JP3817850B2 - Biological phosphorus removal equipment - Google Patents

Biological phosphorus removal equipment Download PDF

Info

Publication number
JP3817850B2
JP3817850B2 JP21469097A JP21469097A JP3817850B2 JP 3817850 B2 JP3817850 B2 JP 3817850B2 JP 21469097 A JP21469097 A JP 21469097A JP 21469097 A JP21469097 A JP 21469097A JP 3817850 B2 JP3817850 B2 JP 3817850B2
Authority
JP
Japan
Prior art keywords
tank
sludge
anaerobic
phosphorus
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21469097A
Other languages
Japanese (ja)
Other versions
JPH1157773A (en
Inventor
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP21469097A priority Critical patent/JP3817850B2/en
Publication of JPH1157773A publication Critical patent/JPH1157773A/en
Application granted granted Critical
Publication of JP3817850B2 publication Critical patent/JP3817850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、嫌気好気法により生物的に脱リンを行う装置に、汚泥減容化手段を適用した生物脱リン装置において、リンの効率的な除去を可能とした生物脱リン装置に関する。
【0002】
【従来の技術】
従来の一般的な生物脱リン装置、特に生物脱リンと共に生物脱窒素を行う処理装置は、嫌気槽、脱窒素槽(無酸素槽)、硝化槽(好気槽)及び沈殿槽から構成されている。この処理装置では、下水等のリンと窒素を含む有機廃水を嫌気槽に流入させて活性汚泥中のリンを放出させた後、脱窒素槽に流入させて廃水中のBODを利用した脱窒素を行わせ、更に硝化反応を行わせた液の一部を脱窒素槽に返送する。硝化槽では好気条件で活性汚泥中にリンが過剰摂取される。
【0003】
このような生物脱リン装置では窒素とリンとの同時除去が可能であるが、通常の活性汚泥法と同様に余剰汚泥が発生する。
【0004】
一方、生物処理で発生する余剰汚泥をオゾン処理により可溶化して汚泥量を低減する汚泥減容法が提案されており(特開平6−206088号公報、同7−96297号公報)、この方法を上記の生物処理プロセスに適用することにより、余剰汚泥が全く発生しないか、或いは、余剰汚泥の発生量を通常の嫌気好気法の場合より大幅に低減することができる。
【0005】
しかし、従来の生物脱リン装置に、この汚泥減容法を適用した場合には、余剰汚泥が系外に排出されないか或いはその排出量が少ないために、汚泥内に取り込んだリンを系外へ全く排出することができないか或いは排出できてもその排出量が少なくなる。このため系内にリンが蓄積され、結果として処理水のリン濃度が高くなり、リンの効率的な除去ができないという問題が生じる。
【0006】
このため、従来、嫌気好気法に汚泥減容法を組み合せた方法において、処理水を更に凝集沈殿又はアルミナ吸着処理することでリンを除去する方法が提案されている。
【0007】
一方、リン含有廃水の処理方法としては、リン含有廃水にマグネシウム(Mg)塩を添加した後生物処理を行う方法も提案されており、この方法では、廃水中のリンをリン酸マグネシウムアンモニウム6水塩(MAP)として除去し、回収したMAPをリン及びアンモニアを含む肥料等として有効に再利用することができる。
【0008】
【発明が解決しようとする課題】
しかしながら、処理水を更に凝集沈殿、アルミナ吸着で処理する方法は、処理工程が煩雑となり好ましいことではない。
【0009】
また、リンをMAPとして回収するには、MAP生成反応の平衡関係から、リン濃度が20mg/L以上であることが必要とされるが、嫌気好気法と汚泥減容法とを組み合せた処理法で得られる処理水のリン濃度は20mg/Lより相当に低いため、このような処理水からはMAPを効率的に生成させてリンを回収することが難しい。
【0010】
本発明は上記従来の問題点を解決し、嫌気好気法に汚泥減容法を組み合せた生物脱リン装置において、リンの効率的な除去を可能とした生物脱リン装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の生物脱リン装置は、原水が導入される嫌気槽と、該嫌気槽の嫌気処理液が導入される好気槽と、該好気槽の好気処理液を固液分離して得られた分離汚泥を前記嫌気槽へ返送する返送汚泥の一部が導入される汚泥可溶化手段と、該汚泥可溶化手段で可溶化された汚泥を前記嫌気槽に返送する手段と、前記嫌気槽内液が導入される脱リン反応塔とを備えてなることを特徴とする。
【0012】
本発明の生物脱リン装置では、返送汚泥の一部を可溶化して再び生物処理することにより、汚泥を減容化することができる。また、返送汚泥を可溶化し、可溶化汚泥に含まれるリンを嫌気槽を経て脱リン反応塔(以下、MAP反応塔ということもある。)でMAPとして除去、回収することにより、リンを系外へ排出することができる。
【0013】
この可溶化汚泥中のリンは、生物処理を経たものであり、MAP生成反応に有利な正リン酸の割合が高い。従って、MAP反応塔には、廃水由来のリンと、可溶化汚泥からの正リン酸の割合が多くかつ高濃度のリンと、廃水由来のアンモニアとを含有する嫌気処理液が導入されるため、MAP反応塔でのMAP生成効率が高い。
【0014】
本発明では、MAP反応塔が嫌気槽の後段に設けられるため、可溶化汚泥に含まれる生物処理を受けたリンを直ちにMAP化することができることからも、MAP生成効率はより一層高められる。
【0015】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を詳細に説明する。
【0016】
図1は本発明の生物脱リン装置の実施の形態を示す系統図である。
【0017】
図1の廃水処理装置は、嫌気槽1、MAP反応塔2、脱窒素槽3、硝化槽(好気槽)4、沈殿槽5及び可溶化槽6で構成され、廃水は後段の可溶化槽6からの可溶化汚泥と共に嫌気槽1に導入される。嫌気槽1では、嫌気条件下、可溶化汚泥中のリン(このリンは、生物処理により殆どのものがMAP生成に有利な正リン酸の形態となっている。)が液側へ放出される。この嫌気処理液はMAP反応塔2に導入される。この嫌気処理液は通常の場合リン濃度15〜25mg/L程度であり、MAP生成反応が円滑に進行する。
【0018】
MAP反応塔2では、MAPが析出するpH条件、好ましくはpH8〜10、より好ましくはpH8〜9となるように、NaOH等のアルカリが注入されると共に、MAPの析出にマグネシウムが不足する場合には、MgCl2 ,Mg(OH)2 等のマグネシウム化合物(マグネシウム化合物を含有するものであれば良く、海水であっても良い。)が添加され、液中のリン及びアンモニアとマグネシウムとの反応でMAPが生成、析出し、これにより、液中のリンが除去される。特に、可溶化汚泥中のリンは、生物処理を受けることによりMAPの生成に有利な正リン酸の形態となっており、MAP反応塔2でのMAP生成反応効率が高く、このため、効率的なリンの除去を行える。
【0019】
MAP反応塔2の滞留時間は、通常の場合2〜60分程度であり、これにより粒径0.5〜3mm程度のMAP粒子を回収することができる。このMAP粒子はリン及び窒素を含む肥料として有効利用することができる。
【0020】
MAP反応塔2の流出液は、通常リン濃度10mg/L程度の液であり、この流出液は次いで脱窒素槽3に導入される。この脱窒素槽3では、廃水中のBODを利用して硝化循環液中のNO3 やNO2 が脱窒素される。
【0021】
脱窒素処理液は好気槽4に導入され、曝気により、液中のアンモニアがNO3 やNO2 に酸化される。また、好気条件下でリンの活性汚泥への取り込みが行われ、液中のリン濃度が低減される。
【0022】
この硝化処理液の一部は、NO3 ,NO2 を供給するために脱窒素槽3に返送され、残部は沈殿槽5に送給され固液分離される。
【0023】
沈殿槽5の分離液は処理水として系外へ排出される。この処理水は、MAP反応塔2でのMAP生成でリン及び窒素が除去され、更に脱窒素槽3で窒素が除去され、好気槽4でリンが除去された、良好な水質の処理水である。
【0024】
一方、生物処理により正リン酸の形態としてリンを取り込んだ沈殿槽5の分離汚泥は、その一部が可溶化槽6に導入され、オゾンガスの吹き込みにより可溶化処理される。即ち、汚泥はオゾンによりBOD成分に酸化分解され、可溶化される。
【0025】
この可溶化槽6のオゾン処理ガスとしては、純オゾンの他、オゾン含有空気、オゾン化空気等を使用することができる。
【0026】
可溶化槽6のオゾン注入量は、少ないと汚泥の可溶化が十分に行われず、多いとコスト面で不利である。通常の場合、オゾン注入量は、可溶化槽6の流入汚泥量に対するオゾンの割合で0.03〜0.1g−O3 /g−SSとするのが好ましい。
【0027】
なお、このオゾン処理は、pH5以下で行うことによりオゾンの使用量を低減することができる。従って、本発明では、必要に応じて無機酸を添加することにより可溶化槽6内のpHを5以下、特にpH1〜4、とりわけpH2〜3程度に調整してオゾン処理を行うのが好ましい。このようにpH調整することにより、オゾン注入量をpH7程度の場合の1/3程度に、具体的には0.01〜0.05g−O3 /g−SSまで低減することが可能となる。このpH調整は可溶化槽6で行っても良く、また可溶化槽6の前段にpH調整槽を設けて行っても良い。
【0028】
この可溶化槽6の滞留時間は、汚泥がオゾンにより十分に酸化分解を受けて可溶化される時間であれば良く、通常の場合、5分〜1.0時間程度である。可溶化槽6で可溶化処理された汚泥は、嫌気槽1に移送され、原水と共に処理される。
【0029】
なお、本発明において、嫌気槽1内の嫌気混合液をMAP反応塔2に導入するため、嫌気混合液の通水でMAP反応塔2の閉塞が起きないようにすること及びMAPの微細粒子が多量に発生し、これが活性汚泥反応槽に流入すると汚泥中の無機分が増加し、十分な汚泥減容化を図れなくなることから、MAP反応塔としては、液で流動化させる流動床式のものが好ましい。
【0030】
また、嫌気槽1から後段の脱窒素槽3への液の移送はすべてMAP反応塔2を経由するように行っても良く、嫌気槽1から脱窒素槽3へ移送する液の一部のみをMAP反応塔2を経由させ、残部は嫌気槽1から直接脱窒素槽3に移送するようにしても良い。
【0031】
ところで、前述の如く、可溶化槽6では、pH1〜4、特に2〜3の酸性下で処理を行うのが好ましいが、このような酸性条件下で可溶化した汚泥を返送する場合、生物反応工程のpH低下を防止するために、アルカリを添加する必要がある。
【0032】
このような本発明の生物脱リン装置では、各槽の処理条件や汚泥ないし液の移送条件等を適宜調整することにより、余剰汚泥を全く排出させることなく、リンの効率的な除去を行うことができる。
【0033】
なお、図1に示す生物脱リン装置は本発明の実施の形態の一例であって、本発明はその要旨を超えない限り、何ら図示のものに限定されるものではない。
【0034】
本発明の生物脱リン装置は、嫌気槽と好気槽を備えるものであれば良く、脱窒素槽3は必ずしも必要とされない。例えば、処理水の窒素濃度の要求レベルが低い場合には、脱窒素槽3を省略しても良い。また、好気槽は2槽直列に設けても良い。
【0035】
また、図1ではMAP反応塔2の流出液を脱窒素槽3に送給しているが、MAP反応塔2の流出液を嫌気槽1に戻すようにしても良い。
【0036】
本発明の生物脱リン装置では、可溶化槽を設けて汚泥の減容化を行うと共に、MAP反応塔を用いてリンをMAP粒子として系外へ除去するため、余剰汚泥を全く排出しない、或いは、余剰汚泥排出量を著しく低減した汚泥減容化処理システムにおいて、余剰汚泥が排出されないためにリンの除去が行えないという従来の不具合を解消して、効率的なリン除去を行うことができる。
【0037】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0038】
説明の便宜上まず比較例を挙げる。
【0039】
比較例1
嫌気槽(2.5m3 容量)、脱窒素槽(2.5m3 容量)及び好気槽(5m3 容量)で順次処理した後、沈殿槽(3.5m3 容量)で固液分離し、分離汚泥の一部を返送汚泥として嫌気槽に返送し、残部を余剰汚泥として系外へ排出する生物脱リン装置により、下水処理場の最初沈殿池の流出水(BOD:102mg/L,T−P:3.3mg/L,T−N:27.4mg/L)を原水として20m3 /日で処理した。なお、好気槽から脱窒素槽への循環液量は40m3 /日とした。
【0040】
運転開始から1ケ月後に処理水の水質及び系内のMLSSを測定し、結果を表1に示した。また、このときの余剰汚泥発生量は乾燥重量で1日当たり約1.3kgであった。
【0041】
比較例2
比較例1の生物脱リン装置に、更に50L容量の可溶化槽を設け、返送汚泥を26L/hrの流速で可溶化槽に送給して可溶化した後嫌気槽に戻したこと以外は全く同様にして処理を行った(可溶化槽の滞留時間120分)。なお、可溶化槽の前段にpH調整槽を設け、pH2〜3となるように自動制御した。また、好気槽にはpH調整器を設け、pH7〜7.5に制御した。可溶化槽には40g/m3 濃度のオゾンガスを1.1L/minで通気した(流入汚泥に対するオゾン注入量0.017g−O3 /g−SS)。
【0042】
その結果、2ケ月間、余剰汚泥の引き抜きなしで運転を行うことができ、系内のMLSSは2700〜3200mg/Lに維持された。
【0043】
しかし、リンを殆ど除去し得ず、運転2ケ月後の処理水の水質は表1に示す通りで、リン濃度が高かった。
【0044】
実施例1
比較例2において、更にMAP反応塔(直径20cm,高さ3m;粒径0.1〜0.5mmのMAP粒子を50L充填)を設けて図1に示す装置とし、嫌気槽内混合液を2m3 /minの速度で通液したこと以外は全く同様にして処理を行った。なお、嫌気槽内混合液はMAP反応塔の入口側で予めpH9.0に調整し、また、MAP反応塔の下端からは、5重量%MgCl2 水溶液を0.5L/minで供給した。MAP反応塔の滞留時間は120分であった。MAP反応塔の流出液は脱窒素槽へ供給した。
【0045】
その結果、硝化槽のpHは常に7以上に維持され、余剰汚泥の引き抜きを行わずに、表1に示す通り、良好な水質の処理水を得ることができた。
【0046】
【表1】

Figure 0003817850
【0047】
【発明の効果】
以上詳述した通り、本発明の生物脱リン装置によれば、嫌気好気法により生物的にリンを除去するに当り、汚泥を減容化して系外への余剰汚泥の排出を全く行わないか或いは余剰汚泥の排出量を著しく低減できると共に、リンを効率的に除去してMAP粒子として回収することができる。
【図面の簡単な説明】
【図1】本発明の生物脱リン装置の実施の形態を示す系統図である。
【符号の説明】
1 嫌気槽
2 MAP反応塔
3 脱窒素槽
4 好気槽
5 沈殿槽
6 可溶化槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biological dephosphorization apparatus that enables efficient removal of phosphorus in a biological dephosphorization apparatus in which sludge volume reducing means is applied to an apparatus that biologically dephosphorizes by an anaerobic aerobic method.
[0002]
[Prior art]
A conventional general biological dephosphorization apparatus, in particular, a treatment apparatus that performs biological denitrification together with biological dephosphorization, is composed of an anaerobic tank, a denitrification tank (anoxic tank), a nitrification tank (aerobic tank), and a precipitation tank. Yes. In this treatment apparatus, organic wastewater containing phosphorus and nitrogen such as sewage is flowed into the anaerobic tank to release phosphorus in the activated sludge, and then denitrified using BOD in the wastewater by flowing into the denitrification tank. A part of the liquid that has been subjected to nitrification reaction is returned to the denitrification tank. In the nitrification tank, phosphorus is excessively consumed in activated sludge under aerobic conditions.
[0003]
In such a biological dephosphorization apparatus, nitrogen and phosphorus can be removed simultaneously, but surplus sludge is generated in the same manner as in the normal activated sludge method.
[0004]
On the other hand, a sludge volume reduction method has been proposed in which surplus sludge generated by biological treatment is solubilized by ozone treatment to reduce the amount of sludge (Japanese Patent Laid-Open Nos. 6-206088 and 7-96297). Is applied to the above biological treatment process, no surplus sludge is generated at all, or the amount of surplus sludge generated can be greatly reduced as compared with the case of the normal anaerobic aerobic method.
[0005]
However, when this sludge volume reduction method is applied to a conventional biological dephosphorization device, excess sludge is not discharged out of the system or the amount of discharge is small. Even if it cannot be discharged at all or even if it can be discharged, the discharge amount is reduced. For this reason, phosphorus accumulates in the system, resulting in an increase in the concentration of phosphorus in the treated water, resulting in a problem that phosphorus cannot be removed efficiently.
[0006]
For this reason, conventionally, in a method in which the sludge volume reduction method is combined with the anaerobic aerobic method, a method of removing phosphorus by further coagulating precipitation or alumina adsorption treatment of the treated water has been proposed.
[0007]
On the other hand, as a method for treating phosphorus-containing wastewater, there has also been proposed a method for biological treatment after adding magnesium (Mg) salt to phosphorus-containing wastewater. In this method, phosphorus in wastewater is converted to magnesium ammonium phosphate 6 water. The MAP removed as a salt (MAP) and recovered can be effectively reused as a fertilizer containing phosphorus and ammonia.
[0008]
[Problems to be solved by the invention]
However, the method of further treating the treated water by coagulation precipitation and alumina adsorption is not preferable because the treatment process becomes complicated.
[0009]
In addition, in order to recover phosphorus as MAP, the phosphorus concentration is required to be 20 mg / L or more due to the equilibrium relationship of the MAP production reaction, but the treatment is a combination of anaerobic aerobic method and sludge volume reduction method. Since the phosphorus concentration of the treated water obtained by the method is considerably lower than 20 mg / L, it is difficult to recover phosphorus by efficiently generating MAP from such treated water.
[0010]
An object of the present invention is to provide a biological dephosphorization apparatus that can efficiently remove phosphorus in a biological dephosphorization apparatus that combines the anaerobic and aerobic methods with a sludge volume reduction method in order to solve the above conventional problems. And
[0011]
[Means for Solving the Problems]
The biological dephosphorization apparatus of the present invention is obtained by solid-liquid separation of an anaerobic tank into which raw water is introduced, an aerobic tank into which an anaerobic treatment liquid in the anaerobic tank is introduced, and an aerobic treatment liquid in the aerobic tank. a sludge solubilization means a part of the return sludge returning the separated sludge to the anaerobic tank which is is introduced, and means for returning the solubilized sludge in the sludge solubilization unit to the anaerobic tank, the anaerobic tank And a dephosphorization reaction column into which the internal liquid is introduced.
[0012]
In biological dephosphorization device of the present invention, by re-biological treatment to solubilize part of the return sludge, it is possible to reduce the volume of the sludge. In addition, the return sludge is solubilized, and phosphorus contained in the solubilized sludge is removed and recovered as MAP in a dephosphorization reaction tower (hereinafter also referred to as MAP reaction tower) through an anaerobic tank, whereby phosphorus is recovered. It can be discharged outside.
[0013]
The phosphorus in the solubilized sludge has been subjected to biological treatment and has a high proportion of normal phosphoric acid that is advantageous for the MAP production reaction. Therefore, an anaerobic treatment liquid containing a large amount of phosphorus derived from wastewater, a high proportion of normal phosphoric acid from solubilized sludge, and ammonia derived from wastewater is introduced into the MAP reaction tower. MAP production efficiency in the MAP reaction tower is high.
[0014]
In the present invention, since the MAP reaction tower is provided in the subsequent stage of the anaerobic tank, the biologically-treated phosphorus contained in the solubilized sludge can be immediately converted to MAP, so that the MAP production efficiency is further enhanced.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
FIG. 1 is a system diagram showing an embodiment of the biological dephosphorization apparatus of the present invention.
[0017]
1 includes an anaerobic tank 1, a MAP reaction tower 2, a denitrification tank 3, a nitrification tank (aerobic tank) 4, a precipitation tank 5, and a solubilization tank 6, and the waste water is a solubilization tank in the subsequent stage. 6 is introduced into the anaerobic tank 1 together with the solubilized sludge from 6. In the anaerobic tank 1, phosphorus in solubilized sludge is released to the liquid side under anaerobic conditions (most of this phosphorus is in the form of normal phosphoric acid that is advantageous for MAP production by biological treatment). . This anaerobic treatment liquid is introduced into the MAP reaction tower 2. This anaerobic treatment liquid usually has a phosphorus concentration of about 15 to 25 mg / L, and the MAP production reaction proceeds smoothly.
[0018]
In the MAP reaction tower 2, an alkali such as NaOH is injected so that the pH condition for MAP precipitation, preferably pH 8-10, more preferably pH 8-9, and magnesium is insufficient for MAP precipitation. Is added with a magnesium compound such as MgCl 2 , Mg (OH) 2 (so long as it contains a magnesium compound and may be seawater), and the reaction of phosphorus and ammonia in the liquid with magnesium. MAP is generated and precipitated, thereby removing phosphorus in the liquid. In particular, the phosphorus in the solubilized sludge is in the form of normal phosphoric acid that is advantageous for the production of MAP by being subjected to biological treatment, and the MAP production reaction efficiency in the MAP reaction tower 2 is high. Can remove phosphorus.
[0019]
The residence time of the MAP reaction tower 2 is usually about 2 to 60 minutes, whereby MAP particles having a particle size of about 0.5 to 3 mm can be recovered. The MAP particles can be effectively used as a fertilizer containing phosphorus and nitrogen.
[0020]
The effluent of the MAP reaction tower 2 is usually a liquid having a phosphorus concentration of about 10 mg / L, and this effluent is then introduced into the denitrification tank 3. In this denitrification tank 3, NO 3 and NO 2 in the nitrification circulating liquid are denitrified using BOD in the wastewater.
[0021]
The denitrification liquid is introduced into the aerobic tank 4, and ammonia in the liquid is oxidized to NO 3 or NO 2 by aeration. In addition, phosphorus is taken up into the activated sludge under aerobic conditions, and the phosphorus concentration in the liquid is reduced.
[0022]
A part of this nitrification solution is returned to the denitrification tank 3 to supply NO 3 and NO 2 , and the remainder is sent to the precipitation tank 5 for solid-liquid separation.
[0023]
The separated liquid in the precipitation tank 5 is discharged out of the system as treated water. This treated water is treated water of good water quality in which phosphorus and nitrogen are removed by MAP generation in the MAP reaction tower 2, nitrogen is further removed in the denitrification tank 3, and phosphorus is removed in the aerobic tank 4. is there.
[0024]
On the other hand, the separation sludge settling tank 5 incorporating phosphorus in the form of orthophosphoric acid by biological treatment is part of that is introduced into solubilizing tank 6, it is solubilized treated by blowing ozone gas. That is, sludge is oxidized and decomposed into BOD components by ozone and solubilized.
[0025]
As the ozone treatment gas in the solubilization tank 6, ozone-containing air, ozonized air, or the like can be used in addition to pure ozone.
[0026]
If the ozone injection amount in the solubilization tank 6 is small, the sludge is not sufficiently solubilized, and if it is large, the cost is disadvantageous. In a normal case, the ozone injection amount is preferably 0.03 to 0.1 g-O 3 / g-SS in terms of ozone with respect to the inflow sludge amount of the solubilization tank 6.
[0027]
In addition, the amount of ozone used can be reduced by performing the ozone treatment at a pH of 5 or less. Therefore, in the present invention, it is preferable to adjust the pH in the solubilization tank 6 to 5 or less, particularly pH 1 to 4, particularly pH 2 to 3 by adding an inorganic acid as necessary, and perform ozone treatment. By adjusting the pH in this way, the ozone injection amount can be reduced to about 1/3 of the pH of about 7, specifically 0.01 to 0.05 g-O 3 / g-SS. . This pH adjustment may be performed in the solubilization tank 6 or may be performed by providing a pH adjustment tank in the previous stage of the solubilization tank 6.
[0028]
The residence time of this solubilization tank 6 should just be the time when sludge is fully oxidized and solubilized by ozone, and is usually about 5 minutes to 1.0 hour. The sludge solubilized in the solubilization tank 6 is transferred to the anaerobic tank 1 and treated with raw water.
[0029]
In the present invention, since the anaerobic mixed liquid in the anaerobic tank 1 is introduced into the MAP reaction tower 2, the MAP reaction tower 2 is prevented from being blocked by the passage of the anaerobic mixed liquid, and the fine particles of MAP When a large amount is generated and flows into the activated sludge reaction tank, the inorganic content in the sludge increases, and sufficient sludge volume reduction cannot be achieved. Therefore, the MAP reaction tower is a fluidized bed type fluidized with liquid. Is preferred.
[0030]
In addition, the liquid may be transferred from the anaerobic tank 1 to the subsequent denitrification tank 3 through the MAP reaction tower 2, and only a part of the liquid transferred from the anaerobic tank 1 to the denitrification tank 3 may be used. The remainder may be transferred directly from the anaerobic tank 1 to the denitrification tank 3 via the MAP reaction tower 2.
[0031]
By the way, as mentioned above, in the solubilization tank 6, it is preferable to perform the treatment under acidic conditions of pH 1 to 4, particularly 2 to 3, but when returning sludge solubilized under such acidic conditions, In order to prevent the pH of the process from being lowered, it is necessary to add an alkali.
[0032]
In such a biological dephosphorization apparatus of the present invention, by appropriately adjusting the treatment conditions of each tank, sludge or liquid transfer conditions, etc., it is possible to efficiently remove phosphorus without discharging any excess sludge. Can do.
[0033]
The biological dephosphorization apparatus shown in FIG. 1 is an example of an embodiment of the present invention, and the present invention is not limited to the illustrated one as long as it does not exceed the gist thereof.
[0034]
The biological dephosphorization apparatus of this invention should just be equipped with an anaerobic tank and an aerobic tank, and the denitrification tank 3 is not necessarily required. For example, when the required level of the nitrogen concentration of the treated water is low, the denitrification tank 3 may be omitted. Also, two aerobic tanks may be provided in series.
[0035]
In FIG. 1, the effluent from the MAP reaction tower 2 is fed to the denitrification tank 3, but the effluent from the MAP reaction tower 2 may be returned to the anaerobic tank 1.
[0036]
In the biological dephosphorization apparatus of the present invention, a solubilization tank is provided to reduce the volume of sludge, and phosphorus is removed from the system as MAP particles using a MAP reaction tower. In the sludge volume reduction treatment system in which the amount of excess sludge discharged is significantly reduced, the conventional problem that phosphorus cannot be removed because excess sludge is not discharged can be eliminated, and efficient phosphorus removal can be performed.
[0037]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0038]
For convenience of explanation, a comparative example is given first.
[0039]
Comparative Example 1
Anaerobic tank (2.5 m 3 volume) was sequentially treated with denitrification tank (2.5 m 3 volume) and the aerobic tank (5 m 3 capacity), solid-liquid separation in the precipitation tank (3.5 m 3 capacity), A biological dephosphorization device that returns a part of the separated sludge to the anaerobic tank as return sludge and discharges the remainder as surplus sludge to the outside of the system, so that the outflow water (BOD: 102 mg / L, T- P: 3.3 mg / L, TN: 27.4 mg / L) was treated as raw water at 20 m 3 / day. The amount of circulating liquid from the aerobic tank to the denitrification tank was 40 m 3 / day.
[0040]
One month after the start of operation, the quality of treated water and MLSS in the system were measured, and the results are shown in Table 1. Further, the amount of excess sludge generated at this time was about 1.3 kg per day in terms of dry weight.
[0041]
Comparative Example 2
The biological dephosphorization apparatus of Comparative Example 1 was further provided with a 50 L capacity solubilization tank, except that the returned sludge was fed to the solubilization tank at a flow rate of 26 L / hr, solubilized, and then returned to the anaerobic tank. The treatment was carried out in the same manner (the solubilization tank residence time 120 minutes). In addition, the pH adjustment tank was provided in the front | former stage of the solubilization tank, and it controlled automatically so that it might become pH 2-3. Moreover, the aerobic tank was provided with a pH adjuster and controlled to pH 7 to 7.5. The solubilization tank was aerated with ozone gas having a concentration of 40 g / m 3 at 1.1 L / min (the amount of ozone injected into the inflow sludge was 0.017 g-O 3 / g-SS).
[0042]
As a result, the operation could be performed for 2 months without removing excess sludge, and the MLSS in the system was maintained at 2700 to 3200 mg / L.
[0043]
However, phosphorus could hardly be removed, and the quality of treated water after 2 months of operation was as shown in Table 1 and the phosphorus concentration was high.
[0044]
Example 1
In Comparative Example 2, a MAP reaction tower (diameter 20 cm, height 3 m; filled with 50 L of MAP particles having a particle size of 0.1 to 0.5 mm) is provided as the apparatus shown in FIG. 1, and the mixed solution in the anaerobic tank is 2 m. The treatment was performed in the same manner except that the solution was passed at a rate of 3 / min. The mixed solution in the anaerobic tank was adjusted to pH 9.0 in advance on the inlet side of the MAP reaction tower, and a 5 wt% MgCl 2 aqueous solution was supplied at 0.5 L / min from the lower end of the MAP reaction tower. The residence time of the MAP reaction tower was 120 minutes. The effluent from the MAP reaction tower was supplied to a denitrification tank.
[0045]
As a result, the pH of the nitrification tank was always maintained at 7 or higher, and treated water with good water quality could be obtained as shown in Table 1 without removing excess sludge.
[0046]
[Table 1]
Figure 0003817850
[0047]
【The invention's effect】
As described above in detail, according to the biological dephosphorization apparatus of the present invention, when removing phosphorus biologically by the anaerobic aerobic method, the volume of sludge is reduced and no excess sludge is discharged outside the system. Alternatively, the amount of excess sludge discharged can be significantly reduced, and phosphorus can be efficiently removed and recovered as MAP particles.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a biological dephosphorization apparatus of the present invention.
[Explanation of symbols]
1 Anaerobic tank 2 MAP reaction tower 3 Denitrification tank 4 Aerobic tank 5 Precipitation tank 6 Solubilization tank

Claims (4)

原水が導入される嫌気槽と、
該嫌気槽の嫌気処理液が導入される好気槽と、
該好気槽の好気処理液を固液分離して得られた分離汚泥を前記嫌気槽へ返送する返送汚泥の一部が導入される汚泥可溶化手段と、
該汚泥可溶化手段で可溶化された汚泥を前記嫌気槽に返送する手段と、
前記嫌気槽内液が導入される脱リン反応塔とを備えてなることを特徴とする生物脱リン装置。
An anaerobic tank into which raw water is introduced;
An aerobic tank into which the anaerobic treatment liquid of the anaerobic tank is introduced;
Sludge solubilization means into which a part of the returned sludge for returning the separated sludge obtained by solid-liquid separation of the aerobic treatment liquid of the aerobic tank to the anaerobic tank is introduced;
Means for returning the solubilized sludge to the anaerobic tank with sludge solubilization means,
A biological dephosphorization apparatus comprising: a dephosphorization reaction tower into which the liquid in the anaerobic tank is introduced.
請求項1において、前記嫌気槽の嫌気処理液が導入される脱窒素槽を有し、該脱窒素槽の脱窒素処理液が前記好気槽に導入され、かつ該好気槽の好気処理液の一部を該脱窒素槽に返送する手段を有することを特徴とする生物脱リン装置。In Claim 1, it has a denitrification tank into which the anaerobic treatment liquid of the anaerobic tank is introduced, the denitrification treatment liquid of the denitrification tank is introduced into the aerobic tank, and the aerobic treatment of the aerobic tank A biological dephosphorization apparatus comprising means for returning a part of the liquid to the denitrification tank. 請求項1又は2において、前記脱リン反応塔の流出液が前記嫌気槽に戻されることを特徴とする生物脱リン装置。The biological dephosphorization apparatus according to claim 1 or 2, wherein the effluent of the dephosphorization reaction tower is returned to the anaerobic tank. 請求項2において、前記嫌気槽の嫌気処理液が前記脱リン反応塔で処理された後前記脱窒素槽に導入されることを特徴とする生物脱リン装置。The biological dephosphorization apparatus according to claim 2, wherein the anaerobic treatment liquid in the anaerobic tank is introduced into the denitrification tank after being treated in the dephosphorization reaction tower.
JP21469097A 1997-08-08 1997-08-08 Biological phosphorus removal equipment Expired - Fee Related JP3817850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21469097A JP3817850B2 (en) 1997-08-08 1997-08-08 Biological phosphorus removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21469097A JP3817850B2 (en) 1997-08-08 1997-08-08 Biological phosphorus removal equipment

Publications (2)

Publication Number Publication Date
JPH1157773A JPH1157773A (en) 1999-03-02
JP3817850B2 true JP3817850B2 (en) 2006-09-06

Family

ID=16659991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21469097A Expired - Fee Related JP3817850B2 (en) 1997-08-08 1997-08-08 Biological phosphorus removal equipment

Country Status (1)

Country Link
JP (1) JP3817850B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254683A (en) * 1999-03-09 2000-09-19 Yaskawa Electric Corp Method for controlling supply of excess sludge to sewage treatment facility and biological reaction vessel
JP2000296399A (en) * 1999-04-13 2000-10-24 Maezawa Ind Inc Waste water treating apparatus
JP4590756B2 (en) * 2000-08-24 2010-12-01 株式会社Ihi Organic drainage treatment method and organic drainage treatment apparatus
JP4547799B2 (en) * 2000-12-19 2010-09-22 栗田工業株式会社 Biological phosphorus removal equipment
JP2002320992A (en) * 2001-04-25 2002-11-05 Ebara Corp Method for treating organic waste water and equipment therefor
US6706185B2 (en) 2002-05-22 2004-03-16 Kurita Water Industries Ltd. Biological method of phosphorus removal and biological phosphorus-removing apparatus
JP4632397B2 (en) * 2003-08-26 2011-02-16 アタカ大機株式会社 Sewage treatment method and apparatus
CN100443422C (en) * 2005-05-24 2008-12-17 株式会社东芝 Dephosphorize apparatus of sewage treatment plant
JP4854706B2 (en) * 2008-06-09 2012-01-18 水ing株式会社 Organic wastewater treatment method and treatment apparatus
JP5950668B2 (en) * 2012-04-16 2016-07-13 四国化成工業株式会社 Reduction method of excess sludge
CN109851049B (en) * 2019-04-11 2024-06-18 信开环境投资有限公司 Sewage treatment unit and use method and application thereof

Also Published As

Publication number Publication date
JPH1157773A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
JP3817850B2 (en) Biological phosphorus removal equipment
JP3473328B2 (en) Biological dephosphorization equipment
JP5333953B2 (en) Nitrogen removal system and nitrogen removal method of dehydrated filtrate
JP3876489B2 (en) Waste water treatment equipment
JP2716348B2 (en) Sewage return water treatment method
JP3449862B2 (en) Advanced purification method for organic wastewater
JP4608771B2 (en) Biological denitrification equipment
JP3483081B2 (en) Organic wastewater treatment method and treatment device
JP4547799B2 (en) Biological phosphorus removal equipment
JP3442204B2 (en) Organic wastewater phosphorus removal and recovery method
JPH0975992A (en) Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
JP3355121B2 (en) Organic wastewater treatment method
JP2002102864A (en) Waste water treatment system
JP3961246B2 (en) Method and apparatus for treating organic wastewater
JP4156820B2 (en) Organic wastewater treatment method and treatment apparatus
KR100469641B1 (en) advanced wastwater treatment apparatus using a submerged type membrane
JP3376903B2 (en) Intermittent aeration activated sludge treatment method
JP2002316191A (en) Method and apparatus for treating organic foul water
JP3919999B2 (en) Organic wastewater treatment method and apparatus
JP2002320992A (en) Method for treating organic waste water and equipment therefor
JP4371441B2 (en) Treatment method of sludge treatment system return water
JP3449855B2 (en) Biological phosphorus removal method and apparatus for organic wastewater
JPH1015585A (en) Biological dephosphorization of organic sewage and apparatus therefor
JP3276904B2 (en) Wastewater treatment method
JP3392295B2 (en) Method and apparatus for treating organic sewage

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees