JP3919999B2 - Organic wastewater treatment method and apparatus - Google Patents

Organic wastewater treatment method and apparatus Download PDF

Info

Publication number
JP3919999B2
JP3919999B2 JP2000054540A JP2000054540A JP3919999B2 JP 3919999 B2 JP3919999 B2 JP 3919999B2 JP 2000054540 A JP2000054540 A JP 2000054540A JP 2000054540 A JP2000054540 A JP 2000054540A JP 3919999 B2 JP3919999 B2 JP 3919999B2
Authority
JP
Japan
Prior art keywords
treatment
sludge
ozone
tank
dephosphorization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000054540A
Other languages
Japanese (ja)
Other versions
JP2001239295A (en
Inventor
甬生 葛
俊博 田中
和彰 島村
琢也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000054540A priority Critical patent/JP3919999B2/en
Publication of JP2001239295A publication Critical patent/JP2001239295A/en
Application granted granted Critical
Publication of JP3919999B2 publication Critical patent/JP3919999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機性廃水の処理方法および処理装置に関するものであり、活性汚泥法における余剰汚泥の容積の減少化とリンの除去に関し、就中、リン濃度の高い有機性食品廃水や生活廃水等の処理に用いることができる有機性廃水の処理方法および処理装置に関する。
【0002】
【従来の技術】
従来から、有機性食品廃水や生活排水等の有機性廃水を生物学的に処理して脱リンする方法として、嫌気・好気法が知られている。
この処理法の特徴は、活性汚泥中のリンの含有率を高くすることができ、このリンの含有率を高くした汚泥を余剰汚泥として系外に排出することにより、処理水中のリンの濃度を減少させることが可能となる。
しかしながら、従来からの余剰汚泥の処理処分法としては、引き抜き→濃縮→脱水→焼却等の複数の処理工程を経て系外に排出しなければならないために、これらの処理に要する費用が莫大なものになるために、嫌気・好気法を実施する際の処理全体のランニングコストの増大を招く結果となる。
さらに、汚泥の脱水処理においても、適切な薬注率等の管理に伴うメンテナンスの煩雑さも伴うことが避け得ないものであった。
【0003】
一方、最近になって、活性汚泥処理と組み合わせた汚泥容積の減少化(以下「汚泥減容化」という)処理として、余剰汚泥量以上の量の汚泥を沈殿池または生物反応曝気槽から引き抜き、これをオゾンを注入する別に設けるオゾン反応槽に導入し、オゾン処理をした汚泥を再び前記の生物反応曝気槽へ返送し、前記曝気槽でオゾン処理した汚泥の一部を生物処理によって分解することが知られている。
しかしながら、汚泥減容化処理にあっては、余剰汚泥の発生がなくなる一方、菌体増殖に伴うリンの蓄積がなくなるために、処理水中のリンの濃度が原水中の濃度と略々同程度となり、生物処理によるリンの除去が不可能になる。
【0004】
また、汚泥の減容化とリンの除去を同時に行う処理法として、嫌気・好気法による生物脱リン装置において、返送汚泥の一部が導入される汚泥可溶化手段と、可溶化された汚泥を嫌気槽に返送する手段と返送汚泥の一部が導入されるリン放出槽と該リン放出槽の流出液が導入されるMAP(リン酸マグネシウムアンモニウム)反応塔からなる生物脱リン装置が知られている。
【0005】
【発明が解決しようとする課題】
汚泥の可溶化手段とリン放出槽、MAP反応塔を組み合わせた生物脱リン装置にあっては、新たにリン放出槽を設ける必要があり、装置の増大を招くおそれがある。
また、オゾン反応槽においては、返送汚泥に対し、高濃度のオゾンを注入することにより汚泥を酸化分解することを目的としていることから、活性汚泥の死滅を招くおそれがあり、オゾン処理汚泥をそのまま生物処理槽へ返送した場合、生物処理槽内の活性汚泥の活性度低下を来すことになる。
この結果、処理水のCOD、SSが上昇して処理水の水質の悪化現象が発現するというような問題点があった。
【0006】
本発明は、上記の諸問題点を解決するためになされたものであり、有機性廃水の処理方法及び処理装置に関し、活性汚泥による廃水の処理において、生物処理槽内の汚泥の一部をオゾン反応槽に供給し、オゾン処理により汚泥の減容化を行う一方、オゾン処理により溶出した活性汚泥中のリンを、脱リン反応槽において効果的に除去することができ、その上、原水中のリンも除去可能である処理方法及び処理装置を提供する。
さらに、オゾン処理汚泥を活性汚泥安定槽に導入し、系内汚泥の活性度を常時高く維持することのできる処理法を提供するものである。
【0007】
【課題を解決するための手段】
上記の課題を解決するための本発明は、以下の各項によって構成される。
(1)有機性廃水の処理方法において、生物処理工程の汚泥の一部をオゾンガスを注入するオゾン反応工程に供給し、該オゾン反応工程の処理物をオゾン処理液とオゾン処理汚泥に固液分離した後、オゾン処理液を脱リン反応工程に供給して脱リン処理し、脱リン反応工程で得た脱リン処理水を前記生物処理工程に返送する一方、オゾン処理汚泥およびオゾン反応槽から流出した排オゾンガスを活性汚泥安定化工程に導入すると共に、活性汚泥安定化工程に原水及び/又は生物処理工程汚泥の一部を供給し、連続曝気した後、該活性汚泥安定化工程からの処理液を前記生物処理工程に返送することを特徴とする有機性廃水の処理方法。
(2)生物処理工程の汚泥を直接返送することなく、活性汚泥安定槽を経て前記生物処理工程に返送することを特徴とする前記(1)記載の有機性廃水の処理方法。
【0008】
(3)生物処理槽と該生物処理槽からの活性汚泥を固液分離する固液分離装置とを備える有機性廃水の処理装置において、該固液分離装置の汚泥の一部を導入しオゾンガスを注入するオゾン反応槽と、該オゾン反応槽の処理物を導入しオゾン処理液とオゾン処理汚泥に固液分離する固液分離装置と、該オゾン処理液を導入して脱リン処理する脱リン装置と、該脱リン装置で脱リンした処理水を前記生物処理槽に返送する導管と、原水及び/又は生物処理槽からの汚泥の一部を供給する供給管を備え、かつ該オゾン反応槽からのオゾン処理汚泥及び排オゾンガスを導入して活性汚泥を安定化する活性汚泥安定化槽と、該活性汚泥安定化槽からの処理液を前記生物処理槽に返送する導管を有することを特徴とする有機性廃水の処理装置。
(4)前記脱リン装置が晶析脱リン装置であることを特徴とする前記(3)記載の有機性廃水の処理装置。
【0009】
【発明の実施の形態】
本発明の実施の形態を図面を参照して詳細に説明する。
図1は、食品製造廃水を本発明の処理方法により処理する一例のフローシートを示す。
図1に示すように、原水1の一部を生物処理槽2に供給し、生物処理槽処理液の活性汚泥スラリ3を沈殿池4に流入し、沈殿池4で処理水5を得、沈殿池4の沈殿汚泥6の一部を返送汚泥7として生物処理槽2に返送する活性汚泥処理工程において、前記沈殿汚泥の他の一部をオゾン処理供給汚泥8としてオゾン反応槽9に供給し、連続して供給されるオゾンガス10により酸化分解処理する。
オゾン反応槽9には、槽内のpHを3〜4に調整するために、酸注入ラインより酸11として硫酸の注入を行う。
オゾン反応工程のpHが3〜4の範囲になるようにオゾン反応工程に酸の供給を行うことが好ましい。また、オゾン反応槽9に供給する1日当たりの汚泥量は、系内全汚泥量の5〜100%であることが好ましい。
【0010】
一方、オゾン反応槽9より得られるオゾン処理混合液12を固液分離槽13に供給し、オゾン処理液14とオゾン処理残汚泥15とに分離する。
オゾン処理液14は、晶析脱リン反応槽16に送られ、Ca(OH)2 注入ライン17よりCa(OH)2 が注入され、Caの供給およびpH調整によりHAPが生成され、引抜きリン粒子19が取り出される。また、固液分離槽13のオゾン処理残汚泥15を汚泥安定槽20に供給して一旦貯留し、汚泥安定槽へ供給する原水22、および沈殿汚泥の一部21を供給して、排オゾンガス23による曝気(酸素含有ガスによる好気性処理となる)を行い、汚泥の安定化を図る。なお、汚泥安定槽へ供給する原水22と沈殿汚泥の一部21は、両方を供給する必要はなく、いずれか一方でもよい。
【0011】
汚泥安定槽20内の処理で汚泥の活性度が高められた汚泥安定槽処理液24は生物処理槽2に返送され、生物処理槽活性汚泥の一部として、有機物の分解を担う。
此処で、晶析脱リン反応槽16からの脱リン液18を生物処理槽2に供給すると、その液の中に混入している有機物は、活性汚泥による生物分解を受けて水と二酸化炭素に分解される。
なお、脱リン液18を汚泥安定槽20に供給しても、汚泥安定槽20への影響がなく、汚泥安定槽処理液24を生物処理槽2に返送することにより同様の効果が得られる。
このようにして得られる生物処理槽処理液3を沈殿池4に流入し、固液分離後、上澄液を処理水5として得る一方、濃縮汚泥を返送汚泥7として生物処理槽2に返送することは前記したとおりである。
【0012】
【実施例】
以下において、本発明を実施例により更に具体的に説明するが、本発明は、この実施例により限定されるものではない。
【0013】
実施例1
この実施例1においては、図1に示すフローで有機性廃水の処理を行った。その処理方法で、脱リン処理はハイドロキシアパダイト(Ca5 (PO4 3 OH)生成の晶析脱リン方式(HAP法) により行なったが、この限りではなく、凝集沈殿処理やリン酸マグネシウムアンモニウム(MAP)法等を用いても同様の効果が得られる。
第1表に実施例1におけるオゾン反応槽9の処理条件を示す。
【0014】
【表1】

Figure 0003919999
【0015】
オゾン反応槽9において、O3 ガスを流量6.0リットル/min、O3 濃度50mg/リットルの注入を行い、O3 注入率33mg−O3 /g−SS、滞留時間を3.0時間とした条件で処理を行った。
また、反応pHを硫酸の注入により約3.0とした。オゾン処理汚泥は13.2kg/dであり、この処理系内の全汚泥量に対する比率は約31%となった。
第2表にオゾン反応槽9の処理結果を示す。
【0016】
【表2】
Figure 0003919999
【0017】
オゾン反応槽9の入口のSSが、11000mg/リットルであるのに対し、処理後のSSが、9200mg/リットルに低下し、汚泥の液化率としては約16.4%となった。なお、汚泥の液化率は下記の式により算出した。
液化率(%)=〔(処理後SS−処理前SS)/処理前SS〕×100
S−CODおよびS−BODが処理前でそれぞれ、12.0mg/リットルと5.0mg/リットルであるのに対し、処理後においてはそれぞれ、590mg/リットルと630mg/リットルに増加した。また、PO4 −PおよびS−T−Pが処理前が1.5mg/リットルと2.1mg/リットルであるのに対して、処理後ではそれぞれ59.0mg/リットルと65.0mg/リットルに増加し、菌体中のポリリン酸が酸性オゾン処理により多く溶出したものと認められた。
このように、得られたオゾン処理汚泥を固液分離槽にて固液分離して、SSの少ない上澄水を晶析脱リン反応槽において処理した前後の処理結果を第3表に示す。
【0018】
【表3】
Figure 0003919999
【0019】
なお、本実施例1では、オゾン処理汚泥の固液分離槽を沈殿池としたが、膜分離槽、ろ材による濾過槽等を用いても同様な効果が得られる。
前記の晶析脱リン反応槽において、粒径が0.15〜0.3mmのリン鉱石を充填し、Ca/Pの比が約5.0となるようにCa(OH)2 を注入し、上向流式でLV29m/h、反応槽内pHを8.8に制御し、処理水循環比率600%の条件で処理を行った。
その結果、反応槽入口でPO4 −PとT−Pがそれぞれ59.0mg/リットルと64.5mg/リットルであるのに対し、出口でPO4 −PとT−Pがそれぞれ3.0mg/リットルと5.6mg/リットルに低下し、夫々約95%と91%の除去率が得られた。
【0020】
一方、pHおよびSSが入口でそれぞれ3.0と50mg/リットルであるのに対し、出口ではpHが8.8、SSが61mg/リットルとなり、原水中のSSの蓄積は殆どなかった。
また、S−COD、S−BODについてみても、入口でそれぞれ590mg/リットル、630mg/リットルであるのに対して、出口ではそれぞれ550mg/、570mg/リットルとなり、若干低くはなったものの、大部分の有機物が残留し、リンのみの除去となった。
ここで、固液分離槽より得られたオゾン処理残汚泥を汚泥安定槽に供給し、流入原水の5%と返送汚泥の5%を同時に供給し、排O3 ガス(酸素含有ガスとして)による曝気処理を約2.0時間行った。
第4表に、この回分実験により得られた、曝気処理前後の流入原水に対するオゾン処理汚泥のBOD除去速度を示す。
【0021】
【表4】
Figure 0003919999
【0022】
曝気処理前のオゾン処理汚泥のBOD除去速度が約0.20〔g−BOD/g−SS/h〕しかないのに対し、曝気処理後のBOD除去速度が、およそ1.3〔g−BOD/g−SS/h〕に増加した。
これは、生物処理槽汚泥のBOD除去速度と略々同じであり、短時間の曝気処理により活性度が回復するこということが認められた。
このことから、曝気処理したオゾン処理汚泥を生物処理槽に返送することにより、槽内の汚泥の活性維持に大きく寄与できることになる。
【0023】
上記のように、リンを選択的に除去した晶析脱リン処理水を活性汚泥処理装置の生物処理槽に供給すれば、流入原水と共に活性汚泥処理によって有機物が分解され、放流水として良好な処理水を得るこことができることになる。
第5表に生物処理槽の処理条件を、第6表に流入原水および放流水(生物処理水)の水質を示す。
【0024】
【表5】
Figure 0003919999
【0025】
【表6】
Figure 0003919999
【0026】
第6表の数値から明らかなように流入原水の性状が、pH:5.5、SS:100mg/リットル、COD:300mg/リットル、BOD:350mg/リットル、NH4 −N:15mg/リットル、T−N:35mg/リットルであるのに対して、処理水では、SS:8.0mg/リットル、COD:14mg/リットル、BOD:6.5mg/リットル、NH4 −N:0.1mg/リットル、T−N:3.4mg/リットルとなり、安定した良好な処理水質が得られた。
なお、PO4 −PとT−Pが原水でそれぞれ、12.5mg/リットルと21mg/リットルであるのに対し、処理水では、それぞれ1.5mg/リットルと2.5mg/リットルとなり、原水に対し、T−Pの除去率が約90%となった。
上記の高いT−Pの除去率から、本発明により、汚泥の減容化が容易になされると共に、原水中のリンが安定して除去されることが認められた。
ちなみに、図2に実施例の系内汚泥量の経過を示す。
約2ケ月の処理期間中、系内汚泥量が略々一定で、約42〜45kgであり、ほとんど増加がなかったことから、オゾン処理を用いた汚泥減容効果も顕著であると認められた。
【0027】
比較例
図3に示すように、リンの除去を行わない汚泥減容化処理フローを比較例として、処理を行った。
比較例では、オゾン処理に供する汚泥量を系内汚泥量の200%とし、他の条件を実施例と同一にした。
また、生物処理槽の処理条件も実施例と同一の条件とした。
第7表に比較例に供した原水および得られた処理水の水質を示す。
【0028】
【表7】
Figure 0003919999
【0029】
第7表の数値から明らかなように、流入原水の性状が、pH:5.5、SS:100mg/リットル、COD:300mg/リットル、BOD:350mg/リットル、NH4 −N:15mg/リットル、NO3 −N:<0.1mg/リットル、T−N:35mg/リットルで、実施例1と同一であるのに対して、処理水が、SS:15.0mg/リットル、COD:21mg/リットル、BOD:12mg/リットル、NH4 −N:1.5mg/リットル、NOx −N:3.2mg/リットル、T−N:8.2mg/リットルとなり、いずれも実施例の数値よりも高くなった。
さらに、PO4 −PとT−Pは、それぞれ16.5mg/リットル、と10.3mg/リットルとなり、原水よりPO4 −Pが増加し、T−Pが稍々減少する程度となった。
なお、この場合、系内の汚泥量の増加が若干認められ、余剰汚泥の減容効果も実施例より稍々低下したものと判断された。
【0030】
【発明の効果】
本発明によれば、生物処理槽および固液分離槽から構成される活性汚泥処理装置内の汚泥の一部を、オゾンガス注入装置を備えるオゾン反応槽に供給してオゾン処理した処理物を、固−液分離した後、得られたオゾン処理液を次いで脱リン処理し、得られた脱リン液を前記活性汚泥処理装置の生物処理槽に返送することにより、脱リン液中の有機物を原水と共に活性汚泥により効果的に分解除去することができる。
本発明では、オゾン処理汚泥を汚泥安定槽に供給し、これに原水および生物処理槽内の汚泥の一部を供給して連続曝気処理することにより、活性度の低下したオゾン処理汚泥を短時間で賦活することができるので、この活性度が高まった活性汚泥を含む汚泥安定槽の混合液を生物槽に返送することにより、生物処理槽の活性汚泥量を常時所望量に保持することができ、流入原水および脱リン液中の有機物分解を効果的に維持することができる。
【0031】
さらに、オゾン反応槽のpHを3〜4の酸性域としたことにより、オゾン処理による液化率を高くでき、リン濃度の高いオゾン処理液が得られ、脱リン反応槽におけるリンの除去効率が向上させることが可能になる。
また、オゾン処理に供する活性汚泥量が系内全汚泥量の5〜100%であり、オゾン処理汚泥の活性度の低下が比較的少なく、汚泥安定槽における活性の回復が速くなる。
このため、生物処理槽内の汚泥の活性度を良好に維持することができ、汚泥の減容効果および処理水の水質向上に寄与するところ極めて大である。
【図面の簡単な説明】
【図1】食品製造廃水を本発明の処理法により処理する一例を説明するフローシートを示す。
【図2】実施例における系内汚泥量の経過の説明図を示す。
【図3】比較例の処理フローの説明図を示す。
【符号の説明】
1 原水
2 生物処理槽
3 生物処理槽処理液
4 沈殿池
5 処理液
6 沈殿汚泥
7 返送汚泥
8 オゾン処理供給汚泥
9 オゾン反応槽
10 オゾンガス
11 酸注入ライン
12 オゾン処理混合液
13 固液分離槽
14 オゾン処理液
15 オゾン処理残汚泥
16 脱リン反応槽
17 Ca(OH)2 注入ライン
18 脱リン液
19 引抜きリン粒子
20 汚泥安定槽
21 汚泥安定槽供給汚泥
22 供給原水
23 排オゾンガス
24 汚泥安定槽処理液[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for treating organic wastewater, and relates to reduction of excess sludge volume and removal of phosphorus in the activated sludge process, especially organic food wastewater and domestic wastewater with high phosphorus concentration, etc. The present invention relates to a method and apparatus for treating organic wastewater that can be used for the treatment of water.
[0002]
[Prior art]
Conventionally, anaerobic and aerobic methods are known as methods for biologically treating organic food wastewater such as organic food wastewater and domestic wastewater to dephosphorylate.
The feature of this treatment method is that the content of phosphorus in the activated sludge can be increased, and the concentration of phosphorus in the treated water can be reduced by discharging the sludge with a high content of phosphorus as excess sludge outside the system. It becomes possible to decrease.
However, the conventional method for disposal of excess sludge has to be discharged out of the system through multiple processing steps such as extraction → concentration → dehydration → incineration. As a result, the running cost of the entire process when the anaerobic / aerobic method is performed is increased.
Furthermore, in the sludge dehydration process, it is inevitable that the maintenance is complicated due to management of an appropriate chemical injection rate and the like.
[0003]
On the other hand, recently, as a treatment of sludge volume reduction (hereinafter referred to as “sludge volume reduction”) combined with activated sludge treatment, an amount of sludge exceeding the amount of excess sludge is extracted from the sedimentation basin or biological reaction aeration tank, This is introduced into an ozone reaction tank provided separately for injecting ozone, and the ozone-treated sludge is returned to the biological reaction aeration tank again, and a part of the sludge ozone-treated in the aeration tank is decomposed by biological treatment. It has been known.
However, in sludge volume reduction treatment, excess sludge is not generated, but phosphorus accumulation associated with bacterial cell growth is eliminated, so that the concentration of phosphorus in the treated water is approximately the same as the concentration in the raw water. It becomes impossible to remove phosphorus by biological treatment.
[0004]
In addition, as a treatment method that simultaneously reduces sludge and removes phosphorus, in an anaerobic / aerobic biological dephosphorization device, sludge solubilization means in which part of the returned sludge is introduced, and the solubilized sludge There is known a biological dephosphorization apparatus comprising a means for returning the water to the anaerobic tank, a phosphorus release tank into which part of the returned sludge is introduced, and a MAP (magnesium ammonium phosphate) reaction tower into which the effluent of the phosphorus release tank is introduced. ing.
[0005]
[Problems to be solved by the invention]
In a biological dephosphorization apparatus that combines a sludge solubilization means, a phosphorus release tank, and a MAP reaction tower, it is necessary to newly provide a phosphorus release tank, which may increase the apparatus.
The ozone reaction tank is intended to oxidize and decompose sludge by injecting high-concentration ozone into the returned sludge, which may cause the activated sludge to die. When returned to the biological treatment tank, the activity of the activated sludge in the biological treatment tank will decrease.
As a result, there has been a problem that the COD and SS of the treated water are increased and the quality of the treated water is deteriorated.
[0006]
The present invention has been made to solve the above-mentioned problems, and relates to a method and apparatus for treating organic wastewater, and in the treatment of wastewater with activated sludge, a part of the sludge in a biological treatment tank is ozone. While supplying sludge to the reaction tank and reducing the volume of sludge by ozone treatment, phosphorus in the activated sludge eluted by ozone treatment can be effectively removed in the dephosphorization reaction tank. Provided is a processing method and a processing apparatus capable of removing phosphorus.
Furthermore, ozone treatment sludge is introduced into an activated sludge stabilization tank to provide a treatment method that can maintain the activity of sludge in the system constantly high.
[0007]
[Means for Solving the Problems]
The present invention for solving the above problems is constituted by the following items.
(1) In the organic wastewater treatment method, a part of the sludge of the biological treatment process is supplied to the ozone reaction process in which ozone gas is injected, and the treatment product of the ozone reaction process is separated into an ozone treatment liquid and ozone treatment sludge. After that, the ozone treatment liquid is supplied to the dephosphorization reaction step to perform the dephosphorization treatment, and the dephosphorization treated water obtained in the dephosphorization reaction step is returned to the biological treatment step, while flowing out from the ozone treatment sludge and the ozone reaction tank. The waste ozone gas is introduced into the activated sludge stabilization process, and a part of raw water and / or biological treatment process sludge is supplied to the activated sludge stabilization process, and after continuous aeration , the treatment liquid from the activated sludge stabilization process Is returned to the biological treatment step.
(2) The method for treating organic wastewater according to (1) above, wherein the sludge from the biological treatment process is returned directly to the biological treatment process through an activated sludge stabilization tank without being returned directly.
[0008]
(3) In an organic wastewater treatment apparatus comprising a biological treatment tank and a solid-liquid separation apparatus for solid-liquid separation of activated sludge from the biological treatment tank, ozone gas is introduced by introducing a part of the sludge of the solid-liquid separation apparatus An ozone reaction tank to be injected, a solid-liquid separation apparatus for introducing a treatment product of the ozone reaction tank into a solid-liquid separation into an ozone treatment liquid and ozone treatment sludge, and a dephosphorization apparatus for introducing a dephosphorization treatment by introducing the ozone treatment liquid A conduit for returning the treated water dephosphorized by the dephosphorization apparatus to the biological treatment tank, a supply pipe for supplying a part of the sludge from the raw water and / or the biological treatment tank, and from the ozone reaction tank An activated sludge stabilization tank that stabilizes activated sludge by introducing ozone treatment sludge and waste ozone gas, and a conduit that returns the treatment liquid from the activated sludge stabilization tank to the biological treatment tank. Organic wastewater treatment equipment.
(4) The organic wastewater treatment apparatus according to (3), wherein the dephosphorization apparatus is a crystallization dephosphorization apparatus.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an example of a flow sheet for treating food production wastewater by the treatment method of the present invention.
As shown in FIG. 1, a part of raw water 1 is supplied to a biological treatment tank 2, an activated sludge slurry 3 of a biological treatment tank treatment liquid flows into a sedimentation basin 4, and treated water 5 is obtained in the sedimentation basin 4. In the activated sludge treatment step of returning a part of the precipitated sludge 6 of the pond 4 to the biological treatment tank 2 as the return sludge 7, another part of the precipitated sludge is supplied to the ozone reaction tank 9 as the ozone treatment supply sludge 8, Oxidative decomposition treatment is performed using ozone gas 10 that is continuously supplied.
In order to adjust the pH in the tank to 3 to 4 in the ozone reaction tank 9, sulfuric acid is injected as the acid 11 from the acid injection line.
It is preferable to supply acid to the ozone reaction step so that the pH of the ozone reaction step is in the range of 3 to 4. The amount of sludge per day supplied to the ozone reaction tank 9 is preferably 5 to 100% of the total sludge amount in the system.
[0010]
On the other hand, the ozone treatment liquid mixture 12 obtained from the ozone reaction tank 9 is supplied to the solid-liquid separation tank 13 and separated into the ozone treatment liquid 14 and the ozone treatment residual sludge 15.
Ozone treatment liquid 14 crystal析脱sent to the phosphorus reaction vessel 16, Ca (OH) 2 from the infusion line 17 Ca (OH) 2 is injected, HAP is generated by the supply and pH adjustment of Ca, withdrawal phosphorus particles 19 is taken out. Further, the ozone treatment residual sludge 15 in the solid-liquid separation tank 13 is supplied to the sludge stabilization tank 20 and temporarily stored, and raw water 22 supplied to the sludge stabilization tank and a part 21 of the precipitated sludge are supplied, and the exhaust ozone gas 23 is supplied. Aeration (becomes aerobic treatment with oxygen-containing gas) to stabilize sludge. The raw water 22 supplied to the sludge stabilization tank and the part 21 of the precipitated sludge do not need to be supplied, and either one may be used.
[0011]
The sludge stabilization tank treatment liquid 24 whose sludge activity has been increased by the treatment in the sludge stabilization tank 20 is returned to the biological treatment tank 2 and is responsible for the decomposition of organic matter as part of the biological treatment tank activated sludge.
Here, when the dephosphorization liquid 18 from the crystallization dephosphorization reaction tank 16 is supplied to the biological treatment tank 2, the organic matter mixed in the liquid undergoes biodegradation by the activated sludge and becomes water and carbon dioxide. Disassembled.
In addition, even if it supplies the dephosphorization liquid 18 to the sludge stabilization tank 20, there is no influence on the sludge stabilization tank 20, and the same effect is acquired by returning the sludge stabilization tank processing liquid 24 to the biological treatment tank 2.
The biological treatment tank treatment liquid 3 thus obtained flows into the sedimentation basin 4 and, after solid-liquid separation, the supernatant is obtained as treated water 5, while the concentrated sludge is returned to the biological treatment tank 2 as return sludge 7. This is as described above.
[0012]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.
[0013]
Example 1
In Example 1, the organic wastewater was treated according to the flow shown in FIG. In this treatment method, the dephosphorization treatment was carried out by the crystallization dephosphorization method (HAP method) for producing hydroxyapadite (Ca 5 (PO 4 ) 3 OH). Similar effects can be obtained by using an ammonium (MAP) method or the like.
Table 1 shows the processing conditions of the ozone reaction tank 9 in Example 1.
[0014]
[Table 1]
Figure 0003919999
[0015]
In the ozone reaction tank 9, O 3 gas was injected at a flow rate of 6.0 liters / min, an O 3 concentration of 50 mg / liter, an O 3 injection rate of 33 mg-O 3 / g-SS, and a residence time of 3.0 hours. The processing was performed under the conditions.
The reaction pH was adjusted to about 3.0 by injecting sulfuric acid. The ozone-treated sludge was 13.2 kg / d, and the ratio to the total sludge amount in this treatment system was about 31%.
Table 2 shows the processing results of the ozone reaction tank 9.
[0016]
[Table 2]
Figure 0003919999
[0017]
The SS at the inlet of the ozone reaction tank 9 was 11000 mg / liter, whereas the SS after the treatment decreased to 9200 mg / liter, and the sludge liquefaction rate was about 16.4%. The sludge liquefaction rate was calculated by the following formula.
Liquefaction rate (%) = [(SS after treatment−SS before treatment) / SS before treatment] × 100
S-COD and S-BOD were 12.0 mg / liter and 5.0 mg / liter, respectively, before the treatment, but increased to 590 mg / liter and 630 mg / liter, respectively, after the treatment. In addition, PO 4 -P and STP are 1.5 mg / liter and 2.1 mg / liter before treatment, whereas after treatment, they are 59.0 mg / liter and 65.0 mg / liter, respectively. It was recognized that polyphosphoric acid in the bacterial cells was eluted by acid ozone treatment.
Table 3 shows the treatment results before and after the obtained ozone-treated sludge was solid-liquid separated in the solid-liquid separation tank and the supernatant water with less SS was treated in the crystallization dephosphorization reaction tank.
[0018]
[Table 3]
Figure 0003919999
[0019]
In Example 1, the solid-liquid separation tank for the ozone-treated sludge was used as a sedimentation tank. However, the same effect can be obtained by using a membrane separation tank, a filtration tank using a filter medium, or the like.
In the crystallization and dephosphorization reaction tank, phosphorous ore having a particle size of 0.15 to 0.3 mm is filled, and Ca (OH) 2 is injected so that the ratio of Ca / P is about 5.0. The treatment was carried out under the conditions of LV 29 m / h in the upward flow method, pH in the reaction vessel controlled to 8.8, and a treated water circulation ratio of 600%.
As a result, PO 4 -P and TP were 59.0 mg / liter and 64.5 mg / liter at the reactor inlet, respectively, whereas PO 4 -P and TP were 3.0 mg / liter at the outlet, respectively. The liters were reduced to 5.6 mg / liter, and removal rates of about 95% and 91% were obtained, respectively.
[0020]
On the other hand, pH and SS were 3.0 and 50 mg / liter at the inlet, respectively, whereas pH was 8.8 and SS was 61 mg / liter at the outlet, and there was almost no accumulation of SS in the raw water.
In addition, S-COD and S-BOD were 590 mg / liter and 630 mg / liter respectively at the inlet, but were 550 mg / 570 mg / liter respectively at the outlet, although they were slightly lower, Organic matter remained, and only phosphorus was removed.
Here, the ozone-treated residual sludge obtained from the solid-liquid separation tank is supplied to the sludge stabilization tank, and 5% of the inflow raw water and 5% of the returned sludge are supplied at the same time, using exhaust O 3 gas (as oxygen-containing gas). The aeration treatment was performed for about 2.0 hours.
Table 4 shows the BOD removal rate of ozone-treated sludge with respect to the inflow raw water before and after the aeration treatment obtained by this batch experiment.
[0021]
[Table 4]
Figure 0003919999
[0022]
The BOD removal rate of the ozone treatment sludge before the aeration treatment is only about 0.20 [g-BOD / g-SS / h], whereas the BOD removal rate after the aeration treatment is about 1.3 [g-BOD. / G-SS / h].
This was almost the same as the BOD removal rate of the biological treatment tank sludge, and it was recognized that the activity was recovered by a short time aeration treatment.
Therefore, by returning the aerated ozone-treated sludge to the biological treatment tank, it can greatly contribute to maintaining the activity of the sludge in the tank.
[0023]
As described above, if crystallized and dephosphorized water from which phosphorus has been selectively removed is supplied to the biological treatment tank of the activated sludge treatment apparatus, the organic matter is decomposed by the activated sludge treatment together with the inflow raw water, and it is a good treatment as discharged water. You can get water.
Table 5 shows the treatment conditions of the biological treatment tank, and Table 6 shows the water quality of the inflow raw water and the discharged water (biologically treated water).
[0024]
[Table 5]
Figure 0003919999
[0025]
[Table 6]
Figure 0003919999
[0026]
As is apparent from the numerical values in Table 6, the properties of the influent raw water are pH: 5.5, SS: 100 mg / liter, COD: 300 mg / liter, BOD: 350 mg / liter, NH 4 -N: 15 mg / liter, T -N: 35 mg / liter, whereas in treated water, SS: 8.0 mg / liter, COD: 14 mg / liter, BOD: 6.5 mg / liter, NH 4 -N: 0.1 mg / liter, TN: 3.4 mg / liter, and stable and good treated water quality was obtained.
PO 4 -P and TP are 12.5 mg / liter and 21 mg / liter respectively for raw water, whereas treated water is 1.5 mg / liter and 2.5 mg / liter respectively. In contrast, the removal rate of TP was about 90%.
From the above high TP removal rate, it was confirmed that the present invention facilitates volume reduction of sludge and stably removes phosphorus in raw water.
Incidentally, FIG. 2 shows the progress of the amount of sludge in the system of the example.
During the treatment period of about 2 months, the amount of sludge in the system was substantially constant, about 42 to 45 kg, and since there was almost no increase, it was recognized that the sludge volume reduction effect using ozone treatment was also remarkable. .
[0027]
Comparative Example As shown in FIG. 3, the treatment was carried out using a sludge volume reduction treatment flow without removing phosphorus as a comparative example.
In the comparative example, the amount of sludge used for the ozone treatment was set to 200% of the amount of sludge in the system, and other conditions were the same as those in the example.
The treatment conditions for the biological treatment tank were also the same as in the examples.
Table 7 shows the quality of the raw water used in the comparative example and the obtained treated water.
[0028]
[Table 7]
Figure 0003919999
[0029]
As is apparent from the numerical values in Table 7, the properties of the influent raw water were pH: 5.5, SS: 100 mg / liter, COD: 300 mg / liter, BOD: 350 mg / liter, NH 4 —N: 15 mg / liter, NO 3 -N: <0.1 mg / liter, TN: 35 mg / liter, the same as in Example 1, whereas treated water is SS: 15.0 mg / liter, COD: 21 mg / liter , BOD: 12 mg / liter, NH 4 -N: 1.5 mg / liter, NO x -N: 3.2 mg / liter, TN: 8.2 mg / liter, all of which are higher than the numerical values of the examples. It was.
Furthermore, PO 4 -P and TP were 16.5 mg / liter and 10.3 mg / liter, respectively. PO 4 -P increased from raw water, and TP decreased frequently.
In this case, a slight increase in the amount of sludge in the system was observed, and it was determined that the volume reduction effect of excess sludge was often lower than in the examples.
[0030]
【The invention's effect】
According to the present invention, a part of the sludge in the activated sludge treatment apparatus composed of a biological treatment tank and a solid-liquid separation tank is supplied to an ozone reaction tank equipped with an ozone gas injection device, and a treated product obtained by ozone treatment is obtained. -After the liquid separation, the obtained ozone treatment liquid is then dephosphorized, and the obtained dephosphorization liquid is returned to the biological treatment tank of the activated sludge treatment apparatus so that the organic matter in the dephosphorization liquid is mixed with the raw water. It can be effectively decomposed and removed by activated sludge.
In the present invention, the ozone-treated sludge is supplied to the sludge stabilization tank, and the raw water and a part of the sludge in the biological treatment tank are supplied thereto and continuously aerated to thereby reduce the ozone-treated sludge having reduced activity in a short time. The activated sludge amount in the biological treatment tank can always be maintained at the desired amount by returning the mixed liquid of the sludge stabilization tank containing the activated sludge having increased activity to the biological tank. In addition, decomposition of organic substances in the incoming raw water and the dephosphorization solution can be effectively maintained.
[0031]
Furthermore, by setting the pH of the ozone reaction tank to an acidic range of 3 to 4, the liquefaction rate by ozone treatment can be increased, an ozone treatment liquid having a high phosphorus concentration is obtained, and the phosphorus removal efficiency in the dephosphorization reaction tank is improved. It becomes possible to make it.
Moreover, the activated sludge amount used for the ozone treatment is 5 to 100% of the total sludge amount in the system, the decrease in the activity of the ozone treated sludge is relatively small, and the recovery of the activity in the sludge stabilization tank is accelerated.
For this reason, the activity of the sludge in the biological treatment tank can be maintained satisfactorily, which contributes greatly to the sludge volume reduction effect and the quality of the treated water.
[Brief description of the drawings]
FIG. 1 shows a flow sheet for explaining an example of treating food production wastewater by the treatment method of the present invention.
FIG. 2 is an explanatory diagram showing the progress of the amount of sludge in the system in the example.
FIG. 3 is an explanatory diagram of a processing flow of a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water 2 Biological treatment tank 3 Biological treatment tank Treatment liquid 4 Settling tank 5 Treatment liquid 6 Precipitation sludge 7 Return sludge 8 Ozone treatment supply sludge 9 Ozone reaction tank 10 Ozone gas 11 Acid injection line 12 Ozone treatment liquid mixture 13 Solid-liquid separation tank 14 Ozone treatment liquid 15 Ozone treatment residual sludge 16 Dephosphorization reaction tank 17 Ca (OH) 2 injection line 18 Dephosphorization liquid 19 Extracted phosphorus particles 20 Sludge stabilization tank 21 Sludge stabilization tank supply sludge 22 Supply raw water 23 Waste ozone gas 24 Sludge stabilization tank treatment liquid

Claims (4)

有機性廃水の処理方法において、生物処理工程の汚泥の一部をオゾンガスを注入するオゾン反応工程に供給し、該オゾン反応工程の処理物をオゾン処理液とオゾン処理汚泥に固液分離した後、オゾン処理液を脱リン反応工程に供給して脱リン処理し、脱リン反応工程で得た脱リン処理水を前記生物処理工程に返送する一方、オゾン処理汚泥およびオゾン反応槽から流出した排オゾンガスを活性汚泥安定化工程に導入すると共に、活性汚泥安定化工程に原水及び/又は生物処理工程汚泥の一部を供給し、連続曝気した後、該活性汚泥安定化工程からの処理液を前記生物処理工程に返送することを特徴とする有機性廃水の処理方法。In the organic wastewater treatment method, a part of the sludge of the biological treatment process is supplied to an ozone reaction process in which ozone gas is injected, and the treatment product of the ozone reaction process is solid-liquid separated into an ozone treatment liquid and an ozone treatment sludge. The ozone treatment liquid is supplied to the dephosphorization reaction step to perform the dephosphorization treatment, and the dephosphorization treated water obtained in the dephosphorization reaction step is returned to the biological treatment step, while the ozone treatment sludge and the exhaust ozone gas flowing out from the ozone reaction tank Is introduced into the activated sludge stabilization process, and raw water and / or a part of the biological treatment process sludge is supplied to the activated sludge stabilization process, and after continuous aeration , the treatment liquid from the activated sludge stabilization process is added to the biological sludge. A method for treating organic wastewater, which is returned to the treatment step. 生物処理工程の汚泥を直接返送することなく、活性汚泥安定槽を経て前記生物処理工程に返送することを特徴とする請求項1記載の有機性廃水の処理方法。  The method for treating organic wastewater according to claim 1, wherein the sludge from the biological treatment step is returned directly to the biological treatment step through an activated sludge stabilization tank without being directly returned. 生物処理槽と該生物処理槽からの活性汚泥を固液分離する固液分離装置とを備える有機性廃水の処理装置において、該固液分離装置の汚泥の一部を導入しオゾンガスを注入するオゾン反応槽と、該オゾン反応槽の処理物を導入しオゾン処理液とオゾン処理汚泥に固液分離する固液分離装置と、該オゾン処理液を導入して脱リン処理する脱リン装置と、該脱リン装置で脱リンした処理水を前記生物処理槽に返送する導管と、原水及び/又は生物処理槽からの汚泥の一部を供給する供給管を備え、かつ該オゾン反応槽からのオゾン処理汚泥及び排オゾンガスを導入して活性汚泥を安定化する活性汚泥安定化槽と、該活性汚泥安定化槽からの処理液を前記生物処理槽に返送する導管を有することを特徴とする有機性廃水の処理装置。In an organic wastewater treatment apparatus comprising a biological treatment tank and a solid-liquid separation apparatus for solid-liquid separation of activated sludge from the biological treatment tank, ozone into which a part of the sludge of the solid-liquid separation apparatus is introduced and ozone gas is injected A reaction vessel, a solid-liquid separation device that introduces a treatment product of the ozone reaction vessel and separates it into an ozone treatment solution and ozone treatment sludge, a dephosphorization device that introduces the ozone treatment solution and dephosphorizes, A conduit for returning treated water dephosphorized by a dephosphorization apparatus to the biological treatment tank, a supply pipe for supplying a part of sludge from raw water and / or biological treatment tank, and ozone treatment from the ozone reaction tank Organic wastewater characterized by having an activated sludge stabilization tank for introducing activated sludge by introducing sludge and waste ozone gas, and a conduit for returning the treatment liquid from the activated sludge stabilization tank to the biological treatment tank Processing equipment. 前記脱リン装置が晶析脱リン装置であることを特徴とする請求項3記載の有機性廃水の処理装置。  4. The organic wastewater treatment apparatus according to claim 3, wherein the dephosphorization apparatus is a crystallization dephosphorization apparatus.
JP2000054540A 2000-02-29 2000-02-29 Organic wastewater treatment method and apparatus Expired - Fee Related JP3919999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000054540A JP3919999B2 (en) 2000-02-29 2000-02-29 Organic wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000054540A JP3919999B2 (en) 2000-02-29 2000-02-29 Organic wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2001239295A JP2001239295A (en) 2001-09-04
JP3919999B2 true JP3919999B2 (en) 2007-05-30

Family

ID=18575781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000054540A Expired - Fee Related JP3919999B2 (en) 2000-02-29 2000-02-29 Organic wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3919999B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211178A (en) * 2002-01-25 2003-07-29 Hitachi Kiden Kogyo Ltd Sludge treatment method
CN101175700B (en) * 2005-04-12 2011-04-27 栗田工业株式会社 Method for biological disposal of organic wastewater and biological disposal apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3672117B2 (en) * 1995-10-06 2005-07-13 株式会社荏原製作所 Organic wastewater treatment method and apparatus
JP3383505B2 (en) * 1996-02-01 2003-03-04 株式会社荏原製作所 Activated sludge treatment method and apparatus for organic wastewater

Also Published As

Publication number Publication date
JP2001239295A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
CN1907883B (en) Method for treating organic wastewater
JP5333954B2 (en) Nitrogen removal system and nitrogen removal method of dehydrated filtrate
JP3473328B2 (en) Biological dephosphorization equipment
JP2001314890A (en) Wastewater treatment method
JP2000093998A (en) Method and apparatus for treating high-concentration waste water
JPH04349997A (en) Treatment of organic waste water
JP5333953B2 (en) Nitrogen removal system and nitrogen removal method of dehydrated filtrate
JP3721871B2 (en) Production method of ultra pure water
JP2008114215A (en) Method and apparatus for treating sludge
JP3817850B2 (en) Biological phosphorus removal equipment
JP2661093B2 (en) Wastewater treatment method by activated sludge method
CN110627314B (en) Method for efficiently removing total nitrogen in printing and dyeing wastewater by multi-process combination
JP3919999B2 (en) Organic wastewater treatment method and apparatus
JP2003088885A (en) Method and apparatus for treating organic waste water
JP4608771B2 (en) Biological denitrification equipment
WO2001062676A1 (en) Method for treating organic wastewater
KR101135011B1 (en) A sewage and wastewater treatment and an apparatus for thereof
JP4547799B2 (en) Biological phosphorus removal equipment
JP3600220B2 (en) Wastewater treatment method
JP3961246B2 (en) Method and apparatus for treating organic wastewater
JP4156820B2 (en) Organic wastewater treatment method and treatment apparatus
JP3355121B2 (en) Organic wastewater treatment method
JP2002320992A (en) Method for treating organic waste water and equipment therefor
JP3526140B2 (en) Biological phosphorus removal method and apparatus for organic wastewater
KR100314745B1 (en) Nitrogenous Wastwater Treatment Methods

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3919999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees