JP3376903B2 - Intermittent aeration activated sludge treatment method - Google Patents

Intermittent aeration activated sludge treatment method

Info

Publication number
JP3376903B2
JP3376903B2 JP01753298A JP1753298A JP3376903B2 JP 3376903 B2 JP3376903 B2 JP 3376903B2 JP 01753298 A JP01753298 A JP 01753298A JP 1753298 A JP1753298 A JP 1753298A JP 3376903 B2 JP3376903 B2 JP 3376903B2
Authority
JP
Japan
Prior art keywords
denitrification
nitrogen
tank
aeration
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01753298A
Other languages
Japanese (ja)
Other versions
JPH11216493A (en
Inventor
晃士 堀
孝文 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP01753298A priority Critical patent/JP3376903B2/en
Publication of JPH11216493A publication Critical patent/JPH11216493A/en
Application granted granted Critical
Publication of JP3376903B2 publication Critical patent/JP3376903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は間欠曝気により活性
汚泥を利用してBODと窒素を除去するための間欠曝気
式活性汚泥方法に関するものである。
TECHNICAL FIELD The present invention relates to an intermittent aeration type activated sludge method for removing BOD and nitrogen by utilizing activated sludge by intermittent aeration.

【0002】[0002]

【従来の技術】BODおよび窒素を含む有機性排水の処
理方法として生物脱窒法が知られている。この方法は被
処理液を曝気槽で曝気して活性汚泥の作用によりBOD
を除去し、さらに硝化槽で曝気してアンモニア性窒素ま
たは有機性窒素を(亜)硝酸性窒素に酸化し、脱窒槽に
おいて嫌気状態に維持することにより脱窒を行う方法で
ある。この方法の変法として、脱窒槽に被処理液を導入
することによりBODを除去し、その後硝化を行って硝
化液を脱窒槽に循環する方法もある。上記の方法ではい
ずれの場合も硝化槽と脱窒槽を別に設ける必要があり、
装置が大形化する。
Biodenitrification is known as a method for treating organic wastewater containing BOD and nitrogen. In this method, the liquid to be treated is aerated in the aeration tank, and BOD is generated by the action of activated sludge.
Is removed, and further aerated in a nitrification tank to oxidize ammoniacal nitrogen or organic nitrogen to (nitro) nitrite nitrogen, and denitrification is carried out by maintaining an anaerobic state in the denitrification tank. As a modification of this method, there is also a method of introducing the liquid to be treated into the denitrification tank to remove BOD, and then nitrifying and circulating the nitrification liquid to the denitrification tank. In any of the above methods, it is necessary to provide a nitrification tank and a denitrification tank separately,
The device becomes larger.

【0003】この点を改善する方法として、間欠曝気槽
に有機物含有水を連続的に供給し、活性汚泥の存在下に
間欠的に曝気を行って好気工程と嫌気工程を繰り返すこ
とにより、単一の曝気槽を用いて、BODおよび窒素を
除去する間欠曝気式活性汚泥処理方法(以下、単に間欠
曝気法ということがある)が提案されている(例えば特
開平1−310798号、特開平4−197497
号)。この方法は好気工程では曝気により活性汚泥中の
BOD分解菌の作用を利用してBODを分解するととも
に、硝化菌の作用により硝化を行ってアンモニア性窒素
および有機性窒素を(亜)硝酸性窒素に酸化し、嫌気工
程では曝気を停止して脱窒菌の作用により水素供与体の
存在下に(亜)硝酸性窒素を窒素ガスに還元して脱窒を
行う。
As a method for improving this point, organic substance-containing water is continuously supplied to an intermittent aeration tank, and intermittent aeration is carried out in the presence of activated sludge to repeat an aerobic process and an anaerobic process. An intermittent aeration type activated sludge treatment method for removing BOD and nitrogen by using one aeration tank (hereinafter, may be simply referred to as an intermittent aeration method) has been proposed (for example, Japanese Patent Laid-Open Nos. 1-310798 and 4). -197497
issue). In this method, in the aerobic process, BOD is decomposed by the action of BOD-decomposing bacteria in the activated sludge by aeration, and nitrification is performed by the action of nitrifying bacteria to change ammoniacal nitrogen and organic nitrogen to (nitrite) It is oxidized to nitrogen, and in the anaerobic process, aeration is stopped and the action of denitrifying bacteria reduces (nitrite) nitrogen to nitrogen gas in the presence of a hydrogen donor for denitrification.

【0004】上記の嫌気工程では脱窒菌の栄養源として
水素供与体が必要であり、脱窒工程においても流入する
被処理液中のBOD成分が水素供与体として利用される
が、これでは不足する場合にはメタノール等の他の水素
供与体を添加して脱窒が行われる。この水素供与体は系
外から添加されるので、処理コストを高くする要因とな
り、このため脱窒に効率よく使用される必要がある。
In the above anaerobic process, a hydrogen donor is required as a nutrient source for denitrifying bacteria, and the BOD component in the liquid to be treated flowing in is also used as a hydrogen donor in the denitrifying process, but this is insufficient. In this case, denitrification is performed by adding another hydrogen donor such as methanol. Since this hydrogen donor is added from the outside of the system, it becomes a factor that raises the processing cost, and therefore needs to be efficiently used for denitrification.

【0005】ここで添加する水素供与体は、好気工程に
おいて生成した(亜)硝酸イオンにほぼ対応するBOD
量が添加されるが、従来は嫌気工程開始直後の約5分間
以内に、その嫌気工程において必要なBOD量を集中的
に添加している。その理由は水素供与体を効率よく利用
するためには、水素供与体が添加された後の反応時間が
長いほどよく、そのためには嫌気工程初期に集中して添
加するのが好ましいと考えられていたためである。例え
ば嫌気工程の後期に水素供与体を添加すると、添加され
た水素供与体が利用されないうちに好気工程に切換わ
り、水素供与体が無駄になるが、嫌気工程の初期に添加
すると、反応時間が長くなるので、多くの水素供与体が
脱窒のために利用されることになると考えられる。
The hydrogen donor added here corresponds to the BOD corresponding to the (nitrite) ion produced in the aerobic process.
Although the amount is added, conventionally, the BOD amount necessary for the anaerobic process is intensively added within about 5 minutes immediately after the start of the anaerobic process. The reason is that in order to use the hydrogen donor efficiently, the longer the reaction time after the hydrogen donor is added, the better. Therefore, it is considered preferable to concentrate the addition in the early stage of the anaerobic process. It is due to the fact. For example, if the hydrogen donor is added in the latter stage of the anaerobic process, the added hydrogen donor is switched to the aerobic process before being used, and the hydrogen donor is wasted. It is thought that many hydrogen donors will be used for denitrification due to the increase in hydrogen.

【0006】従来の間欠曝気法は上記のような方法で処
理が行われているが、処理を継続するに従って脱窒速度
が低下し、処理効率が低下する。硝化槽と脱窒槽を別の
槽とする通常の生物脱窒法における汚泥あたりの脱窒速
度は0.08kgN/kgVSS/d以上であるが、間
欠曝気法を継続すると0.02kgN/kgVSS/d
以下に低下することがある。この脱窒速度は通常法の1
/4以下であるから、脱窒工程における滞留時間は4倍
以上とる。このことは曝気槽として通常法の脱窒槽の4
倍以上の容積が必要であることを意味し、装置を小形化
する目的に反する。
[0006] In the conventional intermittent aeration method, the treatment is performed by the above method, but as the treatment is continued, the denitrification rate decreases and the treatment efficiency decreases. The denitrification rate per sludge is 0.08 kgN / kgVSS / d or more in the normal biological denitrification method using a nitrification tank and a denitrification tank as separate tanks, but when the intermittent aeration method is continued, it is 0.02 kgN / kgVSS / d.
It may decrease below. This denitrification rate is 1 of the normal method.
Since it is / 4 or less, the residence time in the denitrification step is 4 times or more. This is 4 of the conventional denitrification tank as an aeration tank.
This means that more than double the volume is required, which goes against the purpose of downsizing the device.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、脱窒
工程における脱窒速度を高くし、小形の装置により効率
よくBODおよび窒素の除去を行うことができる間欠曝
気式活性汚泥処理方法を提案することである。
An object of the present invention is to provide an intermittent aeration type activated sludge treatment method capable of increasing the denitrification rate in the denitrification step and efficiently removing BOD and nitrogen with a small apparatus. It is to propose.

【0008】[0008]

【課題を解決するための手段】本発明は次の間欠曝気式
活性汚泥処理方法である。 (1) 間欠曝気槽に被処理液を供給し、活性汚泥の存
在下に間欠的に曝気を行って好気工程と嫌気工程を繰り
返し、好気工程ではBODの除去と窒素の硝化を行い、
嫌気工程では脱窒に必要な量の水素供与体を別途、嫌気
工程の1/2以上の時間にわたって分注して脱窒を行う
ことを特徴とする間欠曝気式活性汚泥処理方法。 (2) 間欠曝気槽に被処理液を供給し、活性汚泥の存
在下に間欠的に曝気を行って好気工程と嫌気工程を繰り
返し、好気工程ではBODの除去と窒素の硝化を行い、
嫌気工程では水素供与体を別途5分間の平均の汚泥負荷
が0.6kgBOD/kgVSS/d以下の添加速度と
なるように注入して脱窒することを特徴とする間欠曝気
式活性汚泥処理方法。
The present invention is the following intermittent aeration type activated sludge treatment method. (1) A liquid to be treated is supplied to an intermittent aeration tank, aeration is intermittently performed in the presence of activated sludge, and an aerobic process and an anaerobic process are repeated. In the aerobic process, BOD removal and nitrogen nitrification are performed.
In the anaerobic process, an amount of hydrogen donor necessary for denitrification is separately dispensed over a time period of 1/2 or more of the anaerobic process for denitrification, and the intermittent aeration activated sludge treatment method is characterized. (2) The liquid to be treated is supplied to the intermittent aeration tank, and intermittently aerated in the presence of activated sludge to repeat the aerobic process and the anaerobic process. In the aerobic process, BOD is removed and nitrogen nitrification is performed.
In the anaerobic process, a hydrogen donor is separately injected so that the average sludge load for 5 minutes is an addition rate of 0.6 kgBOD / kgVSS / d or less, and denitrification is performed, and the intermittent aeration type activated sludge treatment method is characterized.

【0009】本発明において、「(亜)硝酸」は硝酸お
よび/または亜硝酸を意味する。硝酸性窒素はNO3
N、亜硝酸性窒素はNO2−N、(亜)硝酸性窒素はN
2+3またはNOX−N、アンモニア性窒素はNH3
N、全窒素はT−Nで表す場合がある。タンパク質やア
ミノ酸等の有機性窒素はアンモニア性窒素と同様の挙動
を示すため、アンモニア性窒素またはNH3−Nは有機
性窒素を含む場合がある。また「水素供与体」は脱窒菌
が硝酸呼吸を行うための基質となるものであり、メタノ
ールが好ましいが他の低級アルコール、低級脂肪酸、そ
の他の有機物でもよい。
In the present invention, "(nitro) nitric acid" means nitric acid and / or nitrous acid. Nitrate nitrogen is NO 3
N, nitrite nitrogen is NO 2 -N, (nitrite) nitrogen is N
O 2 + 3 or NO X -N, ammoniacal nitrogen NH 3 -
N and total nitrogen may be represented by TN. Since organic nitrogen such as proteins and amino acids behaves similarly to ammonia nitrogen, ammonia nitrogen or NH 3 —N may contain organic nitrogen. The "hydrogen donor" serves as a substrate for the denitrifying bacteria to respire nitric acid, and methanol is preferable, but other lower alcohols, lower fatty acids, and other organic substances may be used.

【0010】本発明において処理の対象となる被処理液
は、窒素含有液である。窒素としてはアンモニア性また
は有機性窒素が含まれる。このような被処理液としては
下水、生活排水等のほか埋立浸出水などがあげられる。
埋立浸出水としてはゴミその他の有機物を埋立に用いた
場合の浸出水である。特に、窒素濃度に比べてBOD濃
度の低い廃水(BOD/Nが1.5以下)が処理対象と
して好適である。
The liquid to be treated in the present invention is a nitrogen-containing liquid. Nitrogen includes ammoniacal or organic nitrogen. Examples of the liquid to be treated include sewage, domestic wastewater, and landfill leachate.
Landfill leachate is leachate when garbage or other organic matter is used for landfill. In particular, wastewater having a BOD concentration lower than the nitrogen concentration (BOD / N is 1.5 or less) is suitable for treatment.

【0011】本発明の処理方法は間欠曝気式活性汚泥処
理方法であって、基本的な構成は従来のものと同様であ
り、1個または複数の間欠曝気槽において間欠的に曝気
を行うことにより好気工程と嫌気工程を繰り返し、これ
によりBODの除去と脱窒を行うように構成される。す
なわち間欠曝気槽に被処理液を連続または間欠的に供給
し、活性汚泥の存在下に間欠的に曝気を行って好気工程
と嫌気工程を繰り返すことにより、単一の曝気槽を用い
て、BODおよび窒素を除去する。
The treatment method of the present invention is an intermittent aeration type activated sludge treatment method, and the basic constitution is the same as the conventional one, and by intermittently performing aeration in one or a plurality of intermittent aeration tanks. The aerobic process and the anaerobic process are repeated to remove BOD and denitrify. That is, by supplying the liquid to be treated to the intermittent aeration tank continuously or intermittently, by repeating aerobic process and anaerobic process by performing aeration intermittently in the presence of activated sludge, using a single aeration tank, Remove BOD and nitrogen.

【0012】この方法は好気工程では曝気により活性汚
泥中のBOD分解菌の作用を利用してBODを分解する
とともに、硝化菌の作用により硝化を行ってアンモニア
性窒素および有機性窒素を(亜)硝酸性窒素に酸化し、
嫌気工程では曝気を停止して脱窒菌の作用により水素供
与体の存在下に(亜)硝酸性窒素を窒素ガスに還元して
脱窒を行う。嫌気工程では脱窒菌の栄養源として水素供
与体が必要であり、脱窒工程においても流入する被処理
液中のBOD成分が水素供与体として利用されるが、こ
れを補うためにメタノール等の他の水素供与体を添加し
て脱窒を行う。
In this method, in the aerobic step, BOD is decomposed by aeration by utilizing the action of BOD-decomposing bacteria in the activated sludge, and nitrification is performed by the action of nitrifying bacteria to remove ammoniacal nitrogen and organic nitrogen ) Oxidize to nitrate nitrogen,
In the anaerobic process, the aeration is stopped and the denitrification is performed by reducing (nitrite) nitrogen to nitrogen gas in the presence of a hydrogen donor by the action of denitrifying bacteria. In the anaerobic process, a hydrogen donor is required as a nutrient source for denitrifying bacteria, and the BOD component in the liquid to be treated that flows in is also used as a hydrogen donor in the denitrifying process. Denitrification is performed by adding the above hydrogen donor.

【0013】この場合、前述のように従来は嫌気工程開
始直後の約5分間以内に、その嫌気工程で必要な量の水
素供与体を集中的に添加しているが、本発明では上記の
必要量の水素供与体を嫌気工程の1/2以上、好ましく
は80%以上の時間にわたって注入して脱窒を行う。注
入は嫌気工程の開始と同時に行うのが好ましいが、停止
直後は溶存酸素が残留しているので数分例えば2〜5分
後に注入を開始してもよい。注入は上記の必要水素供与
体量を上記の注入時間にわたって平均化して注入するの
が好ましい。注入は連続的に行ってもよく、また間欠的
にまたはパルス状に行ってもよい。
In this case, as described above, conventionally, the amount of hydrogen donor necessary for the anaerobic process is intensively added within about 5 minutes immediately after the start of the anaerobic process. Denitrification is performed by injecting an amount of the hydrogen donor for a time of ½ or more, preferably 80% or more of the anaerobic step. The injection is preferably performed at the same time as the start of the anaerobic process, but the dissolved oxygen remains immediately after the stop, so the injection may be started after several minutes, for example, 2 to 5 minutes. The injection is preferably carried out by averaging the required hydrogen donor amount described above over the injection time. The infusion may be continuous, intermittent or pulsed.

【0014】1嫌気工程において注入する水素供与体の
総量は、直前の好気工程において得られる硝化液の
(亜)硝酸イオンおよび嫌気工程中に流入する被処理液
中の(亜)硝酸イオンにほぼ対応する量であり、原水窒
素濃度(NH4−N、NO2−N、NO3−N、有機態窒
素等)、原水BOD濃度、反応槽内、MLSS濃度等を
考慮して決定されるが、一般的には被処理液の窒素負荷
に対して3倍量、すなわち2〜4kgBOD/kgT−
Nである。本発明ではこの全水素供与体量を全注入時間
にわたって、平均化した注入速度で注入するのが好まし
い。この場合の注入速度は5分間の平均の汚泥負荷が
0.6kgBOD/kgVSS/d以下、好ましくは
0.4kgBOD/kgVSS/d以下となるような値
とする。
(1) The total amount of hydrogen donors injected in the anaerobic process depends on (nitrite) ions in the nitrification solution obtained in the immediately preceding aerobic process and (nitrite) ions in the liquid to be treated flowing into the anaerobic process. an amount substantially corresponding, raw nitrogen concentration (NH 4 -N, NO 2 -N , NO 3 -N, organic nitrogen, or the like), raw BOD concentration, reaction vessel, is determined in consideration of MLSS concentration, etc. However, in general, the amount is 3 times the nitrogen load of the liquid to be treated, that is, 2 to 4 kgBOD / kgT-.
N. In the present invention, it is preferable to inject this total hydrogen donor amount over the entire injection time at an average injection rate. In this case, the injection rate is such that the average sludge load for 5 minutes is 0.6 kgBOD / kgVSS / d or less, preferably 0.4 kgBOD / kgVSS / d or less.

【0015】上記の注入速度は次式により定義される。The above injection rate is defined by the following equation.

【数1】注入速度LH[kgBOD/kgVSS/d]
=Sh/(Xr×1/1000×Vr×Th×1/144
0) 但し、 Th=嫌気工程中の水素供与体注入時間[分] Sh=嫌気工程中の水素供与体注入量[kg as B
OD] Xr=反応槽中のMLVSS濃度[mg/L] Vr=反応槽容積[m3] なお、メタノールのBODは1.0[kgBOD/kg
メタノール]とすることができる。
[Formula 1] Injection rate L H [kgBOD / kgVSS / d]
= S h / (X r × 1/1000 × V r × T h × 1/144
0) where T h = injection time of hydrogen donor during anaerobic process [minutes] S h = injection amount of hydrogen donor during anaerobic process [kg as B
OD] X r = concentration of MLVSS in reaction tank [mg / L] V r = reaction tank volume [m 3 ] BOD of methanol is 1.0 [kg BOD / kg
Methanol].

【0016】間欠曝気槽としては攪拌機と曝気装置を備
えたものを用い、攪拌機で攪拌しながら曝気装置により
間欠的に曝気するのが好ましいが、曝気時には攪拌機を
停止してもよく、また、攪拌機と曝気装置を兼用し、攪
拌強度の差により好気工程と嫌気工程を区別してもよ
い。曝気装置としては散気式、液散式、気液混合式など
任意のものが使用できる。
As the intermittent aeration tank, a tank equipped with a stirrer and an aerator is used, and it is preferable to intermittently aerate with the aerator while stirring with the stirrer, but the stirrer may be stopped during the aerating, and the stirrer may also be used. The aerobic process may be distinguished from the anaerobic process depending on the difference in stirring strength. As the aerating device, any device such as an air diffusing type, a liquid diffusing type, and a gas-liquid mixing type can be used.

【0017】上記間欠曝気槽を用いた間欠曝気によりB
ODの除去と脱窒の基本的な処理を行うことができる
が、これに小容量の仕上硝化槽と仕上脱窒槽を設けて、
残留するBODおよび窒素を除去するのが好ましい。
By intermittent aeration using the above intermittent aeration tank, B
Basic processing of OD removal and denitrification can be performed, but a small volume finishing nitrification tank and finishing denitrification tank are installed in it.
It is preferred to remove residual BOD and nitrogen.

【0018】さらに仕上脱窒槽の後に固液分離手段を設
けることができる。固液分離手段としては沈澱槽、濾過
装置、膜分離装置等を採用することができる。膜分離装
置としては従来公知のものでよく、MF膜またはUF膜
を使用するのが好ましい。
Further, solid-liquid separation means can be provided after the finishing denitrification tank. A precipitation tank, a filtration device, a membrane separation device, or the like can be adopted as the solid-liquid separation means. A conventionally known membrane separator may be used, and it is preferable to use an MF membrane or a UF membrane.

【0019】間欠曝気槽における活性汚泥濃度はMLS
Sとして500〜30,000、好ましくは2,000
〜20,000、BOD槽負荷は5kg/m3/d以
下、好ましくは0.1〜3kg/m3/d、BOD汚泥
負荷は0.3kg/kg−VSS/d以下、好ましくは
0.15kg/kg−VSS/d以下、窒素負荷は1k
gN/m3/d以下、好ましくは0.05〜0.6kg
N/m3/dである。曝気時間すなわち好気工程は10
〜720分間、好ましくは20〜60分間、曝気停止時
間すなわち嫌気工程は10〜720分間、好ましくは2
0〜60分間とするのが好ましい。
The activated sludge concentration in the intermittent aeration tank is MLS.
S as 500 to 30,000, preferably 2,000
〜20,000, BOD tank load is 5 kg / m 3 / d or less, preferably 0.1-3 kg / m 3 / d, BOD sludge load is 0.3 kg / kg-VSS / d or less, preferably 0.15 kg / Kg-VSS / d or less, nitrogen load is 1k
gN / m 3 / d or less, preferably 0.05 to 0.6 kg
N / m 3 / d. Aeration time or aerobic process is 10
~ 720 minutes, preferably 20-60 minutes, aeration stop time or anaerobic step 10-720 minutes, preferably 2
It is preferably 0 to 60 minutes.

【0020】好気工程では曝気装置により曝気を行い、
被処理液中のBOD成分を分解するとともに、アンモニ
ア性および有機性窒素を(亜)硝酸性窒素に硝化する
が、曝気量および曝気時間はこれに必要な量および時間
とされる。嫌気工程では曝気を停止し、水素供与体を注
入しながら緩やかに攪拌することにより、嫌気状態に保
ち(亜)硝酸性窒素を窒素ガスに還元する。嫌気工程終
了後は曝気を再開して好気工程に移り、これを繰り返
す。
In the aerobic process, aeration is performed by an aeration device,
The BOD component in the liquid to be treated is decomposed, and the ammoniacal and organic nitrogen are nitrified to (nitrite) nitrogen, and the aeration amount and the aeration time are the amount and time required for this. In the anaerobic process, aeration is stopped and the hydrogen donor is injected to gently agitate the anaerobic state to reduce (nitro) nitrite nitrogen to nitrogen gas. After completion of the anaerobic process, aeration is restarted, and the process proceeds to the aerobic process, which is repeated.

【0021】この間被処理液は連続的に流入し、処理液
が連続的に流出するため、原水中のBOD成分や窒素分
ならびに硝化液の一部が未処理のまま流出する。このた
め仕上げ硝化槽で曝気を行ってBOD成分を分解すると
ともに、残留する窒素を硝化し、仕上げ脱窒槽で脱窒を
行うのが好ましい。このような処理を行った後固液分離
手段で固液分離することにより処理液を得、固形物の一
部は返送汚泥として間欠曝気槽に返送する。余剰汚泥
は、どこから引抜いてもよいが、間欠曝気槽から引抜く
と濃度が一定なので好ましい。
During this time, the liquid to be treated continuously flows in and the liquid to be treated continuously flows out, so that the BOD component and the nitrogen content in the raw water and a part of the nitrification liquid flow out without being treated. Therefore, it is preferable to perform aeration in the finish nitrification tank to decompose the BOD component, nitrify the remaining nitrogen, and denitrify in the finish denitrification tank. After performing such treatment, solid-liquid separation is performed by solid-liquid separation means to obtain a treatment liquid, and part of the solid matter is returned to the intermittent aeration tank as return sludge. The excess sludge may be extracted from any position, but it is preferable to extract it from the intermittent aeration tank because the concentration is constant.

【0022】本発明の嫌気工程では、水素供与体を短時
間に集中的に注入するのではなく、長時間にわたって分
注することにより水素供与体が低濃度の状態で脱窒を行
うため、硝酸性窒素(NO3−N)が亜硝酸性窒素(N
2−N)を経由することなく、直接窒素ガス(N2)に
還元されるような現象を呈する。
In the anaerobic process of the present invention, the hydrogen donor is not injected intensively in a short time, but is dispensed for a long time to denitrify the hydrogen donor in a low concentration state. Nitrogen (NO 3 -N) is nitrite nitrogen (N
It exhibits a phenomenon of being directly reduced to nitrogen gas (N 2 ) without passing through O 2 —N).

【0023】従来のように脱窒工程の初期に水素供与体
を集中的に投入し、水素供与体が高濃度の状態で脱窒を
行う方法では、硝酸性窒素を亜硝酸性窒素に還元する菌
が優勢となり、このため硝酸性窒素が亜硝酸性窒素に還
元される反応が優先して起こり、その速度は亜硝酸性窒
素か窒素ガスに還元される脱窒速度の10倍以上の0.
2kgN/kgVSS/d程度となることが分かった。
その結果、何らかの原因により硝酸性窒素が過剰となっ
た場合には、これが嫌気工程では亜硝酸性窒素に還元さ
れて反応槽内に残留し、これが次の好気工程では硝酸性
窒素に酸化されるため脱窒処理が急速に悪化し、より一
層の亜硝酸性窒素の残留を招き、処理水質が急激に悪化
する。
In the conventional method in which a hydrogen donor is intensively charged in the early stage of the denitrification process and denitrification is performed in a high concentration state of the hydrogen donor, nitrate nitrogen is reduced to nitrite nitrogen. The bacteria become predominant, so that the reaction in which nitrate nitrogen is reduced to nitrite nitrogen takes precedence, and its rate is 0.10 times or more the denitrification rate that is reduced to nitrite nitrogen or nitrogen gas.
It was found to be about 2 kgN / kgVSS / d.
As a result, if the nitrate nitrogen becomes excessive for some reason, it is reduced to nitrite nitrogen in the anaerobic process and remains in the reaction tank, and is oxidized to nitrate nitrogen in the next aerobic process. Therefore, the denitrification process rapidly deteriorates, further nitrite nitrogen is left, and the quality of treated water deteriorates sharply.

【0024】例えば汚泥濃度10,000mg/l a
s MLVSS、NH4−N槽負荷0.1kgN/m3
d、最大脱窒速度0.02kgN/kgVSS/d=
0.2kgN/m3/d、嫌気工程30分間、好気工程
30分間、1回の嫌気工程で投入されるメタノール1
2.6mg/lの場合についてみると、正常に処理され
ている場合には、嫌気工程開始時のNO3−N濃度は
4.2mg/lとなり、嫌気工程開始と同時にNO3
NからNO2−Nへの還元反応が始まり、約3分間でN
3−Nは全てNO2−Nに還元され、30分後にはNO
2−Nも全て還元されて脱窒反応が終了する。
For example, sludge concentration 10,000 mg / l a
s MLVSS, NH 4 -N tank load 0.1 kg N / m 3 /
d, maximum denitrification rate 0.02 kgN / kgVSS / d =
0.2 kgN / m 3 / d, anaerobic process for 30 minutes, aerobic process for 30 minutes, methanol 1 added in one anaerobic process
As for the case of 2.6 mg / l, if it is processed successfully, NO 3 -N concentration at the anaerobic process started 4.2 mg / l, and the anaerobic processes begin simultaneously with NO 3 -
The reduction reaction from N to NO 2 -N begins, and N takes about 3 minutes.
O 3 -N is all reduced to NO 2 -N, and after 30 minutes NO
All 2- N is also reduced and the denitrification reaction ends.

【0025】一方反応槽内にNO3−Nが20mg/l
残留している場合は、嫌気工程開始時のNO3−N濃度
が20mg/lとなり、嫌気工程開始と同時にNO3
NからNO2−Nへの還元反応が始まるが、約8分後、
11mg/lのNO3−NがNO 2−Nに変化した時点で
メタノールは消費し尽くされ、反応は停止する。ここで
生じた11mg/lのNO2−Nは好気工程で硝化反応
によりNO3−Nに酸化されるため、結局、脱窒反応は
ほとんど生じず、メタノールだけが消費されたことにな
る。この間も原水は流入を続け窒素負荷がかかるため、
次の嫌気工程時には約24mg/lのNO3−N濃度と
なり、時間と共にNO3−Nは蓄積していく。このため
前述のように、汚泥当たりの脱窒速度が0.02kgN
/kgVSS/d以下に低下する。
On the other hand, NO in the reaction tank3-N is 20 mg / l
If it remains, NO at the start of the anaerobic process3-N concentration
Becomes 20 mg / l, NO at the same time the anaerobic process starts3
N to NO2The reduction reaction to -N begins, but after about 8 minutes,
11 mg / l NO3-N is NO 2-When it changes to N
The methanol is exhausted and the reaction stops. here
11 mg / l NO produced2-N is nitrification reaction in aerobic process
Due to NO3Since it is oxidized to -N, the denitrification reaction is eventually
Almost nothing happened and only methanol was consumed.
It During this time, the raw water continues to flow in and is loaded with nitrogen,
About 24 mg / l NO during the next anaerobic process3-N concentration and
Becomes, NO with time3-N accumulates. For this reason
As mentioned above, the denitrification rate per sludge is 0.02kgN
/ KgVSS / d or lower.

【0026】これに対して本発明のように水素供与体を
少量ずつ供給し、水素供与体が低濃度の状態で脱窒を行
う反応では、見掛上NO3−NがNO2−Nを経由せずに
脱窒されるようになり、一時的な高負荷等でNO3−N
が残留した場合にも急激に処理水質が悪化することが無
く、NO3−Nの残留濃度を低くすることができる。こ
れにより脱窒特性が改善され、汚泥当たりの脱窒速度
は、0.1kgN/kgVSS/d以上となり、従来の
循環式硝化脱窒法等に比べて遜色のない反応速度が得ら
れる。
On the other hand, in the reaction in which the hydrogen donor is supplied little by little as in the present invention and the denitrification is carried out in a state where the hydrogen donor is in a low concentration, NO 3 —N apparently turns out NO 2 —N. It will be denitrified without going through, and NO 3 -N will be generated due to temporary high load.
The residual concentration of NO 3 —N can be lowered without the quality of the treated water being rapidly deteriorated even when the residual amount remains. As a result, the denitrification characteristics are improved, the denitrification rate per sludge becomes 0.1 kgN / kgVSS / d or more, and a reaction rate comparable to that of the conventional circulating nitrification denitrification method and the like can be obtained.

【0027】[0027]

【発明の効果】本発明によれば、間欠曝気式活性汚泥処
理方法における嫌気工程において、水素供与体を長時間
にわたって分注することにより、脱窒工程における脱窒
速度を高くし、小形の装置により効率よくBODおよび
窒素の除去を行うことができる。
According to the present invention, in the anaerobic process in the intermittent aeration type activated sludge treatment method, a hydrogen donor is dispensed over a long period of time to increase the denitrification rate in the denitrification process and to provide a compact apparatus. Can efficiently remove BOD and nitrogen.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は実施形態の間欠曝気式活性
汚泥の処理方法とする系統図である。図1において、1
は間欠曝気槽、2は仕上げ硝化槽、3は仕上げ脱窒槽、
4は固液分離槽、5は膜分離装置である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a method for treating intermittent aeration activated sludge according to the embodiment. In FIG. 1, 1
Is an intermittent aeration tank, 2 is a finishing nitrification tank, 3 is a finishing denitrification tank,
4 is a solid-liquid separation tank, and 5 is a membrane separation device.

【0029】上記の装置による処理方法は、被処理液を
被処理液路6から間欠曝気槽1に導入し、返送汚泥路7
から活性汚泥を返送し、必要に応じて薬注路8から硫
酸、塩酸等の酸または水酸化ナトリウム等のアルカリを
注入してpH7〜8前後に調整し、送気路9から空気を
送って曝気装置10から曝気して好気処理を行う。この
好気工程において活性汚泥中のBOD分解菌によりBO
D成分は分解され、硝化菌によりアンモニア性窒素およ
び有機性窒素が(亜)硝酸性窒素に酸化される。
In the treatment method using the above apparatus, the liquid to be treated is introduced from the liquid to be treated 6 into the intermittent aeration tank 1 and the sludge passage 7 is returned.
The activated sludge is returned from the tank, and if necessary, acid such as sulfuric acid, hydrochloric acid or the like or alkali such as sodium hydroxide is injected from the chemical injection path 8 to adjust the pH to around 7 to 8, and air is sent from the air supply path 9. Aeration is performed from the aeration device 10 to perform aerobic treatment. In this aerobic process, BO is decomposed by BOD-decomposing bacteria in activated sludge.
The D component is decomposed and nitrifying bacteria oxidize ammoniacal nitrogen and organic nitrogen to (nitrite) nitrogen.

【0030】その曝気を停止することにより嫌気工程に
移り、攪拌機11で緩やかに攪拌しながら薬注路8から
メタノール等の水素供与体を注入し、嫌気状態に保つこ
とにより、脱窒を行う。ここでは硝化液中の(亜)硝酸
性窒素は窒素ガスに還元される。この場合、嫌気工程の
1/2以上にわたって水素供与体を注入することによ
り、硝酸性窒素から亜硝酸性窒素を経由することなく窒
素ガスへの還元が行われるため、窒素負荷の変動がある
場合でも亜硝酸性窒素の残留による脱窒速度の低下はな
く、高脱窒速度で脱窒が行われる。
By stopping the aeration, the process moves to the anaerobic process, and while slowly stirring with the stirrer 11, a hydrogen donor such as methanol is injected from the chemical injection passage 8 and maintained in the anaerobic state for denitrification. Here, (nitro) nitrite nitrogen in the nitrification liquid is reduced to nitrogen gas. In this case, when the hydrogen donor is injected for more than half of the anaerobic process, the reduction from the nitrogen nitrate to the nitrogen gas is performed without passing through the nitrite nitrogen. However, the denitrification rate does not decrease due to residual nitrite nitrogen, and denitrification is performed at a high denitrification rate.

【0031】嫌気工程の終了により、送気路9から送気
を再開して曝気を行い好気工程に移る。以下これを繰り
返す。上記の操作中、常に被処理液は流入するため、そ
れに対応する量の脱窒処理液が系路12から仕上げ硝化
槽2に入る。ここで送気路13から送気して曝気装置1
4から曝気することにより、残留するBODは分解さ
れ、アンモニア性または有機性窒素は(亜)硝酸性窒素
に酸化され、仕上げ硝化が行われる。
Upon completion of the anaerobic process, air supply is restarted from the air supply passage 9 to perform aeration, and the process proceeds to the aerobic process. This is repeated below. Since the liquid to be treated always flows in during the above operation, the denitrification treatment liquid in an amount corresponding thereto enters the finishing nitrification tank 2 through the system passage 12. Here, air is supplied from the air supply passage 13 and the aeration device 1
By aeration from No. 4, residual BOD is decomposed, ammoniacal or organic nitrogen is oxidized to (nitrite) nitrogen, and final nitrification is performed.

【0032】仕上げ硝化槽2の硝化液は系路15から仕
上げ脱窒槽3に入り、ここで攪拌機16で緩やかに攪拌
しながら薬注路17からメタノール等の水素供与体を注
入して嫌気状態に保つことにより(亜)硝酸性窒素が窒
素ガスに還元され、仕上げ脱窒が行われる。高度な処理
を要しないときは、仕上げ硝化槽2および仕上げ脱窒槽
3を省略することができる。
The nitrification solution in the finishing nitrification tank 2 enters the finishing denitrification tank 3 from the system passage 15, and while stirring gently with the stirrer 16, a hydrogen donor such as methanol is injected from the chemical injection passage 17 into an anaerobic state. By keeping it, (nitro) nitrite nitrogen is reduced to nitrogen gas, and finish denitrification is performed. The finishing nitrification tank 2 and the finishing denitrification tank 3 can be omitted when a high-level treatment is not required.

【0033】脱窒処理液は系路18から固液分離槽4に
入り、ここで必要に応じて薬注路19から酸またはアル
カリを注入してpH7〜8に調整し、浸漬形の膜分離装
置5により固液分離が行われる。分離膜20としてはM
F膜またはUF膜が用いられ、透過液が処理液として処
理液路21から取出される。隔壁22を設け、膜分離装
置5の下側に曝気装置23を配置し、送気路24から空
気を送って曝気することにより気液の循環流を形成し、
分離膜20の目詰まりを防止する。濃縮液は一部を返送
汚泥路7から返送汚泥として間欠曝気槽1に返送する。
余剰汚泥は適宜、間欠曝気槽1から排泥路25を通して
排出する。
The denitrification treatment liquid enters the solid-liquid separation tank 4 through the system line 18, and if necessary, acid or alkali is injected from the chemical injection line 19 to adjust the pH to 7 to 8, and the immersion type membrane separation is performed. The device 5 performs solid-liquid separation. M as the separation membrane 20
An F membrane or a UF membrane is used, and the permeated liquid is taken out from the treatment liquid passage 21 as a treatment liquid. The partition wall 22 is provided, the aeration device 23 is arranged below the membrane separation device 5, and air is sent from the air supply passage 24 for aeration to form a gas-liquid circulation flow.
The separation membrane 20 is prevented from being clogged. A part of the concentrated liquid is returned to the intermittent aeration tank 1 as returning sludge from the returning sludge passage 7.
Excess sludge is appropriately discharged from the intermittent aeration tank 1 through the sludge passage 25.

【0034】[0034]

【実施例】以下、実施例について説明する。EXAMPLES Examples will be described below.

【0035】実施例1、比較例1 図1に示すフローで試験を行った。間欠曝気槽800 l
iter、仕上げ硝化槽67 liter、仕上げ脱窒槽133 l
iter、固液分離槽332 literである。試験原水は埋立
浸出水を使用し、800 liter/dで通水した。原水B
OD濃度は20mg/l以下、T−Nは硫酸アンモニウ
ムを適宜添加し、100〜250mg/lとした。NO
x−Nは0〜20mg/lであった。原水は炭酸ナトリ
ウム添加アルカリ凝集沈澱法で連続的にカルシウム除去
し、硫酸でpH6.0に中和したものを通水した。間欠
曝気槽、固液分離槽は7.2前後にpH調整した。
Example 1 and Comparative Example 1 Tests were conducted according to the flow shown in FIG. Intermittent aeration tank 800 l
iter, finishing nitrification tank 67 liter, finishing denitrification tank 133 l
Iter and solid-liquid separation tank 332 liter. Landfill leachate was used as test raw water, and water was passed at 800 liter / d. Raw water B
The OD concentration was 20 mg / l or less, and TN was adjusted to 100 to 250 mg / l by appropriately adding ammonium sulfate. NO
x- N was 0 to 20 mg / l. The raw water was continuously calcium-removed by a sodium carbonate-added alkaline coagulation precipitation method and neutralized to pH 6.0 with sulfuric acid to pass water. The pH of the intermittent aeration tank and the solid-liquid separation tank was adjusted to around 7.2.

【0036】間欠曝気は30分好気工程、30分嫌気工
程として運転した。但し曝気工程中もDOが2mg/l
を越えると曝気を一時停止するように自動制御した。脱
窒の水素供与体にはメタノールを用い、嫌気工程で添加
した。このとき、試験の前半では嫌気工程最初の5分間
でメタノールを添加し(比較例1)、試験の後半では嫌
気工程中連続添加(実施例1)とした。
The intermittent aeration was operated as a 30-minute aerobic process and a 30-minute anaerobic process. However, DO is 2 mg / l even during the aeration process
Automatic control was performed so that aeration was temporarily stopped when the temperature exceeded the limit. Methanol was used as a hydrogen donor for denitrification and added in an anaerobic process. At this time, in the first half of the test, methanol was added in the first 5 minutes of the anaerobic process (Comparative Example 1), and in the latter half of the test, continuous addition was performed during the anaerobic process (Example 1).

【0037】運転期間中のメタノール添加時間あたりの
メタノール汚泥負荷の変化を図2に示す。なお、実施例
1では、原水中のBODが添加したメタノールに比べて
1/20と非常に低かったため、脱窒反応における水素
供与体としての原水中のBODは無視した。また脱窒速
度の推移を図3に示す。ここで脱窒速度は、嫌気工程開
始と同時に5分ごとにサンプリングを行い、曝気槽汚泥
の上澄水中のNO2−N濃度、NO3−N濃度を測定し、
NO2−N濃度+NO3−N濃度(便宜上NOx−N濃度
又はNO2+3−N濃度と記す)の減少速度を脱窒速度と
したものである。さらに脱窒速度測定例を図4および図
5に示す。図4は比較例1のメタノール汚泥負荷が高い
場合の脱窒パターンであり、図2および図3の4/22
の状態である。図5は実施例1のメタノール汚泥負荷を
下げて2ヶ月以上経過した後の脱窒パターンであり、図
2および図3の8/14の状態である。
FIG. 2 shows changes in the methanol sludge load per methanol addition time during the operation period. In Example 1, the BOD in the raw water was 1/20, which was extremely low as compared with the added methanol, so the BOD in the raw water as the hydrogen donor in the denitrification reaction was ignored. The transition of denitrification rate is shown in FIG. Here, the denitrification rate was sampled every 5 minutes at the same time as the start of the anaerobic process, and the NO 2 -N concentration and NO 3 -N concentration in the supernatant water of the aeration tank sludge were measured,
The denitrification rate is the rate of decrease of the NO 2 -N concentration + NO 3 -N concentration (referred to as NO x -N concentration or NO 2 + 3- N concentration for convenience). Furthermore, an example of denitrification rate measurement is shown in FIGS. 4 and 5. FIG. 4 is a denitrification pattern of Comparative Example 1 when the methanol sludge load is high.
Is the state of. FIG. 5 is a denitrification pattern of Example 1 after the methanol sludge load was reduced and two months or more had passed, which is the state of 8/14 in FIGS. 2 and 3.

【0038】図3より明らかなように、比較例1のメタ
ノール汚泥負荷が0.8以上と高く、またメタノール添
加時間が嫌気工程の20%以下の時、汚泥当たり脱窒速
度は0.02〜0.05kgN/kgVSS/dと低い
値になっている。またこの期間、図4に示すようにNO
3−NがNO2−Nに還元される反応が優先した脱窒パタ
ーンになっていることが分かる。これに対し実施例1の
メタノール汚泥負荷を0.4以下とした以降(図の6月
以降)、汚泥当たり脱窒速度は急速に上昇し、0.1k
gN/kgVSS/dを超える値が得られている。この
ときの脱窒パターンは図5に示すように、NO2−Nへ
の還元はほとんど優先せず、NO3−NからNO2−Nを
経由することなく、窒素ガスへの還元が行われ脱窒され
ていることが分かる。
As is apparent from FIG. 3, when the methanol sludge load of Comparative Example 1 is as high as 0.8 or more and the methanol addition time is 20% or less of the anaerobic process, the denitrification rate per sludge is 0.02 to 0.02. The value is as low as 0.05 kgN / kgVSS / d. Also, during this period, as shown in FIG.
It can be seen that the reaction for reducing 3- N to NO 2 -N has a denitrification pattern in which the reaction has priority. On the other hand, after the methanol sludge load of Example 1 was set to 0.4 or less (from June in the figure), the denitrification rate per sludge rapidly increased to 0.1 k.
Values above gN / kgVSS / d have been obtained. In the denitrification pattern at this time, as shown in FIG. 5, the reduction to NO 2 -N has almost no priority, and the reduction to nitrogen gas is performed without passing from NO 3 -N through NO 2 -N. You can see that it has been denitrified.

【0039】以上の結果から、本発明を用いることによ
り、汚泥当たり脱窒速度は0.1kgN/kgVSS/
d以上の高い値となり、またNO2−Nへの還元が優先
しない良好な脱窒特性を得られることが明らかである。
From the above results, by using the present invention, the denitrification rate per sludge is 0.1 kgN / kgVSS /
It is clear that a high value of d or more and a good denitrification property in which reduction to NO 2 —N is not given priority can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例形態の間欠曝気式活性汚泥処理方法を示
す系統図である。
FIG. 1 is a system diagram showing an intermittent aeration type activated sludge treatment method according to an embodiment.

【図2】比較例1および実施例1におけるメタノール添
加時間あたりのメタノール汚泥負荷の変化を示すグラフ
である。
FIG. 2 is a graph showing changes in methanol sludge load per methanol addition time in Comparative Example 1 and Example 1.

【図3】比較例1および実施例1の脱窒速度の推移を示
すグラフである。
FIG. 3 is a graph showing changes in denitrification rates of Comparative Example 1 and Example 1.

【図4】比較例1の脱窒特性を示すグラフである。FIG. 4 is a graph showing denitrification characteristics of Comparative Example 1.

【図5】実施例1の脱窒特性を示すグラフである。5 is a graph showing denitrification characteristics of Example 1. FIG.

【符号の説明】[Explanation of symbols]

1 間欠曝気槽 2 仕上げ硝化槽 3 仕上げ膜窒槽 4 固液分離槽 5 膜分離装置 6 被処理液路 7 返送汚泥路 8、17、19 薬注路 9、13、24 送気路 10、14、23 曝気装置 11、16 攪拌機 21 処理液路 22 隔壁 25 排泥路 1 Intermittent aeration tank 2 Finishing nitrification tank 3 Finishing membrane nitrification tank 4 Solid-liquid separation tank 5 Membrane separation device 6 liquid path to be treated 7 Return sludge path 8, 17, 19 Drug injection route 9, 13, 24 Airway 10, 14, 23 Aeration device 11, 16 stirrer 21 Processing liquid path 22 partition 25 Drainage route

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 3/12 C02F 3/28 - 3/34 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C02F 3/12 C02F 3/28-3/34

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 間欠曝気槽に被処理液を供給し、活性汚
泥の存在下に間欠的に曝気を行って好気工程と嫌気工程
を繰り返し、 好気工程ではBODの除去と窒素の硝化を行い、 嫌気工程では脱窒に必要な量の水素供与体を別途、嫌気
工程の1/2以上の時間にわたって注入して脱窒を行う
ことを特徴とする間欠曝気式活性汚泥処理方法。
1. A liquid to be treated is supplied to an intermittent aeration tank, and aeration is carried out intermittently in the presence of activated sludge to repeat an aerobic process and an anaerobic process. In the aerobic process, BOD removal and nitrogen nitrification are performed. In the anaerobic process, an amount of hydrogen donor required for denitrification is separately injected for ½ or more times of the anaerobic process for denitrification to perform the intermittent aeration activated sludge treatment method.
【請求項2】 間欠曝気槽に被処理液を供給し、活性汚
泥の存在下に間欠的に曝気を行って好気工程と嫌気工程
を繰り返し、 好気工程ではBODの除去と窒素の硝化を行い、 嫌気工程では水素供与体を別途5分間の平均の汚泥負荷
が0.6kgBOD/kgVSS/d以下の添加速度と
なるように注入して脱窒することを特徴とする間欠曝気
式活性汚泥処理方法。
2. A liquid to be treated is supplied to an intermittent aeration tank, and aeration is carried out intermittently in the presence of activated sludge to repeat an aerobic process and an anaerobic process. In the aerobic process, BOD removal and nitrogen nitrification are carried out. In the anaerobic process, a hydrogen donor is separately injected so that the average sludge load for 5 minutes is an addition rate of 0.6 kgBOD / kgVSS / d or less for denitrification. Method.
JP01753298A 1998-01-29 1998-01-29 Intermittent aeration activated sludge treatment method Expired - Fee Related JP3376903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01753298A JP3376903B2 (en) 1998-01-29 1998-01-29 Intermittent aeration activated sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01753298A JP3376903B2 (en) 1998-01-29 1998-01-29 Intermittent aeration activated sludge treatment method

Publications (2)

Publication Number Publication Date
JPH11216493A JPH11216493A (en) 1999-08-10
JP3376903B2 true JP3376903B2 (en) 2003-02-17

Family

ID=11946545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01753298A Expired - Fee Related JP3376903B2 (en) 1998-01-29 1998-01-29 Intermittent aeration activated sludge treatment method

Country Status (1)

Country Link
JP (1) JP3376903B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101390748B1 (en) * 2012-05-14 2014-04-30 주식회사 에코니티 Sewage and wastewater treatment apparatus for removal of nitrogen and phosphorus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536740B2 (en) * 2007-02-01 2010-09-01 株式会社神鋼環境ソリューション Treatment method and treatment equipment for treated water
JP5325124B2 (en) * 2010-01-06 2013-10-23 オルガノ株式会社 Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water
JP2016077954A (en) * 2014-10-15 2016-05-16 新日鐵住金株式会社 Biological nitrogen removal method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101390748B1 (en) * 2012-05-14 2014-04-30 주식회사 에코니티 Sewage and wastewater treatment apparatus for removal of nitrogen and phosphorus

Also Published As

Publication number Publication date
JPH11216493A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
JP2803941B2 (en) Control method of intermittent aeration type activated sludge method
JP3150506B2 (en) Wastewater treatment method
JP4114128B2 (en) Waste water purification apparatus and method
JP3376903B2 (en) Intermittent aeration activated sludge treatment method
JP2716348B2 (en) Sewage return water treatment method
JP2970730B2 (en) Sewage treatment method
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JP3376905B2 (en) Intermittent aeration activated sludge treatment equipment
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JP3837766B2 (en) Nitrification denitrification method
JP3293218B2 (en) Biological nitrification denitrification treatment method
JP3807945B2 (en) Method and apparatus for treating organic wastewater
JP2001314892A (en) Method for controlling denitrification apparatus of wastewater
JP3782738B2 (en) Wastewater treatment method
JP4617572B2 (en) Nitrogen-containing wastewater treatment method
JP3276904B2 (en) Wastewater treatment method
JPH09141294A (en) Biological nitrogen removing method
JP3396959B2 (en) Nitrification method and apparatus
JP3808936B2 (en) Efficient denitrification method of coke oven gas liquid by hydrogen donor addition
JPH06182390A (en) Operation control method for batch type active sludge treatment
JPH05154495A (en) Method for nitrifying and denitrifying organic waste water
JP3870481B2 (en) Wastewater treatment equipment
JP3396985B2 (en) Wastewater nitrogen removal method and apparatus
JPH07275888A (en) Nitration accelerating method of activated sludge circulation modified method
JPH08117789A (en) Operation control of two-stage activated sludge circulation variation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131206

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees