discharged into a river.

浸漬型膜分離装置23に採用可能な分離膜として、精密濾過膜以外に限外濾過膜やナノ濾過膜等が挙げられ、分離膜の形態として平膜以外に中空糸膜、チューブラー膜等が挙げられる。図1では、膜分離槽22の底部に散気装置25が配置されているように示されているが、実際には各浸漬型膜分離装置23に収容された膜ユニット24の下部に散気装置25が設けられ、各散気装置25から散気される気泡により形成される被処理水の上向流によって膜ユニット24の表面への汚泥の付着が防止されるとともに付着した汚泥が除去され、さらに被処理水が好気処理される。   Examples of separation membranes that can be used in the submerged membrane separation device 23 include ultrafiltration membranes and nanofiltration membranes in addition to microfiltration membranes, and examples of separation membranes include hollow fiber membranes, tubular membranes, etc. in addition to flat membranes. Can be mentioned. In FIG. 1, the air diffuser 25 is shown as being disposed at the bottom of the membrane separation tank 22, but in reality, the air diffuser is formed below the membrane unit 24 accommodated in each submerged membrane separator 23. An apparatus 25 is provided, and the upward flow of water to be treated formed by bubbles diffused from each of the air diffusers 25 prevents the sludge from adhering to the surface of the membrane unit 24 and removes the adhering sludge. Further, the water to be treated is aerobically treated.

有機性排水処理装置1には、さらに第一返送機構A、第二返送機構B、窒素濃度測定装置33及び制御部30が設けられている。
第一返送機構Aは、膜分離槽22の下流側で膜分離処理されずに残った被処理水を脱窒槽20の上流に返送する第一の返送路28と、第一の返送路28に膜分離槽22内の被処理水を送水する循環ポンプ(以下、「硝化液循環ポンプ」と記す。)26と、第一の返送路28を流れる被処理水の流量を測定する流量計32aを備えて構成されている。尚、硝化液循環ポンプ26として、電動機等で駆動される羽根車を備えた水中ポンプや陸上ポンプとブロワーから供給される空気の上向流により揚水するエアリフトポンプの何れを採用してもよい。
The organic waste water treatment apparatus 1 is further provided with a first return mechanism A, a second return mechanism B, a nitrogen concentration measuring device 33 and a control unit 30.
The first return mechanism A includes a first return path 28 for returning the water to be treated that has not been subjected to membrane separation treatment downstream of the membrane separation tank 22 to the upstream side of the denitrification tank 20, and a first return path 28. A circulation pump (hereinafter referred to as “nitrification liquid circulation pump”) 26 for feeding the treated water in the membrane separation tank 22 and a flow meter 32a for measuring the flow rate of the treated water flowing through the first return path 28 are provided. It is prepared for. As the nitrification liquid circulation pump 26, any of a submersible pump provided with an impeller driven by an electric motor or the like, an air pump that pumps water by an upward flow of air supplied from a blower, and the like may be adopted.

第二返送機構Bは、膜分離槽22の下流側で膜分離処理されずに残った被処理水を硝化槽21の上流に返送する第二返送路29と、第二返送路29に膜分離槽22内の被処理水を送水する循環ポンプ(以下、「内部循環ポンプ」と記す。)27と、第二返送路29を流れる被処理水の流量を測定する流量計32bを備えて構成されている。尚、内部循環ポンプ27も、硝化液循環ポンプ26と同様に、水中ポンプや陸上ポンプとエアリフトポンプの何れを採用してもよい。   The second return mechanism B is separated into the second return path 29 for returning the water to be treated which has not been subjected to the membrane separation process on the downstream side of the membrane separation tank 22, and the second return path 29. A circulation pump (hereinafter referred to as “internal circulation pump”) 27 for feeding the water to be treated in the tank 22 and a flow meter 32b for measuring the flow rate of the water to be treated flowing through the second return path 29 are configured. ing. The internal circulation pump 27 may employ any of a submersible pump, a land pump, and an air lift pump, like the nitrification liquid circulation pump 26.

本実施形態では、窒素濃度測定装置33によって原水に含まれる窒素濃度が測定されるように構成されている。尚、後述するように、窒素濃度測定装置は、図1中に破線で示すように、脱窒槽20に備えてもよく(符号33a参照)、硝化槽21に備えてもよく(符号33b参照)、及び浸漬型膜分離装置23に備えてもよく(符号33c参照)、さらには膜透過水の窒素濃度を測定可能に配置してもよい(符号33d参照)。   In this embodiment, the nitrogen concentration measuring device 33 is configured to measure the nitrogen concentration contained in the raw water. As will be described later, the nitrogen concentration measuring device may be provided in the denitrification tank 20 (see reference numeral 33a) or in the nitrification tank 21 (see reference numeral 33b), as indicated by a broken line in FIG. And the submerged membrane separation device 23 (see reference numeral 33c), and further, the nitrogen concentration of the membrane permeated water may be measured (see reference numeral 33d).

制御部30は、例えばパーソナルコンピュータ装置、或いはマイクロコンピュータやFPGA等で構成され、窒素濃度測定装置33により取得された窒素濃度データや、流量計32a,32bにより取得された流量を入力する入力部と、硝化液循環ポンプ26及び内部循環ポンプ27を駆動する出力部と、入力部に入力された窒素濃度及び各流量に基づいて硝化液循環ポンプ26及び内部循環ポンプ27を介した被処理水の循環量を算出する演算部とを備えて構成されている。   The control unit 30 is configured by, for example, a personal computer device, a microcomputer, an FPGA, or the like, and an input unit that inputs nitrogen concentration data acquired by the nitrogen concentration measuring device 33 and flow rates acquired by the flow meters 32a and 32b. , The output section for driving the nitrification liquid circulation pump 26 and the internal circulation pump 27, and the circulation of the water to be treated through the nitrification liquid circulation pump 26 and the internal circulation pump 27 based on the nitrogen concentration and each flow rate input to the input section. And an arithmetic unit for calculating the quantity.

演算部は、入力部を介して入力された窒素濃度を指標として、第一返送機構Aで返送する被処理水の流量、及び第二返送機構Bで返送する被処理水の流量を算出する目標流量算出部と、入力部を介して入力された各被処理水の流量が目標流量算出部で算出された被処理水の流量となるように硝化液循環ポンプ26及び内部循環ポンプ27を調整する返送流量調整部を備えている。   The calculation unit calculates a flow rate of the water to be treated returned by the first return mechanism A and a flow rate of the water to be treated returned by the second return mechanism B using the nitrogen concentration input via the input unit as an index. The nitrification liquid circulation pump 26 and the internal circulation pump 27 are adjusted so that the flow rate of each treated water input via the flow rate calculation unit and the input unit becomes the flow rate of the treated water calculated by the target flow rate calculation unit. A return flow rate adjustment unit is provided.

つまり、制御部30は、窒素濃度測定装置33により取得された窒素濃度を指標として、第一返送機構Aを介して返送する被処理水の流量、及び第二返送機構Bを介して返送する被処理水の流量を調整するように構成されている。その結果、膜透過水の窒素濃度と、膜分離槽22内の活性汚泥の濃度であるMLSS濃度が好ましい値に調整される。   That is, the control unit 30 uses the nitrogen concentration acquired by the nitrogen concentration measuring device 33 as an index, the flow rate of the water to be treated returned through the first return mechanism A, and the target to be returned via the second return mechanism B. It is comprised so that the flow volume of a treated water may be adjusted. As a result, the nitrogen concentration of the membrane permeated water and the MLSS concentration which is the concentration of activated sludge in the membrane separation tank 22 are adjusted to preferable values.

以下、制御部30によって調整される膜透過水の窒素濃度及び膜分離槽22のMLSS濃度について詳述する。
膜分離槽22内の被処理水の一部は第一返送機構Aを介して脱窒槽20に返送される。本願明細書では、この被処理水の流れを硝化液循環と呼ぶ。さらに、膜分離槽22内の被処理水の一部は第二返送機構Bを介して硝化槽21に返送される。本願明細書では、この被処理水の流れを内部循環と呼ぶ。
Hereinafter, the nitrogen concentration of the permeated water adjusted by the control unit 30 and the MLSS concentration of the membrane separation tank 22 will be described in detail.
Part of the water to be treated in the membrane separation tank 22 is returned to the denitrification tank 20 via the first return mechanism A. In this specification, this flow of water to be treated is called nitrification liquid circulation. Further, part of the water to be treated in the membrane separation tank 22 is returned to the nitrification tank 21 via the second return mechanism B. In the present specification, this flow of water to be treated is called internal circulation.

脱窒槽20に流入する原水の流入量1に対する硝化液循環する被処理水の流量の比を硝化液循環比R、同じく原水の流入量1に対する内部循環する被処理水の流量の比を内部循環比rとする。   The ratio of the flow rate of the treated water circulating in the nitrification solution to the inflow amount 1 of the raw water flowing into the denitrification tank 20 is the nitrification solution circulation ratio R, and the ratio of the flow rate of the treated water circulating internally to the flow rate of the raw water 1 is also internally circulated. Let the ratio be r.

原水に含まれている窒素は主にアンモニア態窒素として存在し、硝化槽21で硝化処理されて硝酸態窒素等に形を変える。硝化処理により被処理水に含まれる窒素の量が大きく変化することはない。原水が活性汚泥処理される過程で被処理水中の窒素の量に変化が生じるのは、脱窒槽20で硝酸態窒素が還元処理されて窒素ガスとなって大気に放出されるときと、膜分離槽22で亜硝酸態窒素や硝酸態窒素等が余剰汚泥として引き抜かれるときである。   Nitrogen contained in the raw water exists mainly as ammonia nitrogen and is nitrified in the nitrification tank 21 to change into nitrate nitrogen or the like. The amount of nitrogen contained in the water to be treated is not greatly changed by nitrification. The amount of nitrogen in the water to be treated changes in the course of the raw water being treated with activated sludge when nitrate nitrogen is reduced in the denitrification tank 20 and released into the atmosphere as nitrogen gas. This is when nitrite nitrogen, nitrate nitrogen, and the like are extracted as excess sludge in the tank 22.

除去される窒素分のうち、余剰汚泥として引き抜かれる窒素分は少量であるため、原水に含まれる窒素濃度のうち硝化脱窒処理によって除去すべき窒素濃度を硝化対象窒素濃度、膜透過水の窒素濃度を処理水窒素濃度とした場合、処理水窒素濃度は、既述したように以下の数式1により算出できる。
(処理水窒素濃度) = (硝化対象窒素濃度)/(R+1) ・・・数式1
Of the nitrogen content that is removed, the nitrogen content that is extracted as excess sludge is small, so the nitrogen concentration that should be removed by nitrification / denitrification treatment in the concentration of nitrogen contained in the raw water is the nitrification target nitrogen concentration and the nitrogen content of the membrane permeated water. When the concentration is the treated water nitrogen concentration, the treated water nitrogen concentration can be calculated by the following Equation 1 as described above.
(Treatment water nitrogen concentration) = (nitrogen concentration to be nitrified) / (R + 1) (1)

処理水窒素濃度、硝化対象窒素濃度、硝化液循環比Rの何れか二値が既知であれば残りの値も判明する。膜透過水の窒素濃度の計測値が処理水窒素濃度となり、原水の窒素濃度の計測値が硝化対象窒素濃度となり、膜透過水の流量と第一返送機構Aを介した被処理水返送量の比が硝化液循環比Rとなる。   If any one of the treated water nitrogen concentration, nitrification target nitrogen concentration, and nitrification liquid circulation ratio R is known, the remaining values are also found. The measured value of the nitrogen concentration of the membrane permeated water becomes the treated water nitrogen concentration, the measured value of the raw water nitrogen concentration becomes the nitrification target nitrogen concentration, and the flow rate of the membrane permeated water and the return amount of the treated water via the first return mechanism A The ratio becomes the nitrification liquid circulation ratio R.

尚、原水の窒素濃度の計測値である硝化対象窒素濃度と目標とする処理水窒素濃度から、設定すべき硝化液循環比Rが求まる。また、膜透過水の窒素濃度の計測値である処理水窒素濃度とその時点での硝化液循環比Rから、原水の窒素濃度である硝化対象窒素濃度を算出することで、目標とする処理水窒素濃度とするための硝化液循環比Rが求まる。また、脱窒工程、硝化工程、及び膜分離工程の何れかの工程での被処理水の窒素濃度と、そのときの硝化液循環比Rが既知であれば、統計的に処理水窒素濃度または硝化対象窒素濃度が求まる。   The nitrification liquid circulation ratio R to be set is obtained from the nitrification target nitrogen concentration which is a measured value of the raw water nitrogen concentration and the target treated water nitrogen concentration. Moreover, the target treated water is calculated by calculating the nitrification target nitrogen concentration, which is the nitrogen concentration of the raw water, from the treated water nitrogen concentration, which is a measured value of the nitrogen concentration of the permeated water, and the nitrification liquid circulation ratio R at that time. The nitrification liquid circulation ratio R for obtaining the nitrogen concentration is obtained. Further, if the nitrogen concentration of the water to be treated in any of the denitrification step, the nitrification step, and the membrane separation step and the nitrification solution circulation ratio R at that time are known, the treated water nitrogen concentration or Nitrogen concentration is determined.

従って、上述したように、窒素濃度測定装置33は、原水である有機性排水の窒素濃度を測定するように配置されていてもよく、脱窒槽20、硝化槽21及び膜分離槽22の何れかの被処理水の窒素濃度を測定するように配置されていてもよく、膜分離槽22で膜分離した膜透過水の窒素濃度を測定するように配置されていてもよく、原水と膜透過水の両方の窒素濃度を測定するように配置されていてもよい。   Therefore, as described above, the nitrogen concentration measuring device 33 may be arranged to measure the nitrogen concentration of the organic waste water that is the raw water, and is any one of the denitrification tank 20, the nitrification tank 21, and the membrane separation tank 22. It may be arranged so as to measure the nitrogen concentration of the water to be treated, or it may be arranged so as to measure the nitrogen concentration of the membrane permeated water separated in the membrane separation tank 22. It may be arranged to measure both nitrogen concentrations.

窒素濃度測定装置33は、トータル窒素濃度を計測可能なTN計、アンモニア態窒素濃度を計測可能なNH−N計、硝酸態窒素を計測可能なNO−N計を用いることができ、原水に対してNH−N計、膜透過水に対してNO−N計を用いることが好ましい。 The nitrogen concentration measuring device 33 can use a TN meter that can measure the total nitrogen concentration, an NH 4 -N meter that can measure the ammonia nitrogen concentration, and a NO 3 -N meter that can measure nitrate nitrogen. It is preferable to use an NH 4 -N meter for NO and a NO 3 -N meter for membrane permeate.

処理水窒素濃度の目標値が定まれば、目標流量算出部によってその目標値に向けた硝化液循環比Rが算出され、返送流量調整部で第一返送機構Aを介した返送流量が調整される。   When the target value of the treated water nitrogen concentration is determined, the target flow rate calculation unit calculates the nitrification liquid circulation ratio R toward the target value, and the return flow rate adjustment unit adjusts the return flow rate via the first return mechanism A. The

しかし、例えば海水中の栄養塩の一つである溶存態無機窒素が低下する冬季から春季に硝化液循環比Rを小さくして、処理水窒素濃度を高くすると、膜分離槽22への被処理水の流入量つまり原水と活性汚泥の混合液の流入量が少なくなり、被処理水の流れに沿って配置されている浸漬型膜分離装置23の周囲の活性汚泥濃度の濃淡の勾配が大きくなり、膜分離性能に支障が発生する虞がある。   However, for example, if the nitrification liquid circulation ratio R is decreased from winter to spring when the dissolved inorganic nitrogen, which is one of the nutrient salts in seawater, decreases, and the nitrogen concentration of the treated water is increased, the membrane separation tank 22 is treated. The inflow amount of water, that is, the inflow amount of the mixed solution of raw water and activated sludge is reduced, and the gradient of the activated sludge concentration around the submerged membrane separation device 23 arranged along the flow of treated water is increased. There is a risk that the membrane separation performance may be hindered.

既に説明したが、膜分離工程の被処理水の流れに沿う下流側でのMLSS濃度が高くなりすぎないように、処理工程全体のMLSS濃度を低くすると、特に、MLSS濃度が低い膜分離工程の上流側で未分解のアンモニア等が膜透過水に流出したり、未分解の難溶性成分や高分子の溶質等に起因する分離膜のファウリングが生じて分離膜が閉塞する。   As already explained, if the MLSS concentration in the entire treatment process is lowered so that the MLSS concentration on the downstream side along the flow of the water to be treated in the membrane separation process does not become too high, especially in the membrane separation process where the MLSS concentration is low. On the upstream side, undecomposed ammonia or the like flows out into the permeated water of the membrane, or fouling of the separation membrane due to undegraded poorly soluble components, polymer solutes, etc. occurs and the separation membrane is blocked.

被処理水の流下方向に長い流路を備え、浸漬型膜分離装置23が被処理水の流下方向に複数台設置された膜分離槽22では、MLSS濃度の流路内の位置による差はより顕著となる。   In the membrane separation tank 22 having a long flow path in the flow direction of the water to be treated and a plurality of submerged membrane separation devices 23 installed in the flow direction of the water to be treated, the difference in MLSS concentration depending on the position in the flow path is more Become prominent.

そのような場合に備えて、本発明による有機性排水の処理装置は、第二返送機構Bを介して膜分離槽22内の被処理水の一部を硝化槽21に返送するように構成されている。   In preparation for such a case, the organic wastewater treatment apparatus according to the present invention is configured to return part of the water to be treated in the membrane separation tank 22 to the nitrification tank 21 via the second return mechanism B. ing.

膜分離槽22の最下流側のMLSS濃度をXとすると、膜分離槽22に流入する被処理水のMLSS濃度は、以下の数式3で求まる。Rは硝化液循環比であり、rは内部循環比である。浸漬型膜分離装置23で濾過される膜透過水の流量と原水の流量は略同値を前提としている。
MLSS濃度 = (R+r)/(R+r+1)*X ・・・数式3
Assuming that the MLSS concentration on the most downstream side of the membrane separation tank 22 is X, the MLSS concentration of the water to be treated flowing into the membrane separation tank 22 is obtained by the following Equation 3. R is the nitrification solution circulation ratio and r is the internal circulation ratio. The flow rate of the membrane permeated water filtered by the submerged membrane separation device 23 and the flow rate of the raw water are assumed to be approximately the same value.
MLSS concentration = (R + r) / (R + r + 1) * X Equation 3

数式3によれば、膜分離槽22の上流部に流入するMLSS濃度は、硝化液循環比Rと内部循環比rにより定まり、処理水窒素濃度を上げるために硝化液循環比Rを小さくしても、内部循環比rを大きくすると、膜分離槽22の上流部に流入する被処理水のMLSS濃度と膜分離槽22の下流部から流出する被処理水のMLSS濃度の差の増大を抑制することができることが明らかである。R+rの値を総合循環比という。   According to Equation 3, the MLSS concentration flowing into the upstream portion of the membrane separation tank 22 is determined by the nitrification liquid circulation ratio R and the internal circulation ratio r, and the nitrification liquid circulation ratio R is decreased to increase the treated water nitrogen concentration. However, when the internal circulation ratio r is increased, an increase in the difference between the MLSS concentration of the water to be treated flowing into the upstream portion of the membrane separation tank 22 and the MLSS concentration of the water to be treated flowing out of the downstream portion of the membrane separation tank 22 is suppressed. Obviously it can be. The value of R + r is called the total circulation ratio.

つまり、本発明による有機性排水の処理装置によれば、脱窒槽20への硝化液循環比Rを小さな値に設定しても、膜分離槽22で用いられる膜分離装置23のファウリングを回避できるようになる。   That is, according to the organic wastewater treatment apparatus of the present invention, fouling of the membrane separation apparatus 23 used in the membrane separation tank 22 is avoided even if the nitrification liquid circulation ratio R to the denitrification tank 20 is set to a small value. become able to.

総合循環比を調整することにより、膜透過水の窒素濃度(処理水窒素濃度)及び膜分離槽22のMLSS濃度分布がどのように変化するのかについて、硝化対象窒素濃度を30mg/L、膜分離槽22の最下流のMLSS濃度を10,000mg/Lで固定した場合を例に具体的に説明する。   By adjusting the overall circulation ratio, the nitrogen concentration of the permeated water (processed water nitrogen concentration) and the MLSS concentration distribution in the membrane separation tank 22 will change. The case where the MLSS concentration at the most downstream side of the tank 22 is fixed at 10,000 mg / L will be specifically described as an example.

R=3、r=0とする場合
この場合、処理水窒素濃度は7.5mg/L、膜分離槽22の上流部に流入する被処理水のMLSS濃度は7,500mg/Lとなり、膜分離槽22の上流部と下流部でのMLSS濃度分布比は1:1.3に抑えられた状態となる。
R=1、r=0とする場合
処理水窒素濃度を上昇させるために硝化液循環比Rのみ小さくする場合である。この場合、処理水窒素濃度は数式1より15mg/Lに上昇するが、膜分離槽22の上流部に流入する被処理水のMLSS濃度は5,000mg/Lとなり、膜分離槽22の上流部と下流部でのMLSS濃度分布比は1:2となり、被処理水の流下方向に沿う膜分離槽22のMLSS濃度勾配が大きくなりすぎる。また、原水中の未分解成分の膜分離槽22への流入に起因する分離膜のファウリングが発生する虞がある。
R=1、r=2とする場合
処理水窒素濃度を上昇させるために硝化液循環比Rを小さくするとともに、内部循環比rを大きくする場合である。この場合、処理水窒素濃度は15mg/Lに上昇し、膜分離槽22に流入する被処理水のMLSS濃度は7,500mg/Lとなり、膜分離槽22の上流部と下流部でのMLSS濃度分布比は1:1.3となり、被処理水の流下方向に沿う膜分離槽22のMLSS濃度勾配は、〈R=3、r=0とする場合〉と同じにまで抑制できる。
When R = 3 and r = 0 In this case, the treated water nitrogen concentration is 7.5 mg / L, and the MLSS concentration of the treated water flowing into the upstream portion of the membrane separation tank 22 is 7,500 mg / L. The MLSS concentration distribution ratio in the upstream portion and the downstream portion of the tank 22 is suppressed to 1: 1.3.
When R = 1 and r = 0 In this case, only the nitrification liquid circulation ratio R is decreased in order to increase the nitrogen concentration of the treated water. In this case, the nitrogen concentration of treated water rises to 15 mg / L from Equation 1, but the MLSS concentration of treated water flowing into the upstream portion of the membrane separation tank 22 becomes 5,000 mg / L, and the upstream portion of the membrane separation tank 22 And the MLSS concentration distribution ratio in the downstream portion is 1: 2, and the MLSS concentration gradient of the membrane separation tank 22 along the flow-down direction of the water to be treated becomes too large. Further, there is a possibility that fouling of the separation membrane due to the inflow of undecomposed components in the raw water into the membrane separation tank 22 may occur.
When R = 1 and r = 2 In this case, the nitrification liquid circulation ratio R is decreased and the internal circulation ratio r is increased in order to increase the concentration of treated water nitrogen. In this case, the nitrogen concentration of the treated water rises to 15 mg / L, the MLSS concentration of the water to be treated flowing into the membrane separation tank 22 becomes 7,500 mg / L, and the MLSS concentrations at the upstream and downstream parts of the membrane separation tank 22 The distribution ratio is 1: 1.3, and the MLSS concentration gradient of the membrane separation tank 22 along the flow-down direction of the water to be treated can be suppressed to the same value as <when R = 3, r = 0>.

また、他の例として、硝化対象窒素濃度を30mg/L、硝化槽21のMLSS濃度を8,000mg/Lで固定した場合を例に、膜分離槽22のMLSS濃度分布がどのように変化するのか、具体的に説明する。   As another example, how the MLSS concentration distribution in the membrane separation tank 22 changes in a case where the nitrogen concentration to be nitrified is fixed at 30 mg / L and the MLSS concentration in the nitrification tank 21 is fixed at 8,000 mg / L. This will be explained in detail.

R=4、r=0とする場合、及びR=1、r=3とする場合
これらの場合、膜分離槽22の上流部の被処理水のMLSS濃度は8,000mg/Lとなり、膜分離槽22の最下流の被処理水のMLSS濃度は10,000mg/Lとなり、膜分離槽22の上流部と下流部でのMLSS濃度分布比は1:1.25に抑えられた状態となる。
R=1、r=0とする場合
この場合、膜分離槽22の最下流の被処理水のMLSS濃度は16,000mg/Lまで上昇し、分離膜への汚泥の堆積に伴い膜分離が停止する虞がある。
尚、処理水窒素濃度については、前例と同様である。
When R = 4, r = 0, and R = 1, r = 3 In these cases, the MLSS concentration of the water to be treated in the upstream portion of the membrane separation tank 22 is 8,000 mg / L, and membrane separation The MLSS concentration of the water to be treated at the most downstream of the tank 22 is 10,000 mg / L, and the MLSS concentration distribution ratio at the upstream portion and the downstream portion of the membrane separation tank 22 is suppressed to 1: 1.25.
When R = 1 and r = 0 In this case, the MLSS concentration of the water to be treated at the most downstream of the membrane separation tank 22 rises to 16,000 mg / L, and the membrane separation stops with the accumulation of sludge on the separation membrane. There is a risk of doing.
The treated water nitrogen concentration is the same as in the previous example.

本実施形態のように、平膜形状の精密濾過膜でなる分離膜を採用した膜ユニット24では、MLSS濃度が6,000〜15,000mmg/Lの範囲に維持されることが好ましい。上述したように硝化液循環比Rを小さくしても、内部循環比rを大きくすることにより、処理水窒素濃度を上昇させながらも膜分離槽22のMLSS濃度分布の範囲を好ましい範囲に調整できるのである。   As in this embodiment, in the membrane unit 24 employing a separation membrane made of a flat membrane-shaped microfiltration membrane, the MLSS concentration is preferably maintained in the range of 6,000 to 15,000 mmg / L. As described above, even if the nitrification liquid circulation ratio R is reduced, by increasing the internal circulation ratio r, the range of the MLSS concentration distribution in the membrane separation tank 22 can be adjusted to a preferable range while increasing the nitrogen concentration of the treated water. It is.

即ち、制御部30は、窒素濃度測定装置33により取得された窒素濃度を指標として、膜透過水の窒素濃度が目標窒素濃度となるように第一返送機構Aを介して返送する被処理水の流量を調整するとともに、膜分離槽22へ流入する被処理水の流量が目標流量となるように第二返送機構Bを介して返送する被処理水の流量を調整するように構成されている。   That is, the control unit 30 uses the nitrogen concentration acquired by the nitrogen concentration measuring device 33 as an index, and the treated water returned through the first return mechanism A so that the nitrogen concentration of the membrane permeated water becomes the target nitrogen concentration. The flow rate is adjusted, and the flow rate of the water to be treated returned through the second return mechanism B is adjusted so that the flow rate of the water to be treated flowing into the membrane separation tank 22 becomes the target flow rate.

膜分離槽22内のMLSS濃度分布が上流部と下流部との間で1.5倍を超えると、上流部での未分解成分によるファウリング、または、下流部での活性汚泥の堆積により、膜分離ができなくなる虞がある。よって、数式3から導出される最上流と最下流のMLSS濃度比(R+r+1)/(R+r)を1.5以下とする必要がある。つまり、R+r+1≧3にしなければならない。   When the MLSS concentration distribution in the membrane separation tank 22 exceeds 1.5 times between the upstream portion and the downstream portion, fouling due to undecomposed components in the upstream portion, or accumulation of activated sludge in the downstream portion, Membrane separation may not be possible. Therefore, it is necessary to set the ratio of the most upstream MLSS concentration (R + r + 1) / (R + r) derived from Equation 3 to 1.5 or less. That is, R + r + 1 ≧ 3 must be satisfied.

また、総合循環比や硝化液循環比の増大は、循環に要するエネルギーの増大や、被処理水中の溶存酸素の脱窒槽20への持ち込みによる脱窒処理不良を招くため、最上流と最下流のMLSS濃度比(R+r+1)/(R+r)を1.2以上とする必要がある。つまり、R+r+1≦6にしなければならない。   Further, the increase in the total circulation ratio and the nitrification liquid circulation ratio leads to an increase in energy required for circulation and a denitrification treatment failure due to bringing dissolved oxygen in the treated water into the denitrification tank 20, so The MLSS concentration ratio (R + r + 1) / (R + r) needs to be 1.2 or more. That is, R + r + 1 ≦ 6 must be satisfied.

以上より本実施形態では、R+r+1の目標値を3〜6の範囲に設定することが好ましい。つまり、窒素濃度を指標として、硝化液循環比Rを調整し、かつR+r+1が上記のような考慮から定めた目標値となるように、内部循環比rを調整するのである。   From the above, in the present embodiment, it is preferable to set the target value of R + r + 1 within the range of 3-6. That is, the nitrification liquid circulation ratio R is adjusted using the nitrogen concentration as an index, and the internal circulation ratio r is adjusted so that R + r + 1 becomes a target value determined from the above consideration.

上述したように、R+r+1の目標値を3〜6に設定する場合、膜分離槽22へ流入する被処理水の流量の目標流量が、処理対象となる有機性排水の流入量の3倍以上かつ6倍以下の範囲であるということになる。   As described above, when the target value of R + r + 1 is set to 3 to 6, the target flow rate of the water to be treated flowing into the membrane separation tank 22 is at least three times the inflow amount of the organic waste water to be treated and This means that the range is 6 times or less.

このとき膜分離槽22内の最上流と最下流のMLSS濃度分布比は、1:1.2から1:1.5までの範囲に収めることができ、分離膜のファウリングの発生を抑制できる。また、1:1.2から1:1.5までの範囲のMLSS濃度分布比に対応できる分離膜は、標準的で安価に入手しやすい。さらに、膜分離槽22へ移送する活性汚泥と混合された被処理水の流量の制御範囲が、処理対象の前記有機性排水の流量の3倍以上かつ6倍以下の範囲と比較的広いため、流量制御にあまり困難を伴わない。   At this time, the upstream and downstream MLSS concentration distribution ratio in the membrane separation tank 22 can be within a range from 1: 1.2 to 1: 1.5, and the occurrence of fouling of the separation membrane can be suppressed. . A separation membrane that can cope with the MLSS concentration distribution ratio in the range from 1: 1.2 to 1: 1.5 is standard and easily available at low cost. Furthermore, since the control range of the flow rate of the water to be treated mixed with the activated sludge transferred to the membrane separation tank 22 is relatively wide with a range of 3 to 6 times the flow rate of the organic waste water to be treated, Less difficult to control the flow rate.

同様に、R+r+1の目標値を3〜6の範囲のある値に設定してもよい。つまり、膜分離槽22へ流入する被処理水の流量の目標流量を、処理対象となる有機性排水の流入量の3倍以上かつ6倍以下の一定値としてもよい。MLSS濃度分布比を、使用する分離膜の性能を引き出しやすい値に設定できるため、分離膜のファウリングの発生の抑制をより効果的に行えるからである。   Similarly, the target value of R + r + 1 may be set to a value in the range of 3-6. That is, the target flow rate of the water to be treated flowing into the membrane separation tank 22 may be a constant value that is not less than 3 times and not more than 6 times the inflow amount of the organic waste water to be treated. This is because the MLSS concentration distribution ratio can be set to a value that facilitates drawing out the performance of the separation membrane to be used, so that the occurrence of fouling of the separation membrane can be more effectively suppressed.

尚、好ましいMLSS濃度比(R+r+1)/(R+r)の範囲は、上述の数値範囲に限るものではなく、膜分離装置23に使用される分離膜の特性により適宜設定可能である。   Note that the preferable range of the MLSS concentration ratio (R + r + 1) / (R + r) is not limited to the above numerical range, and can be set as appropriate depending on the characteristics of the separation membrane used in the membrane separation device 23.

以下、別実施形態を説明する。
上述した実施形態では、第二の返送機構Bが膜分離槽22で膜分離処理されずに残った被処理水を硝化槽21の上流に返送するように構成された例を説明したが、第二の返送機構Bは膜分離槽22で膜分離処理されずに残った被処理水を脱窒槽20より後段へ返送するように構成されていればよく、硝化槽21の下流に返送し、或いは膜分離槽22の上流に返送するように構成してもよい。
Hereinafter, another embodiment will be described.
In the above-described embodiment, an example in which the second return mechanism B is configured to return the water to be treated left without being subjected to the membrane separation treatment in the membrane separation tank 22 to the upstream of the nitrification tank 21 has been described. The second return mechanism B only needs to be configured to return the water to be treated that has not been subjected to the membrane separation treatment in the membrane separation tank 22 to the subsequent stage from the denitrification tank 20, and return it to the downstream of the nitrification tank 21, or You may comprise so that it may return to the upstream of the membrane separation tank 22. FIG.

尚、膜分離槽22の上流に返送するように構成すると、硝化槽21のMLSS濃度が脱窒槽20と同じになるため、硝化槽21の必要酸素量が減り、省エネルギーとなる。   In addition, if it comprises so that it may return to the upstream of the membrane separation tank 22, since the MLSS density | concentration of the nitrification tank 21 will become the same as the denitrification tank 20, the required oxygen amount of the nitrification tank 21 will reduce and it will become energy saving.

以上説明した有機性排水の処理装置1によって、窒素を含有する有機性排水を、少なくとも脱窒工程、硝化工程、及び浸漬型膜分離装置を使用した膜分離工程の順に活性汚泥と混合された被処理水として生物処理する有機性排水の処理方法が実行される。   By the organic wastewater treatment device 1 described above, the organic wastewater containing nitrogen is mixed with activated sludge in the order of at least the denitrification step, the nitrification step, and the membrane separation step using the submerged membrane separation device. An organic wastewater treatment method for biological treatment as treated water is executed.

詳述すると、膜分離工程を経た被処理水を脱窒工程へ返送する第一返送工程と、膜分離工程を経た被処理水を脱窒工程の後の工程へ返送する第二返送工程と、有機性排水、何れかの被処理水、及び膜分離工程で膜分離した膜透過水の何れかの窒素濃度を指標として、第一返送機構Aを用いた第一返送工程で返送する被処理水の流量、及び第二返送機構Bを用いた第二返送工程で返送する被処理水の流量を調整する返送流量調整工程とを含む有機性排水の処理方法が実行される。   More specifically, a first return process for returning the treated water that has undergone the membrane separation process to the denitrification process, and a second return process for returning the treated water that has undergone the membrane separation process to the process after the denitrification process, Organic waste water, any treated water, and treated water returned in the first returning process using the first returning mechanism A using as an index the nitrogen concentration of any of the membrane permeated water separated in the membrane separating process. And a return flow rate adjustment step of adjusting the flow rate of the water to be treated returned in the second return step using the second return mechanism B is executed.

当該返送流量調整工程は、窒素濃度を指標として、膜透過水の窒素濃度が目標窒素濃度となるように第一返送工程で返送する被処理水の流量を調整するとともに、膜分離工程へ流入する被処理水の流量が目標流量となるように第二返送工程で返送する被処理水の流量を調整する工程である。   The return flow rate adjustment step uses the nitrogen concentration as an index to adjust the flow rate of water to be treated returned in the first return step so that the nitrogen concentration of the membrane permeate becomes the target nitrogen concentration, and flows into the membrane separation step. This is a step of adjusting the flow rate of the water to be treated returned in the second return step so that the flow rate of the treated water becomes the target flow rate.

また、当該目標流量は、処理対象となる有機性排水の流入量の3倍以上かつ6倍以下の範囲に調整され、或いは目標流量は、処理対象の有機性排水の流入量の3倍以上かつ6倍以下の範囲の一定値に調整される。   In addition, the target flow rate is adjusted to a range that is not less than 3 times and not more than 6 times the inflow amount of the organic wastewater to be treated, or the target flow rate is not less than 3 times the inflow amount of the organic wastewater to be treated and It is adjusted to a constant value in the range of 6 times or less.

更に別実施形態を説明する。
上述した何れかの有機性排水処理装置に、膜分離槽22内の被処理水のMLSS濃度を測定するMLSS濃度測定装置をさらに備え、制御部30は、第一の返送機構Aを介して返送される被処理水の流量を、窒素濃度測定装置33により取得された窒素濃度を指標として調整し、第二の返送機構Bを介して返送される被処理水の流量を、MLSS濃度測定装置により取得したMLSS濃度が所定の範囲内となるように、第一の返送機構Aを介して返送される被処理水の流量に応じて調整するように構成することが好ましい。MLSS濃度の目標値は排水の性状や分離膜の仕様に応じて適宜設定すればよい。
Still another embodiment will be described.
Any of the organic wastewater treatment devices described above is further provided with an MLSS concentration measurement device that measures the MLSS concentration of the water to be treated in the membrane separation tank 22, and the control unit 30 returns it via the first return mechanism A. The flow rate of the water to be treated is adjusted by using the nitrogen concentration acquired by the nitrogen concentration measuring device 33 as an index, and the flow rate of the treated water returned via the second return mechanism B is adjusted by the MLSS concentration measuring device. It is preferable that the MLSS concentration is adjusted according to the flow rate of the water to be treated returned via the first return mechanism A so that the acquired MLSS concentration is within a predetermined range. What is necessary is just to set the target value of MLSS density | concentration suitably according to the property of waste_water | drain, and the specification of a separation membrane.

上述した実施形態では、膜分離槽22が被処理水の流下方向に沿って膜分離装置23が複数浸漬配置され、第一の返送機構Aが膜分離槽22の下流側から被処理水を脱窒槽20へ返送する返送路を備えている例を説明したが、被処理水の流下方向長さが膜分離槽22の横幅の十倍以上の長い膜分離槽22である場合に特に好適である。   In the embodiment described above, a plurality of membrane separation devices 23 are immersed in the membrane separation tank 22 along the flow-down direction of the treated water, and the first return mechanism A removes the treated water from the downstream side of the membrane separation tank 22. Although the example provided with the return path which returns to the nitriding tank 20 was demonstrated, it is especially suitable when it is the long membrane separation tank 22 whose flow direction length of to-be-processed water is ten times or more of the horizontal width of the membrane separation tank 22. .

大規模な汚水処理施設では、膜分離槽22内に被処理水が流れる長い流路が確保されている。例えば、細長い形状の押し出し流れ反応タンク躯体構造がそれに当たる。こうした施設において、膜分離槽22内に、処理対象となる有機性排水の流下方向に沿って、浸漬型の膜分離装置23が複数浸漬配置され、第一の返送機構が、膜分離槽22の下流側から被処理水を脱窒槽20へ返送する返送路を備えているため、分離膜のファウリングの問題が抑制されると同時に、窒素除去効率のさらなる向上が見込める。   In a large-scale sewage treatment facility, a long channel through which water to be treated flows is secured in the membrane separation tank 22. For example, an elongate shaped extruded flow reaction tank housing structure is the case. In such a facility, a plurality of submerged membrane separation devices 23 are disposed in the membrane separation tank 22 along the flow direction of the organic waste water to be treated, and the first return mechanism is provided in the membrane separation tank 22. Since the return path for returning the treated water from the downstream side to the denitrification tank 20 is provided, the problem of fouling of the separation membrane is suppressed, and at the same time, further improvement in nitrogen removal efficiency can be expected.

被処理水の流下方向と交差する方向に沿って膜分離装置23が多段に浸漬配置され、膜分離槽22内でMLSS濃度勾配が大きくなるような膜分離槽22にも本発明を好適に用いることができる。   The present invention is also suitably used for a membrane separation tank 22 in which membrane separation devices 23 are immersed in multiple stages along the direction intersecting with the flow-down direction of the water to be treated, and the MLSS concentration gradient increases in the membrane separation tank 22. be able to.

上述した実施形態では、第一返送機構A及び第二返送機構Bのそれぞれにポンプ26,27を備え、個別の返送路28,29を備えた例を説明したが、第一返送機構A及び第二返送機構Bの構成はこのような態様に制限されるものではない。   In the above-described embodiment, the example in which the first return mechanism A and the second return mechanism B are each provided with the pumps 26 and 27 and the individual return paths 28 and 29 is described. The configuration of the two-return mechanism B is not limited to such a mode.

例えば、図2に示すように、1台の硝化液循環ポンプ26を膜分離槽22に備え、共通の返送路を三方バルブ36を介して個別の第一返送路28及び第二返送路29に分岐供給するように構成してもよい。   For example, as shown in FIG. 2, a single nitrifying liquid circulation pump 26 is provided in the membrane separation tank 22, and a common return path is connected to the individual first return path 28 and second return path 29 via a three-way valve 36. You may comprise so that branch supply may be carried out.

上述した実施形態では、硝化槽21と膜分離槽22は独立して構成された例を説明したが、図3に示すように、硝化槽21と膜分離槽22が一体に構成され、被処理水の上流側が硝化槽21として機能し、下流側が膜分離槽22として機能するように構成してもよい。   In the above-described embodiment, an example in which the nitrification tank 21 and the membrane separation tank 22 are configured independently has been described. However, as illustrated in FIG. 3, the nitrification tank 21 and the membrane separation tank 22 are configured integrally and are to be processed. The upstream side of the water may function as the nitrification tank 21, and the downstream side may function as the membrane separation tank 22.

図4に示すように、脱窒槽20の上流側に嫌気槽37をさらに備えて原水に含まれるリン成分を除去するように構成してもよい。脱窒槽20に脱窒液循環ポンプ38を設置し、脱窒液循環ポンプ38及び脱窒液循環ポンプ38に接続された第三返送路39を介して、脱窒槽20内の被処理水の一部が嫌気槽37へ返送されるように構成すればよい。   As shown in FIG. 4, you may comprise so that the anaerobic tank 37 may be further provided in the upstream of the denitrification tank 20, and the phosphorus component contained in raw | natural water may be removed. A denitrification liquid circulation pump 38 is installed in the denitrification tank 20, and one of the water to be treated in the denitrification tank 20 is connected to the denitrification liquid circulation pump 38 and the third return path 39 connected to the denitrification liquid circulation pump 38. What is necessary is just to comprise so that a part may be returned to the anaerobic tank 37. FIG.

嫌気槽37に流入した原水に含まれるリン化合物が、無酸素状態で微生物により正リン酸として被処理水中に溶解放出される。放出された正リン酸は硝化槽21及び膜分離槽22で好気性微生物に取り込まれ、余剰汚泥として引き抜かれる。   The phosphorus compound contained in the raw water flowing into the anaerobic tank 37 is dissolved and released into the water to be treated as normal phosphoric acid by microorganisms in an oxygen-free state. The released orthophosphoric acid is taken into the aerobic microorganisms in the nitrification tank 21 and the membrane separation tank 22 and is extracted as excess sludge.

上述した実施形態は、何れも本発明の一例であり、該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。また、上述した複数の実施形態の何れかまたは複数を適宜組み合わせてもよい。   Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description. The specific configuration of each part can be appropriately changed and designed within the range where the effects of the present invention are exhibited. Needless to say. Further, any one or a plurality of the above-described embodiments may be appropriately combined.

1:有機性排水処理装置
20:脱窒槽
20a:撹拌機構
21:硝化槽
22:膜分離槽
23:浸漬型の膜分離装置
24:膜ユニット
25:散気装置(曝気装置)
26:硝化液循環ポンプ
27:内部循環ポンプ
28:第一返送路
29:第二返送路
30:制御部
31:吸引ポンプ
31a:ヘッダー管
32a,32b:流量計
33:窒素濃度測定装置
34:原水流入路
35:放流路
36:三方バルブ
37:嫌気槽
38:脱窒液循環ポンプ
39:第三返送路
A:第一返送機構
B:第二返送機構
1: Organic waste water treatment device 20: Denitrification tank 20a: Agitation mechanism 21: Nitrification tank 22: Membrane separation tank 23: Immersion type membrane separation apparatus 24: Membrane unit 25: Aeration apparatus (aeration apparatus)
26: Nitrification liquid circulation pump 27: Internal circulation pump 28: First return path 29: Second return path 30: Control unit 31: Suction pump 31a: Header pipe 32a, 32b: Flow meter 33: Nitrogen concentration measuring device 34: Raw water Inflow path 35: Release path 36: Three-way valve 37: Anaerobic tank 38: Denitrification liquid circulation pump 39: Third return path A: First return mechanism B: Second return mechanism

Claims (10)

窒素を含有する有機性排水を、少なくとも脱窒工程、硝化工程、及び浸漬型膜分離装置を使用した膜分離工程の順に活性汚泥と混合された被処理水として生物処理する有機性排水の処理方法であって、
前記膜分離工程で膜透過水として取り出されずに残った被処理水を前記脱窒工程へ返送する第一返送工程と、
前記膜分離工程で膜透過水として取り出されずに残った被処理水を前記脱窒工程の後の工程へ返送する第二返送工程と、
前記有機性排水、何れかの被処理水、及び前記膜分離工程で膜分離した膜透過水の何れかの窒素濃度を指標として、前記第一返送工程で返送する被処理水の流量、及び前記第二返送工程で返送する被処理水の流量を調整する返送流量調整工程を含む有機性排水の処理方法。
Organic wastewater treatment method for biologically treating nitrogen-containing organic wastewater as treated water mixed with activated sludge in the order of at least a denitrification step, a nitrification step, and a membrane separation step using a submerged membrane separation device Because
A first return step for returning the treated water remaining without being taken out as membrane permeate in the membrane separation step to the denitrification step;
A second return step for returning the water to be treated which has not been taken out as membrane permeate in the membrane separation step to a step after the denitrification step;
The flow rate of water to be returned in the first return step, using as an index the nitrogen concentration of any one of the organic waste water, any water to be treated, and the membrane permeated water separated in the membrane separation step, and An organic wastewater treatment method including a return flow rate adjustment step of adjusting a flow rate of water to be treated returned in the second return step.
前記返送流量調整工程は、前記窒素濃度を指標として、前記膜透過水の窒素濃度が目標窒素濃度となるように前記第一返送工程で返送する被処理水の流量を調整するとともに、前記膜分離工程へ流入する被処理水の流量が目標流量となるように前記第二返送工程で返送する被処理水の流量を調整する工程である請求項1記載の有機性排水の処理方法。   The return flow rate adjustment step uses the nitrogen concentration as an index to adjust the flow rate of the water to be treated returned in the first return step so that the nitrogen concentration of the membrane permeated water becomes a target nitrogen concentration, and the membrane separation The method for treating organic waste water according to claim 1, wherein the process is a step of adjusting the flow rate of the water to be treated returned in the second return step so that the flow rate of the water to be treated flowing into the step becomes a target flow rate. 前記目標流量は、処理対象となる前記有機性排水の流入量の3倍以上かつ6倍以下の範囲に調整される請求項2記載の有機性排水の処理方法。   The organic wastewater treatment method according to claim 2, wherein the target flow rate is adjusted to a range of 3 to 6 times the inflow of the organic wastewater to be treated. 前記目標流量は、処理対象の前記有機性排水の流入量の3倍以上かつ6倍以下の範囲の一定値に調整される請求項2記載の有機性排水の処理方法。   The organic wastewater treatment method according to claim 2, wherein the target flow rate is adjusted to a constant value in a range of 3 to 6 times the inflow of the organic wastewater to be treated. 窒素を含有する有機性排水を、活性汚泥と混合された被処理水として生物処理する少なくとも脱窒槽、硝化槽、及び浸漬型膜分離装置が配設された膜分離槽を備えている有機性排水処理装置であって、
前記膜分離槽中の被処理水を前記脱窒槽へ返送する第一返送機構と、
前記膜分離槽中の被処理水を前記脱窒槽より後段へ返送する第二返送機構と、
前記有機性排水、何れかの被処理水、及び前記浸漬型膜分離装置により取り出される膜透過水の何れかの窒素濃度を測定する窒素濃度測定装置と、
前記窒素濃度測定装置により取得された窒素濃度を指標として、前記第一返送機構を介して返送する被処理水の流量、及び前記第二返送機構を介して返送する被処理水の流量を調整する制御部と、
を備えている有機性排水処理装置。
Organic waste water comprising at least a denitrification tank, a nitrification tank, and a membrane separation tank provided with a submerged membrane separation device for biological treatment of organic waste water containing nitrogen as treated water mixed with activated sludge A processing device comprising:
A first return mechanism for returning the water to be treated in the membrane separation tank to the denitrification tank;
A second return mechanism for returning the treated water in the membrane separation tank to the subsequent stage from the denitrification tank;
A nitrogen concentration measuring device that measures the nitrogen concentration of any one of the organic waste water, any water to be treated, and membrane permeated water taken out by the submerged membrane separator;
Using the nitrogen concentration acquired by the nitrogen concentration measuring device as an index, the flow rate of water to be treated returned via the first return mechanism and the flow rate of water to be treated returned via the second return mechanism are adjusted. A control unit;
Organic wastewater treatment equipment equipped with.
前記制御部は、前記窒素濃度測定装置により取得された窒素濃度を指標として、前記膜透過水の窒素濃度が目標窒素濃度となるように前記第一返送機構を介して返送する被処理水の流量を調整するとともに、前記膜分離槽へ流入する被処理水の流量が目標流量となるように前記第二返送機構を介して返送する被処理水の流量を調整する請求項5記載の有機性排水処理装置。   The control unit uses the nitrogen concentration acquired by the nitrogen concentration measuring device as an index, and the flow rate of water to be treated that is returned via the first return mechanism so that the nitrogen concentration of the membrane permeated water becomes the target nitrogen concentration. The organic waste water according to claim 5, wherein the flow rate of the treated water returned through the second return mechanism is adjusted so that the flow rate of the treated water flowing into the membrane separation tank becomes a target flow rate. Processing equipment. 前記目標流量は、処理対象となる前記有機性排水の流入量の3倍以上かつ6倍以下の範囲に調整される請求項6記載の有機性排水処理装置。   The organic wastewater treatment apparatus according to claim 6, wherein the target flow rate is adjusted to a range of 3 to 6 times the inflow of the organic wastewater to be treated. 前記目標流量は、処理対象の前記有機性排水の流入量の3倍以上かつ6倍以下の範囲の一定値に調整される請求項6記載の有機性排水処理装置。   The organic wastewater treatment apparatus according to claim 6, wherein the target flow rate is adjusted to a constant value in a range of 3 to 6 times the inflow of the organic wastewater to be treated. 前記膜分離槽内の被処理水のMLSS濃度を測定するMLSS濃度測定装置をさらに備え、
前記制御部は、前記窒素濃度測定装置により取得された窒素濃度を指標として、前記膜透過水の窒素濃度が目標窒素濃度となるように前記第一返送機構を介して返送する被処理水の流量を調整するとともに、前記MLSS濃度測定装置により取得されたMLSS濃度が所定の範囲に入るように、前記第一の返送機構を介して返送される被処理水の流量に応じて前記第二返送機構を介して返送する被処理水の流量を調整する請求項5記載の有機性排水処理装置。
An MLSS concentration measuring device for measuring the MLSS concentration of the water to be treated in the membrane separation tank;
The control unit uses the nitrogen concentration acquired by the nitrogen concentration measuring device as an index, and the flow rate of water to be treated that is returned via the first return mechanism so that the nitrogen concentration of the membrane permeated water becomes the target nitrogen concentration. And the second return mechanism according to the flow rate of the water to be treated returned through the first return mechanism so that the MLSS concentration acquired by the MLSS concentration measuring device falls within a predetermined range. The organic waste water treatment apparatus of Claim 5 which adjusts the flow volume of the to-be-processed water returned via.
前記膜分離槽は、被処理水の流下方向に沿って前記浸漬型膜分離装置が複数配置され、
前記第一の返送機構は、前記膜分離槽の下流側の被処理水を前記脱窒槽へ返送する返送路を備えている請求項5から9の何れかに記載の有機性排水処理装置。
In the membrane separation tank, a plurality of the immersion type membrane separation devices are arranged along the flow-down direction of the water to be treated,
The organic wastewater treatment apparatus according to any one of claims 5 to 9, wherein the first return mechanism includes a return path for returning the water to be treated downstream of the membrane separation tank to the denitrification tank.
JP2015016475A 2015-01-30 2015-01-30 Method and apparatus for treating organic wastewater Active JP6522966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015016475A JP6522966B2 (en) 2015-01-30 2015-01-30 Method and apparatus for treating organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015016475A JP6522966B2 (en) 2015-01-30 2015-01-30 Method and apparatus for treating organic wastewater

Publications (2)

Publication Number Publication Date
JP2016140783A true JP2016140783A (en) 2016-08-08
JP6522966B2 JP6522966B2 (en) 2019-05-29

Family

ID=56568044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016475A Active JP6522966B2 (en) 2015-01-30 2015-01-30 Method and apparatus for treating organic wastewater

Country Status (1)

Country Link
JP (1) JP6522966B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018043214A (en) * 2016-09-16 2018-03-22 株式会社クボタ Sewage treatment equipment and method
WO2018123449A1 (en) * 2016-12-27 2018-07-05 株式会社クボタ Method for treating methane fermentation waste water and treatment equipment
JP2019141763A (en) * 2018-02-19 2019-08-29 株式会社明電舎 Operation support apparatus and operation support method for water treatment facility
JP2020028823A (en) * 2018-08-21 2020-02-27 新日本技研株式会社 Water treatment device
WO2020071173A1 (en) * 2018-10-04 2020-04-09 株式会社クボタ Organic wastewater treatment apparatus
JP7550118B2 (ja) 2021-08-23 2024-09-12 株式会社クボタ 複層型処理槽および汚水処理システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155080A (en) * 2006-12-21 2008-07-10 Hitachi Ltd Sewage treatment apparatus and its method
JP2009285582A (en) * 2008-05-29 2009-12-10 Hitachi Plant Technologies Ltd Membrane separation activated sludge treatment apparatus and its method
JP2010194482A (en) * 2009-02-26 2010-09-09 Kubota Corp Membrane separator
JP2010196843A (en) * 2009-02-26 2010-09-09 Kubota Corp Flow control device and water treatment system with flow control device incorporated therein
JP2010194481A (en) * 2009-02-26 2010-09-09 Kubota Corp Sewage treatment apparatus and operation method of sewage treatment apparatus
JP2012076081A (en) * 2011-12-12 2012-04-19 Hitachi Plant Technologies Ltd Membrane separation type activated sludge treatment apparatus and method thereof
KR101368295B1 (en) * 2013-05-21 2014-02-27 주식회사 퓨어엔비텍 Integrated waste water treatment apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155080A (en) * 2006-12-21 2008-07-10 Hitachi Ltd Sewage treatment apparatus and its method
JP2009285582A (en) * 2008-05-29 2009-12-10 Hitachi Plant Technologies Ltd Membrane separation activated sludge treatment apparatus and its method
JP2010194482A (en) * 2009-02-26 2010-09-09 Kubota Corp Membrane separator
JP2010196843A (en) * 2009-02-26 2010-09-09 Kubota Corp Flow control device and water treatment system with flow control device incorporated therein
JP2010194481A (en) * 2009-02-26 2010-09-09 Kubota Corp Sewage treatment apparatus and operation method of sewage treatment apparatus
JP2012076081A (en) * 2011-12-12 2012-04-19 Hitachi Plant Technologies Ltd Membrane separation type activated sludge treatment apparatus and method thereof
KR101368295B1 (en) * 2013-05-21 2014-02-27 주식회사 퓨어엔비텍 Integrated waste water treatment apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018043214A (en) * 2016-09-16 2018-03-22 株式会社クボタ Sewage treatment equipment and method
WO2018123449A1 (en) * 2016-12-27 2018-07-05 株式会社クボタ Method for treating methane fermentation waste water and treatment equipment
JP2019141763A (en) * 2018-02-19 2019-08-29 株式会社明電舎 Operation support apparatus and operation support method for water treatment facility
JP7052399B2 (en) 2018-02-19 2022-04-12 株式会社明電舎 Operation support device and operation support method for water treatment facilities
JP2020028823A (en) * 2018-08-21 2020-02-27 新日本技研株式会社 Water treatment device
WO2020071173A1 (en) * 2018-10-04 2020-04-09 株式会社クボタ Organic wastewater treatment apparatus
JP2020054980A (en) * 2018-10-04 2020-04-09 株式会社クボタ Organic wastewater treatment apparatus
JP7105162B2 (en) 2018-10-04 2022-07-22 株式会社クボタ Organic wastewater treatment equipment
US11731891B2 (en) 2018-10-04 2023-08-22 Kubota Corporation Organic wastewater treatment apparatus
JP7550118B2 (ja) 2021-08-23 2024-09-12 株式会社クボタ 複層型処理槽および汚水処理システム

Also Published As

Publication number Publication date
JP6522966B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
Artiga et al. Use of a hybrid membrane bioreactor for the treatment of saline wastewater from a fish canning factory
US7910001B2 (en) Arrangement of denitrification reactors in a recirculating aquaculture system
US9975796B2 (en) Process, apparatus and membrane bioreactor for wastewater treatment
JP6522966B2 (en) Method and apparatus for treating organic wastewater
JP2010194481A (en) Sewage treatment apparatus and operation method of sewage treatment apparatus
JP2012200705A (en) Nitrogen-containing wastewater treatment method and apparatus
Ferraris et al. Start-up of a pilot-scale membrane bioreactor to treat municipal wastewater
JP4995215B2 (en) Sewage treatment equipment
JP2014180629A (en) Water treatment method and system
KR20170101664A (en) Advanced treatment Apparatus effectively removes the nutrients in sewage/waste water
JP4298405B2 (en) Wastewater treatment method
Ozdemir et al. A pilot scale study on high biomass systems: energy and cost analysis of sludge production
KR101190472B1 (en) A none piping membrane bioreactor with circulation-agitater
KR101044826B1 (en) An operation method to increase advanced treatment efficiency in membrane bio reacter and an advanced treatment appartus there of
JP5307066B2 (en) Waste water treatment method and waste water treatment system
Guglielmi et al. Alternate anoxic/aerobic operation for nitrogen removal in a membrane bioreactor for municipal wastewater treatment
CN106064851B (en) A kind of MLE-MBR method efficient process marine culture wastewater method
WO2024015867A2 (en) Systems and methods of gas infusion for wastewater treatment
KR100882230B1 (en) Disposal apparatus of livestock wastewater and disposal method thereof
JP5822263B2 (en) Method for starting up membrane separation activated sludge treatment equipment
JP5822260B2 (en) Method for starting up membrane separation activated sludge treatment device and sewage treatment device
JP3707305B2 (en) Water treatment monitoring control method and apparatus
Mburu et al. Pilot trials on testing and optimization of polyethersulfone membranes for treatment of fish processing wastewater through membrane bioreactor technology
Do et al. Performance of airlift MBR for on-site treatment of slaughterhouse wastewater in urban areas of Vietnam
JP2005246308A (en) Method for bio-treating wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6522966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150