JP2001314890A - Wastewater treatment method - Google Patents

Wastewater treatment method

Info

Publication number
JP2001314890A
JP2001314890A JP2000137559A JP2000137559A JP2001314890A JP 2001314890 A JP2001314890 A JP 2001314890A JP 2000137559 A JP2000137559 A JP 2000137559A JP 2000137559 A JP2000137559 A JP 2000137559A JP 2001314890 A JP2001314890 A JP 2001314890A
Authority
JP
Japan
Prior art keywords
tank
denitrification
aeration
sludge
returned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000137559A
Other languages
Japanese (ja)
Other versions
JP4742403B2 (en
Inventor
Tetsuro Fukase
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000137559A priority Critical patent/JP4742403B2/en
Publication of JP2001314890A publication Critical patent/JP2001314890A/en
Application granted granted Critical
Publication of JP4742403B2 publication Critical patent/JP4742403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain treated water of high quality by efficiently performing denitrification, dephosphorization and the removal of BOD in a method for obtaining treated water by passing wastewater through a phosphorus release process, a denitrification process and an aeration process in this order in the presence of activated sludge to subject the same to solid-liquid separation treatment by an immersion membrane. SOLUTION: Wastewater is passed through an anaerobic tank 1, a denitrification tank 2 and an aeration tank 3 in this order and treated water is separated by the separation membrane 4 immersed in the aeration tank 3. The liquid in the aeration tank 3 is returned to the denitrification tank 2 and the liquid in the denitrification tank 2 is returned to the anaerobic tank 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は廃水の処理方法に係
り、特に、廃水を活性汚泥の存在下にリン放出工程、脱
窒工程及び曝気工程の順に通水し、該曝気工程の混合液
中に浸漬された分離膜により処理水を分離する廃水の処
理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating wastewater, and more particularly, to passing wastewater in the order of a phosphorus release step, a denitrification step and an aeration step in the presence of activated sludge, and The present invention relates to a method for treating wastewater in which treated water is separated by a separation membrane immersed in water.

【0002】[0002]

【従来の技術】従来、廃水中のBOD、窒素及びリンを
除去する方法として、嫌気槽と好気槽とを組み合せ、廃
水を嫌気槽、脱窒槽、好気槽及び沈殿槽の順に通水する
と共に、沈殿槽で分離された汚泥の一部を嫌気槽に返送
し、かつ好気槽処理液の一部を脱窒槽に返送して、廃水
中のBOD成分、窒素成分及びリン成分を生物学的に除
去する方法が知られている。
2. Description of the Related Art Conventionally, as a method for removing BOD, nitrogen and phosphorus in wastewater, an anaerobic tank and an aerobic tank are combined, and the wastewater is passed through an anaerobic tank, a denitrification tank, an aerobic tank, and a sedimentation tank in this order. At the same time, a part of the sludge separated in the sedimentation tank is returned to the anaerobic tank, and a part of the aerobic tank treatment liquid is returned to the denitrification tank, and the BOD component, nitrogen component and phosphorus component in the wastewater are biologically analyzed. There is known a method of removing the water.

【0003】この方法において、廃水は、まず嫌気槽に
て嫌気処理され、BOD成分が微生物に取り込まれると
共に、リン化合物が加水分解されてリン(正リン酸)が
放出される。嫌気槽の処理液は次いで脱窒槽で脱窒処理
(硝酸イオン及び亜硝酸イオンの窒素ガスへの還元処
理)される。更に、脱窒槽処理液は、好気槽において好
気処理され、微生物によるアンモニアの硝化と正リン酸
の取り込みが行われる。その後、好気槽処理液は沈殿槽
にてリンを含む汚泥と、処理水とに分離される。
In this method, wastewater is first anaerobically treated in an anaerobic tank, BOD components are taken in by microorganisms, and phosphorus compounds are hydrolyzed to release phosphorus (orthophosphoric acid). The treatment liquid in the anaerobic tank is then subjected to a denitrification treatment (reduction treatment of nitrate ions and nitrite ions to nitrogen gas) in a denitrification tank. Further, the denitrification tank treatment liquid is subjected to aerobic treatment in an aerobic tank, and nitrification of ammonia and uptake of orthophosphoric acid by microorganisms are performed. Thereafter, the aerobic tank treatment liquid is separated in the sedimentation tank into sludge containing phosphorus and treated water.

【0004】しかし、この固液分離に沈殿槽を採用した
ものでは、好気槽の汚泥濃度を高くすることができな
い;汚泥の沈降不良で処理水側への汚泥のリークの問題
がある;装置の小型化が図れない;といった欠点があ
る。このため、特開平9−47781号公報には、沈殿
槽の代りに浸漬膜を用いて固液分離を行う方法として、
廃水を嫌気槽に導入し、嫌気槽処理液を曝気槽に導入
し、曝気槽内に浸漬された分離膜により処理水を分離す
ると共に、この曝気槽内液を嫌気槽に返送する方法が記
載されている。この方法では、沈殿槽を不要とし、曝気
槽の汚泥を高く維持して効率的な処理を行うと共に、汚
泥を確実に分離することができる。
However, in the case where a sedimentation tank is employed for the solid-liquid separation, the sludge concentration in the aerobic tank cannot be increased; there is a problem of sludge leakage to the treated water side due to poor sedimentation of the sludge; Cannot be miniaturized; For this reason, Japanese Patent Application Laid-Open No. 9-47781 discloses a method of performing solid-liquid separation using an immersion membrane instead of a precipitation tank.
A method is described in which wastewater is introduced into an anaerobic tank, anaerobic tank treatment liquid is introduced into an aeration tank, treated water is separated by a separation membrane immersed in the aeration tank, and the liquid in the aeration tank is returned to the anaerobic tank. Have been. According to this method, the sludge in the aeration tank can be maintained at a high level, and the sludge can be surely separated while eliminating the need for the sedimentation tank.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開平
9−47781号公報に記載される方法では、酸素と硝
酸及び亜硝酸性窒素を含む曝気槽内液を嫌気槽に返送す
るため、嫌気槽をリン放出条件、即ち、無酸素、無NO
状態に維持することができず、この結果、嫌気槽にお
いて脱窒は起こるが、リンの放出は期待できないという
問題がある。
However, in the method described in Japanese Patent Application Laid-Open No. 9-47781, the anaerobic tank is required to return the liquid in the aeration tank containing oxygen, nitric acid and nitrite nitrogen to the anaerobic tank. Phosphorus release conditions, i.e., no oxygen, no NO
x state cannot be maintained, and as a result, denitrification occurs in the anaerobic tank, but there is a problem that release of phosphorus cannot be expected.

【0006】即ち、生物学的リン除去において、嫌気槽
で十分なリン放出が行われることが必要であり、このた
めに、嫌気槽のMLSS濃度は十分高くする必要があ
る。従って、浸漬膜を用いた活性汚泥法では、嫌気槽の
MLSSを高くするためには、浸漬膜槽からの汚泥返送
率を十分高くしなければならない。例えば、浸漬膜槽の
MLSSが10000mg/Lと仮定すると、汚泥返送
率50%では、嫌気槽のMLSSは3300mg/Lに
しかならない。この汚泥返送率を300%に上げること
ができれば、MLSSは7500mg/Lとなり、その
分、嫌気槽は小型化できるが、このように汚泥返送率を
上げると、返送汚泥中に含まれるNOの影響で嫌気槽
においてリンの放出が起こらなくなる。
[0006] That is, in biological phosphorus removal, it is necessary to sufficiently release phosphorus in an anaerobic tank, and for this purpose, the MLSS concentration in the anaerobic tank needs to be sufficiently high. Therefore, in the activated sludge method using a submerged membrane, the sludge return rate from the submerged membrane tank must be sufficiently high in order to increase the MLSS in the anaerobic tank. For example, assuming that the MLSS of the immersion membrane tank is 10,000 mg / L, the MLSS of the anaerobic tank is only 3300 mg / L at a sludge return rate of 50%. If it is possible to increase the sludge return rate 300%, MLSS is 7500 mg / L, and the correspondingly, although anaerobic tank can be downsized, in this way increase the sludge return rate, of the NO X contained in the return sludge As a result, phosphorus release does not occur in the anaerobic tank.

【0007】本発明は上記従来の問題点を解決し、廃水
を活性汚泥の存在下にリン放出工程、脱窒工程及び曝気
工程の順に通水し、浸漬膜による固液分離で処理水を得
る方法において、効率的な脱窒、脱リン、脱BODを行
って高水質の処理水を得ることができる廃水の処理方法
を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and passes wastewater in the order of a phosphorus release step, a denitrification step, and an aeration step in the presence of activated sludge to obtain treated water by solid-liquid separation using an immersion membrane. It is an object of the present invention to provide a method for treating wastewater capable of obtaining high-quality treated water by performing efficient denitrification, dephosphorization, and BOD removal.

【0008】[0008]

【課題を解決するための手段】本発明の廃水の処理方法
は、廃水を活性汚泥の存在下にリン放出工程、脱窒工程
及び曝気工程の順に通水し、該曝気工程の混合液中に浸
漬された分離膜により処理水を分離する廃水の処理方法
であって、該曝気工程の混合液の一部を前記脱窒工程へ
返送すると共に、前記脱窒工程の混合液をリン放出工程
へ返送することを特徴とする。
According to the method for treating wastewater of the present invention, the wastewater is passed in the order of a phosphorus release step, a denitrification step, and an aeration step in the presence of activated sludge, and the wastewater is mixed with the mixture in the aeration step. A method of treating wastewater in which treated water is separated by a immersed separation membrane, wherein a part of the mixed solution in the aeration step is returned to the denitrification step, and the mixed solution in the denitrification step is transferred to a phosphorus release step. It will be returned.

【0009】本発明では、曝気工程の混合液を脱窒工程
に、脱窒工程の混合液をリン放出工程にそれぞれ返送す
ることにより汚泥の返送を行うため、リン放出工程に
は、脱窒工程において脱窒処理され硝酸性窒素、亜硝酸
性窒素を含まず、酸素が消費された混合液が導入される
こととなり、リン放出工程をリンの放出条件である無N
及び無酸素状態に保つことが可能となる。このた
め、このリン放出工程において、リン化合物が正リン酸
として効率的に放出され、この正リン酸が後段の曝気工
程において汚泥に取り込まれることにより、リンを高度
に除去することが可能となる。
In the present invention, the sludge is returned by returning the mixture in the aeration step to the denitrification step and the mixture in the denitrification step to the phosphorus release step. In this case, a mixed solution denitrified and containing no nitrate nitrogen and nitrite nitrogen and consuming oxygen is introduced.
Ox and anoxic conditions can be maintained. Therefore, in this phosphorus releasing step, the phosphorus compound is efficiently released as orthophosphoric acid, and this orthophosphoric acid is taken into sludge in the subsequent aeration step, whereby phosphorus can be highly removed. .

【0010】本発明においては、特に、脱窒工程を前段
とそれに続く後続段とで構成し、曝気工程の混合液の一
部を脱窒工程の前段へ返送し、かつ脱窒工程の後段の混
合液を嫌気工程へ返送することが好ましく、また、曝気
工程も前段とそれに続く後続段とで構成し、分離膜を曝
気工程の最終段に浸漬し、最終段の混合液の一部を、脱
窒工程の前段へ返送することが好ましい。
In the present invention, in particular, the denitrification step is constituted by a former stage and a succeeding stage, and a part of the mixed solution in the aeration process is returned to the former stage of the denitrification process, and the second stage is provided in the latter stage of the denitrification process. It is preferable that the mixed solution is returned to the anaerobic step, and the aeration step also includes a former stage and a succeeding stage, and the separation membrane is immersed in the last stage of the aeration process, and a part of the mixed solution in the final stage is It is preferable to return to the preceding stage of the denitrification step.

【0011】即ち、脱窒工程を2段以上の複数段に設
け、前段の脱窒工程に曝気工程から返送される混合液を
導入することにより、好気条件の曝気工程からの返送液
の導入による影響を前段の脱窒工程で緩和して、後続段
の脱窒工程で良好な嫌気条件のもとに、脱窒を効率的に
進行させることが可能となる。
In other words, the denitrification step is provided in two or more stages, and the mixed liquid returned from the aeration step is introduced into the preceding denitrification step, thereby introducing the return liquid from the aeration step under aerobic conditions. In the subsequent denitrification step, the effect of the denitrification can be mitigated in the preceding denitrification step, and denitrification can proceed efficiently under favorable anaerobic conditions.

【0012】また、更に、曝気工程を2段以上の複数段
に設け、最終段の曝気工程に分離膜を浸漬し、この最終
段の混合液を脱窒工程に返送することにより、高い窒素
除去率を得ることができる。
Further, a high aeration removal step is provided in two or more stages, a separation membrane is immersed in the last stage aeration process, and the final mixed solution is returned to the denitrification process. Rate can be obtained.

【0013】[0013]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0014】図1〜3は本発明の廃水の処理方法の実施
の形態を示す系統図である。図1〜3において同一機能
を奏する部材には同一符号を付してある。
1 to 3 are system diagrams showing an embodiment of the method for treating wastewater of the present invention. In FIGS. 1 to 3, members having the same function are denoted by the same reference numerals.

【0015】図1の廃水の処理方法では、原水を配管1
1より嫌気槽(リン放出槽)1、脱窒槽2及び曝気管5
を備える曝気槽3に順次通水して処理し、曝気槽3内に
浸漬された分離膜4で分離された透過水を配管12より
処理水として系外へ排出する。曝気槽3内の液は、ポン
プPにより配管13を経て脱窒槽2に返送する。ま
た、脱窒槽2内の液はポンプPにより配管14を経て
嫌気槽1に返送する。曝気槽3からは、配管15より適
宜余剰汚泥として槽内液が引き抜かれる。
In the method for treating wastewater shown in FIG.
Anaerobic tank (phosphorus release tank) 1, denitrification tank 2, and aeration tube 5
The permeated water separated by the separation membrane 4 immersed in the aeration tank 3 is discharged out of the system as a treated water from a pipe 12. The liquid in the aeration tank 3 is returned to the denitrification tank 2 via the pipe 13 by the pump P2. The liquid in the denitrification tank 2 through the pipe 14 to return to the anaerobic tank 1 by the pump P 1. From the aeration tank 3, the liquid in the tank is withdrawn as appropriate from the pipe 15 as excess sludge.

【0016】この方法では、原水は、まず、嫌気槽1で
脱窒槽2からの返送汚泥を受けて、効率的に嫌気処理さ
れ、BOD成分が除去されると共に、リン(正リン酸)
の放出が行われる。この嫌気処理液は、次いで脱窒槽2
内で曝気槽3からの返送汚泥を受けて効率的に脱窒処理
され窒素が除去される。この脱窒処理液は更に曝気槽3
で好気処理され、BODの好気分解と、アンモニア性窒
素の硝化とリンの汚泥中への取り込みが行われる。従っ
て、この曝気槽3内の液を分離膜4で膜分離することに
より、BOD成分、窒素成分及びリン成分が高度に除去
された処理水を得ることができる。また、曝気槽3から
は、リンを高濃度に取り込んだ汚泥を引き抜くことがで
きる。
In this method, the raw water is first subjected to the sludge returned from the denitrification tank 2 in the anaerobic tank 1 and is efficiently subjected to anaerobic treatment to remove the BOD component and to remove phosphorus (normal phosphoric acid).
Is released. This anaerobic treatment liquid is then supplied to the denitrification tank 2
Inside, the sludge returned from the aeration tank 3 is efficiently denitrified and nitrogen is removed. This denitrification treatment liquid is further supplied to the aeration tank 3
And aerobic decomposition of BOD, nitrification of ammonia nitrogen, and incorporation of phosphorus into sludge. Therefore, by subjecting the liquid in the aeration tank 3 to membrane separation by the separation membrane 4, it is possible to obtain treated water from which the BOD component, the nitrogen component and the phosphorus component have been highly removed. Further, sludge containing phosphorus at a high concentration can be extracted from the aeration tank 3.

【0017】このような処理において、本発明では処理
水の固液分離を分離膜4で行うため、大面積を要する沈
殿槽が不要となり、また、曝気槽3内の汚泥濃度を高く
維持して好気処理効率を高めることができる。また曝気
槽3内の汚泥混合液を脱窒槽2に返送することで脱窒槽
2内の汚泥濃度を高く維持すると共に、脱窒槽2におい
て、曝気槽3で硝化された硝酸性窒素、亜硝酸性窒素を
効率的に脱窒処理することができる。更に、脱窒槽2内
の汚泥混合液を嫌気槽1に返送することで嫌気槽1内の
汚泥濃度を高く維持して効率的な嫌気処理を行えるが、
この際、返送される汚泥混合液は、脱窒槽2内で硝酸性
窒素、亜硝酸性窒素が除去されると共に酸素が消費され
た液であるため、嫌気処理におけるリン放出阻害を受け
ることなく、効率的なリンの加水分解を行える。
In such a treatment, in the present invention, since the solid-liquid separation of the treated water is performed by the separation membrane 4, a sedimentation tank requiring a large area becomes unnecessary, and the sludge concentration in the aeration tank 3 is maintained at a high level. Aerobic treatment efficiency can be increased. In addition, the sludge mixture in the aeration tank 3 is returned to the denitrification tank 2 to maintain the sludge concentration in the denitrification tank 2 high. Nitrogen can be efficiently denitrified. Further, by returning the sludge mixture in the denitrification tank 2 to the anaerobic tank 1, the sludge concentration in the anaerobic tank 1 can be maintained at a high level, and efficient anaerobic treatment can be performed.
At this time, the returned sludge mixed liquid is a liquid from which nitrate nitrogen and nitrite nitrogen are removed and oxygen is consumed in the denitrification tank 2, so that the sludge mixture is not hindered by the phosphorus release in the anaerobic treatment. Efficient phosphorus hydrolysis can be performed.

【0018】図2の方法は、脱窒槽を第1脱窒槽2Aと
第2脱窒槽2Bとに2段に設け、曝気槽3からの汚泥混
合液を第1脱窒槽2Aに返送し、第2脱窒槽2B内の汚
泥混合液を嫌気槽1に返送した点が図1に示す方法と異
なり、その他は同様に処理が行われる。
In the method shown in FIG. 2, a denitrification tank is provided in two stages, a first denitrification tank 2A and a second denitrification tank 2B, and the mixed sludge from the aeration tank 3 is returned to the first denitrification tank 2A, The point that the mixed sludge liquid in the denitrification tank 2B is returned to the anaerobic tank 1 is different from the method shown in FIG.

【0019】この方法では、脱窒槽を2段階とし、曝気
槽3からの汚泥混合液を前段の第1脱窒槽2Aに返送す
ることで、曝気槽3からの汚泥混合液の好気条件が第1
脱窒槽2Aで緩和され、第2脱窒槽2Bにおいてより一
層高度な脱窒処理を行うことができるため、処理水質の
向上を図ることができる。また、この場合において、脱
窒が進行した第2脱窒槽2B内の汚泥混合液を嫌気槽1
に返送することで、嫌気槽1内への硝酸性窒素、亜硝酸
性窒素や酸素の流入を確実に防止して、より一層効率的
なリンの放出を行える。
In this method, the denitrification tank is divided into two stages, and the sludge mixed liquid from the aeration tank 3 is returned to the first denitrification tank 2A in the preceding stage, whereby the aerobic condition of the sludge mixed liquid from the aeration tank 3 is changed. 1
Since the denitrification is alleviated in the denitrification tank 2A and the denitrification treatment can be performed in the second denitrification tank 2B, the quality of the treated water can be improved. Further, in this case, the sludge mixed liquid in the second denitrification tank 2B in which the denitrification has progressed is transferred to the anaerobic tank 1
In this way, the inflow of nitrate nitrogen, nitrite nitrogen and oxygen into the anaerobic tank 1 is reliably prevented, and phosphorus can be more efficiently released.

【0020】図3の方法は、曝気槽を曝気管5Aを備え
る第1曝気槽3Aと曝気管5Bを備える第2曝気槽3B
とに2段に設け、後段の第2曝気槽3B内に分離膜4を
浸漬して処理水を取り出し、この第2曝気槽3B内の汚
泥混合液を第1脱窒槽2Aに返送すると共に、第2曝気
槽3Bから余剰汚泥を引き出すようにした点が図2に示
す方法と異なり、その他は同様に処理が行われる。
The method shown in FIG. 3 includes a first aeration tank 3A having an aeration tube 5A and a second aeration tank 3B having an aeration tube 5B.
The separation membrane 4 is immersed in the second aeration tank 3B at the subsequent stage, and the treated water is taken out. The sludge mixture in the second aeration tank 3B is returned to the first denitrification tank 2A. The method differs from the method shown in FIG. 2 in that excess sludge is drawn out from the second aeration tank 3B, and the other processes are performed similarly.

【0021】この方法では曝気槽を2段階とし、前段の
第1曝気槽3Aを主にBOD分解槽として機能させ、後
段の第2曝気槽3Bを主に硝化槽として機能させ、後段
の第2曝気槽3B内の汚泥混合液を第1脱窒槽2Aに返
送することにより高い硝化率を得ることができる。ま
た、このように好気処理が進行した第2曝気槽3B内の
液を膜分離して処理水を取り出すことにより、高水質の
処理水を得ることができる。更に、この第2曝気槽3B
からは、余剰汚泥として、十分にリンを取り込んだ汚泥
を抜き出すことができる。
In this method, the aeration tank has two stages, the first aeration tank 3A in the former stage mainly functions as a BOD decomposition tank, the second aeration tank 3B in the latter stage mainly functions as a nitrification tank, and the second stage in the second stage. By returning the sludge mixture in the aeration tank 3B to the first denitrification tank 2A, a high nitrification rate can be obtained. In addition, high-quality treated water can be obtained by membrane-separating the liquid in the second aeration tank 3B that has undergone the aerobic treatment as described above and extracting treated water. Further, the second aeration tank 3B
Can extract sludge that has sufficiently taken in phosphorus as surplus sludge.

【0022】本発明において、曝気槽から脱窒槽への混
合液の返送量には、特に制限はないが、脱窒槽の混合液
を嫌気槽(リン放出槽)に返送するに当り、十分なリン
放出が起こるように、脱窒反応が進行し液中のリンを十
分に摂取した後の混合液とすることが望ましい。このた
め、曝気液(硝化液)の脱窒槽への返送率は100%以
上、好ましくは150%以上とする。
In the present invention, the amount of the mixed solution returned from the aeration tank to the denitrification tank is not particularly limited. However, when the mixed solution in the denitrification tank is returned to the anaerobic tank (phosphorus release tank), sufficient phosphorus is returned. It is desirable to prepare a mixed solution after the denitrification reaction has progressed and phosphorus in the solution has been sufficiently ingested so that release occurs. For this reason, the rate of returning the aerated liquid (nitrified liquid) to the denitrification tank is 100% or more, and preferably 150% or more.

【0023】また、本発明において、脱窒槽から嫌気槽
への汚泥混合液の返送量にも特に制限はないが、一般的
には原水流量に対して150%以上が処理効率の面で好
ましい。
In the present invention, the amount of the sludge mixed solution returned from the denitrification tank to the anaerobic tank is not particularly limited, but generally 150% or more of the raw water flow rate is preferable in terms of treatment efficiency.

【0024】なお、曝気槽に浸漬する分離膜としては特
に制限はなく、形状は中空糸膜でも平膜でもよく、精密
濾過(MF)膜や限外濾過(UF)膜等を用いることが
できる。
The separation membrane immersed in the aeration tank is not particularly limited, and may be a hollow fiber membrane or a flat membrane, and may be a microfiltration (MF) membrane or an ultrafiltration (UF) membrane. .

【0025】図示の方法はいずれも本発明の一実施例で
あって、本発明はその要旨を超えない限り、何ら図示の
方法に限定されるものではない。
The illustrated methods are all examples of the present invention, and the present invention is not limited to the illustrated methods unless it exceeds the gist.

【0026】例えば、脱窒槽や曝気槽は2槽に限らず3
層以上設け、これを直列に配設したものであっても良
い。また、曝気槽のみを複数槽とし、脱窒槽を単槽とし
ても良い。いずれの場合においても、最終段の曝気槽の
汚泥混合液を脱窒槽に返送し、この最終段の曝気槽に分
離膜を浸漬して処理水を分離すると共に余剰汚泥を引き
抜くのが好ましい。また、曝気槽から返送される汚泥混
合液は、最前段の脱窒槽に導入し、最終段の脱窒槽の汚
泥混合液を嫌気槽に返送するのが好ましい。更に、嫌気
槽についても2槽又は3槽以上の槽を直列に配設しても
良い。この場合には、脱窒槽から返送される汚泥混合液
は最前段の嫌気槽に導入するのが好ましい。
For example, the number of denitrification tanks and aeration tanks is not limited to two but three.
Layers or more may be provided and these may be arranged in series. Alternatively, the aeration tank alone may be a plurality of tanks, and the denitrification tank may be a single tank. In any case, it is preferable to return the sludge mixture in the final aeration tank to the denitrification tank, immerse the separation membrane in the final aeration tank to separate the treated water, and to pull out excess sludge. Further, it is preferable that the sludge mixed liquid returned from the aeration tank is introduced into the foremost denitrification tank, and the sludge mixed liquid from the final denitrification tank is returned to the anaerobic tank. Further, as for the anaerobic tank, two tanks or three or more tanks may be arranged in series. In this case, it is preferable that the sludge mixed liquid returned from the denitrification tank is introduced into the forefront anaerobic tank.

【0027】このような本発明の廃水の処理方法は、各
種産業廃水の処理に極めて有効である。
The wastewater treatment method of the present invention is extremely effective for treating various industrial wastewaters.

【0028】[0028]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0029】実施例1 下記水質の廃水を原水として図1に示す方法に従って処
理し、得られた処理水の水質を表1に示した。 (原水水質) BOD :250mg/L リン : 5mg/L アンモニア: 40mg/L 原水流量、各槽の滞留時間、汚泥混合液返送量等の処理
条件は下記の通りとした。 [処理条件] 原水流量 :1.0L/hr 嫌気槽滞留時間:1.0hr 脱窒槽滞留時間:3.0hr 曝気槽滞留時間:3.0hr 曝気槽内汚泥混合液の脱窒槽への返送量:4.0L/h
r 脱窒槽内汚泥混合液の嫌気槽への返送量:4.0L/h
r 曝気槽からの余剰汚泥引抜き量:100mL/day
Example 1 Wastewater having the following water quality was treated as raw water in accordance with the method shown in FIG. 1, and the quality of the obtained treated water is shown in Table 1. (Raw water quality) BOD: 250 mg / L Phosphorus: 5 mg / L Ammonia: 40 mg / L Treatment conditions such as the flow rate of raw water, the residence time in each tank, and the amount of sludge mixed solution returned are as follows. [Treatment conditions] Raw water flow rate: 1.0 L / hr Anaerobic tank residence time: 1.0 hr Denitrification tank residence time: 3.0 hr Aeration tank residence time: 3.0 hr Return amount of sludge mixed solution in the aeration tank to the denitrification tank: 4.0L / h
r Return amount of the sludge mixture in the denitrification tank to the anaerobic tank: 4.0 L / h
r Excess sludge withdrawn from the aeration tank: 100 mL / day

【0030】実施例2 図2に示す如く、脱窒槽を2段に設け、曝気槽内汚泥混
合液を第1脱窒槽へ返送し、第2脱窒槽内汚泥混合液を
嫌気槽に返送したこと以外は実施例1と同様にして処理
を行い、得られた処理水の水質を表1に示した。なお、
第1脱窒槽の滞留時間は1.5hr,第2脱窒槽の滞留
時間は1.5hrとした。
Example 2 As shown in FIG. 2, a denitrification tank was provided in two stages, the sludge mixture in the aeration tank was returned to the first denitrification tank, and the sludge mixture in the second denitrification tank was returned to the anaerobic tank. Other than the above, the treatment was carried out in the same manner as in Example 1, and the quality of the obtained treated water is shown in Table 1. In addition,
The residence time in the first denitrification tank was 1.5 hr, and the residence time in the second denitrification tank was 1.5 hr.

【0031】実施例3 図3に示す如く、曝気槽を2段に設け、第2曝気槽内汚
泥混合液を第1脱窒槽に返送し、この第2曝気槽から処
理水、余剰汚泥を取り出したこと以外は実施例2と同様
にして処理を行い、得られた処理水の水質を表1に示し
た。なお、第1曝気槽の滞留時間は1.5hr,第2曝
気槽の滞留時間は1.5hrとした。
Example 3 As shown in FIG. 3, an aeration tank was provided in two stages, and the sludge mixture in the second aeration tank was returned to the first denitrification tank, and treated water and excess sludge were taken out of the second aeration tank. The treatment was carried out in the same manner as in Example 2 except for this, and the quality of the obtained treated water is shown in Table 1. The residence time in the first aeration tank was 1.5 hr, and the residence time in the second aeration tank was 1.5 hr.

【0032】比較例1 実施例1において、曝気槽内汚泥混合液を脱窒槽ではな
く、嫌気槽に返送し、脱窒槽から嫌気槽への汚泥混合液
の返送を行わなかったこと以外は同様にして処理を行
い、得られた処理水の水質を表1に示した。
Comparative Example 1 In Example 1, the sludge mixture in the aeration tank was returned to the anaerobic tank instead of the denitrification tank, and the sludge mixture was not returned from the denitrification tank to the anaerobic tank. Table 1 shows the quality of the obtained treated water.

【0033】[0033]

【表1】 [Table 1]

【0034】表1より明らかなように、曝気槽内汚泥混
合液を嫌気槽に返送する比較例1では、嫌気槽において
リンの放出が行われないために、リンが十分に除去し得
ず、またBODも劣るものとなる。
As is clear from Table 1, in Comparative Example 1 in which the sludge mixture in the aeration tank was returned to the anaerobic tank, phosphorus was not released in the anaerobic tank, so that phosphorus could not be sufficiently removed. Also, the BOD will be inferior.

【0035】これに対して、曝気槽内汚泥混合液を脱窒
槽に返送し、脱窒槽内汚泥混合液を嫌気槽に返送する実
施例1であれば良好な処理水が得られる。特に、脱窒槽
を2段に設けた実施例2では、リン除去が良好である。
更に、曝気槽をも2段に設けた実施例3ではリン除去も
窒素除去も良好である。
On the other hand, in Example 1, where the sludge mixture in the aeration tank is returned to the denitrification tank and the sludge mixture in the denitrification tank is returned to the anaerobic tank, good treated water can be obtained. In particular, in Example 2 in which the denitrification tanks were provided in two stages, the phosphorus removal was good.
Furthermore, in Example 3 in which the aeration tank was also provided in two stages, both phosphorus removal and nitrogen removal were good.

【0036】[0036]

【発明の効果】以上詳述した通り、本発明の廃水の処理
方法によれば、各種産業廃水から、BOD成分、リン成
分及び窒素成分を効率的に除去して高水質の処理水を得
ることができる。
As described above in detail, according to the method for treating wastewater of the present invention, high-quality treated water can be obtained by efficiently removing BOD components, phosphorus components and nitrogen components from various industrial wastewaters. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の廃水の処理方法の実施の形態を示す系
統図である。
FIG. 1 is a system diagram showing an embodiment of a method for treating wastewater of the present invention.

【図2】本発明の廃水の処理方法の他の実施の形態を示
す系統図である。
FIG. 2 is a system diagram showing another embodiment of the wastewater treatment method of the present invention.

【図3】本発明の廃水の処理方法の別の実施の形態を示
す系統図である。
FIG. 3 is a system diagram showing another embodiment of the method for treating wastewater of the present invention.

【符号の説明】[Explanation of symbols]

1 嫌気槽 2 脱窒槽 2A 第1脱窒槽 2B 第2脱窒槽 3 曝気槽 3A 第1曝気槽 3B 第2曝気槽 4 分離膜 5,5A,5B 曝気管 DESCRIPTION OF SYMBOLS 1 Anaerobic tank 2 Denitrification tank 2A 1st denitrification tank 2B 2nd denitrification tank 3 Aeration tank 3A 1st aeration tank 3B 2nd aeration tank 4 Separation membrane 5,5A, 5B Aeration tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 廃水を活性汚泥の存在下にリン放出工
程、脱窒工程及び曝気工程の順に通水し、該曝気工程の
混合液中に浸漬された分離膜により処理水を分離する廃
水の処理方法であって、 該曝気工程の混合液の一部を前記脱窒工程へ返送すると
共に、前記脱窒工程の混合液をリン放出工程へ返送する
ことを特徴とする廃水の処理方法。
Claims: 1. A wastewater in which wastewater is passed in the order of a phosphorus release step, a denitrification step, and an aeration step in the presence of activated sludge, and treated water is separated by a separation membrane immersed in a mixed solution in the aeration step. A method for treating wastewater, comprising: returning a part of the mixed solution in the aeration step to the denitrification step, and returning the mixed solution in the denitrification step to the phosphorus release step.
【請求項2】 請求項1において、前記脱窒工程が前段
とそれに続く後続段とからなり、前記曝気工程の混合液
の一部を該脱窒工程の前段へ返送することを特徴とする
廃水の処理方法。
2. The wastewater according to claim 1, wherein the denitrification step comprises a former stage and a succeeding stage, and a part of the mixed solution in the aeration step is returned to the former stage of the denitrification step. Processing method.
【請求項3】 請求項1又は2において、前記曝気工程
が前段とそれに続く後続段とからなり、前記分離膜は該
曝気工程の最終段に浸漬されており、該最終段の混合液
の一部を、前記脱窒工程へ返送することを特徴とする廃
水の処理方法。
3. The aeration step according to claim 1, wherein the aeration step includes a preceding step and a succeeding step, wherein the separation membrane is immersed in a last step of the aeration step, A wastewater treatment unit, wherein the wastewater is returned to the denitrification step.
JP2000137559A 2000-05-10 2000-05-10 Wastewater treatment method Expired - Fee Related JP4742403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000137559A JP4742403B2 (en) 2000-05-10 2000-05-10 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000137559A JP4742403B2 (en) 2000-05-10 2000-05-10 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2001314890A true JP2001314890A (en) 2001-11-13
JP4742403B2 JP4742403B2 (en) 2011-08-10

Family

ID=18645315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000137559A Expired - Fee Related JP4742403B2 (en) 2000-05-10 2000-05-10 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4742403B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066030A (en) * 2002-08-02 2004-03-04 Mitsubishi Heavy Ind Ltd Method and equipment for removing nitrogen compound from wastewater
JP2008036514A (en) * 2006-08-04 2008-02-21 Fuji Electric Systems Co Ltd Wastewater treating method
JP2008155080A (en) * 2006-12-21 2008-07-10 Hitachi Ltd Sewage treatment apparatus and its method
JP2008221163A (en) * 2007-03-14 2008-09-25 Toshiba Corp Wastewater treatment system
JP2009131854A (en) * 2009-03-23 2009-06-18 Maezawa Ind Inc Sewage treatment apparatus
JP2009285582A (en) * 2008-05-29 2009-12-10 Hitachi Plant Technologies Ltd Membrane separation activated sludge treatment apparatus and its method
JP2010253428A (en) * 2009-04-28 2010-11-11 Asahi Kasei Chemicals Corp Wastewater treatment apparatus and wastewater treatment method
JP2011067727A (en) * 2009-09-24 2011-04-07 Sumiju Kankyo Engineering Kk Method and apparatus for treating wastewater
JP2011200767A (en) * 2010-03-24 2011-10-13 Kubota Corp Wastewater treating method and wastewater treatment system
JP2012076081A (en) * 2011-12-12 2012-04-19 Hitachi Plant Technologies Ltd Membrane separation type activated sludge treatment apparatus and method thereof
JP2013501617A (en) * 2010-02-05 2013-01-17 ホソ ユニバーシティ アカデミック コーオペレーション ファンデーション Advanced wastewater treatment system equipped with a plasma discharge tank
JP2013537107A (en) * 2010-09-20 2013-09-30 アメリカン・ウォーター・ワークス・カンパニー,インコーポレーテッド Optimized nutrient removal from wastewater
WO2013168680A1 (en) * 2012-05-07 2013-11-14 大成企業株式会社 Wastewater treatment system and treatment method therefor
CN104045154A (en) * 2013-03-12 2014-09-17 江苏瑞盛水处理有限公司 Wastewater biological treatment system based on bio-contact oxidation process
JP2016002514A (en) * 2014-06-16 2016-01-12 株式会社日立製作所 Membrane separation activated sludge treatment apparatus and method of operating the same
US9656893B2 (en) 2010-09-20 2017-05-23 American Water Works Company, Inc. Simultaneous anoxic biological phosphorus and nitrogen removal with energy recovery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183995A (en) * 1982-04-20 1983-10-27 Nishihara Environ Sanit Res Corp Biological denitrification and dephosphorization of crude night soil
JPS60129194A (en) * 1983-12-16 1985-07-10 Kurita Water Ind Ltd Treatment of sewage
JPH09225492A (en) * 1996-02-22 1997-09-02 Kubota Corp Waste water treatment
JPH09290289A (en) * 1996-04-19 1997-11-11 Daewoo Co Ltd Device for biologically removing nitrogen and phosphorus in sewage and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183995A (en) * 1982-04-20 1983-10-27 Nishihara Environ Sanit Res Corp Biological denitrification and dephosphorization of crude night soil
JPS60129194A (en) * 1983-12-16 1985-07-10 Kurita Water Ind Ltd Treatment of sewage
JPH09225492A (en) * 1996-02-22 1997-09-02 Kubota Corp Waste water treatment
JPH09290289A (en) * 1996-04-19 1997-11-11 Daewoo Co Ltd Device for biologically removing nitrogen and phosphorus in sewage and method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066030A (en) * 2002-08-02 2004-03-04 Mitsubishi Heavy Ind Ltd Method and equipment for removing nitrogen compound from wastewater
JP4690265B2 (en) * 2006-08-04 2011-06-01 メタウォーター株式会社 Wastewater treatment method
JP2008036514A (en) * 2006-08-04 2008-02-21 Fuji Electric Systems Co Ltd Wastewater treating method
JP2008155080A (en) * 2006-12-21 2008-07-10 Hitachi Ltd Sewage treatment apparatus and its method
JP4709792B2 (en) * 2007-03-14 2011-06-22 株式会社東芝 Wastewater treatment system
JP2008221163A (en) * 2007-03-14 2008-09-25 Toshiba Corp Wastewater treatment system
JP2009285582A (en) * 2008-05-29 2009-12-10 Hitachi Plant Technologies Ltd Membrane separation activated sludge treatment apparatus and its method
JP2009131854A (en) * 2009-03-23 2009-06-18 Maezawa Ind Inc Sewage treatment apparatus
JP2010253428A (en) * 2009-04-28 2010-11-11 Asahi Kasei Chemicals Corp Wastewater treatment apparatus and wastewater treatment method
JP2011067727A (en) * 2009-09-24 2011-04-07 Sumiju Kankyo Engineering Kk Method and apparatus for treating wastewater
US8574435B2 (en) 2010-02-05 2013-11-05 Hoseo University Academic Cooperation Foundation Advanced treatment system of wastewater having plasma discharging vessel
EP2531452A4 (en) * 2010-02-05 2015-09-02 Univ Hoseo Acad Coop Found Advanced treatment system of wastewater having plasma discharging vessel
JP2013501617A (en) * 2010-02-05 2013-01-17 ホソ ユニバーシティ アカデミック コーオペレーション ファンデーション Advanced wastewater treatment system equipped with a plasma discharge tank
JP2011200767A (en) * 2010-03-24 2011-10-13 Kubota Corp Wastewater treating method and wastewater treatment system
JP2013537107A (en) * 2010-09-20 2013-09-30 アメリカン・ウォーター・ワークス・カンパニー,インコーポレーテッド Optimized nutrient removal from wastewater
US9505644B2 (en) 2010-09-20 2016-11-29 American Water Works Company, Inc. Simultaneous anoxic biological phosphorus and nitrogen removal
US9656893B2 (en) 2010-09-20 2017-05-23 American Water Works Company, Inc. Simultaneous anoxic biological phosphorus and nitrogen removal with energy recovery
JP2012076081A (en) * 2011-12-12 2012-04-19 Hitachi Plant Technologies Ltd Membrane separation type activated sludge treatment apparatus and method thereof
WO2013168680A1 (en) * 2012-05-07 2013-11-14 大成企業株式会社 Wastewater treatment system and treatment method therefor
CN104045154A (en) * 2013-03-12 2014-09-17 江苏瑞盛水处理有限公司 Wastewater biological treatment system based on bio-contact oxidation process
CN104045154B (en) * 2013-03-12 2016-07-20 江苏瑞盛水处理有限公司 Sewage biological treatment system based on Biological Contact Oxidation Process
JP2016002514A (en) * 2014-06-16 2016-01-12 株式会社日立製作所 Membrane separation activated sludge treatment apparatus and method of operating the same

Also Published As

Publication number Publication date
JP4742403B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
US6706185B2 (en) Biological method of phosphorus removal and biological phosphorus-removing apparatus
US7850851B2 (en) Biological phosphorus removal
US7172699B1 (en) Energy efficient wastewater treatment for nitrogen and phosphorus removal
JP4632356B2 (en) Biological nitrogen removal method and system
JP4742403B2 (en) Wastewater treatment method
JP2010253428A (en) Wastewater treatment apparatus and wastewater treatment method
CA2300719A1 (en) Membrane supported biofilm process
JP4570550B2 (en) Nitrogen removal method and apparatus for high concentration organic wastewater
JPH1157773A (en) Biological dephosphorizing device
JPS58210897A (en) Biological dephosphorization method of waste water
EP1260486A1 (en) Method for treating organic wastewater
JPS6254075B2 (en)
KR100709456B1 (en) Waste water disposal plant and waste water disposal method
JP3355121B2 (en) Organic wastewater treatment method
JP2000140886A (en) Equipment for treatment of nitrogen-containing drainage
JP3526140B2 (en) Biological phosphorus removal method and apparatus for organic wastewater
JP4547799B2 (en) Biological phosphorus removal equipment
JPH0819789A (en) Method and apparatus for aerobic treatment of organic waste solution
JP4882181B2 (en) Denitrification method and apparatus
JPH05104090A (en) Method for treating sewage or sludge and apparatus therefor
JP4380290B2 (en) Nitrogen-containing organic wastewater treatment method and apparatus
EP1555245A2 (en) A biologial method of phosphorous removal and biological phosphorous-removing apparatus
JP3919999B2 (en) Organic wastewater treatment method and apparatus
JPH0994596A (en) Removal and recovery of phosphorus from organic sewage
JPH0691292A (en) Operation control method of aerobic-anaerobic active sludge treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4742403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees