JP2716348B2 - Sewage return water treatment method - Google Patents

Sewage return water treatment method

Info

Publication number
JP2716348B2
JP2716348B2 JP5238279A JP23827993A JP2716348B2 JP 2716348 B2 JP2716348 B2 JP 2716348B2 JP 5238279 A JP5238279 A JP 5238279A JP 23827993 A JP23827993 A JP 23827993A JP 2716348 B2 JP2716348 B2 JP 2716348B2
Authority
JP
Japan
Prior art keywords
sludge
tank
nitrification
denitrification
return water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5238279A
Other languages
Japanese (ja)
Other versions
JPH0788500A (en
Inventor
極 松原
正夫 曽布川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5238279A priority Critical patent/JP2716348B2/en
Publication of JPH0788500A publication Critical patent/JPH0788500A/en
Application granted granted Critical
Publication of JP2716348B2 publication Critical patent/JP2716348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、下水処理場、特に下水
汚泥のみを処理する汚泥処理場から発生する下水返流水
の処理方法に関するものである。なお下水返流水には高
濃度系として汚泥濃縮上澄水と脱水ろ液があり、低濃度
系として焼却炉洗水排水があるが、本発明では高濃度系
の下水返流水を対象とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating sewage return water generated from a sewage treatment plant, particularly a sludge treatment plant for treating only sewage sludge. The sewage return water has sludge-concentrated supernatant water and dehydrated filtrate as a high-concentration system, and there is incinerator washing water as a low-concentration system.In the present invention, the high-concentration system is intended for sewage return water. is there.

【0002】[0002]

【従来の技術】従来の下水処理場では、そこで発生する
下水汚泥を同一処理場内で処理していたので、汚泥処理
に伴って発生する下水返流水は流入する下水と一括処理
することが可能であった。ところが、最近になって下水
汚泥のみを処理する汚泥処理場が建設されるようにな
り、下水返流水のみを処理する設備が必要となってき
た。
2. Description of the Related Art In a conventional sewage treatment plant, sewage sludge generated in the sewage treatment plant is treated in the same sewage treatment plant. Therefore, sewage return water generated by sludge treatment can be collectively treated with inflowing sewage. there were. However, recently, a sludge treatment plant for treating only sewage sludge has been constructed, and equipment for treating only sewage return water has been required.

【0003】一般にこのような下水返流水は、図7に示
すように凝集沈殿処理→硝化液循環法による硝化脱窒に
より処理されている。硝化液循環法とは、後段の硝化液
の一部を前段の脱窒槽に循環させて脱窒処理する方法で
ある。この図7において、51は凝集沈殿槽、52は脱窒
槽、53は硝化槽、54は固液分離槽である。しかし下水返
流水中には溶解性物質が多いために前段の凝集沈殿処理
で有機物の多くを除去することができず、硝化液循環法
で除去する必要があるために硝化液循環法の処理設備が
大きくなる欠点があった。また、リン除去のために凝集
沈殿処理で加えたPAC、塩化第二鉄等の無機凝集剤に
よってアルカリ度が消費されるため、硝化液循環法によ
る硝化・脱窒処理に際して多量のアルカリ度の補給が必
要であった。更にリン除去に要する無機凝集剤も多量と
なり、処理コストを増大させる要因となっていた。
[0003] Generally, such sewage return water is treated by agglomeration / sedimentation treatment → nitrification denitrification by a nitrification liquid circulation method as shown in FIG. The nitrification liquid circulation method is a nitrification liquid
Is circulated to the denitrification tank in the previous stage to denitrify
is there. In FIG. 7, reference numeral 51 denotes a coagulation sedimentation tank, 52 denotes a denitrification tank, 53 denotes a nitrification tank, and 54 denotes a solid-liquid separation tank. However, since there are many soluble substances in the sewage return water, much of the organic matter cannot be removed by the coagulation and sedimentation treatment in the previous stage, and it is necessary to remove it by the nitrification liquid circulation method. Had the disadvantage of becoming larger. In addition, since alkalinity is consumed by the inorganic coagulant such as PAC and ferric chloride added in the coagulation sedimentation treatment for phosphorus removal, a large amount of alkalinity is supplied during the nitrification and denitrification treatment by the nitrification liquid circulation method. Was needed. Further, the amount of the inorganic flocculant required for removing phosphorus also becomes large, which is a factor of increasing the processing cost.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決して、硝化液循環法の処理設備をコンパ
クト化することができ、またその際のアルカリ度の補給
を削減することができ、更に無機凝集剤の使用量を減少
させて処理コストの引下げを図ることもできる下水返流
水の処理方法を提供するためになされたものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and makes it possible to make the processing equipment for the nitrification liquid circulation method compact and to reduce the supply of alkalinity at that time. The purpose of the present invention is to provide a method for treating sewage return water in which the amount of the inorganic coagulant used can be reduced and the treatment cost can be reduced.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明の下水返流水の処理方法は、下水返
流水と返送汚泥とを混合し、原水中の有機物、アンモニ
ア性窒素、リン化合物、SS分を汚泥に吸着・摂取させ
た後、固液分離して汚泥の一部を曝気して上記返送汚泥
とするとともに、上澄水は曝気した後にMg++を添加して
反応させたうえ高分子凝集剤を添加して凝集沈殿処理を
行い、その凝集上澄水を脱窒槽及び硝化槽に導き、硝化
液の一部を脱窒槽に循環させて脱窒処理する方法によっ
て硝化脱窒することを特徴とするものである。
Means for Solving the Problems A method for treating sewage return water according to the present invention, which has been made to solve the above-mentioned problems, comprises mixing sewage return water and return sludge, and removing organic matter, ammonia nitrogen, After the phosphorus compound and SS content are adsorbed and ingested by the sludge, solid-liquid separation is performed to aerate a part of the sludge to form the above-mentioned returned sludge, and the supernatant water is aerated and Mg ++ is added and reacted. In addition, a polymer coagulant is added to perform coagulation sedimentation treatment, and the coagulated supernatant water is guided to a denitrification tank and a nitrification tank, where the nitrification is performed.
Nitrification and denitrification are characterized in that a part of the solution is circulated through a denitrification tank to perform a denitrification treatment .

【0006】[0006]

【作用】本発明の下水返流水の処理方法は、凝集沈殿処
理の前段に原水中の有機物、アンモニア性窒素、リン化
合物、SS分を汚泥に吸着・摂取させる接触安定化処理
を行うので、凝集沈殿処理の際の凝集剤の削減を図るこ
とができ、併せて無機凝集剤により消費されるアルカリ
度を抑制することができる。また、接触安定化処理によ
って溶解性物質をできるだけ除去し、硝化液循環法の処
理設備のコンパクト化を図ることができる。更に接触安
定化処理の上澄水を曝気することにより脱炭酸によるpH
上昇を図り、硝化液循環法の際のアルカリ度補給を削減
することができる。なお、従来のPAC、塩化第二鉄等
の無機凝集剤に替えて、MgOまたはMg(OH)2 を使用すれ
ば、リンの他にアンモニア性窒素の一部も除去すること
ができると同時に、硝化脱窒の際のアルカリ度補給も兼
ねることができる。
According to the method for treating sewage return water of the present invention, a contact stabilization treatment is performed prior to the coagulation and sedimentation treatment in which organic matter, ammoniacal nitrogen, phosphorus compounds, and SS in raw water are adsorbed and taken into sludge. It is possible to reduce the amount of coagulant during the precipitation treatment, and to suppress the alkalinity consumed by the inorganic coagulant. Further, the soluble substances can be removed as much as possible by the contact stabilization treatment, and the treatment equipment for the nitrification liquid circulation method can be made compact. Furthermore, the pH of decarboxylation by contacting the supernatant water of contact stabilization treatment
It is possible to increase the amount and reduce the supply of alkalinity in the nitrification liquid circulation method. Incidentally, if MgO or Mg (OH) 2 is used instead of the conventional inorganic coagulant such as PAC and ferric chloride, a part of ammonia nitrogen can be removed in addition to phosphorus, It can also serve as alkalinity replenishment during nitrification denitrification.

【0007】[0007]

【実施例】以下に本発明を図1のフローシートに基づい
て更に詳細に説明する。本発明は、接触安定化処理→
曝気処理→Mg++による反応→凝集沈殿処理→硝
化脱窒処理の5つのプロセスから構成されるものであ
る。図1のフローシートにおいて、1は接触安定化槽、
2は第1沈殿槽、3は汚泥曝気槽であり、以上の装置に
よりの接触安定化処理が行われる。4は第1沈殿槽2
の上澄水を曝気する曝気槽であり、の曝気処理が行わ
れる。5は反応槽であり、のMg++による反応が行われ
る。6は凝集沈殿槽であり、の凝集沈殿処理が行われ
る。7は脱窒槽、8は硝化槽、9は第2沈殿槽であり、
以上の装置によりの硝化脱窒処理が行われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the flow sheet of FIG. The present invention provides a contact stabilization process →
It consists of five processes: aeration, reaction with Mg ++, coagulation and precipitation, and nitrification and denitrification. In the flow sheet of FIG. 1, 1 is a contact stabilization tank,
Reference numeral 2 denotes a first sedimentation tank, and reference numeral 3 denotes a sludge aeration tank, and the contact stabilization treatment is performed by the above apparatus. 4 is the first sedimentation tank 2
This is an aeration tank for aerating the supernatant water, in which aeration treatment is performed. Reference numeral 5 denotes a reaction tank in which a reaction using Mg ++ is performed. Reference numeral 6 denotes a coagulation sedimentation tank in which coagulation sedimentation treatment is performed. 7 is a denitrification tank, 8 is a nitrification tank, 9 is a second settling tank,
The nitrification and denitrification treatment is performed by the above apparatus.

【0008】まず下水返流水は、汚泥曝気槽3において
曝気され活性化された返送汚泥と混合されたうえ、接触
安定化槽1に入る。ここで下水返流水中の有機物(有機
酸を含む)、アンモニア性窒素、SSが汚泥に吸着され
る。またこの接触安定化槽1の槽内は曝気されているの
で、汚泥移送中にリンを吐き出した嫌気汚泥を大量に含
む下水返流水は嫌気→好気処理されることとなり、リン
が汚泥中に過剰摂取されて下水返流水中のリンの多くが
除去される。
First, the sewage return water is mixed with the return sludge aerated and activated in the sludge aeration tank 3 and then enters the contact stabilization tank 1. Here, organic matter (including organic acid), ammonia nitrogen, and SS in the sewage return water are adsorbed on the sludge. In addition, since the inside of the contact stabilization tank 1 is aerated, sewage return water containing a large amount of anaerobic sludge that has discharged phosphorus during sludge transfer is subjected to anaerobic → aerobic treatment, and phosphorus is contained in the sludge. The overdose removes much of the phosphorus in the sewage return water.

【0009】接触安定化槽1における曝気時間は図2に
示すように通常1〜3時間であり、1時間よりも短いと
リンの除去率が悪く、3時間以上曝気してもリンの除去
率は向上しない。また、接触安定化槽1から流出した下
水返流水は第1沈殿槽2で固液分離され、汚泥の一部は
余剰汚泥として引き抜かれるとともに、汚泥の残部は汚
泥曝気槽3で曝気されて返送汚泥となるが、この汚泥曝
気槽3の曝気時間は図3に示されるように4〜8時間と
する。この曝気時間が4時間よりも短いと、返送汚泥の
吸着量が減少してBOD除去率が低下する。なお、この
接触安定化処理工程においては有機酸除去によるpH上昇
も行われ、これによって後段の硝化脱窒プロセスのコン
パクト化と、MgO またはMg(OH)2 添加量の削減を図るこ
とができる。
As shown in FIG. 2, the aeration time in the contact stabilization tank 1 is usually 1 to 3 hours. If it is shorter than 1 hour, the phosphorus removal rate is poor. Does not improve. The sewage return water flowing out of the contact stabilization tank 1 is solid-liquid separated in the first settling tank 2, a part of the sludge is withdrawn as excess sludge, and the remaining sludge is aerated in the sludge aeration tank 3 and returned. Although it becomes sludge, the aeration time of the sludge aeration tank 3 is set to 4 to 8 hours as shown in FIG. If the aeration time is shorter than 4 hours, the adsorbed amount of the returned sludge decreases, and the BOD removal rate decreases. In this contact stabilization treatment step, the pH is increased by removing the organic acid, whereby the size of the subsequent nitrification and denitrification process can be reduced, and the amount of MgO or Mg (OH) 2 added can be reduced.

【0010】第1沈殿槽2の上澄水は次に曝気槽4に入
り、曝気される。これは接触安定化処理工程において上
昇したpHを曝気による脱炭酸によって更に向上させ、ア
ルカリ度添加量の削減を図るとともに、次工程のストラ
バイト生成に必要な8以上のpHとするためである。この
曝気時間はpHによって異なるが、図4に示すように10〜
60分とすればよい。
[0010] The supernatant water of the first settling tank 2 then enters the aeration tank 4 where it is aerated. This is because the pH increased in the contact stabilization treatment step is further improved by decarboxylation by aeration, thereby reducing the alkalinity addition amount and setting the pH to 8 or more necessary for the formation of struvite in the next step. The aeration time varies depending on the pH, but as shown in FIG.
It should be 60 minutes.

【0011】次に反応槽5においてMg++が添加され、1
〜5分間で次の反応が促進され、ストラバイトの結晶が
生成される。 Mg+++NH4 + +PO4 --- → NH4・Mg・PO4 添加されるMg++は通常MgSO4 、MgCl2 が使用されるが、
後段の硝化脱窒のためにはMgO またはMg(OH)2 の方がよ
い。これはアルカリ度補給と兼用できるためである。添
加量は図5に示すように、PO4 --- 1モルに対してMgSO
4 、MgCl2 では0.8 〜2モル、MgO またはMg(OH)2 では
2〜4モルがよい。また反応時間は図6に示すように、
MgSO4 、MgCl2 では1〜3分、MgO またはMg(OH)2 では
3〜5分がよい。このストラバイトの結晶の生成によ
り、下水返流水中のリンとアンモニア性窒素の一部が除
去される。また、ここでMg++だけではなく、リン除去と
アルカリ度補給を目的としてCa(OH)2 も併用できる。こ
れはMg++のうち、MgSO4 、MgCl2 といったアルカリ度の
ないMg++と併用するときに特に有効である。
Next, Mg ++ is added in the reaction tank 5 and
The next reaction is accelerated in ~ 5 minutes, and a struvite crystal is formed. Mg ++ + NH 4 + + PO 4 --- → NH 4・ Mg ・ PO 4 Mg ++ to be added is usually MgSO 4 , MgCl 2 ,
MgO or Mg (OH) 2 is better for nitrification denitrification in the latter stage. This is because it can also be used for alkalinity replenishment. The addition amount is as shown in FIG. 5, MgSO respect PO 4 --- 1 mole
4 , 0.8 to 2 mol of MgCl 2 and 2 to 4 mol of MgO or Mg (OH) 2 are preferred. The reaction time is as shown in FIG.
For MgSO 4 and MgCl 2 , 1 to 3 minutes is preferable, and for MgO or Mg (OH) 2 , 3 to 5 minutes is preferable. The formation of struvite crystals removes some of the phosphorus and ammoniacal nitrogen in the sewage return water. In addition, not only Mg ++ but also Ca (OH) 2 can be used together for the purpose of removing phosphorus and replenishing alkalinity. This of Mg ++, is particularly effective when used in combination with MgSO 4, no alkalinity such MgCl 2 Mg ++.

【0012】このようにしてストラバイトが生成した
ら、次に凝集沈殿槽6において高分子凝集剤が添加さ
れ、常法により凝集沈殿処理が行われる。ここで凝集剤
としてPACや塩化第2鉄のような無機凝集剤を使用し
ないのは、ここまでの接触安定化処理とストラバイト生
成によりリンのほとんどが除去または不溶化されている
ことと、無機凝集剤の添加がアルカリ度低下の原因とな
るためである。凝集沈殿したストラバイトは凝集汚泥と
して排出される。
After the struvite is thus generated, a polymer flocculant is added in the flocculation / sedimentation tank 6, and the flocculation / precipitation treatment is performed by a conventional method. Here, the reason why no inorganic coagulant such as PAC or ferric chloride is used as the coagulant is that most of phosphorus is removed or insolubilized by the contact stabilization treatment and the formation of strabite so far. This is because the addition of the agent causes a decrease in alkalinity. The coagulated and precipitated struvite is discharged as coagulated sludge.

【0013】凝集沈殿槽6の上澄水は、脱窒槽7と硝化
槽8による硝化液循環法によって有機物とSSが除去さ
れるとともに、硝化脱窒される。硝化液循環法は前記し
たように硝化液の一部を前段の脱窒槽に循環させて脱窒
処理する方法である。ここにおける脱窒槽7と硝化槽8
は通常の活性汚泥のみによる処理でもよいが、設置面積
を考慮すると担体を投入した流動床方式が好ましい。た
だ、凝集沈殿槽6の上澄水にはかなりの有機分が含まれ
ているので生物の発生量が多く、固定床による生物膜ろ
過方式では多量の逆洗水を必要とし、処理水の回収率が
低くなるので好ましくない。最後に第2沈殿槽9におい
て固液分離が行われ、硝化脱窒汚泥の一部は硝化脱窒返
送汚泥として凝集沈殿槽6の上澄水に添加され、残部は
系外に引き抜かれる。またその上澄水は処理水として排
出される。
The supernatant water of the coagulating sedimentation tank 6 is subjected to nitrification denitrification while removing organic substances and SS by a nitrification liquid circulation method using a denitrification tank 7 and a nitrification tank 8. The nitrification liquid circulation method is described above.
As described above, a part of the nitrification solution is circulated to the denitrification tank
It is a method of processing. Denitrification tank 7 and nitrification tank 8 here
May be a treatment only with ordinary activated sludge, but in consideration of the installation area, a fluidized bed system in which a carrier is charged is preferable. However, since the supernatant water of the coagulation sedimentation tank 6 contains a considerable amount of organic matter, a large amount of organisms is generated, and the biofilm filtration method using a fixed bed requires a large amount of backwash water, and the recovery rate of treated water Is undesirably low. Finally, solid-liquid separation is performed in the second sedimentation tank 9, a part of the nitrification denitrification sludge is added to the supernatant water of the coagulation sedimentation tank 6 as nitrification denitrification return sludge, and the rest is pulled out of the system. The supernatant water is discharged as treated water.

【0014】次に、本発明の方法と従来法により同一の
下水返流水を処理した結果を表1、表2に示す。処理量
は1m3/Hr である。
Next, the results of treating the same sewage return water by the method of the present invention and the conventional method are shown in Tables 1 and 2. The throughput is 1 m 3 / Hr.

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】以上に詳細に説明したように、本発明の
下水返流水の処理方法によれば、硝化液循環法の処理設
備をコンパクト化することができ、アルカリ度の補給を
削減することができ、無機凝集剤の使用量を減少させ処
理コストの引下げを図ることができる。よって本発明
は、高濃度系の下水返流水を省面積的にかつ経済的に処
理するに適した下水返流水の処理方法として、価値の大
きいものである。
As described in detail above, according to the method for treating sewage return water of the present invention, the treatment equipment for the nitrification liquid circulation method can be made compact and the supply of alkalinity can be reduced. Thus, the amount of the inorganic coagulant used can be reduced and the processing cost can be reduced. Therefore, the present invention is of great value as a method for treating sewage return water suitable for economically treating sewage return water in a high-concentration system in a small area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示すフローシートである。FIG. 1 is a flow sheet showing an embodiment of the present invention.

【図2】接触安定化槽の曝気時間とリン除去率との関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the aeration time of a contact stabilization tank and the phosphorus removal rate.

【図3】汚泥曝気槽の曝気時間とBOD除去率との関係
を示すグラフである。
FIG. 3 is a graph showing the relationship between the aeration time of a sludge aeration tank and the BOD removal rate.

【図4】曝気槽の曝気時間と曝気液pHとの関係を示すグ
ラフである。
FIG. 4 is a graph showing the relationship between the aeration time of the aeration tank and the pH of the aeration liquid.

【図5】Mg++添加率とT−P除去率との関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between the Mg ++ addition rate and the TP removal rate.

【図6】反応槽反応時間とT−P除去率との関係を示す
グラフである。
FIG. 6 is a graph showing a relationship between a reaction time of a reaction tank and a TP removal rate.

【図7】従来例のフローシートである。FIG. 7 is a conventional flow sheet.

【符号の説明】[Explanation of symbols]

1 接触安定化槽、2 第1沈殿槽、3 汚泥曝気槽、
4 曝気槽、5 反応槽、6 凝集沈殿槽、7 脱窒
槽、8 硝化槽、9 第2沈殿槽
1 Contact stabilization tank, 2 First settling tank, 3 Sludge aeration tank,
4 aeration tank, 5 reaction tank, 6 coagulation settling tank, 7 denitrification tank, 8 nitrification tank, 9 second settling tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/56 C02F 1/56 E 3/34 101 3/34 101A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Reference number in the agency FI Technical indication location C02F 1/56 C02F 1/56 E 3/34 101 3/34 101A

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下水返流水と返送汚泥とを混合し、原水
中の有機物、アンモニア性窒素、リン化合物、SS分を
汚泥に吸着・摂取させた後、固液分離して汚泥の一部を
曝気して上記返送汚泥とするとともに、上澄水は曝気し
た後にMg++を添加して反応させたうえ高分子凝集剤を添
加して凝集沈殿処理を行い、その凝集上澄水を脱窒槽及
び硝化槽に導き、硝化液の一部を脱窒槽に循環させて脱
窒処理する方法によって硝化脱窒することを特徴とする
下水返流水の処理方法。
Claims: 1. Sewage return water and return sludge are mixed, and organic matter, ammonia nitrogen, phosphorus compound, and SS in raw water are adsorbed and ingested into the sludge, and then solid-liquid separated to remove a part of the sludge. aeration to with the above return sludge, supernatant water is subjected to addition to coagulating sedimentation processing polymeric flocculant after having reacted with the addition of Mg ++ after aeration, aggregation thereof on supernatant water a denitrification tank及
And a part of the nitrification solution is circulated to the denitrification tank for denitrification.
A method for treating sewage return water, wherein nitrification and denitrification are performed by a method for nitrifying.
【請求項2】 添加するMg++がMgO またはMg(OH)2 であ
ることを特徴とする請求項1に記載の下水返流水の処理
方法。
2. The method for treating sewage return water according to claim 1, wherein Mg ++ to be added is MgO or Mg (OH) 2 .
JP5238279A 1993-09-24 1993-09-24 Sewage return water treatment method Expired - Fee Related JP2716348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5238279A JP2716348B2 (en) 1993-09-24 1993-09-24 Sewage return water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5238279A JP2716348B2 (en) 1993-09-24 1993-09-24 Sewage return water treatment method

Publications (2)

Publication Number Publication Date
JPH0788500A JPH0788500A (en) 1995-04-04
JP2716348B2 true JP2716348B2 (en) 1998-02-18

Family

ID=17027831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5238279A Expired - Fee Related JP2716348B2 (en) 1993-09-24 1993-09-24 Sewage return water treatment method

Country Status (1)

Country Link
JP (1) JP2716348B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107032575A (en) * 2017-03-29 2017-08-11 中国科学院生态环境研究中心 Method for sludge treatment

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100329597B1 (en) * 1999-08-07 2002-03-21 고병석, 고병산 Composite disposition method for waste water of high density
JP4587559B2 (en) * 2000-12-06 2010-11-24 ユニチカ株式会社 Method and apparatus for removing nitrogen from sludge return water
KR20030033474A (en) * 2001-10-23 2003-05-01 대한민국(충북대학교총장) Purifying process and apparatus for waste-water
KR100453484B1 (en) * 2002-09-30 2004-10-15 (주)이엔바이오21 Method of wasetwater treatment
JP2007007620A (en) * 2005-07-04 2007-01-18 Fuji Electric Holdings Co Ltd Method for treating nitrogen-containing liquid waste
US7604740B2 (en) * 2008-02-01 2009-10-20 Clean Water Services Waste activated sludge stripping to remove internal phosphorus
JP5186429B2 (en) * 2009-04-27 2013-04-17 水ing株式会社 Method and apparatus for denitrification treatment of digested sludge separation liquid
US10604433B2 (en) 2017-10-24 2020-03-31 Clean Water Services Emancipative waste activated sludge stripping to remove internal phosphorus (“eWASSTRIP”)
CN110498537A (en) * 2019-09-03 2019-11-26 瓮福(集团)有限责任公司 A kind of technique that the phosphorus fluorine sewage containing ammonia nitrogen efficiently removes ammonia nitrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107032575A (en) * 2017-03-29 2017-08-11 中国科学院生态环境研究中心 Method for sludge treatment

Also Published As

Publication number Publication date
JPH0788500A (en) 1995-04-04

Similar Documents

Publication Publication Date Title
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
JP3473328B2 (en) Biological dephosphorization equipment
JP2716348B2 (en) Sewage return water treatment method
JP2001276851A (en) Drain treatment equipment
JPH09108690A (en) Treatment of phosphorus containing sewage
JPH1157773A (en) Biological dephosphorizing device
JP4608069B2 (en) Wastewater treatment equipment
JP3799557B2 (en) Wastewater treatment method
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JP3382766B2 (en) Method and apparatus for treating human wastewater
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JP3449862B2 (en) Advanced purification method for organic wastewater
JP3955478B2 (en) Nitrogen and phosphorus-containing wastewater treatment method and apparatus
JPH07124571A (en) Treatment process for organic drainage
JPH0975992A (en) Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
KR100470350B1 (en) Method for disposing of livestock waste water
JP4390959B2 (en) Wastewater treatment equipment
KR100314745B1 (en) Nitrogenous Wastwater Treatment Methods
JPH08318293A (en) Treatment of waste water
KR100503632B1 (en) Method and apparatus for treating metal finishing waste which contains high nitrogen and phosphorus
JPH0994596A (en) Removal and recovery of phosphorus from organic sewage
JPH1015591A (en) High-degree treatment of waste water
JP3327979B2 (en) Septic tank sludge treatment method and equipment
JPH09141294A (en) Biological nitrogen removing method
JP3870481B2 (en) Wastewater treatment equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971021

LAPS Cancellation because of no payment of annual fees