JP2007253073A - Apparatus and method for treating water - Google Patents

Apparatus and method for treating water Download PDF

Info

Publication number
JP2007253073A
JP2007253073A JP2006081088A JP2006081088A JP2007253073A JP 2007253073 A JP2007253073 A JP 2007253073A JP 2006081088 A JP2006081088 A JP 2006081088A JP 2006081088 A JP2006081088 A JP 2006081088A JP 2007253073 A JP2007253073 A JP 2007253073A
Authority
JP
Japan
Prior art keywords
water
treated
scale inhibitor
reverse osmosis
osmosis membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006081088A
Other languages
Japanese (ja)
Other versions
JP4899565B2 (en
Inventor
Nozomi Ikuno
望 育野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006081088A priority Critical patent/JP4899565B2/en
Publication of JP2007253073A publication Critical patent/JP2007253073A/en
Application granted granted Critical
Publication of JP4899565B2 publication Critical patent/JP4899565B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for treating water, in each of which when the water which is to be treated contains a BOD component and a polyvalent inorganic cation, is treated by using an RO membrane separation unit and the treated water is recovered, the decrease of a flux and the biofouling, each of which is caused by the adhesion of organic matter onto the surface of a membrane in the PO membrane separation unit, are prevented and a COD value of RO concentrated water is decreased efficiently to prevent a bad influence of the RO concentrated water on waste water treatment. <P>SOLUTION: A biodegradable scale inhibitor and an alkali are added to the water to be treated to adjust the pH of the water to be treated to ≥9.5. The resulting water is made to pass through the RO membrane separation unit 4. The RO concentrated water is treated biologically. Since the pH of the water to be supplied to the RO membrane separation unit is adjusted to ≥9.5, the biofouling in the RO membrane separation unit can be prevented, the adhesion of a nonionic surfactant onto the surface of the membrane can be prevented and the decrease of the flux can also be prevented. The clogging of the membrane surface by calcium carbonate scale under a high pH condition is restrained by adding the scale inhibitor. Since the RO concentrated water is treated biologically by using the biodegradable scale inhibitor and the biodegradable scale inhibitor in the RO concentrated water is biodegraded, TOC can be decreased. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子デバイス製造工場等から排出される排水等のBOD成分及び多価無機カチオンを含有する被処理水を、逆浸透(RO)膜分離装置を用いて処理・回収する際、RO膜分離装置内での有機物の膜面付着によるフラックスの低下や、バイオファウリングを防止して長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得、また、RO膜分離装置の濃縮水をも容易かつ効率的に処理する水処理装置及び水処理方法に関する。   The present invention provides a RO membrane when treating and recovering water to be treated containing BOD components such as waste water discharged from an electronic device manufacturing factory and the like and a polyvalent inorganic cation using a reverse osmosis (RO) membrane separation device. Prevents decrease in flux due to adhesion of organic substances in the separator and biofouling for stable treatment over a long period of time, and at the same time efficiently reduces the TOC concentration in water to obtain high-quality treated water The present invention also relates to a water treatment apparatus and a water treatment method for easily and efficiently treating concentrated water of an RO membrane separation apparatus.

近年、環境基準ないし水質基準は益々厳しくなる傾向にあり、放流水についても高度に浄化することが望まれている。一方で、水不足解消の目的から、各種の排水を回収して再利用するためにも、高度な水処理技術の開発が望まれている。   In recent years, environmental standards and water quality standards tend to be stricter, and it is desired to purify discharged water to a high degree. On the other hand, for the purpose of eliminating water shortage, development of advanced water treatment technology is also desired in order to collect and reuse various wastewater.

このような状況において、RO膜分離処理は水中の不純物(イオン類、有機物、微粒子など)を効果的に除去することが可能であることから、近年、多くの分野で使用されるようになってきた。例えば、半導体製造プロセスから排出されるアセトン、イソプロピルアルコールなどを含む高濃度TOCあるいは低濃度TOC含有排水を回収して再利用する場合、これをまず生物処理してTOC成分を除去し生物処理水をRO膜処理して浄化する方法が広く採用されている(例えば、特開2002−336886号公報)。   Under such circumstances, RO membrane separation treatment can effectively remove impurities (ions, organic substances, fine particles, etc.) in water, and has recently been used in many fields. It was. For example, when recovering and recycling wastewater containing high-concentration TOC or low-concentration TOC containing acetone, isopropyl alcohol, etc. discharged from the semiconductor manufacturing process, this is first biologically treated to remove the TOC component, A method of purifying by RO membrane treatment is widely adopted (for example, JP-A-2002-336886).

しかしながら、近年、生物処理排水をRO膜分離装置に通水した場合、微生物による有機物分解で生成される生物代謝物により、RO膜の膜面が閉塞され、フラックスが低下するという問題が顕在化し始めるようになってきた。   However, in recent years, when biological treatment wastewater is passed through the RO membrane separation device, the problem that the membrane surface of the RO membrane is clogged and the flux decreases due to biological metabolites generated by the decomposition of organic matter by microorganisms begins to become apparent. It has become like this.

一方、生物処理を用いず、これらのTOC含有排水を直接RO膜分離装置に通水した場合には、RO膜分離装置に流入するTOC濃度が高いため、RO膜分離装置内では微生物が繁殖しやすい環境となる。そこでRO膜分離装置内でのバイオファウリングを抑制する目的から、通常はTOC含有排水にスライムコントロール剤を多量に添加することが行われているが、スライムコントロール剤は高価であるため、より安価なバイオファウリング抑制方法が求められている。   On the other hand, when these TOC-containing wastewater is directly passed through the RO membrane separator without using biological treatment, the TOC concentration flowing into the RO membrane separator is high, so that microorganisms propagate in the RO membrane separator. Easy environment. Therefore, for the purpose of suppressing biofouling in the RO membrane separation apparatus, a large amount of slime control agent is usually added to TOC-containing wastewater. However, since the slime control agent is expensive, it is cheaper. There is a need for a new biofouling suppression method.

また、電子デバイス製造工場から排出される排水には、RO膜分離装置の膜面に付着し、フラックスを低下させる恐れのある非イオン性界面活性剤が混入する場合があるため、従来、このような非イオン性界面活性剤含有排水には、RO膜分離処理を適用することはできなかった。   In addition, the wastewater discharged from the electronic device manufacturing factory may be mixed with a nonionic surfactant that may adhere to the membrane surface of the RO membrane separator and reduce the flux. RO membrane separation treatment could not be applied to such nonionic surfactant-containing wastewater.

このような問題を解決し、電子デバイス製造工場、その他各種の分野から排出される高濃度ないし低濃度有機物含有排水をRO膜分離装置を用いて処理・回収する際、RO膜分離装置内での有機物の膜面付着によるフラックスの低下、バイオファウリングを防止して長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得る技術として、本出願人は、先に、有機物含有排水に、該有機物含有排水中のカルシウムイオンの5重量倍以上のスケール防止剤を添加すると共に、スケール防止剤添加の前、後又は同時に有機物含有排水にアルカリを添加してpHを9.5以上に調整し、その後RO分離処理する方法及び装置を提案した(特開2005−169372号公報)。   When solving such problems and treating and collecting wastewater containing high or low concentration organic matter discharged from electronic device manufacturing factories and other various fields using RO membrane separators, As a technology to obtain high-quality treated water by efficiently reducing the TOC concentration in water while simultaneously performing stable treatment over a long period of time by preventing flux reduction and biofouling due to the adhesion of the organic material to the film surface First, add to the organic matter-containing wastewater an alkali to the organic matter-containing wastewater as well as adding a scale inhibitor at least 5 times the weight of calcium ions in the organic matter-containing wastewater. Thus, a method and apparatus for adjusting the pH to 9.5 or higher and then performing RO separation treatment have been proposed (Japanese Patent Laid-Open No. 2005-169372).

このようにRO膜分離装置に導入する被処理水(以下「RO給水」と称す場合がある。)に所定量のスケール防止剤を添加すると共にpHを9.5以上に調整してRO膜分離装置に通水することにより、次のような作用効果で、RO膜分離装置内での有機物の膜面付着によるフラックスの低下や、バイオファウリングを防止して長期にわたり安定な処理を行うと共に、水中TOC濃度を効率的に低減して高水質の処理水を得ることが可能となる。   In this way, RO membrane separation is performed by adding a predetermined amount of scale inhibitor to the water to be treated (hereinafter sometimes referred to as “RO feed water”) introduced into the RO membrane separation device and adjusting the pH to 9.5 or higher. By passing the water through the device, the following actions and effects can be performed for a long period of time to prevent a decrease in flux due to adhesion of the membrane surface of organic matter in the RO membrane separator and biofouling, and to perform stable treatment over a long period of time. It is possible to efficiently reduce the TOC concentration in water and obtain high quality treated water.

(1) RO給水のpHを9.5以上に調整することにより、次のような効果が得られる。
微生物はアルカリ性域では生息することができない。そのため、RO給水のpHを9.5以上調整することにより、RO膜分離装置内において、栄養源はあるが微生物が生息できない環境を作り出すことが可能となり、従来のような高価なスライムコントロール剤の添加を必要とすることなく、RO膜分離装置でのバイオファウリングを抑制することができる。
また、フラックスを低下させる恐れのある非イオン性界面活性剤はアルカリ性領域では膜面から脱着することが知られており、RO給水のpHを9.5以上にすることによりRO膜面へのこれらの成分の付着を抑制することが可能となる。
(1) The following effects can be obtained by adjusting the pH of the RO water supply to 9.5 or higher.
Microorganisms cannot live in alkaline areas. Therefore, by adjusting the pH of the RO feed water to 9.5 or more, it becomes possible to create an environment in which there are nutrient sources but microorganisms cannot live in the RO membrane separation device. Biofouling in the RO membrane separator can be suppressed without the need for addition.
In addition, nonionic surfactants that may lower the flux are known to be desorbed from the membrane surface in the alkaline region. By increasing the pH of the RO water supply to 9.5 or higher, these are applied to the RO membrane surface. It becomes possible to suppress adhesion of these components.

(2) RO給水に、RO給水中のカルシウムイオンの5重量倍以上のスケール防止剤を添加することにより、次のような効果が得られる。
電子デバイス製造工場等から排出されるTOC含有排水中には稀にスケールの元となるカルシウムイオンなどの多価無機カチオンが混入する場合がある。RO給水のpHを9.5以上とする高pHのRO運転条件では、極微量の多価無機カチオンの混入でも炭酸カルシウムなどのスケールが生成し、RO膜が直ちに閉塞してしまう。そこで、このようなスケールによる膜面閉塞を抑制する目的から、RO給水に、RO給水中のカルシウムイオンの5重量倍以上のスケール防止剤を添加してスケールの生成を防止する。
特開2002−336886号公報 特開2005−169372号公報
(2) The following effects can be obtained by adding a scale inhibitor 5 times or more times the calcium ion in the RO water supply to the RO water supply.
In rare cases, TOC-containing wastewater discharged from an electronic device manufacturing factory or the like may be mixed with polyvalent inorganic cations such as calcium ions, which are the basis of scale. Under high pH RO operating conditions where the pH of the RO feed water is 9.5 or higher, even if a very small amount of polyvalent inorganic cation is mixed, scales such as calcium carbonate are generated and the RO membrane is immediately clogged. Therefore, for the purpose of suppressing the membrane surface clogging due to such scale, a scale inhibitor is added to the RO water supply at least 5 times the weight of calcium ions in the RO water supply to prevent the generation of scale.
JP 2002-336886 A JP 2005-169372 A

特開2005−169372号公報記載の技術によれば、電子デバイス製造工場、その他各種の分野から排出される高濃度ないし低濃度有機物含有排水、特に非イオン性界面活性剤を含有する排水をRO膜分離装置を用いて処理・回収する際、RO膜分離装置内での有機物の膜面付着によるフラックスの低下、バイオファウリングを防止して長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得ることができるが、次のような不具合がある。   According to the technique described in Japanese Patent Application Laid-Open No. 2005-169372, wastewater containing high or low concentration organic substances discharged from electronic device manufacturing factories and other various fields, particularly wastewater containing nonionic surfactants, is RO membrane. When processing / recovering using a separator, the TOC concentration in the water is efficient while at the same time providing stable treatment over a long period of time by preventing flux reduction and biofouling due to the adhesion of the organic matter in the RO membrane separator. However, there are the following problems.

即ち、特開2005−169372号公報に記載の技術に従って、RO給水にスケール防止剤を添加してRO膜分離処理して得られた濃縮水(以下「RO濃縮水」と称す場合がある。)は、添加されたスケール防止剤が濃縮されることにより、COD成分であるスケール防止剤を多量に含有するものとなる。即ち、スケール防止剤はRO膜を透過しないために濃縮水側に濃縮される。特に、特開2005−169372号公報の技術に従って、RO給水中のカルシウムイオンの5重量倍以上の多量のスケール防止剤を添加してこれをRO膜分離処理して得られるRO濃縮水中には多量のスケール防止剤が含まれるものとなる。   That is, in accordance with the technique described in JP-A-2005-169372, concentrated water obtained by adding a scale inhibitor to RO water supply and performing RO membrane separation treatment (hereinafter sometimes referred to as “RO concentrated water”). Concentrates the added scale inhibitor, so that it contains a large amount of the scale inhibitor that is a COD component. That is, since the scale inhibitor does not permeate the RO membrane, it is concentrated on the concentrated water side. In particular, according to the technique of Japanese Patent Application Laid-Open No. 2005-169372, a large amount is contained in the RO concentrated water obtained by adding a large amount of scale inhibitor more than 5 times the weight of calcium ions in the RO feed water and subjecting it to RO membrane separation treatment. The scale preventive agent is included.

通常、RO濃縮水は排水処理工程に移送され、生物処理と凝集沈殿処理を経て放流されるが、一般に、スケール防止剤は凝集沈殿処理並びに生物処理で除去することは困難である上に、スケール防止剤は凝集反応を阻害するものでもある。従って、このように多量のスケール防止剤を含むRO濃縮水が排水処理工程に移送されると、排水処理工程の負荷が増大する上に、放流水中のCOD値を増加させるなど、水質を低減させる恐れがある。   Usually, RO concentrated water is transferred to a wastewater treatment process and discharged through biological treatment and coagulation sedimentation treatment. In general, scale inhibitors are difficult to remove by coagulation sedimentation treatment and biological treatment. The inhibitor also inhibits the aggregation reaction. Therefore, when RO concentrated water containing a large amount of scale inhibitor is transferred to the wastewater treatment process, the load of the wastewater treatment process is increased and the COD value in the discharged water is increased, thereby reducing the water quality. There is a fear.

従って、本発明は、このRO濃縮水のスケール防止剤を効率的に低減して、RO濃縮水の排水処理等への悪影響を防止する水処理装置及び水処理方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a water treatment apparatus and a water treatment method that efficiently reduce the scale inhibitor of RO concentrated water and prevent adverse effects on the drainage treatment of RO concentrated water and the like. .

本発明(請求項1)の水処理装置は、BOD成分及び多価無機カチオンを含有する被処理水に、該多価無機カチオンのスケール化を抑制する生分解性のスケール防止剤を添加するスケール防止剤添加手段と、該スケール防止剤添加の前、後又は同時に前記被処理水にアルカリを添加して該被処理水のpHを9.5以上に調整するpH調整手段と、該スケール防止剤添加手段及びpH調整手段を経た被処理水を透過水と濃縮水とに分離する逆浸透膜分離手段と、該濃縮水に含有されるBOD成分を処理する生物処理手段とを備えてなることを特徴とする。   The water treatment apparatus of the present invention (Claim 1) is a scale in which a biodegradable scale inhibitor that suppresses scaling of the polyvalent inorganic cation is added to the water to be treated containing the BOD component and the polyvalent inorganic cation. An inhibitor adding means, a pH adjusting means for adjusting the pH of the water to be treated to 9.5 or more by adding an alkali to the water to be treated before, after or simultaneously with the addition of the scale inhibitor, and the scale inhibitor A reverse osmosis membrane separation means for separating the treated water that has passed through the addition means and the pH adjustment means into permeated water and concentrated water; and a biological treatment means for treating the BOD component contained in the concentrated water. Features.

請求項2の水処理装置は、請求項1において、前記被処理水が前記生物処理手段の処理水の一部であることを特徴とする。   The water treatment apparatus according to claim 2 is characterized in that, in claim 1, the water to be treated is a part of the treated water of the biological treatment means.

請求項3の水処理装置は、請求項1又は2において、前記スケール防止剤添加手段において、前記被処理水に、該被処理水中の多価無機カチオン含有総量の1/10重量倍以上のスケール防止剤を添加することを特徴とする。   The water treatment apparatus according to claim 3 is the scale according to claim 1 or 2, wherein the scale inhibitor addition means includes, in the treated water, a scale that is at least 1/10 times the total polyvalent inorganic cation content in the treated water. It is characterized by adding an inhibitor.

請求項4の水処理装置は、請求項1ないし3のいずれか1項において、前記逆浸透膜分離装置の逆浸透膜が、1500mg/Lの食塩水を1.47MPa、25℃、pH7の条件で逆浸透膜分離処理した時の塩排除率が95%以上の脱塩性能を有するポリビニルアルコール系の低ファウリング用逆浸透膜であることを特徴とする。   The water treatment device according to claim 4 is the water treatment device according to any one of claims 1 to 3, wherein the reverse osmosis membrane of the reverse osmosis membrane separation device is 1500 mg / L of saline at 1.47 MPa, 25 ° C., pH 7. It is characterized by being a polyvinyl alcohol-based low fouling reverse osmosis membrane having a desalting performance of 95% or more when the reverse osmosis membrane separation treatment is carried out.

請求項5の水処理装置は、請求項1ないし4のいずれか1項において、前記pH調整手段において、前記被処理水のpHを10.5〜12に調整することを特徴とする。   A water treatment device according to a fifth aspect is characterized in that, in any one of the first to fourth aspects, the pH adjusting means adjusts the pH of the water to be treated to 10.5 to 12.

請求項6の水処理装置は、請求項1ないし5のいずれか1項において、前記生物処理手段に導入される濃縮水に酸を添加してpH5〜8に調整する手段を有することを特徴とする。   The water treatment device according to claim 6 is characterized in that, in any one of claims 1 to 5, the water treatment device has means for adjusting the pH to 5 to 8 by adding an acid to the concentrated water introduced into the biological treatment means. To do.

本発明(請求項7)の水処理方法は、BOD成分及び多価無機カチオンを含有する被処理水に、該多価無機カチオンのスケール化を抑制する生分解性のスケール防止剤を添加するスケール防止剤添加工程と、該スケール防止剤添加の前、後又は同時に前記被処理水にアルカリを添加して該被処理水のpHを9.5以上に調整するpH調整工程と、該スケール防止剤添加工程及びpH調整工程を経た被処理水を逆浸透膜分離装置に供給して透過水と濃縮水とに分離する逆浸透膜分離工程と、該濃縮水に含有されるBOD成分を処理する生物処理工程とを備えてなることを特徴とする。   The water treatment method of the present invention (invention 7) is a scale in which a biodegradable scale inhibitor that suppresses scaling of the polyvalent inorganic cation is added to the water to be treated containing the BOD component and the polyvalent inorganic cation. An inhibitor adding step, a pH adjusting step of adjusting the pH of the water to be treated to 9.5 or more by adding an alkali to the water to be treated before, after or simultaneously with the addition of the scale inhibitor, and the scale inhibitor A reverse osmosis membrane separation step of supplying treated water that has undergone the addition step and pH adjustment step to a reverse osmosis membrane separation device and separating it into permeated water and concentrated water, and a organism that processes the BOD component contained in the concentrated water And a processing step.

請求項8の水処理方法は、請求項7において、前記被処理水が前記生物処理工程の処理水の一部であることを特徴とする。   The water treatment method of claim 8 is characterized in that, in claim 7, the treated water is a part of treated water in the biological treatment process.

請求項9の水処理方法は、請求項7又は8において、前記スケール防止剤添加工程において、前記被処理水に、該被処理水中の多価無機カチオン含有総量の1/10重量倍以上のスケール防止剤を添加することを特徴とする。   A water treatment method according to claim 9 is the water treatment method according to claim 7 or 8, wherein, in the scale inhibitor addition step, the water to be treated has a scale that is 1/10 times or more times the total content of polyvalent inorganic cations in the water to be treated. It is characterized by adding an inhibitor.

請求項10の水処理方法は、請求項7ないし9のいずれか1項において、前記逆浸透膜分離装置の逆浸透膜が、1500mg/Lの食塩水を1.47MPa、25℃、pH7の条件で逆浸透膜分離処理した時の塩排除率が95%以上の脱塩性能を有するポリビニルアルコール系の低ファウリング用逆浸透膜であることを特徴とする。   A water treatment method according to a tenth aspect is the water treatment method according to any one of the seventh to ninth aspects, wherein the reverse osmosis membrane of the reverse osmosis membrane separator is 1500 mg / L of saline at 1.47 MPa, 25 ° C., pH 7. It is characterized by being a polyvinyl alcohol-based low fouling reverse osmosis membrane having a desalting performance of 95% or more when the reverse osmosis membrane separation treatment is carried out.

請求項11の水処理方法は、請求項7ないし10のいずれか1項において、前記pH調整手段において、前記被処理水のpHを10.5〜12に調整することを特徴とする。   The water treatment method according to claim 11 is characterized in that, in any one of claims 7 to 10, the pH adjusting means adjusts the pH of the water to be treated to 10.5 to 12.

請求項12の水処理方法は、請求項7ないし11のいずれか1項において、前記生物処理工程に導入される濃縮水に酸を添加してpH5〜8に調整する工程を有することを特徴とする。   A water treatment method according to claim 12 is characterized in that, in any one of claims 7 to 11, the method comprises adjusting the pH to 5 to 8 by adding an acid to the concentrated water introduced into the biological treatment step. To do.

本発明の水処理装置及び水処理方法水処理装置及び水処理方法によれば、電子デバイス製造工場、その他各種の分野から排出される高濃度ないし低濃度有機物含有排水、特に非イオン性界面活性剤を含有する排水をRO膜分離装置を用いて処理・回収する際、RO膜分離装置内での有機物の膜面付着によるフラックスの低下、バイオファウリングを防止して長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得ることができる。しかも、RO濃縮水中のスケール防止剤を含む有機物質をも容易かつ効率的に処理して、後段の排水処理工程への負荷を軽減することができる。   According to the water treatment apparatus and water treatment method of the present invention, the water treatment apparatus and water treatment method include wastewater containing high or low concentration organic substances discharged from electronic device manufacturing factories and other various fields, particularly nonionic surfactants. When processing and recovering wastewater containing RO using a RO membrane separator, it is possible to perform stable treatment over a long period of time by preventing decrease in flux and biofouling due to the adhesion of organic substances to the membrane surface in the RO membrane separator. At the same time, high-quality treated water can be obtained by efficiently reducing the TOC concentration in water. Moreover, it is possible to easily and efficiently treat the organic substance containing the scale inhibitor in the RO concentrated water to reduce the load on the subsequent wastewater treatment process.

即ち、本発明においては、RO給水にスケール防止剤を添加すると共にpHを9.5以上に調整してRO膜分離装置に通水するため、前述の如く、RO膜分離装置でのバイオファウリングを抑制すると共に、スケールによる膜面閉塞を抑制することができる。   That is, in the present invention, since the scale inhibitor is added to the RO water supply and the pH is adjusted to 9.5 or higher and water is passed through the RO membrane separator, as described above, biofouling in the RO membrane separator is performed. In addition, it is possible to suppress clogging of the film surface due to the scale.

しかも、本発明においては、スケール防止剤として生分解性のスケール防止剤を用いるため、RO濃縮水中のスケール防止剤を後段の生物処理により分解除去することができる。   Moreover, in the present invention, since the biodegradable scale inhibitor is used as the scale inhibitor, the scale inhibitor in the RO concentrated water can be decomposed and removed by biological treatment at the subsequent stage.

なお、生分解性のスケール防止剤を用いた場合、それ自体がBOD成分であるためpH中性領域でRO膜分離処理を行う場合、スケール防止剤添加量の増大に伴いRO膜分離装置内でバイオファウリングを引き起こす可能性が非常に高くなるが、本発明では上記記載の如くpH9.5以上のアルカリ領域でRO膜分離処理するため、このような問題は生じない。   In addition, when a biodegradable scale inhibitor is used, it is a BOD component itself. Therefore, when RO membrane separation treatment is performed in a neutral pH range, the increase in the amount of scale inhibitor added in the RO membrane separator. Although the possibility of causing biofouling becomes very high, in the present invention, since the RO membrane separation treatment is performed in an alkaline region having a pH of 9.5 or higher as described above, such a problem does not occur.

本発明において、RO濃縮水の生物処理は、別途そのための生物処理装置を設けて行うこともできるが、電子デバイス製造工場、その他各種の分野から排出される排水の生物処理水をRO膜分離装置で処理している場合、そのRO膜分離装置の前段の生物処理系統にこのRO濃縮水を返送して生物処理することが好ましい。即ち、この場合には、RO濃縮水を生物処理して得られる処理水の一部が被処理水としてRO膜分離装置に供給されることになる(請求項2,8)。   In the present invention, biological treatment of RO concentrated water can be performed by separately providing a biological treatment apparatus therefor. However, the biological treatment water discharged from an electronic device manufacturing factory and other various fields is treated with an RO membrane separation device. In this case, it is preferable that the RO concentrated water is returned to the biological treatment system upstream of the RO membrane separation device for biological treatment. That is, in this case, a part of the treated water obtained by biologically treating the RO concentrated water is supplied to the RO membrane separation device as treated water (claims 2 and 8).

本発明において、被処理水へのスケール防止剤の添加量が少な過ぎると十分なスケール防止効果を得ることができないことから、被処理水への生分解性のスケール防止剤の添加量は、被処理水中の多価無機カチオン含有総量の1/10重量倍以上とすることが好ましい(請求項3,9)。
なお、本発明において、スケール防止剤の添加量は、当該スケール防止剤がナトリウム塩等の塩である場合も、酸の形で換算した値である。
In the present invention, if the amount of the scale inhibitor added to the water to be treated is too small, a sufficient scale prevention effect cannot be obtained, so the amount of the biodegradable scale inhibitor added to the water to be treated is It is preferable that the total content of polyvalent inorganic cations in the treated water is 1/10 times or more times (claims 3 and 9).
In the present invention, the amount of the scale inhibitor added is a value converted in the form of an acid even when the scale inhibitor is a salt such as a sodium salt.

また、本発明においては、特に、RO膜として、1500mg/Lの食塩水を1.47MPa、25℃、pH7の条件でRO膜分離処理した時の塩排除率(以下、単に「塩排除率」と称す。)が95%以上の脱塩性能を有するポリビニルアルコール系の低ファウリング用RO膜を用いてRO膜分離処理することが好ましい(請求項4,10)。このような低ファウリング用RO膜を用いることが好ましい理由は以下の通りである。   In the present invention, in particular, as the RO membrane, a salt rejection rate (hereinafter simply referred to as “salt exclusion rate”) when the RO membrane separation treatment is performed with 1500 mg / L of saline under the conditions of 1.47 MPa, 25 ° C., and pH 7. It is preferable to perform RO membrane separation treatment using a polyvinyl alcohol-based RO membrane for low fouling having a desalting performance of 95% or more. The reason why it is preferable to use such a low fouling RO membrane is as follows.

即ち、上記低ファウリング用RO膜は通常用いられる芳香族ポリアミド膜と比較して、膜表面の荷電性をなくし、親水性を向上させているため、耐汚染性において非常に優れている。しかしながら、非イオン性界面活性剤を多量に含む水に対してはその耐汚染性効果は低減し、経時によりフラックスは低下してしまう。   That is, the low-fouling RO membrane is superior in contamination resistance because it eliminates the chargeability of the membrane surface and improves the hydrophilicity as compared with a commonly used aromatic polyamide membrane. However, with respect to water containing a large amount of nonionic surfactant, its antifouling effect is reduced, and the flux decreases with time.

一方、本発明では、RO給水のpHを9.5以上に調整することにより、RO膜フラックスを低下させる恐れのある非イオン性界面活性剤は膜面から脱着するため、通常用いられる芳香族系ポリアミド膜を使用した場合であっても、極端なフラックスの低下を抑制することは可能である。しかし、RO給水中の非イオン性界面活性剤濃度が高い場合にはその効果も低減し、長期的にはフラックスは低下してしまう。   On the other hand, in the present invention, by adjusting the pH of the RO water supply to 9.5 or higher, the nonionic surfactant that may lower the RO membrane flux is desorbed from the membrane surface, so that an aromatic system that is usually used is used. Even when a polyamide film is used, it is possible to suppress an extreme decrease in flux. However, when the nonionic surfactant concentration in the RO water supply is high, the effect is also reduced, and the flux is lowered in the long term.

そこで、本発明においては、このような問題点を解決するために、好ましくは、上記特定の脱塩性能を有するポリビニルアルコール系の低ファウリング用RO膜と、RO給水のpHを9.5以上として通水する条件とを組み合わせることにより、高濃度の非イオン性界面活性剤を含むRO給水に対してもフラックス低下を起こすことなく長期にわたり安定した運転を行うことを可能とする。   Therefore, in the present invention, in order to solve such problems, preferably, the polyvinyl alcohol-based RO membrane for low fouling having the above-mentioned specific desalting performance and the pH of the RO water supply are 9.5 or more. In combination with the conditions for passing water, it is possible to perform stable operation over a long period of time without causing a decrease in flux even for RO water containing a high concentration of nonionic surfactant.

本発明においては、より効率的な処理を行うために、次のような条件を採用することが好ましい。
(1) RO給水pHは好ましくは10.5以上、特に10.5〜12とする(請求項5,11)。
(2) スケール防止剤の添加量は多価無機カチオン濃度の1/10〜5倍量とする。
(3) RO給水の多価無機カチオン濃度が高い場合は、スケール防止剤添加の前処理としてカチオン交換処理を行って、多価無機カチオンを除去する。
(4) 生物処理するRO濃縮水に酸を添加してpH5〜8に調整する(請求項6,12)。
In the present invention, it is preferable to employ the following conditions in order to perform more efficient processing.
(1) The RO water supply pH is preferably 10.5 or more, particularly 10.5 to 12 (claims 5 and 11).
(2) The addition amount of the scale inhibitor is 1/10 to 5 times the polyvalent inorganic cation concentration.
(3) When the polyhydric inorganic cation concentration in the RO water supply is high, cation exchange treatment is performed as a pretreatment for adding the scale inhibitor to remove the polyvalent inorganic cation.
(4) An acid is added to the RO concentrated water to be biologically treated to adjust the pH to 5 to 8 (claims 6 and 12).

以下に図面を参照して本発明の水処理装置及び水処理方法の実施の形態を詳細に説明する。   Hereinafter, embodiments of a water treatment apparatus and a water treatment method of the present invention will be described in detail with reference to the drawings.

図1は本発明の水処理装置及び水処理方法の実施の形態を示す系統図である。
この実施の形態では、電子デバイス製造工場、その他各種の分野から排出される排水を生物処理槽1で生物処理した後、凝集沈殿槽2で固液分離して得られる処理水の一部が、タンク3を経て原水(BOD成分及び多価無機カチオンを含む被処理水)として、RO膜分離装置4にて処理される。排水の生物処理系では凝集沈殿槽2で固液分離された分離汚泥の一部が余剰汚泥として系外へ排出され、残部が生物処理槽1に返送される。凝集沈殿槽2の分離水のうち、一部が用水として回収再利用するためにタンク3に送給され、残部は系外へ排水される。タンク3の原水は、生分解性のスケール防止剤が添加された後、アルカリが添加されてpH9.5以上とされ、その後RO膜分離装置4に導入されてRO膜分離処理される。
FIG. 1 is a system diagram showing an embodiment of a water treatment apparatus and a water treatment method of the present invention.
In this embodiment, after biologically treating wastewater discharged from an electronic device manufacturing factory and other various fields in the biological treatment tank 1, a part of the treated water obtained by solid-liquid separation in the coagulation sedimentation tank 2 It is processed by the RO membrane separation device 4 as raw water (treated water containing BOD components and polyvalent inorganic cations) through the tank 3. In the biological treatment system of wastewater, a part of the separated sludge separated into solid and liquid in the coagulation sedimentation tank 2 is discharged out of the system as surplus sludge, and the remainder is returned to the biological treatment tank 1. A part of the separated water in the coagulation sedimentation tank 2 is sent to the tank 3 to be recovered and reused as service water, and the remaining part is drained out of the system. The raw water in the tank 3 is added with a biodegradable scale inhibitor and then added with alkali to a pH of 9.5 or higher, and then introduced into the RO membrane separator 4 and subjected to RO membrane separation treatment.

本発明において、処理対象原水中に含まれる多価無機カチオンとは、水系で不溶化してスケール化し易いカチオンであり、代表的には2価ないし3価のカチオンであり、例えば、Ca2+、Mg2+、Fe3+、Al3+などのイオンが挙げられる。これらの無機イオンは、水酸化物イオン、炭酸イオン、リン酸イオン、フッ素イオンなどの不溶化し易い対イオンが存在するとスケール化する。 In the present invention, the polyvalent inorganic cation contained in the raw water to be treated is a cation that is insoluble in water and easily scaled, and is typically a divalent to trivalent cation. For example, Ca 2+ , Mg Examples include ions such as 2+ , Fe 3+ , and Al 3+ . These inorganic ions are scaled in the presence of counter ions that are easily insolubilized, such as hydroxide ions, carbonate ions, phosphate ions, and fluorine ions.

このような多価無機カチオンとBOD成分を含む被処理水としては特に制限はないが、例えば液晶工場排水、半導体工場排水等の電子デバイス製造排水、その他の各種の分野の排水や、その生物処理水が挙げられる。   Although there is no restriction | limiting in particular as a to-be-processed water containing such a polyvalent inorganic cation and a BOD component, For example, waste_water | drain of electronic device manufacture, such as liquid crystal factory waste_water | drain, semiconductor factory waste_water | drain, and various biological fields, and its biological treatment Water is mentioned.

被処理水に添加する生分解性のスケール防止剤としては特に制限はなく、例えば、ポリアスパラギン酸、ポリグルタミン酸、ポリアラニン、ポリロイシン、ポリリシン、ポリアルギン酸などを用いることができる。これらの生分解性のスケール防止剤は1種を単独で用いても良く、2種以上を混合して用いても良い。
上記スケール防止剤は微少スケール結晶の表面に付着し、核の成長を抑制することによりRO膜の膜面閉塞を抑制する。即ち、上記薬品は金属イオンと錯体を形成し、スケールの生成を抑制するキレート系スケール防止剤に比べ、少量の添加でスケールの生成を抑制することが可能となる。
There is no restriction | limiting in particular as a biodegradable scale inhibitor added to to-be-processed water, For example, polyaspartic acid, polyglutamic acid, polyalanine, polyleucine, polylysine, polyalginic acid etc. can be used. These biodegradable scale inhibitors may be used alone or in combination of two or more.
The scale inhibitor adheres to the surface of the fine scale crystal and suppresses the clogging of the RO membrane by suppressing the growth of nuclei. That is, the above chemical forms a complex with a metal ion, and it is possible to suppress the generation of scale with a small amount of addition, compared to a chelate scale inhibitor that suppresses the generation of scale.

本発明において、スケール防止剤の添加量は、原水(スケール防止剤が添加される水)中のカルシウムイオン等の多価無機カチオン含有量の1/10重量倍以上とすることが好ましい。スケール防止剤の添加量が原水中の多価無機カチオン含有量の1/10重量倍未満では、スケール防止剤の添加効果を十分に得ることができない。スケール防止剤は過度に多量に添加しても薬剤コストの面で好ましくないことから、原水中の多価無機カチオン含有量の1/10〜5重量倍とすることが好ましい。   In the present invention, the addition amount of the scale inhibitor is preferably 1/10 times or more the content of polyvalent inorganic cations such as calcium ions in raw water (water to which the scale inhibitor is added). If the addition amount of the scale inhibitor is less than 1/10 times the content of the polyvalent inorganic cation in the raw water, the effect of adding the scale inhibitor cannot be sufficiently obtained. Even if the scale inhibitor is added in an excessively large amount, it is not preferable in terms of drug cost. Therefore, it is preferable that the content of the polyvalent inorganic cation in the raw water is 1/10 to 5 times by weight.

生分解性のスケール防止剤を添加した原水は、次いでアルカリ剤を添加してpH9.5以上、好ましくは10以上、より好ましくは10.5〜12、例えばpH10.5〜11に調整してRO膜分離装置4に導入する。ここで使用するアルカリ剤としては水酸化ナトリウム、水酸化カリウムなど、原水のpHを9.5以上に調整できる無機物系アルカリ剤であれば良く、特に限定されない。   The raw water to which the biodegradable scale inhibitor is added is then adjusted to pH 9.5 or more, preferably 10 or more, more preferably 10.5 to 12, for example, pH 10.5 to 11 by adding an alkali agent. Introduced into the membrane separator 4. The alkaline agent used here is not particularly limited as long as it is an inorganic alkaline agent that can adjust the pH of raw water to 9.5 or higher, such as sodium hydroxide and potassium hydroxide.

RO膜分離装置4のRO膜としては耐アルカリ性を有するもの、例えば、ポリエーテルアミド複合膜、ポリビニルアルコール複合膜、芳香族ポリアミド膜などが挙げられるが、好ましくは、前述の理由から、塩排除率が95%以上のポリビニルアルコール系の低ファウリング用RO膜を用いる。このRO膜は、スパイラル型、中空糸型、管状型等、いかなる型式のものであっても良い。   Examples of the RO membrane of the RO membrane separation device 4 include those having alkali resistance, such as a polyetheramide composite membrane, a polyvinyl alcohol composite membrane, an aromatic polyamide membrane, and the like. A low-fouling RO membrane of 95% or more of polyvinyl alcohol is used. This RO membrane may be of any type such as a spiral type, a hollow fiber type, and a tubular type.

RO膜分離装置4の透過水は、次いで酸を添加してpH4〜8に調整し、必要に応じて更に活性炭処理等を施した後、再利用される。ここで使用する酸としては、特に制限はなく、塩酸、硫酸などの鉱酸が挙げられる。   The permeated water of the RO membrane separation device 4 is then reused after adding an acid to adjust the pH to 4 to 8, further subjecting it to activated carbon treatment as necessary. There is no restriction | limiting in particular as an acid used here, Mineral acids, such as hydrochloric acid and a sulfuric acid, are mentioned.

一方、RO膜分離装置4の濃縮水は、好ましくは酸を添加してpH5〜8に調整された後、前段の生物処理槽1に返送されて生物処理され、次いで凝集沈殿槽2で固液分離され、分離水の一部が系外へ放流され、残部がタンク3に送給されてRO膜分離処理される。なお、濃縮水のpH調整に使用する酸としては、特に制限はなく、塩酸、硫酸などの鉱酸が挙げられる。   On the other hand, the concentrated water of the RO membrane separation device 4 is preferably adjusted to pH 5 to 8 by adding an acid, then returned to the biological treatment tank 1 in the previous stage for biological treatment, and then solid-liquid in the coagulation sedimentation tank 2. Separated, a part of the separated water is discharged out of the system, and the remaining part is fed to the tank 3 for RO membrane separation treatment. In addition, there is no restriction | limiting in particular as an acid used for pH adjustment of concentrated water, Mineral acids, such as hydrochloric acid and a sulfuric acid, are mentioned.

図1に示すように、原水に所定量のスケール防止剤を添加すると共に、pH9.5以上に調整した後RO膜分離処理することにより、RO膜分離装置におけるフラックスの低下を引き起こすことなく、長期に亘り安定な処理を行って、TOCが高度に除去された高水質処理水を得ることができる。また、このRO膜分離処理で得られたRO濃縮水を生物処理することにより、濃縮水中の生分解性のスケール防止剤を含め有機物質を高度に生物処理して除去することができる。なお、この際、前述の如く、スケール防止剤が生分解されることで、生物処理系内で多価無機カチオンが遊離し、この多価無機カチオンが汚泥中に取り込まれ、汚泥の沈降性を高めることにより、後段の凝集沈殿槽における汚泥の沈降性を高めて固液分離性を向上させることができる。   As shown in FIG. 1, by adding a predetermined amount of scale inhibitor to raw water and adjusting the pH to 9.5 or higher and then performing RO membrane separation treatment, long-term reduction in flux in the RO membrane separation device is caused without causing a decrease in flux. It is possible to obtain a high-quality treated water from which TOC is highly removed by performing a stable treatment over a period of time. Further, by biologically treating the RO concentrated water obtained by this RO membrane separation treatment, organic substances including biodegradable scale inhibitors in the concentrated water can be removed by highly biological treatment. At this time, as described above, the scale inhibitor is biodegraded, so that the polyvalent inorganic cation is liberated in the biological treatment system, and this polyvalent inorganic cation is taken into the sludge. By raising, the sedimentation property of the sludge in the latter agglomeration sedimentation tank can be enhanced and the solid-liquid separation property can be improved.

なお、図1は、本発明の実施の形態の一例を示すものであって、本発明はその要旨を超えない限り、何ら図示のものに限定されるものではない。図1では、原水にスケール防止剤を添加した後、アルカリを添加してpH調整を行うが、原水にアルカリを添加してpH調整を行った後スケール防止剤を添加しても良く、また、pH調整とスケール防止剤の添加とを同時に行っても良い。また、RO膜分離装置による処理は一段処理に限らず、2段以上の多段処理であっても良い。また、電子デバイス製造工場から排出されるTOC含有排水等では、基本的にはスケールの原因となるカルシウムイオンなどの多価無機カチオンなどが混入するケースは少ないが、原水中にカルシウムイオンなど多価無機カチオンなどが混入する場合は、スケール防止剤の添加に先立ち多価無機カチオンを除去するカチオン交換塔を設け、予め多価無機カチオンを除去しても良い。更に、pH調整やスケール防止剤の添加のための混合槽を設けても良い。   FIG. 1 shows an example of an embodiment of the present invention, and the present invention is not limited to the illustrated one as long as the gist thereof is not exceeded. In FIG. 1, after adding the scale inhibitor to the raw water, the alkali is added to adjust the pH, but after adding the alkali to the raw water and adjusting the pH, the scale inhibitor may be added. You may perform pH adjustment and the addition of a scale inhibitor simultaneously. Further, the process by the RO membrane separation apparatus is not limited to a single stage process, and may be a multistage process having two or more stages. In addition, in TOC-containing wastewater discharged from electronic device manufacturing factories, there are few cases in which polyvalent inorganic cations such as calcium ions that cause scale are mixed. When an inorganic cation or the like is mixed, a cation exchange tower for removing the polyvalent inorganic cation may be provided prior to the addition of the scale inhibitor, and the polyvalent inorganic cation may be removed in advance. Furthermore, you may provide the mixing tank for pH adjustment and the addition of a scale inhibitor.

また、RO膜分離装置により2段以上の多段処理を行う場合、1段目のRO膜分離装置のRO濃縮水のみについてこのような生物処理を行っても良く、その他のRO濃縮水についても同様に処理を行っても良い。しかし、2段RO膜分離処理の場合は、2段目のRO膜分離装置の濃縮水は原水側に戻すのが通常である。   Further, when multistage treatment of two or more stages is performed by the RO membrane separation apparatus, such biological treatment may be performed only for the RO concentrated water of the first stage RO membrane separation apparatus, and the same applies to other RO concentrated water. You may perform processing. However, in the case of the two-stage RO membrane separation treatment, the concentrated water of the second-stage RO membrane separation apparatus is usually returned to the raw water side.

なお、本発明における生物処理は、活性汚泥法、生物膜法など、濃縮水からBOD成分を除去できるものであれば特に限定されない。
また、本発明における被処理水としては、例えば総合排水(放流水)、酸アルカリ排水、フッ素含有排水、有機排水等が挙げられる。また、原水のTOC濃度には特に制限はないが、特に1〜5mg/Lであることが好ましい。
In addition, the biological treatment in this invention will not be specifically limited if a BOD component can be removed from concentrated water, such as an activated sludge method and a biofilm method.
Examples of water to be treated in the present invention include general waste water (discharged water), acid-alkali waste water, fluorine-containing waste water, and organic waste water. Moreover, although there is no restriction | limiting in particular in the TOC density | concentration of raw | natural water, It is especially preferable that it is 1-5 mg / L.

以下に実施例、比較例及び参考例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples, Comparative Examples and Reference Examples.

実施例1
まず、電子デバイス製造工場から排出される排水を想定してTOC濃度10mg/L、多価無機カチオンとしてカルシウムイオン濃度100mg/Lを含む水を調製し、原水とした。このように調製した原水に易生物分解性スケール分散剤としてポリアスパラギン酸をカルシウムイオン濃度の1/10倍(10mg/L)となるように添加した後、NaOHを添加してpH10.5とし、RO膜分離装置(日東電工製低圧芳香族ポリアミド型RO膜「NTR−759」)で通水量75L/h、回収率80%の条件でRO膜分離処理を行った。
Example 1
First, water containing a TOC concentration of 10 mg / L and a calcium ion concentration of 100 mg / L as a polyvalent inorganic cation was prepared assuming raw water discharged from an electronic device manufacturing factory, and used as raw water. After adding polyaspartic acid as raw biodegradable scale dispersant to 1/10 times the calcium ion concentration (10 mg / L) to the raw water prepared in this way, NaOH was added to pH 10.5, RO membrane separation treatment was performed with a RO membrane separator (Nitto Denko's low-pressure aromatic polyamide RO membrane “NTR-759”) under conditions of a water flow rate of 75 L / h and a recovery rate of 80%.

このときのRO膜分離装置の膜フラックス(25℃,1.47MPa)の低下率の経時変化を調べ、結果を図2に示した。
また、このRO膜分離処理で得られたRO濃縮水にHClを添加してpH8に調整した後、スポンジ充填型生物処理装置にHRT(Hydric Retention Time:水理学的滞留時間)3hの条件で通水した。なお、生物処理の運転は処理能力が定常状態となった時点で開始した。
この生物処理に供給される生物処理給水(濃縮水)のTOCと生物処理水のTOCを経時的に調べ、結果を表1に示した。
The change over time in the rate of decrease of the membrane flux (25 ° C., 1.47 MPa) of the RO membrane separator at this time was examined, and the results are shown in FIG.
Further, after adding HCl to the RO concentrated water obtained by this RO membrane separation treatment to adjust the pH to 8, it was passed through a sponge-filled biological treatment apparatus under conditions of HRT (Hydric Retention Time) for 3 h. Watered. The biological treatment operation was started when the treatment capacity reached a steady state.
The TOC of the biological treatment feed water (concentrated water) supplied to this biological treatment and the TOC of the biological treatment water were examined over time, and the results are shown in Table 1.

比較例1,2
実施例1において、RO給水のpHを7(比較例1)又は5(比較例2)としたこと以外は同様にして原水の処理を行い、結果を図2に示した。
Comparative Examples 1 and 2
In Example 1, the raw water was treated in the same manner except that the pH of the RO feed water was 7 (Comparative Example 1) or 5 (Comparative Example 2), and the results are shown in FIG.

参考例1,2
実施例1において、スケール防止剤を原水のカルシウムイオン濃度の1/20倍(5mg/L)(参考例1)、又は1/15倍(6.7mg/L)(参考例2)となるように添加したこと以外は同様にして原水の処理を行い、結果を図2に示した。
Reference examples 1 and 2
In Example 1, the scale inhibitor becomes 1/20 times (5 mg / L) (Reference Example 1) or 1/15 times (6.7 mg / L) (Reference Example 2) of the calcium ion concentration of raw water. The raw water was treated in the same manner except that it was added to, and the results are shown in FIG.

比較例3
スケール分散剤として難生物分解性であるEDTA系スケール防止剤をカルシウムイオン濃度の5倍(500mg/L)となるように添加したこと以外は実施例1と同条件でRO膜分離処理並びに生物処理を実施した。このときの生物処理に供給される生物処理給水(濃縮水)のTOCと生物処理水のTOCを経時的に調べ、結果を表1に示した。
Comparative Example 3
RO membrane separation treatment and biological treatment under the same conditions as in Example 1 except that an EDTA-based scale inhibitor that is hardly biodegradable as a scale dispersant is added so as to be 5 times the calcium ion concentration (500 mg / L). Carried out. The TOC of the biological treatment feed water (concentrated water) supplied to the biological treatment at this time and the TOC of the biological treatment water were examined over time, and the results are shown in Table 1.

Figure 2007253073
Figure 2007253073

以上の結果から次のことが分かる。
<原水のRO膜分離処理>
実施例1では、スケール防止剤を添加してRO給水のpHを調整することにより、長期にわたり膜フラックスの低下を防止することができた。これに対して、比較例1,2では運転開始からわずか20日で膜フラックスは初期膜フラックスの約60%程度まで低下することが明らかとなった。この閉塞した膜面からは有機物の吸着が観測された。一方、参考例1,2より、スケール分散剤添加量が多い程膜フラックスの低下は緩やかになるものの、スケール分散剤を原水のカルシウムイオン濃度に対し1/10倍以上となるように添加しないと膜面が閉塞することが明らかとなった。この閉塞した膜面を分析したところ、CaCOスケールの析出が観測された。
The following can be understood from the above results.
<RO membrane separation treatment of raw water>
In Example 1, it was possible to prevent a decrease in membrane flux over a long period of time by adding a scale inhibitor to adjust the pH of the RO water supply. On the other hand, in Comparative Examples 1 and 2, it was revealed that the membrane flux decreased to about 60% of the initial membrane flux in only 20 days from the start of operation. Adsorption of organic substances was observed from the closed film surface. On the other hand, from Reference Examples 1 and 2, as the amount of scale dispersant added increases, the membrane flux decreases more slowly, but the scale dispersant must be added to be 1/10 or more times the calcium ion concentration of the raw water. It was revealed that the membrane surface was blocked. When this closed membrane surface was analyzed, precipitation of CaCO 3 scale was observed.

<RO濃縮水の生物処理>
スケール分散剤として難生物分解性のものを用いた比較例3では生物処理水のTOC濃度を20%程度しか低減できなかったのに比べ、スケール分散剤として易生物分解性のものを用いた実施例1では、生物処理水のTOC濃度を70%以上低減することができ、生分解性のスケール防止剤と生物処理との組み合わせの有効性が明らかとなった。
<Bio-treatment of RO concentrated water>
In Comparative Example 3 using a non-biodegradable scale dispersant as the scale dispersant, the TOC concentration of biologically treated water could only be reduced by about 20%, while using a biodegradable scale dispersant as the scale dispersant. In Example 1, the TOC concentration of biologically treated water could be reduced by 70% or more, and the effectiveness of the combination of biodegradable scale inhibitor and biological treatment became clear.

本発明は、電子デバイス製造分野、半導体製造分野、その他の各種産業分野で排出される高濃度ないし低濃度TOC含有排水の放流、又は回収・再利用のための水処理に有効に適用される。   INDUSTRIAL APPLICABILITY The present invention is effectively applied to water treatment for discharging, collecting or reusing wastewater containing high or low concentration TOC discharged in the electronic device manufacturing field, semiconductor manufacturing field, and other various industrial fields.

本発明の水処理装置及び水処理方法の実施の形態を示す系統図である。It is a systematic diagram showing an embodiment of a water treatment device and a water treatment method of the present invention. 実施例1、比較例1,2及び参考例1,2における膜フラックスの経時変化を示すグラフである。It is a graph which shows the time-dependent change of the film | membrane flux in Example 1, Comparative Examples 1 and 2, and Reference Examples 1 and 2. FIG.

符号の説明Explanation of symbols

1 生物処理槽
2 凝集沈殿槽
3 タンク
4 RO膜分離装置
DESCRIPTION OF SYMBOLS 1 Biological processing tank 2 Coagulation sedimentation tank 3 Tank 4 RO membrane separator

Claims (12)

BOD成分及び多価無機カチオンを含有する被処理水に、該多価無機カチオンのスケール化を抑制する生分解性のスケール防止剤を添加するスケール防止剤添加手段と、
該スケール防止剤添加の前、後又は同時に前記被処理水にアルカリを添加して該被処理水のpHを9.5以上に調整するpH調整手段と、
該スケール防止剤添加手段及びpH調整手段を経た被処理水を透過水と濃縮水とに分離する逆浸透膜分離手段と、
該濃縮水に含有されるBOD成分を処理する生物処理手段と
を備えてなる水処理装置。
A scale inhibitor addition means for adding a biodegradable scale inhibitor that suppresses scaling of the polyvalent inorganic cation to the water to be treated containing the BOD component and the polyvalent inorganic cation;
PH adjusting means for adjusting the pH of the water to be treated to 9.5 or more by adding alkali to the water to be treated before, after or simultaneously with the addition of the scale inhibitor;
Reverse osmosis membrane separation means for separating the treated water that has passed through the scale inhibitor addition means and the pH adjustment means into permeated water and concentrated water;
A water treatment apparatus comprising biological treatment means for treating a BOD component contained in the concentrated water.
請求項1において、前記被処理水が前記生物処理手段の処理水の一部であることを特徴とする水処理装置。   The water treatment apparatus according to claim 1, wherein the water to be treated is a part of the treated water of the biological treatment means. 請求項1又は2において、前記スケール防止剤添加手段において、前記被処理水に、該被処理水中の多価無機カチオン含有総量の1/10重量倍以上のスケール防止剤を添加することを特徴とする水処理装置。   3. The scale inhibitor adding means according to claim 1, wherein the scale inhibitor is added to the water to be treated at least 1/10 times the total amount of polyvalent inorganic cations in the water to be treated. Water treatment equipment. 請求項1ないし3のいずれか1項において、前記逆浸透膜分離装置の逆浸透膜が、1500mg/Lの食塩水を1.47MPa、25℃、pH7の条件で逆浸透膜分離処理した時の塩排除率が95%以上の脱塩性能を有するポリビニルアルコール系の低ファウリング用逆浸透膜であることを特徴とする水処理装置。   The reverse osmosis membrane according to any one of claims 1 to 3, wherein the reverse osmosis membrane of the reverse osmosis membrane separator is subjected to a reverse osmosis membrane separation treatment of 1500 mg / L of saline under the conditions of 1.47 MPa, 25 ° C, and pH 7. A water treatment apparatus, which is a polyvinyl alcohol-based low fouling reverse osmosis membrane having a salt rejection of 95% or more. 請求項1ないし4のいずれか1項において、前記pH調整手段において、前記被処理水のpHを10.5〜12に調整することを特徴とする水処理装置。   5. The water treatment apparatus according to claim 1, wherein the pH adjusting unit adjusts the pH of the water to be treated to 10.5 to 12. 12. 請求項1ないし5のいずれか1項において、前記生物処理手段に導入される濃縮水に酸を添加してpH5〜8に調整する手段を有することを特徴とする水処理装置。   6. The water treatment apparatus according to claim 1, further comprising means for adjusting the pH to 5 to 8 by adding an acid to the concentrated water introduced into the biological treatment means. BOD成分及び多価無機カチオンを含有する被処理水に、該多価無機カチオンのスケール化を抑制する生分解性のスケール防止剤を添加するスケール防止剤添加工程と、
該スケール防止剤添加の前、後又は同時に前記被処理水にアルカリを添加して該被処理水のpHを9.5以上に調整するpH調整工程と、
該スケール防止剤添加工程及びpH調整工程を経た被処理水を逆浸透膜分離装置に供給して透過水と濃縮水とに分離する逆浸透膜分離工程と、
該濃縮水に含有されるBOD成分を処理する生物処理工程と
を備えてなる水処理方法。
A scale inhibitor addition step of adding a biodegradable scale inhibitor that suppresses scaling of the polyvalent inorganic cation to the water to be treated containing the BOD component and the polyvalent inorganic cation;
A pH adjusting step of adjusting the pH of the water to be treated to 9.5 or more by adding an alkali to the water to be treated before, after or simultaneously with the addition of the scale inhibitor;
A reverse osmosis membrane separation step of supplying water to be treated that has undergone the scale inhibitor addition step and the pH adjustment step to a reverse osmosis membrane separation device and separating it into permeate and concentrated water;
And a biological treatment process for treating the BOD component contained in the concentrated water.
請求項7において、前記被処理水が前記生物処理工程の処理水の一部であることを特徴とする水処理方法。   The water treatment method according to claim 7, wherein the water to be treated is a part of the treated water in the biological treatment process. 請求項7又は8において、前記スケール防止剤添加工程において、前記被処理水に、該被処理水中の多価無機カチオン含有総量の1/10重量倍以上のスケール防止剤を添加することを特徴とする水処理方法。   The scale inhibitor addition step according to claim 7 or 8, characterized in that, in the treated water, a scale inhibitor more than 1/10 times the total polyvalent inorganic cation content in the treated water is added. Water treatment method. 請求項7ないし9のいずれか1項において、前記逆浸透膜分離装置の逆浸透膜が、1500mg/Lの食塩水を1.47MPa、25℃、pH7の条件で逆浸透膜分離処理した時の塩排除率が95%以上の脱塩性能を有するポリビニルアルコール系の低ファウリング用逆浸透膜であることを特徴とする水処理方法。   The reverse osmosis membrane according to any one of claims 7 to 9, wherein the reverse osmosis membrane of the reverse osmosis membrane separator is subjected to a reverse osmosis membrane separation treatment of 1500 mg / L of saline under the conditions of 1.47 MPa, 25 ° C, and pH 7. A water treatment method characterized by being a polyvinyl alcohol-based low fouling reverse osmosis membrane having a salt rejection of 95% or more. 請求項7ないし10のいずれか1項において、前記pH調整手段において、前記被処理水のpHを10.5〜12に調整することを特徴とする水処理方法。   11. The water treatment method according to claim 7, wherein the pH adjusting unit adjusts the pH of the water to be treated to 10.5 to 12. 12. 請求項7ないし11のいずれか1項において、前記生物処理工程に導入される濃縮水に酸を添加してpH5〜8に調整する工程を有することを特徴とする水処理方法。   The water treatment method according to any one of claims 7 to 11, further comprising a step of adjusting the pH to 5 to 8 by adding an acid to the concentrated water introduced into the biological treatment step.
JP2006081088A 2006-03-23 2006-03-23 Water treatment apparatus and water treatment method Expired - Fee Related JP4899565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081088A JP4899565B2 (en) 2006-03-23 2006-03-23 Water treatment apparatus and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081088A JP4899565B2 (en) 2006-03-23 2006-03-23 Water treatment apparatus and water treatment method

Publications (2)

Publication Number Publication Date
JP2007253073A true JP2007253073A (en) 2007-10-04
JP4899565B2 JP4899565B2 (en) 2012-03-21

Family

ID=38627839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081088A Expired - Fee Related JP4899565B2 (en) 2006-03-23 2006-03-23 Water treatment apparatus and water treatment method

Country Status (1)

Country Link
JP (1) JP4899565B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099545A (en) * 2008-10-21 2010-05-06 Kurita Water Ind Ltd Organic wastewater treatment method and apparatus
JP2012139659A (en) * 2011-01-05 2012-07-26 Kurita Water Ind Ltd Treatment method and treatment apparatus of organic-matter-containing water
JP2017087211A (en) * 2017-02-09 2017-05-25 栗田工業株式会社 Organic wastewater treatment method
WO2021079639A1 (en) * 2019-10-24 2021-04-29 栗田工業株式会社 Wastewater recovery system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143849A (en) * 1974-10-01 1976-04-14 Toray Industries Noshukusuino shorihoho
JPH0819789A (en) * 1994-07-08 1996-01-23 Kurita Water Ind Ltd Method and apparatus for aerobic treatment of organic waste solution
JPH09143264A (en) * 1995-09-19 1997-06-03 Mitsubishi Gas Chem Co Inc Biodegradable water-soluble polymer and its application
JP2001510393A (en) * 1996-11-15 2001-07-31 バイエル・アクチエンゲゼルシヤフト Prevention and delay of deposit formation in membrane processes.
JP2002011466A (en) * 2000-06-29 2002-01-15 Shinko Pantec Co Ltd Method and device for treating water
JP2002186835A (en) * 2000-12-20 2002-07-02 Japan Organo Co Ltd Operation method for reverse osmosis membrane device
JP2003112181A (en) * 2001-08-02 2003-04-15 Toray Ind Inc Water treatment method and water treatment apparatus
JP2005169372A (en) * 2003-11-18 2005-06-30 Kurita Water Ind Ltd Method and apparatus for treating organic material-containing waste water
JP2005288287A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Organic wastewater treatment method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143849A (en) * 1974-10-01 1976-04-14 Toray Industries Noshukusuino shorihoho
JPH0819789A (en) * 1994-07-08 1996-01-23 Kurita Water Ind Ltd Method and apparatus for aerobic treatment of organic waste solution
JPH09143264A (en) * 1995-09-19 1997-06-03 Mitsubishi Gas Chem Co Inc Biodegradable water-soluble polymer and its application
JP2001510393A (en) * 1996-11-15 2001-07-31 バイエル・アクチエンゲゼルシヤフト Prevention and delay of deposit formation in membrane processes.
JP2002011466A (en) * 2000-06-29 2002-01-15 Shinko Pantec Co Ltd Method and device for treating water
JP2002186835A (en) * 2000-12-20 2002-07-02 Japan Organo Co Ltd Operation method for reverse osmosis membrane device
JP2003112181A (en) * 2001-08-02 2003-04-15 Toray Ind Inc Water treatment method and water treatment apparatus
JP2005169372A (en) * 2003-11-18 2005-06-30 Kurita Water Ind Ltd Method and apparatus for treating organic material-containing waste water
JP2005288287A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Organic wastewater treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099545A (en) * 2008-10-21 2010-05-06 Kurita Water Ind Ltd Organic wastewater treatment method and apparatus
JP2012139659A (en) * 2011-01-05 2012-07-26 Kurita Water Ind Ltd Treatment method and treatment apparatus of organic-matter-containing water
JP2017087211A (en) * 2017-02-09 2017-05-25 栗田工業株式会社 Organic wastewater treatment method
WO2021079639A1 (en) * 2019-10-24 2021-04-29 栗田工業株式会社 Wastewater recovery system
JP2021065845A (en) * 2019-10-24 2021-04-30 栗田工業株式会社 Wastewater recovery system

Also Published As

Publication number Publication date
JP4899565B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP2007253115A (en) Organic matter-containing wastewater treatment method and apparatus
JP5757089B2 (en) Method and apparatus for treating water containing organic matter
JP2001070989A (en) Method and apparatus for treating organic wastewater containing high concentration of salts
JP5050605B2 (en) Organic substance processing method and organic substance processing apparatus
JP4496795B2 (en) Method and apparatus for treating wastewater containing organic matter
JP4899565B2 (en) Water treatment apparatus and water treatment method
TWI387562B (en) Process and treatment device for water containing biological treatment water
JP6123840B2 (en) Organic wastewater treatment method
JP2007244930A (en) Treatment method and treatment apparatus for organic substance-containing waste water
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP2008086849A (en) Water treatment method and apparatus
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
JP2006281174A (en) Method, apparatus and system for recycling wastewater
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
JP5135697B2 (en) Surfactant-containing wastewater treatment method
JP6106943B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment apparatus
JP5106182B2 (en) Water treatment method and water treatment apparatus
JP2009189943A (en) Water treatment method and apparatus
JP6614175B2 (en) Organic wastewater treatment method
JP2004267830A (en) Method for treating biological treatment water-containing water
KR20060052370A (en) Apparatus and process for recovering water from organic containing water
KR101098679B1 (en) Method of treating waste water containing organic substance and treating apparatus
JP2005081269A (en) Treatment method and treatment apparatus for organic substance-containing wastewater
JP7120095B2 (en) water treatment system
JP2014180586A (en) Method for preventing generation of scale in reverse osmosis membrane treatment and scale inhibitor for reverse osmosis membrane treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4899565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees