JPH0819789A - Method and apparatus for aerobic treatment of organic waste solution - Google Patents

Method and apparatus for aerobic treatment of organic waste solution

Info

Publication number
JPH0819789A
JPH0819789A JP15740494A JP15740494A JPH0819789A JP H0819789 A JPH0819789 A JP H0819789A JP 15740494 A JP15740494 A JP 15740494A JP 15740494 A JP15740494 A JP 15740494A JP H0819789 A JPH0819789 A JP H0819789A
Authority
JP
Japan
Prior art keywords
sludge
liquid
ozone
aerobic
aerobic treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15740494A
Other languages
Japanese (ja)
Other versions
JP3407405B2 (en
Inventor
Masahide Shibata
雅秀 柴田
Hidenari Yasui
英斉 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15648897&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0819789(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP15740494A priority Critical patent/JP3407405B2/en
Priority to US08/309,868 priority patent/US7384555B1/en
Publication of JPH0819789A publication Critical patent/JPH0819789A/en
Application granted granted Critical
Publication of JP3407405B2 publication Critical patent/JP3407405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To provide a method and apparatus for the aerobic treatment of an org. waste soln. capable of subjecting a reaction soln. to membrane separation in a high flux while preventing the clogging of a separation membrane to obtain treated water of high quality to enable the reutilization of water and capable of reducing the vol. of excessive sludge without lowering load and treatment efficiency. CONSTITUTION:An org. waste soln. 13 is introduced into an aerobic treatment tank 1 to be subjected to aerobic treatment and this reaction soln. is subjected to membrane separation in a membrane separator 12 to be separated into a filtrate 12b and a conc. soln. 12c and the reaction soln. or the conc. soln. is introduced into an ozone treatment tank to subject activated sludge to ozone treatment and the ozone treated sludge is introduced into the aerobic treatment tank 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機性排液の好気性処
理方法および装置、特に膜分離による分離が容易で、余
剰汚泥の生成を抑制できる有機性排液の好気性処理方法
および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for aerobically treating organic waste liquid, and more particularly, to a method and apparatus for aerobically treating organic waste liquid which can be easily separated by membrane separation and which can suppress the production of excess sludge. It is about.

【0002】[0002]

【従来の技術】活性汚泥処理法などのように、好気性微
生物の作用を利用して有機性排液を好気条件で処理する
好気性処理方法では、難脱水性の余剰汚泥が大量に生成
し、その処理は困難である。従来、このような好気性処
理系において、処理液と汚泥を分離するためには沈降分
離が行われているが、固液分離性が悪いため大型の装置
を必要とするほか、処理水中に汚泥が流出するため、再
使用可能な処理水を得ることができなかった。
2. Description of the Related Art An aerobic treatment method, such as an activated sludge treatment method, which treats an organic waste liquid under aerobic conditions by utilizing the action of aerobic microorganisms, produces a large amount of hardly dehydratable excess sludge. However, the processing is difficult. Conventionally, in such an aerobic treatment system, sedimentation separation is performed to separate the treatment liquid and the sludge, but since solid-liquid separation is poor, a large device is required, and sludge in the treated water is required. , It was not possible to obtain reusable treated water.

【0003】一方、このような汚泥を分離するために限
外濾過、精密濾過等の膜分離装置を用いると、目詰まり
が激しく、高フラックス(膜透過流束)が得られないた
め実用的でなかった。また余剰汚泥は投棄処分されてい
たが、その処分場の確保が困難となり、汚泥の減容化が
必要となっている。
On the other hand, when a membrane separation device such as ultrafiltration or microfiltration is used to separate such sludge, clogging is severe and high flux (membrane permeation flux) cannot be obtained, which is practical. There wasn't. Although excess sludge was disposed of, it is difficult to secure a disposal site for it, and it is necessary to reduce the volume of sludge.

【0004】余剰汚泥減容化の方法として、余剰汚泥を
オゾン処理したのち、好気性消化装置に導いて、好気性
消化を行う方法が提案されている(特公昭57−197
19号)。しかしこの方法では、オゾン処理により好気
性消化の消化速度は高くなるが、従来の好気性消化法と
本質的に違わないため、汚泥の減容化率は従来と同様に
処理汚泥の約50%であり、別に汚泥消化用の装置が必
要であるという難点もある。
As a method for reducing the volume of excess sludge, a method has been proposed in which excess sludge is treated with ozone and then introduced into an aerobic digester to perform aerobic digestion (Japanese Patent Publication No. 57-197).
No. 19). However, this method increases the digestion rate of aerobic digestion by ozone treatment, but since it is essentially the same as the conventional aerobic digestion method, the volume reduction rate of sludge is about 50% of the treated sludge as in the conventional method. However, there is a drawback that a device for digesting sludge is required separately.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、高フ
ラックスで膜分離することができ、しかも負荷および処
理効率を低下させることなく、余剰汚泥の生成を抑制
し、場合によっては余剰汚泥の発生をゼロにすることも
可能な有機性排液の好気性処理方法および装置を提案す
ることを目的とする。
DISCLOSURE OF THE INVENTION The object of the present invention is to enable the membrane separation with a high flux, to suppress the production of excess sludge without lowering the load and treatment efficiency, and in some cases to remove excess sludge. An object of the present invention is to propose a method and apparatus for aerobic treatment of organic waste liquid which can reduce the generation to zero.

【0006】[0006]

【課題を解決するための手段】本発明は次の有機性排液
の好気性処理方法および装置である。 (1)好気性微生物を含む活性汚泥の存在下に、有機性
排液を好気性処理する方法において、好気性処理系の反
応液を膜分離して透過液と濃縮液に分離する工程と、前
記反応液または濃縮液をオゾン処理する工程と、オゾン
処理液を好気性処理系に導入する工程とを有する有機性
排液の好気性処理方法。 (2)好気性微生物を含む活性汚泥の存在下に有機性排
液を好気性処理する好気性反応槽と、この好気性反応槽
の反応液を膜分離して、透過液と濃縮液に分離する膜分
離装置と、前記反応液または濃縮液をオゾン処理し、オ
ゾン処理液を好気性反応槽に導入するオゾン処理装置と
を備えている有機性排液の処理装置。
The present invention is the following method and apparatus for aerobic treatment of organic waste liquid. (1) In the method of aerobically treating organic waste liquid in the presence of activated sludge containing aerobic microorganisms, a step of separating a reaction solution of an aerobic treatment system into a permeate and a concentrate, An aerobic treatment method for an organic waste liquid, which comprises a step of subjecting the reaction solution or the concentrated solution to ozone treatment and a step of introducing the ozone treatment solution into an aerobic treatment system. (2) An aerobic reaction tank that aerobically treats the organic waste liquid in the presence of activated sludge containing aerobic microorganisms, and the reaction solution of this aerobic reaction tank is separated into a permeate and a concentrate. An apparatus for treating an organic waste liquid, comprising: a membrane separation device for performing an ozone treatment on the reaction liquid or the concentrated liquid; and an ozone treatment device for introducing the ozone treatment liquid into an aerobic reaction tank.

【0007】有機性排液の好気性処理方法では、好気性
微生物を含む活性汚泥を好気性処理系に一定量保持し、
ここに有機性排液を導入して好気性下に接触させ、好気
性微生物による生物酸化反応によって被処理液中のBO
Dを分解する。このとき被処理液中のBODは同化され
て、活性汚泥は増殖する。このような好気性処理系に用
いる好気性処理槽としては、活性汚泥処理における曝気
槽が一般的であるが、これに限定されない。
In the aerobic treatment method of organic waste liquid, a certain amount of activated sludge containing aerobic microorganisms is held in the aerobic treatment system,
The organic waste liquid is introduced here and brought into contact under aerobic conditions, and the BO in the liquid to be treated is subjected to a biooxidation reaction by aerobic microorganisms.
Decompose D. At this time, the BOD in the liquid to be treated is assimilated and the activated sludge grows. As an aerobic treatment tank used for such an aerobic treatment system, an aeration tank for activated sludge treatment is generally used, but the aerobic treatment tank is not limited to this.

【0008】本発明ではこのような好気性処理系により
好気性処理を行う工程において、好気性処理系(好気性
処理槽)の反応液(混合液)を膜分離装置によって膜分
離し、透過液と濃縮液に分離する。膜分離装置としては
限外濾過(UF)膜、精密濾過(MF)膜、逆浸透膜
(RO)膜など、任意の分離膜を有するものを用いるこ
とができるが、UF膜、MF膜が好ましい。このような
膜分離装置は好気性処理槽内に設けてもよく、また好気
性処理槽外に設けてもよい。膜分離により、反応液中の
活性汚泥その他の固形分は濃縮液側に濃縮され、透過液
は処理水として再利用が可能である。
In the present invention, in the step of carrying out aerobic treatment by such an aerobic treatment system, the reaction liquid (mixed liquid) of the aerobic treatment system (aerobic treatment tank) is subjected to membrane separation by a membrane separation device to obtain a permeated liquid. And separate into a concentrated solution. As a membrane separation device, an ultrafiltration (UF) membrane, a microfiltration (MF) membrane, a reverse osmosis membrane (RO) membrane or the like having any separation membrane can be used, but the UF membrane and the MF membrane are preferable. . Such a membrane separation device may be provided inside the aerobic treatment tank or outside the aerobic treatment tank. By membrane separation, activated sludge and other solids in the reaction solution are concentrated on the concentrated solution side, and the permeated solution can be reused as treated water.

【0009】一方オゾン処理系(オゾン処理装置)で
は、好気性処理系の反応液または膜分離装置で濃縮した
濃縮液をオゾン処理することにより、活性汚泥その他の
固形物を加水分解して低分子化し、生物分解性にして好
気性処理系に導入する。このようなオゾン処理による低
分子化物はBOD化しているため、好気性処理系におい
てBODとして資化され、生物分解を受ける。これによ
り膜分離装置における分離膜の目詰まりは防止され、フ
ラックスは大きくなるとともに、余剰汚泥が減容化す
る。
On the other hand, in the ozone treatment system (ozone treatment device), the reaction liquid of the aerobic treatment system or the concentrated liquid concentrated by the membrane separation device is subjected to ozone treatment to hydrolyze the activated sludge and other solid substances to thereby form low molecular weight compounds. It is biodegradable and introduced into the aerobic treatment system. Since the low molecular weight compound obtained by such ozone treatment is converted into BOD, it is assimilated as BOD in the aerobic treatment system and undergoes biodegradation. This prevents clogging of the separation membrane in the membrane separation device, increases the flux, and reduces the volume of excess sludge.

【0010】この場合、被処理液中のBODの同化によ
り増殖する汚泥量よりも多い活性汚泥を好気性処理系よ
り引抜き、これをオゾン処理して好気性処理系に戻すこ
とにより、活性汚泥の見かけ上の増殖を抑制することが
できる。これにより余剰汚泥量が減少し、条件によって
は余剰汚泥の発生量をゼロにすることもできる。
In this case, the activated sludge having a larger amount than the sludge that proliferates due to the assimilation of BOD in the liquid to be treated is withdrawn from the aerobic treatment system, is ozone-treated, and is returned to the aerobic treatment system. Apparent growth can be suppressed. As a result, the amount of excess sludge is reduced, and depending on the conditions, the amount of excess sludge generated can be reduced to zero.

【0011】図1は汚泥減容化の原理を説明するための
模式図である。図において、1は好気性処理系、2はオ
ゾン処理系である。好気性処理系1は、活性汚泥処理装
置のように、有機性排液を活性汚泥と接触させて好気的
に分解する処理系であり、好気性処理槽と膜分離装置と
が別に設けられるが、これらを含めた全体の処理系とし
て図示されている。オゾン処理系2は反応液または濃縮
液の状態で引抜かれる引抜汚泥にオゾン含有ガスを反応
させ、酸化分解してBODに変換する装置である。
FIG. 1 is a schematic diagram for explaining the principle of sludge volume reduction. In the figure, 1 is an aerobic treatment system and 2 is an ozone treatment system. The aerobic treatment system 1, like an activated sludge treatment device, is a treatment system that aerobically decomposes organic waste liquid by contacting it with activated sludge, and an aerobic treatment tank and a membrane separation device are separately provided. Is shown as an overall processing system including these. The ozone treatment system 2 is a device that reacts ozone-containing gas with the drawn sludge that is drawn in the state of a reaction solution or a concentrated solution, oxidatively decomposes it, and converts it into BOD.

【0012】図1の好気性処理系1には、好気性処理を
行うために一定量の活性汚泥3aが保持されている。こ
のような好気性処理系1に被処理液4を導入して好気性
処理を行うと、被処理液4に含まれるBODは活性汚泥
3aに同化され、その増殖により新たに生成汚泥3bが
生成する。一方、系内の活性汚泥3aは自己分解によ
り、自己分解分3cが消失する。従って定常状態では、
生成汚泥3bと自己分解分3cの差が増殖汚泥3dとし
て増殖する。
The aerobic treatment system 1 of FIG. 1 holds a certain amount of activated sludge 3a for performing aerobic treatment. When the liquid to be treated 4 is introduced into the aerobic treatment system 1 and subjected to aerobic treatment, the BOD contained in the liquid to be treated 4 is assimilated into the activated sludge 3a, and a new sludge 3b is generated due to the multiplication thereof. To do. On the other hand, the activated sludge 3a in the system is self-decomposed, and the self-decomposed portion 3c disappears. So in steady state,
The difference between the generated sludge 3b and the self-decomposition 3c grows as the grown sludge 3d.

【0013】従来の減容化法では、ここで発生する増殖
汚泥3dを余剰汚泥として系外に排出し、減容化を行っ
ていたので、その50%がさらに消化汚泥として排出さ
れていた。または特公昭49−11813号では余剰汚
泥として排出されている増殖汚泥3dを加水分解してB
OD化し、これを好気性処理系1に戻しているが、この
処理法では加水分解液として加わるBODが新たに生成
汚泥を生成し、処理の継続により、余剰汚泥が発生す
る。
In the conventional volume-reducing method, the multiplied sludge 3d generated here was discharged outside the system as excess sludge to reduce the volume, so 50% of the sludge was further discharged as digested sludge. Alternatively, in Japanese Examined Patent Publication No. 49-11813, B is obtained by hydrolyzing the breeding sludge 3d discharged as excess sludge.
Although it is converted to OD and returned to the aerobic treatment system 1, in this treatment method, BOD added as a hydrolysis liquid newly generates generated sludge, and excess sludge is generated by continuing the treatment.

【0014】加水分解に代えてオゾン処理系2で処理す
る場合を、図1に破線5で示しているが、増殖汚泥3d
をオゾン処理して好気性処理系1に戻すと、オゾン処理
により生成するBODが汚泥に転換して、別の生成汚泥
3eが生成し、この分が実質的な汚泥増殖分となり、余
剰汚泥として排出されなければならない。このように増
殖汚泥3dをオゾン処理して好気性処理系に戻す場合の
汚泥減容化率は増殖汚泥3dの30〜40重量%であ
り、嫌気性または好気性消化の場合よりも低い。
The case of treating with the ozone treatment system 2 instead of hydrolysis is shown by the broken line 5 in FIG.
When ozone is treated and returned to the aerobic treatment system 1, BOD generated by the ozone treatment is converted into sludge, and another generated sludge 3e is generated. Must be discharged. In this way, the sludge volume reduction rate in the case where ozone of the expanded sludge 3d is returned to the aerobic treatment system is 30 to 40% by weight of the expanded sludge 3d, which is lower than that in the case of anaerobic or aerobic digestion.

【0015】これに対し、増殖汚泥3dよりも多い量の
引抜汚泥3fを好気性処理系1から引抜き、オゾン処理
系2でオゾン処理してBODに転換し、オゾン処理汚泥
6を好気性処理系1に戻すことにより、オゾン分解で生
成したBODから別の生成汚泥3gが生成する。この場
合、引抜汚泥3fと生成汚泥3gの差が無機化部分3h
となる。
On the other hand, a larger amount of the extracted sludge 3f than the propagated sludge 3d is extracted from the aerobic treatment system 1, ozone-treated in the ozone treatment system 2 and converted into BOD, and the ozone-treated sludge 6 is converted into the aerobic treatment system. By returning the value to 1, another 3 g of produced sludge is produced from BOD produced by ozonolysis. In this case, the difference between the drawn sludge 3f and the produced sludge 3g is the mineralized portion 3h.
Becomes

【0016】ここで増殖汚泥3dよりも多い量の引抜汚
泥3fをオゾン処理してBODに転換することにより、
増殖汚泥3dのみをオゾン分解する場合よりも、無機化
部分が多くなり、汚泥減容化率は高くなる。増殖汚泥3
dと無機化部分3hが等しくなるように、引抜汚泥3f
の量を決めると、余剰汚泥は実質的にゼロになる。増殖
汚泥3dが無機化部分3hより多い場合は、その差が実
質的な増加部分3iとなり、余剰汚泥7として系外に排
出される。8は好気性処理系1の処理液である。
[0016] Here, by treating the extracted sludge 3f in an amount larger than that of the propagated sludge 3d with ozone, and converting it into BOD,
Compared with the case where only the propagated sludge 3d is decomposed by ozone, the mineralized portion is increased and the sludge volume reduction rate is increased. Breeding sludge 3
3d of drawn sludge so that d and the mineralized portion 3h become equal
When the amount of is determined, the surplus sludge becomes substantially zero. When the amount of the grown sludge 3d is larger than that of the mineralized portion 3h, the difference becomes a substantially increased portion 3i, and the excess sludge 7 is discharged out of the system. Reference numeral 8 is a treatment liquid of the aerobic treatment system 1.

【0017】上記好気性処理系1における生物処理槽容
量をV、その活性汚泥濃度をX、汚泥収率をY、被処理
液流量(処理液流量)をQ、被処理液の有機物濃度をC
i、処理液の有機物濃度をCe、生物処理された有機物
濃度を(Ci−Ce)、汚泥自己分解定数をKd、余剰
汚泥排出量をq、オゾン槽への引抜量をQ′、オゾン処
理された汚泥が活性汚泥に再変換された割合をkとする
と、物質収支は次の〔1〕式で表される。
In the aerobic treatment system 1, the biological treatment tank capacity is V, the activated sludge concentration is X, the sludge yield is Y, the treated liquid flow rate (treatment liquid flow rate) is Q, and the organic matter concentration of the treated liquid is C.
i, organic concentration of treated liquid is Ce, concentration of biologically treated organic substance is (Ci-Ce), sludge self-decomposition constant is Kd, excess sludge discharge amount is q, extraction amount to ozone tank is Q ', ozone treatment is performed. The mass balance is expressed by the following equation [1], where k is the rate at which the sludge is reconverted to activated sludge.

【数1】 V dX/dt=Y Q (Ci−Ce)−V Kd X−q X−Q′X+k Q′X 〔1〕[Formula 1] V dX / dt = Y Q (Ci−Ce) −V Kd X−q X−Q′X + k Q′X [1]

【0018】〔1〕式において、V dX/dtは好気性処理
系1における活性汚泥3aの変化量、Y Q (Ci−Ce)は生
成汚泥3bの量、V Kd Xは自己分解分3cの量、q Xは
余剰汚泥7の排出量、Q′Xは引抜汚泥3fの量、k Q′X
は生成汚泥3gの量を示している。
In the formula [1], V dX / dt is the amount of change of the activated sludge 3a in the aerobic treatment system 1, YQ (Ci-Ce) is the amount of produced sludge 3b, and V Kd X is the amount of self-decomposition 3c. , Q X is the amount of surplus sludge 7 discharged, Q'X is the amount of extracted sludge 3f, k Q'X
Indicates the amount of 3 g of produced sludge.

【0019】ここでQ (Ci−Ce)/V=LV(槽負荷)、q/
V=1/SRT(余剰汚泥滞留時間比)、Q′/V=θ(オゾ
ン処理系への活性汚泥の循環比)、(1−k)=δ(無
機化率)とおくと、定常状態では、〔1〕式は次の
〔2〕式のように簡略化される。
Where Q (Ci-Ce) / V = LV (tank load), q /
V = 1 / SRT (excess sludge retention time ratio), Q '/ V = θ (circulation ratio of activated sludge to ozone treatment system), (1-k) = δ (mineralization rate) Then, the equation [1] is simplified as the following equation [2].

【0020】[0020]

【数2】 Y LV/X=Kd+1/SRT+δθ 〔2〕[Formula 2] Y LV / X = Kd + 1 / SRT + δθ [2]

【0021】オゾン処理系2が存在しない通常の好気性
処理系では、〔2〕式の第3項(δθ)がないので、汚
泥負荷を一定としたとき第2項で余剰汚泥量(X/SRT)が
決定される。これに対してオゾン処理系を組合せた処理
系では、〔2〕式から明らかなように、第3項の値によ
り余剰汚泥が減容化する。そして第3項の値が第2項の
値に匹敵するような条件下では、余剰汚泥を排出しなく
ても(1/SRT=0)、汚泥負荷を通常の値に設定する
ことが可能である。
In an ordinary aerobic treatment system in which the ozone treatment system 2 does not exist, the third term (δθ) in the equation [2] does not exist, so when the sludge load is constant, the excess sludge amount (X / SRT) is decided. On the other hand, in the treatment system in which the ozone treatment system is combined, as is apparent from the equation [2], the volume of the excess sludge is reduced by the value of the third term. And under the condition that the value of the third term is comparable to the value of the second term, it is possible to set the sludge load to a normal value without discharging the excess sludge (1 / SRT = 0). is there.

【0022】図2は引抜汚泥に対するオゾン注入率と無
機化率δとの関係を示すグラフ、図3は循環比θと汚泥
活性との関係を示すグラフ、図4はオゾン注入率とオゾ
ン処理汚泥の生分解速度との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the ozone injection rate and the mineralization rate δ in the drawn sludge, FIG. 3 is a graph showing the relationship between the circulation ratio θ and the sludge activity, and FIG. 4 is the ozone injection rate and the ozone-treated sludge. It is a graph which shows the relationship with the biodegradation rate of.

【0023】前記〔2〕式の第3項のパラメータは無機
化率δと循環比θであるが、このうちδは図2に示すよ
うに汚泥に対するオゾン注入率が0.03g−O3/g
−SS以上では、0.5付近の定常値になるため、この
領域では汚泥の見かけの減容化率はθに比例して決定さ
れる。
The parameters of the third term in the above equation [2] are the mineralization rate δ and the circulation ratio θ, of which δ is the ozone injection rate into the sludge of 0.03 g-O 3 / g
At −SS or higher, the steady value is around 0.5, and thus the apparent volume reduction rate of sludge is determined in proportion to θ in this region.

【0024】一方、循環比θは、図3に示すように、
0.5day-1程度までは汚泥活性に影響を与えない。
このことは1日あたり、好気性処理系1に保持された活
性汚泥3aの1/2以下を引抜汚泥3fとしてオゾン処
理系2に循環しても、好気性処理系1の汚泥活性が維持
されることを意味している。
On the other hand, the circulation ratio θ is as shown in FIG.
It does not affect sludge activity up to about 0.5 day -1 .
This means that even if 1/2 or less of the activated sludge 3a retained in the aerobic treatment system 1 is circulated to the ozone treatment system 2 as the extracted sludge 3f per day, the sludge activity of the aerobic treatment system 1 is maintained. It means that.

【0025】従って循環比θの上限は0.5day-1
される。θがゼロの場合は完全酸化方式となるが、この
場合低汚泥負荷であるとともに、減容効果も小さい。ま
た引抜汚泥3fが増殖汚泥3dと同量の場合は、従来法
と同様な値の減容率となる。通常の好気性処理では、S
RTは10日、汚泥引抜率は0.1day-1である。本
発明では増殖汚泥3dより多い引抜汚泥3fを循環する
ので、循環上θの下限は0.1day-1を超える値とさ
れるが、0.2day-1以上とするのが好ましく、特に
0.3day-1とすると、余剰汚泥が発生しない100
%減容化が可能となる。
Therefore, the upper limit of the circulation ratio θ is set to 0.5 day -1 . When θ is zero, the complete oxidation method is used, but in this case the sludge load is low and the volume reduction effect is small. When the amount of the extracted sludge 3f is the same as the amount of the grown sludge 3d, the volume reduction rate is the same as that of the conventional method. In normal aerobic treatment, S
The RT is 10 days and the sludge extraction rate is 0.1 day -1 . In the present invention, since the extracted sludge 3f, which is larger than the propagated sludge 3d, is circulated, the lower limit of θ on the circulation is set to a value exceeding 0.1 day -1 , but 0.2 d -1 or more is preferable, and particularly, 0. If 3day -1 , no excess sludge is generated 100
% Volume reduction is possible.

【0026】オゾン処理汚泥の生分解性は、図4に示す
ように、汚泥に対するオゾン注入率が低い領域では悪化
する傾向にあり、0.02g−O3/g−SS未満では
著しく低下する。従ってオゾン注入率の下限は0.02
g−O3/g−SSとし、上限は制限はないが、コスト
的な面から0.2g−O3/g−SSとするのが好まし
い。
As shown in FIG. 4, the biodegradability of the ozone-treated sludge tends to deteriorate in a region where the ozone injection rate into the sludge is low, and remarkably decreases below 0.02 g-O 3 / g-SS. Therefore, the lower limit of ozone injection rate is 0.02
and g-O 3 / g-SS , the upper limit is not restricted, preferably from cost aspects and 0.2g-O 3 / g-SS .

【0027】以上の結果から、〔2〕式の第3項δθの
最大値は0.5×0.5=0.25day-1となる。従
って通常の好気性処理系におけるSRTが4日の運転条
件、すなわち1日に全汚泥の1/4を余剰汚泥として排
出する運転条件の場合でも、この汚泥をオゾン処理系2
に循環することにより、余剰汚泥7を排出しない運転
(1/SRT=0)が可能である。
From the above results, the maximum value of the third term δθ in the equation [2] is 0.5 × 0.5 = 0.25 day −1 . Therefore, even if the SRT in a normal aerobic treatment system is under operating conditions for 4 days, that is, for operating conditions in which 1/4 of the total sludge is discharged as surplus sludge per day, this sludge is treated by the ozone treatment system 2
By circulating the waste sludge to the operation (1 / SRT = 0), the excess sludge 7 is not discharged.

【0028】好気性処理系1における活性汚泥の汚泥活
性は、オゾン注入率の低い段階で低下するので、オゾン
処理は好気性処理系1から引抜いた引抜汚泥について行
う必要がある。好気性処理系から汚泥を引抜く場所は、
好気性処理槽、膜分離装置のいずれでもよい。好気性処
理槽から引抜く場合は、低濃度であるが、比較的定量の
汚泥を引抜くことができる。膜分離装置の濃縮液として
引抜く場合は、高濃度ではあるが、汚泥量が一定しない
傾向がある。
Since the sludge activity of the activated sludge in the aerobic treatment system 1 decreases at a stage where the ozone injection rate is low, it is necessary to perform the ozone treatment on the drawn sludge extracted from the aerobic treatment system 1. The place where sludge is drawn from the aerobic treatment system is
Either an aerobic treatment tank or a membrane separation device may be used. When extracting from an aerobic treatment tank, a relatively small amount of sludge can be extracted although the concentration is low. When it is drawn out as a concentrated liquid of a membrane separation device, the sludge amount tends to be inconsistent although the concentration is high.

【0029】[0029]

【実施例】以下、本発明の実施例について説明する。図
5および図6はそれぞれ実施例の有機性排液の好気性処
理装置を示すフローシートであり、図5は膜分離装置が
好気性処理槽の外に設けられた例、図6は膜分離装置が
好気性処理槽内に設けられた例を示している。
Embodiments of the present invention will be described below. FIGS. 5 and 6 are flow sheets showing an aerobic treatment apparatus for organic waste liquid of each example, FIG. 5 shows an example in which the membrane separation apparatus is provided outside the aerobic treatment tank, and FIG. 6 shows membrane separation. The example which the apparatus provided in the aerobic processing tank is shown.

【0030】図5において、好気性処理系1は好気性処
理槽11および膜分離装置12から構成されている。好
気性処理槽11には被処理液路13および返送液路14
が連絡し、また底部には散気装置15が設けられて、空
気供給路16が連絡している。好気性処理槽11から膜
分離装置12に、ポンプP1を有する連絡路17が連絡
している。膜分離装置12は分離膜12aによって透過
液室12bと濃縮液室12cに区画され、透過液室12
bには処理液路18が連絡し、濃縮液室12cには濃縮
液引出路19が連絡し、返送液路14が分岐している。
膜分離装置12としては、チューブラ型、スパイラル
型、ホローファイバ型など、任意の分離膜モジュールを
有するものが使用できる。
In FIG. 5, the aerobic treatment system 1 is composed of an aerobic treatment tank 11 and a membrane separation device 12. The aerobic treatment tank 11 has a liquid passage 13 and a liquid return passage 14 to be treated.
And an air diffuser 15 is provided at the bottom, and an air supply path 16 is in communication. A communication path 17 having a pump P 1 communicates with the membrane separation device 12 from the aerobic treatment tank 11. The membrane separation device 12 is divided into a permeate chamber 12b and a concentrate chamber 12c by a separation membrane 12a.
The processing liquid passage 18 communicates with b, the concentrated liquid withdrawal passage 19 communicates with the concentrated liquid chamber 12c, and the return liquid passage 14 branches.
As the membrane separation device 12, a device having an arbitrary separation membrane module such as a tubular type, a spiral type, or a hollow fiber type can be used.

【0031】オゾン処理系2はオゾン処理槽21を有
し、濃縮液引出路19から分岐する引抜液路22と排オ
ゾン路23が上部に連絡し、オゾン供給路24およびオ
ゾン処理汚泥路25が下部に連絡している。オゾン処理
汚泥路25は、オゾン処理槽21から好気性処理槽11
に連絡している。20は余剰汚泥排出路である。
The ozone treatment system 2 has an ozone treatment tank 21, a withdrawal liquid passage 22 branching from a concentrate withdrawal passage 19 and an exhaust ozone passage 23 are connected to the upper part, and an ozone supply passage 24 and an ozone treatment sludge passage 25 are provided. Contact the bottom. The ozone treatment sludge passage 25 is provided from the ozone treatment tank 21 to the aerobic treatment tank 11
Have been contacted. 20 is a surplus sludge discharge channel.

【0032】上記の処理装置による有機性排液の処理方
法は、好気性処理系1では、被処理液路13から有機性
排液を好気性処理槽11に導入し、返送液路14から返
送される濃縮液中の返送汚泥および好気性処理槽11内
の活性汚泥と混合し、空気供給路16から供給される空
気を散気装置15から散気して好気性処理を行う。これ
により排液中の有機物は生物酸化反応によって分離され
る。好気性処理槽11の反応液(混合液)の一部は連絡
路17から取出し、ポンプP1で加圧して膜分離装置1
2に導いて膜分離することにより、透過液と濃縮液に分
離する。ここで分離膜12aを透過した透過液は処理液
として処理液路18から排出し、活性汚泥その他の固形
分が濃縮された濃縮液は濃縮液引出路19から引出し、
その一部を返送液路14から好気性処理槽11に返送す
る。
In the method of treating organic waste liquid by the above-mentioned treatment apparatus, in the aerobic treatment system 1, the organic waste liquid is introduced from the liquid passage 13 to be treated into the aerobic treatment tank 11 and returned from the return liquid passage 14. The returned sludge in the concentrated liquid and the activated sludge in the aerobic treatment tank 11 are mixed, and the air supplied from the air supply passage 16 is diffused from the diffuser 15 to perform aerobic treatment. As a result, the organic matter in the waste liquid is separated by the biooxidation reaction. A part of the reaction liquid (mixed liquid) in the aerobic treatment tank 11 is taken out from the communication path 17 and pressurized by the pump P 1 to obtain the membrane separation device 1
By conducting to 2 and performing membrane separation, a permeate and a concentrate are separated. Here, the permeated liquid that has permeated the separation membrane 12a is discharged as a treated liquid from the treated liquid passage 18, and the concentrated liquid in which activated sludge and other solids are concentrated is drawn out from a concentrated liquid outlet passage 19,
A part of it is returned to the aerobic treatment tank 11 from the return liquid passage 14.

【0033】オゾン処理系2では、濃縮液引出路19か
ら、引抜液路22を通して引抜濃縮液の一部をオゾン処
理槽21に循環し、オゾン供給路24より供給されるオ
ゾンと接触させてオゾン処理を行い活性汚泥をBOD化
する。オゾン処理汚泥はオゾン処理汚泥路25から好気
性処理槽11に戻され負荷として好気性処理される。こ
のようにオゾン処理汚泥を好気性処理槽11に導入して
好気性処理を行うことにより、好気性処理槽11内の活
性汚泥の性状が改善され、膜分離装置12における分離
膜12aの目詰まりが防止され、フラックスを大きくし
て膜分離を行うことができるとともに、余剰汚泥を減容
化することができる。
In the ozone treatment system 2, a part of the extracted concentrated liquid is circulated from the concentrated liquid withdrawal passage 19 through the withdrawal liquid passage 22 to the ozone treatment tank 21, and is brought into contact with ozone supplied from the ozone supply passage 24 so that the ozone is supplied. Treatment is performed to convert activated sludge into BOD. The ozone-treated sludge is returned from the ozone-treated sludge passage 25 to the aerobic treatment tank 11 and aerobically treated as a load. By thus introducing the ozone-treated sludge into the aerobic treatment tank 11 and performing the aerobic treatment, the properties of the activated sludge in the aerobic treatment tank 11 are improved, and the separation membrane 12a in the membrane separation device 12 is clogged. Is prevented, the flux can be increased and the membrane can be separated, and the volume of the excess sludge can be reduced.

【0034】図6では膜分離装置12は好気性処理槽1
1内に設けられ、オゾン処理槽21には好気性処理槽1
1の槽内液が供給されている。上記膜分離装置12とし
ては、特開昭61−129094号、特開平1−293
103号に記載されているようなもの、すなわち平膜状
の分離膜を有する複数のモジュール12dを、膜面が沿
直方向に向くように、散気装置15上に配置し、各モジ
ュール12dを分岐路18aを通して処理液路18に接
続し、処理液路18には吸引用のポンプP2を設けたも
のが使用される。オゾン処理槽21には、ポンプP3
有する引抜液路22が好気性処理槽11から連絡してい
る。
In FIG. 6, the membrane separation device 12 is an aerobic treatment tank 1.
1, the aerobic treatment tank 1 is provided in the ozone treatment tank 21.
The in-tank liquid of No. 1 is supplied. Examples of the membrane separation device 12 include JP-A-61-29094 and JP-A-1-293.
No. 103, that is, a plurality of modules 12d having flat membrane-like separation membranes are arranged on the air diffuser 15 so that the membrane surfaces face in the vertical direction, and each module 12d is arranged. It is connected to the treatment liquid passage 18 through a branch passage 18a, and the treatment liquid passage 18 provided with a suction pump P 2 is used. An extraction liquid passage 22 having a pump P 3 is connected to the ozone treatment tank 21 from the aerobic treatment tank 11.

【0035】上記の処理装置による有機性排液の処理方
法は、好気性処理槽11では図5の場合と同様に好気性
処理が行われるが、ポンプP2を駆動して吸収すること
により、膜分離装置12のモジュール12dの膜面の内
外に圧力差が生じ、膜分離が行われる。これにより反応
液(槽内液)中の液分は分離膜を透過して処理液路18
から排出され、活性汚泥その他の固形分は反応液中に残
って濃縮され、汚泥返送と同様の現象が生じる。膜面に
付着する活性汚泥その他の固形物は、散気装置15から
上昇する空気により剥離され、モジュール12dは清浄
な膜面を維持する。
According to the method for treating organic waste liquid by the above-mentioned treatment apparatus, aerobic treatment is performed in the aerobic treatment tank 11 as in the case of FIG. 5, but by driving the pump P 2 to absorb it. A pressure difference is generated between the inside and outside of the membrane surface of the module 12d of the membrane separation device 12, and membrane separation is performed. As a result, the liquid component in the reaction liquid (liquid in the tank) passes through the separation membrane and passes through the processing liquid passage 18.
The activated sludge and other solids are discharged from the reactor and are concentrated in the reaction solution, causing the same phenomenon as returning sludge. Activated sludge and other solid matter attached to the membrane surface are separated by the air rising from the air diffuser 15, and the module 12d maintains a clean membrane surface.

【0036】反応液の一部はポンプP3により引抜液路
22からオゾン処理槽21に導入されて、液中の活性汚
泥が分解される。オゾン処理汚泥はオゾン処理汚泥路2
5から好気性処理槽11に導入され、負荷として好気性
処理される。これにより図5の場合と同様に膜分離装置
12のフラックスが大きくなり、余剰汚泥が減容化され
る。
A part of the reaction liquid is introduced into the ozone treatment tank 21 from the extraction liquid passage 22 by the pump P 3 , and the activated sludge in the liquid is decomposed. Ozone-treated sludge is the ozone-treated sludge path 2.
5 is introduced into the aerobic treatment tank 11 and aerobically treated as a load. As a result, as in the case of FIG. 5, the flux of the membrane separation device 12 increases and the excess sludge is reduced in volume.

【0037】図5および図6のいずれの場合も、前記
〔1〕式におけるVは好気性処理槽11の容量、XはV
に対する好気性処理槽11および膜分離装置12に保持
された全汚泥の濃度、Q′は好気性処理槽11内または
膜分離装置12における濃縮液の汚泥濃度をXに換算し
たときの容量として算出される。これにより、図5およ
び図6のいずれの場合も、図1に示すように、好気性処
理系1として、それぞれの値を決めることができる。
5 and 6, V in the above formula [1] is the capacity of the aerobic treatment tank 11, and X is V.
The concentration of total sludge retained in the aerobic treatment tank 11 and the membrane separation device 12, and Q ′ is calculated as the capacity when the sludge concentration of the concentrated liquid in the aerobic treatment tank 11 or in the membrane separation device 12 is converted to X. To be done. As a result, in both cases of FIG. 5 and FIG. 6, the respective values can be determined as the aerobic treatment system 1 as shown in FIG.

【0038】図5、図6において、増殖汚泥より多い引
抜汚泥をオゾン処理することにより、汚泥の減容化が可
能であるが、余剰汚泥がゼロでない場合は、余剰汚泥排
出路20より余剰汚泥を系外に排出する。増殖汚泥と無
機化部分が同じになるように引抜汚泥量を決めると、余
剰汚泥の発生量はゼロになり、余剰汚泥排出路20から
の排出はなくなる。この場合でも、砂などの無機物質が
蓄積される系では、若干の汚泥を排出することもでき
る。
In FIG. 5 and FIG. 6, the volume of sludge can be reduced by treating the drawn sludge in excess of the sludge with ozone. However, if the excess sludge is not zero, excess sludge is discharged from the excess sludge discharge path 20. Is discharged to the outside of the system. If the amount of extracted sludge is determined so that the propagated sludge and the mineralized portion are the same, the amount of excess sludge generated becomes zero, and the excess sludge discharge path 20 does not discharge. Even in this case, some sludge can be discharged in a system in which an inorganic substance such as sand is accumulated.

【0039】以下、試験例について説明する。 実施例1 図5の装置を用い、被処理液としてCODMn5500m
g/lのし尿を処理した。このときの処理条件は被処理
液流入量1m3/日、好気性処理槽容積4m3、MLSS
15000mg/l、膜分離装置流入量20m3
日、濃縮液の循環量18.7m3/日、透過液量1m3
日、濃縮液のオゾン処理量0.3m3/日、オゾン注入
量0.05(kg−O3/kg−SS)である。膜分離
装置は分画分子量200万のポリスルフォンUF膜の平
膜モジュール(0.1m2×10枚)を内蔵し、分離面
積を0.1〜1m2に調節できるようにしたものであ
り、操作圧力は3kg/cm2とした。上記の結果、処
理水のCODMnは140mg/l、膜分離装置のフラッ
クスは2m3/m2・日であり、余剰汚泥の発生量はゼロ
であった。
The test examples will be described below. Example 1 Using the apparatus of FIG. 5, COD Mn 5500 m as a liquid to be treated
g / l human waste was processed. The treatment conditions at this time were: inflow rate of the liquid to be treated 1 m 3 / day, aerobic treatment tank volume 4 m 3 , MLSS
15000 mg / l, the membrane separator inflow 20 m 3 /
Circulation volume of concentrated liquid 18.7 m 3 / day, permeate volume 1 m 3 / day
The ozone treatment amount of the concentrated liquid is 0.3 m 3 / day, and the ozone injection amount is 0.05 (kg-O 3 / kg-SS). Membrane separation apparatus incorporates a flat membrane module polysulfone UF membrane a fractionation molecular weight of 2,000,000 (2 × 10 sheets 0.1 m), is obtained by allowing adjust the separation area 0.1 to 1 m 2, The operating pressure was 3 kg / cm 2 . As a result, the COD Mn of the treated water was 140 mg / l, the flux of the membrane separation device was 2 m 3 / m 2 · day, and the amount of excess sludge generated was zero.

【0040】比較例1 実施例1において、オゾンの送給を停止した以外は同条
件で処理した結果、処理水CODMnは140mg/l、
フラックスは1m3/m2・日、余剰汚泥の発生量は5.
5kg−SS/日であった。
Comparative Example 1 As a result of treating under the same conditions as in Example 1 except that the ozone feed was stopped, the treated water COD Mn was 140 mg / l,
Flux is 1 m 3 / m 2 · day, the amount of excess sludge generated is 5.
It was 5 kg-SS / day.

【0041】[0041]

【発明の効果】本発明によれば、好気性処理系の反応液
を膜分離して透過液と濃縮液に分離し、反応液または濃
縮液をオゾン処理して、オゾン処理液を好気性処理系に
導入するようにしたので、分離膜の目詰まりを防止して
高フラックスで反応液の膜分離を行うことができ、しか
も負荷および処理効率を低下させることなく、余剰汚泥
を減容化し、場合によっては余剰汚泥発生をゼロにする
ことも可能である。
According to the present invention, the reaction liquid of the aerobic treatment system is membrane-separated into the permeated liquid and the concentrated liquid, and the reaction liquid or the concentrated liquid is subjected to ozone treatment to aerobically treat the ozone-treated liquid. Since it was introduced into the system, it is possible to prevent clogging of the separation membrane and perform membrane separation of the reaction liquid with high flux, and also reduce the volume of excess sludge without lowering the load and treatment efficiency, In some cases, it is possible to reduce the generation of excess sludge to zero.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における汚泥減容化の原理を説明するた
めの模式図である。
FIG. 1 is a schematic diagram for explaining the principle of sludge volume reduction in the present invention.

【図2】オゾン注入率と無機化率の関係を示すグラフで
ある。
FIG. 2 is a graph showing a relationship between an ozone injection rate and a mineralization rate.

【図3】循環比と汚泥活性の関係を示すグラフである。FIG. 3 is a graph showing the relationship between circulation ratio and sludge activity.

【図4】オゾン注入率と生分解速度の関係を示すグラフ
である。
FIG. 4 is a graph showing a relationship between an ozone injection rate and a biodegradation rate.

【図5】実施例の処理装置を示すフローシートである。FIG. 5 is a flow sheet showing the processing apparatus of the embodiment.

【図6】他の実施例の処理装置を示すフローシートであ
る。
FIG. 6 is a flow sheet showing a processing apparatus of another embodiment.

【符号の説明】[Explanation of symbols]

1 好気性処理系 2 オゾン処理系 3a 活性汚泥 3b、3e、3g 生成汚泥 3c 自己分解分 3d 増殖汚泥 3f 引抜汚泥 3h 無機化部分 3i 増加部分 4 被処理液 6 オゾン処理汚泥 7 余剰汚泥 8 処理液 11 好気性処理槽 12 膜分離装置 13 被処理液路 14 返送液路 15 散気装置 16 空気供給路 17 連絡路 18 処理液路 19 濃縮液引出路 20 余剰汚泥排出路 21 オゾン処理槽 22 引抜液路 23 排オゾン路 24 オゾン供給路 25 オゾン処理汚泥路 1 Aerobic treatment system 2 Ozone treatment system 3a Activated sludge 3b, 3e, 3g Produced sludge 3c Self-decomposition 3d Proliferation sludge 3f Extracted sludge 3h Mineralized part 3i Increased part 4 Treated liquid 6 Ozone-treated sludge 7 Excess sludge 8 Treatment liquid 11 Aerobic treatment tank 12 Membrane separation device 13 Treated liquid passage 14 Returning liquid passage 15 Air diffuser 16 Air supply passage 17 Connecting passage 18 Treatment liquid passage 19 Concentrated liquid extraction passage 20 Excess sludge discharge passage 21 Ozone treatment tank 22 Extraction liquid Route 23 Waste ozone route 24 Ozone supply route 25 Ozone treatment sludge route

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 502 E R 503 C 504 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C02F 9/00 502 ER 503 C 504 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 好気性微生物を含む活性汚泥の存在下
に、有機性排液を好気性処理する方法において、 好気性処理系の反応液を膜分離して透過液と濃縮液に分
離する工程と、 前記反応液または濃縮液をオゾン処理する工程と、 オゾン処理液を好気性処理系に導入する工程とを有する
有機性排液の好気性処理方法。
1. A method for aerobically treating an organic waste liquid in the presence of activated sludge containing aerobic microorganisms, wherein a reaction solution of an aerobic treatment system is membrane-separated into a permeate and a concentrate. And a step of subjecting the reaction solution or the concentrated solution to an ozone treatment, and a step of introducing the ozone treatment liquid into an aerobic treatment system.
【請求項2】 好気性微生物を含む活性汚泥の存在下に
有機性排液を好気性処理する好気性反応槽と、 この好気性反応槽の反応液を膜分離して、透過液と濃縮
液に分離する膜分離装置と、 前記反応液または濃縮液をオゾン処理し、オゾン処理液
を好気性反応槽に導入するオゾン処理装置とを備えてい
る有機性排液の処理装置。
2. An aerobic reaction tank for aerobically treating organic waste liquid in the presence of activated sludge containing aerobic microorganisms, and a reaction solution in the aerobic reaction tank is subjected to membrane separation to obtain a permeated liquid and a concentrated liquid. An apparatus for treating organic waste liquid, comprising: a membrane separation device for separating the reaction liquid or the concentrated liquid; and an ozone treatment device for treating the reaction liquid or the concentrated liquid with ozone and introducing the ozone treatment liquid into an aerobic reaction tank.
JP15740494A 1993-09-22 1994-07-08 Aerobic treatment of organic wastewater Expired - Fee Related JP3407405B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15740494A JP3407405B2 (en) 1994-07-08 1994-07-08 Aerobic treatment of organic wastewater
US08/309,868 US7384555B1 (en) 1993-09-22 1994-09-21 Process for biological treatment of aqueous organic wastes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15740494A JP3407405B2 (en) 1994-07-08 1994-07-08 Aerobic treatment of organic wastewater

Publications (2)

Publication Number Publication Date
JPH0819789A true JPH0819789A (en) 1996-01-23
JP3407405B2 JP3407405B2 (en) 2003-05-19

Family

ID=15648897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15740494A Expired - Fee Related JP3407405B2 (en) 1993-09-22 1994-07-08 Aerobic treatment of organic wastewater

Country Status (1)

Country Link
JP (1) JP3407405B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003437A1 (en) * 1996-07-19 1998-01-29 Kurita Water Industries Ltd. Method and apparatus for biological treatment of waste organic liquid
JP2000202485A (en) * 1999-01-19 2000-07-25 Ebara Corp Treatment of organic sewage
JP2001191097A (en) * 1999-10-25 2001-07-17 Sumitomo Precision Prod Co Ltd Waste water treating method
EP0887314A3 (en) * 1997-05-30 2001-07-18 The Japanese Research & Development Association for Environment-Friendly Processing in Food Industry Waste water ozonization process and apparatus
KR100453465B1 (en) * 2002-10-14 2004-10-20 한국과학기술연구원 Membrane Coupled Activated Sludge Reactor incorporating Advanced Oxidation Process and Process using the Same
JP2007253073A (en) * 2006-03-23 2007-10-04 Kurita Water Ind Ltd Apparatus and method for treating water
WO2019059449A1 (en) * 2017-09-20 2019-03-28 한국지역난방공사 Water treatment apparatus and method to which pre-ozonation is applied

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003437A1 (en) * 1996-07-19 1998-01-29 Kurita Water Industries Ltd. Method and apparatus for biological treatment of waste organic liquid
US6086766A (en) * 1996-07-19 2000-07-11 Kurita Water Industries Ltd. Process and apparatus for biological treatment of aqueous organic wastes
EP0887314A3 (en) * 1997-05-30 2001-07-18 The Japanese Research & Development Association for Environment-Friendly Processing in Food Industry Waste water ozonization process and apparatus
JP2000202485A (en) * 1999-01-19 2000-07-25 Ebara Corp Treatment of organic sewage
JP2001191097A (en) * 1999-10-25 2001-07-17 Sumitomo Precision Prod Co Ltd Waste water treating method
KR100453465B1 (en) * 2002-10-14 2004-10-20 한국과학기술연구원 Membrane Coupled Activated Sludge Reactor incorporating Advanced Oxidation Process and Process using the Same
JP2007253073A (en) * 2006-03-23 2007-10-04 Kurita Water Ind Ltd Apparatus and method for treating water
WO2019059449A1 (en) * 2017-09-20 2019-03-28 한국지역난방공사 Water treatment apparatus and method to which pre-ozonation is applied

Also Published As

Publication number Publication date
JP3407405B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
US8083948B2 (en) Method and apparatus for generating fresh water
US7101482B2 (en) Method and facility for treatment of sludge derive from biological water purification facilities
JP4632356B2 (en) Biological nitrogen removal method and system
JP2973761B2 (en) Aerobic treatment of organic wastewater
KR101721251B1 (en) SBR Process coupled with Membrane Process
EP1346956A1 (en) Process for sludge treatment using sludge pretreatment and membrane bioreactor
JP2001314890A (en) Wastewater treatment method
JP3407405B2 (en) Aerobic treatment of organic wastewater
KR100327151B1 (en) A Process for Treatment of Wastewater Using Intermittently Aerated Membrane Bioreactor
KR19980083279A (en) Treatment method of high concentration organic wastewater and nutrients using immersion type microfiltration membrane-activated sludge process
JP3887581B2 (en) Sewage treatment equipment
KR20050053136A (en) Wastewater treatment system by means of membrane bio-reactor
KR100992321B1 (en) Wastewater treatment apparatus with membrane module
JP3150734B2 (en) Wastewater or sludge treatment method and apparatus
JPH0947781A (en) Treatment of organic material related to bod, nitrogen and phosphorus in waste water
JP2000140886A (en) Equipment for treatment of nitrogen-containing drainage
JPH105762A (en) Activated sludge process and device therefor
JPH08103786A (en) Aerobic treating method for organic waste liquid
JP3843540B2 (en) Biological treatment method of effluent containing organic solids
JP4156820B2 (en) Organic wastewater treatment method and treatment apparatus
JP4862209B2 (en) Organic drainage treatment method and apparatus
JPH09108672A (en) Parallel two-stage membrane separation type septic tank
JP2001047098A (en) Treatment of sewage and sludge
KR100542676B1 (en) Apparatus and method for treating wastewater using membrane
JP3919999B2 (en) Organic wastewater treatment method and apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees