JP3327979B2 - Septic tank sludge treatment method and equipment - Google Patents

Septic tank sludge treatment method and equipment

Info

Publication number
JP3327979B2
JP3327979B2 JP06598693A JP6598693A JP3327979B2 JP 3327979 B2 JP3327979 B2 JP 3327979B2 JP 06598693 A JP06598693 A JP 06598693A JP 6598693 A JP6598693 A JP 6598693A JP 3327979 B2 JP3327979 B2 JP 3327979B2
Authority
JP
Japan
Prior art keywords
sludge
tank
denitrification
stirring
septic tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06598693A
Other languages
Japanese (ja)
Other versions
JPH06254598A (en
Inventor
隆幸 鈴木
光市 桐山
伸二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP06598693A priority Critical patent/JP3327979B2/en
Publication of JPH06254598A publication Critical patent/JPH06254598A/en
Application granted granted Critical
Publication of JP3327979B2 publication Critical patent/JP3327979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、浄化槽汚泥の処理法に
係り、特に、浄化槽汚泥を生物学的に脱窒素、脱リン処
理することのできる生物処理法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating septic tank sludge, and more particularly to a biological treatment method and apparatus capable of biologically denitrifying and dephosphorizing septic tank sludge.

【0002】[0002]

【従来の技術】現在、し尿処理施設構造指針解説−19
88年度版−に掲載されている浄化槽汚泥専用処理方式
の処理対象はBODとSSであり、窒素、リンは除去対
象外である。そこで、発明者等はBOD、SSに加えて
窒素、リンも生物学的の処理できる方法について検討し
ていた。当初、上記浄化槽汚泥をし尿処理施設構造指針
解説にしたがって浄化槽汚泥を前処理したのちに、浄化
槽汚泥の脱窒、脱リンを試みたが、浄化槽汚泥のBOD
/N及びBOD/P比が低下してしまい十分に脱窒、脱
リンを行うことができなかった。
2. Description of the Related Art Currently, a guideline for the construction guideline of human waste treatment facilities-19
The treatment target of the septic tank sludge treatment method described in the 1988 version is BOD and SS, and nitrogen and phosphorus are not excluded. Therefore, the inventors have been studying a method capable of biologically treating nitrogen and phosphorus in addition to BOD and SS. Initially, after treating the septic tank sludge and pretreating the septic tank sludge in accordance with the explanation of the urine treatment facility structure guidelines, denitrification and dephosphorization of the septic tank sludge were attempted.
/ N and BOD / P ratio decreased, and it was not possible to sufficiently perform denitrification and dephosphorization.

【0003】[0003]

【発明が解決しようとする課題】そこで、本発明は、B
OD/N及びBOD/P比を低下させずに、十分に脱
窒、脱リン処理を行うことのでき浄化槽汚泥の生物学
的処理方法と装置を提供することを課題とする。
Therefore, the present invention relates to
Without reducing the OD / N and BOD / P ratios, sufficiently denitrified, and to provide a device with a biological treatment method of septic tank sludge that can of doing dephosphorization process.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、來雑物除去工程を経由した浄化槽汚泥
を、貯留工程で、毎分の空気量が0.01〜0.04m
/m (貯留槽面積)の空気攪拌、機械攪拌、水流攪
拌あるいは貯留工程の気相部のガスを用いた内部ガス循
環式攪拌により攪拌した後、該汚泥中のコロイダルなS
S性のBOD成分を分離水側に移行して、重力式沈殿槽
を用いて無薬注で該浄化槽汚泥中の固形物を沈殿分離
し、該沈殿槽分離水を生物学的硝化脱窒工程又は生物学
的脱窒・脱リン工程で処理し、前記沈殿槽沈殿固形物と
該硝化脱窒工程又は生物学的脱窒・脱リン工程の余剰活
性汚泥を汚泥処理工程で処理することを特徴とする浄化
槽汚泥の生物学的処理法としたものである。また、本発
明では、浄化槽汚泥から夾雑物を除去する夾雑物除去装
置と、夾雑物を除去した汚泥を貯留する毎分の空気量が
0.01〜0.04m /m (貯留槽面積)の空気攪
拌、機械攪拌、水流攪拌あるいは貯留工程の気相部のガ
スを用いた内部ガス循環式攪拌による攪拌手段を有する
貯留槽と、該貯留槽からのコロイダルなSS性のBOD
成分を分離水側に移行した汚泥を無薬注で固形物を沈殿
分離する重力式沈殿槽と、該沈殿槽の分離水を生物学的
に処理する硝化脱窒装置又は脱窒・脱リン装置と、前記
沈殿槽の固形物及び硝化脱窒装置又は脱窒・脱リン装置
の余剰活性汚泥を処理する汚泥処理装置とを有すること
を特徴とする浄化槽汚泥の生物学的処理装置としたもの
である。
In order to solve the above problems, according to the present invention, the septic tank sludge that has passed through the foreign matter removal step is supplied with an air volume of 0.01 to 0.04 m / min in the storage step.
3 / m 2 (storage tank area) air stirring, mechanical stirring, water flow stirring
Internal gas circulation using gas in the gas phase during the stirring or storage process
After stirring by cyclic stirring, colloidal S in the sludge
The S-soluble BOD component is transferred to the separation water side , and solid matter in the septic tank sludge is sedimented and separated without chemical using a gravity sedimentation tank, and the sedimentation tank separated water is subjected to a biological nitrification denitrification step. Alternatively, the sludge is treated in a biological denitrification / dephosphorization step, and the activated solid sludge in the settling tank and the excess activated sludge in the nitrification / denitrification step or biological denitrification / phosphorus removal step are treated in a sludge treatment step. It is a biological treatment method for septic tank sludge. Further, in the present invention, the contaminant removal device for removing contaminants from the septic tank sludge, and the amount of air per minute for storing the sludge from which contaminants have been removed are reduced.
0.01 to 0.04 m 3 / m 2 (reservoir area)
Gas in the gas phase during stirring, mechanical stirring, water stirring or the storage process
With stirring means by internal gas circulation type stirring using
Storage tank and colloidal SS BOD from the storage tank
A gravity sedimentation tank for sedimenting and separating solids without chemical injection of sludge whose components have been transferred to the separation water side, and a nitrification denitrification apparatus or a denitrification / phosphorus removal apparatus for biologically treating the separated water in the sedimentation tank And a sludge treatment apparatus for treating a solid matter in the settling tank and an excess activated sludge of a nitrification denitrification apparatus or a denitrification / phosphorus removal apparatus, which is a biological treatment apparatus for a septic tank sludge. is there.

【0005】次に、本発明の実施態様を図面を用いて詳
細に説明する。図1は、本発明の処理方法の一実施態様
を示す工程図である。図1において、浄化槽汚泥1は予
めスクリーン2で粗大な夾雑物15が除去され、除渣浄
化槽汚泥3として、貯留槽4に貯留されたのちに、薬品
による凝集処理を受けずに沈殿槽5で固液分離され、分
離水6は返送汚泥7、循環硝化液8とともに嫌気的条件
下にある第1脱窒槽9に流入する。第1脱窒槽9では循
環硝化液8中の硝酸は、BOD源を還元剤として脱窒菌
によって窒素ガスに還元分解(脱窒)される。
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a process chart showing one embodiment of the processing method of the present invention. In FIG. 1, the sludge 1 in the septic tank 1 is removed from coarse impurities 15 by the screen 2 in advance, and is stored in the storage tank 4 as the sludge 3 for removing the sludge. The separated water 6 is solid-liquid separated and flows into the first denitrification tank 9 under anaerobic conditions together with the returned sludge 7 and the circulating nitrification liquid 8. In the first denitrification tank 9, nitric acid in the circulating nitrification liquid 8 is reduced and decomposed (denitrified) into nitrogen gas by denitrifying bacteria using a BOD source as a reducing agent.

【0006】次に、第1脱窒槽9の活性汚泥混合液は好
気的条件下にある硝化槽10に導入され、液中のアンモ
ニアが硝化菌によって硝酸に酸化される。硝化槽10か
らの流出液は、大部分は第1脱窒槽9に循環され、残部
は嫌気的条件下にある第2脱窒槽11に流入して流入液
中の硝酸が除去されのちに、再曝気槽12を経由して固
液分離工程13に流入する。固液分離工程13で分離さ
れた活性汚泥の大部分が返送汚泥7として第1脱窒槽9
に返送され、残部は余剰汚泥14として排出される。固
液分離工程13の分離水18は処理水として放流される
か、あるいはさらに凝集処理、活性炭吸着処理等の高度
の処理が行われる。
Next, the activated sludge mixture in the first denitrification tank 9 is introduced into a nitrification tank 10 under aerobic conditions, and the ammonia in the liquid is oxidized to nitric acid by nitrifying bacteria. Most of the effluent from the nitrification tank 10 is circulated to the first denitrification tank 9, and the remainder flows into the second denitrification tank 11 under anaerobic conditions to remove nitric acid in the inflow liquid, and then recycle. It flows into the solid-liquid separation step 13 via the aeration tank 12. Most of the activated sludge separated in the solid-liquid separation step 13 is returned to the first denitrification tank 9 as sludge 7.
And the remainder is discharged as surplus sludge 14. The separated water 18 in the solid-liquid separation step 13 is discharged as treated water, or further subjected to advanced treatment such as coagulation treatment and activated carbon adsorption treatment.

【0007】余剰汚泥14、夾雑物15及び前記沈殿槽
5で分離された固形物16は脱水処理が行われる。貯留
槽4は、浄化槽汚泥の流入量の変動を飲み込んで平均化
し、また土、日曜日の前処理操作の休止期間中にも、常
時一定量を処理装置に送るために浄化槽汚泥を貯留する
ものである。さらに、貯留槽4は、例えばSS濃度の著
しく変動する浄化槽汚泥の性状を平均化するという重要
な役割を果たすものであるが、SSの沈降あるいはSS
の浮上によるスカムの形成を防止し槽内4全体の浄化槽
汚泥の性状を均一化するために攪拌が行われている。
The excess sludge 14, the contaminants 15 and the solids 16 separated in the sedimentation tank 5 are subjected to a dehydration treatment. The storage tank 4 swallows and averages fluctuations in the inflow amount of the septic tank sludge, and stores the septic tank sludge in order to constantly send a constant amount to the treatment device even during the suspension period of the pretreatment operation on Saturday and Sunday. is there. Further, the storage tank 4 plays an important role of averaging the properties of the septic tank sludge in which the SS concentration fluctuates remarkably.
Stirring is performed to prevent the formation of scum due to the floating of the water and to make the properties of the septic tank sludge uniform throughout the tank 4.

【0008】しかしながら、浄化槽汚泥は大量の空気を
用いた空気攪拌を行うと脱窒に必要なBOD源が消失す
る。これは、現在搬入される浄化槽汚泥の大部分が、本
来浄化槽で生活廃水の好気処理を行っていた活性汚泥で
あるため、十分な空気を送風することによって貯留槽4
でBODの活性汚泥処理が行われてしまうためである。
したがって、空気攪拌を採用する場合には、0.01〜
0.04m3 (空気)/m2 (貯留槽面積)、分程度の
風量で攪拌しなければならない。また、望ましい攪拌方
法として、機械攪拌、水流攪拌あるいは貯留槽4の気相
部のガスを用いた内部ガス循環式攪拌が推奨される。
[0008] However, if the septic tank sludge is stirred with air using a large amount of air, the BOD source necessary for denitrification disappears. This is because most of the septic tank sludge currently carried in is activated sludge which was originally subjected to aerobic treatment of domestic wastewater in the septic tank.
This causes activated sludge treatment of the BOD.
Therefore, when air agitation is adopted, 0.01 to
It must be stirred at a flow rate of about 0.04 m 3 (air) / m 2 (reservoir area) and about a minute. Further, as a desirable stirring method, mechanical stirring, water flow stirring, or internal gas circulation type stirring using gas in the gas phase portion of the storage tank 4 is recommended.

【0009】除渣浄化槽汚泥3の固液分離に沈殿槽5が
必要な理由は、生物学的に脱窒、脱リンを行うためには
BOD/Nの値が3以上、BOD/P値が25以上必要
であり、この沈殿槽による固液分離が、除渣浄化槽汚泥
3のBOD成分であり脱窒のために必要なコロイダル
(微小)のSS性BODを、分離水側に移行でき、かつ
浄化槽汚泥中の有機性固形物の大部分を沈殿分離できる
からである。従来の除渣浄化槽汚泥3の固液分離法であ
る凝集剤注入法は、前記のコロイダルなSSをも分離し
てしまうため、分離水のBOD/Nの値が低下し、脱窒
を良好に行うことができなくなる。また、遠心分離法な
どによる機械的、強制的に固液分離する方法では、無薬
注でも前記コロイダルなSSを分離してしまう。沈殿槽
5の設置位置はスクリーン2と貯留槽4の間でも良い。
The reason why the sedimentation tank 5 is necessary for the solid-liquid separation of the sludge 3 in the decontamination / purification tank is that the BOD / N value is 3 or more and the BOD / P value is required for biological denitrification and dephosphorization. 25 or more, and the solid-liquid separation by the sedimentation tank can transfer the colloidal (small) SS BOD, which is the BOD component of the sludge removal tank 3 required for denitrification, to the separation water side, and This is because most of the organic solids in the septic tank sludge can be separated by sedimentation. The coagulant injection method, which is a conventional solid-liquid separation method for the sludge in the septic tank, also separates the above-mentioned colloidal SS, so that the value of BOD / N of the separated water is reduced and the denitrification is improved. You will not be able to do it. Further, in the method of mechanically and forcibly separating solid and liquid by a centrifugal separation method or the like, the colloidal SS is separated even without chemical injection. The installation position of the sedimentation tank 5 may be between the screen 2 and the storage tank 4.

【0010】次に、本発明の他の実施態様を示す貯留槽
4の前段に沈殿槽5を配備した工程図である図2を参照
しつつ説明する。浄化槽汚泥1は予めスクリーン2で粗
大な夾雑物15が除去され、薬品による凝集処理を受け
ずに沈殿槽5で固液分離される。分離水6は貯留槽4に
貯留されたのちに、返送汚泥7、循環硝化液8とともに
嫌気的条件下にある第1脱窒槽9に流入し、図1の実施
態様と同様の処理が行われる。
Next, another embodiment of the present invention will be described with reference to FIG. 2, which is a process drawing in which a sedimentation tank 5 is provided in a stage preceding a storage tank 4 in another embodiment. Septic tank sludge 1 is screened beforehand to remove coarse impurities 15, and is subjected to solid-liquid separation in sedimentation tank 5 without undergoing coagulation treatment with chemicals. After being stored in the storage tank 4, the separated water 6 flows into the first denitrification tank 9 under anaerobic conditions together with the return sludge 7 and the circulating nitrification liquid 8, and the same treatment as in the embodiment of FIG. 1 is performed. .

【0011】浄化槽汚泥1をスクリーン2で分離した直
後に沈殿分離する方法は、スクリーン2の運転が通常昼
間のみ行われるため、沈殿槽5にかかる水量負荷が昼間
だけに集中するので、図1の実施態様の沈殿槽5よりも
大きな水面積をもつ沈殿槽が必要である。しかしなが
ら、貯留槽4に貯留される沈殿分離水6は、図1の実施
態様とは異なり、沈降速度の大きい粗大なSSが除去さ
れているため少ない空気量あるいは攪拌エネルギーで攪
拌できるため、貯留槽におけるBOD濃度の減少が防止
され、しかも攪拌も容易となる。
In the method of sedimentation and separation immediately after the septic tank sludge 1 is separated by the screen 2, since the operation of the screen 2 is usually performed only in the daytime, the water load applied to the sedimentation tank 5 is concentrated only in the daytime. A sedimentation tank having a larger water area than the sedimentation tank 5 of the embodiment is required. However, unlike the embodiment of FIG. 1, the sediment separation water 6 stored in the storage tank 4 can be agitated with a small amount of air or stirring energy because coarse SS having a large sedimentation speed has been removed. In this case, the BOD concentration is prevented from decreasing, and the stirring becomes easy.

【0012】次に、本発明の生物学的脱窒に加えて生物
脱リンを行う他の実施態様について、図3の工程図を参
照しつつ説明する。浄化槽汚泥1は予めスクリーン2で
粗大な夾雑物15が除去され、除渣浄化槽汚泥3とし
て、貯留槽に貯留されたのちに、沈殿槽5で固液分離さ
れる。分離水6は返送汚泥7とともに嫌気的条件下にあ
る嫌気槽17に流入する。該槽17においては活性汚泥
からリンが放出するため、液中のリン濃度が上昇する
が、除渣浄化槽汚泥中3のBOD源は活性汚泥に吸収さ
れるので、BOD濃度は低下する。同槽17で汚泥から
リンが放出されて活性汚泥に脱リン活性が発現されるた
めには、除渣浄化槽汚泥3中にBOD源が十分に存在
し、BOD/Pの値が一定以上でなければならない。
Next, another embodiment of the present invention for carrying out biological dephosphorization in addition to biological denitrification will be described with reference to the process chart of FIG. Septic tank sludge 1 is removed from coarse impurities 15 in advance by screen 2, stored as sludge removal tank sludge 3 in a storage tank, and then subjected to solid-liquid separation in sedimentation tank 5. The separated water 6 flows together with the returned sludge 7 into an anaerobic tank 17 under anaerobic conditions. In the tank 17, the phosphorus is released from the activated sludge, so that the phosphorus concentration in the liquid rises. However, the BOD source in the sludge of the clarification tank is absorbed by the activated sludge, so that the BOD concentration decreases. In order for phosphorus to be released from the sludge in the same tank 17 and dephosphorization activity to be expressed in the activated sludge, the BOD source must be sufficiently present in the sludge 3 in the clarification tank, and the value of BOD / P must be not less than a certain value. Must.

【0013】嫌気槽17の活性汚泥混合液は、次に循環
硝化液8とともに嫌気的条件下にある第1脱窒槽9に流
入し、循環硝化液8中の硝酸はBOD源を還元剤として
脱窒菌によって窒素ガスに還元分解(脱窒)される。次
に、第1脱窒槽9の活性汚泥混合液は好気的条件下にあ
る硝化槽10に導入され、液中のアンモニアは硝化菌に
よって硝酸に酸化され、硝化槽10からの流出液の大部
分は第1脱窒槽9に循環され、残部は嫌気的条件下にあ
る第2脱窒槽11に流入して、流入液中の硝酸が除去さ
れたのちに、再曝気槽12を経由して固液分離工程13
に流入する。分離された活性汚泥の大部分が返送汚泥7
として第1脱窒槽9に返送され、残部は余剰汚泥14と
して排出される。固液分離工程13の分離水18は処理
水として放流されるか、あるいはさらに凝集処理、活性
炭吸着処理等の高度の処理が行われる。
The activated sludge mixture in the anaerobic tank 17 then flows together with the circulating nitrification liquid 8 into the first denitrification tank 9 under anaerobic conditions, and the nitric acid in the circulating nitrification liquid 8 is removed using a BOD source as a reducing agent. It is reductively decomposed (denitrified) into nitrogen gas by nitrifying bacteria. Next, the activated sludge mixed liquid in the first denitrification tank 9 is introduced into a nitrification tank 10 under aerobic conditions, and ammonia in the liquid is oxidized to nitric acid by nitrifying bacteria, and the amount of effluent from the nitrification tank 10 is increased. The part is circulated to the first denitrification tank 9, and the remainder flows into the second denitrification tank 11 under anaerobic conditions, and after nitric acid in the influent is removed, it is solidified via the re-aeration tank 12. Liquid separation step 13
Flows into. Most of the separated activated sludge is returned sludge 7
And returned to the first denitrification tank 9, and the remainder is discharged as surplus sludge 14. The separated water 18 in the solid-liquid separation step 13 is discharged as treated water, or further subjected to advanced treatment such as coagulation treatment and activated carbon adsorption treatment.

【0014】[0014]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。 実施例1 この実施例は、図1の工程図に従って行った処理例であ
る。実施条件を下記に示す。槽容積は有効容積を示す。 除渣浄化槽汚泥処理量: 10m3 /日 貯留槽 : 30m3 (4m高さ) 攪拌空気量 : 4.8m3 /時間 沈殿槽(直径0.8m): 0.7m3
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. Embodiment 1 This embodiment is an example of processing performed according to the process diagram of FIG. The operating conditions are shown below. The tank volume indicates the effective volume. Sludge removal tank sludge treatment amount: 10 m 3 / day Storage tank: 30 m 3 (4 m height) Agitated air amount: 4.8 m 3 / hour Sedimentation tank (diameter 0.8 m): 0.7 m 3

【0015】 第1脱窒槽: 12m3 硝化槽 : 9m3 第2脱窒槽: 3m3 再曝気槽 : 省略 固液分離工程、中空糸MF膜分離装置 膜面積 : 21.6m2 ろ過圧 : −0.5〜−3.0mAq 返送汚泥量 : 31m3 /日 循環硝化液量 : 315m3 /日 曝気槽MLSS : 11000mg/リットルFirst denitrification tank: 12 m 3 Nitrification tank: 9 m 3 Second denitrification tank: 3 m 3 Re-aeration tank: omitted Solid-liquid separation step, hollow fiber MF membrane separator Membrane area: 21.6 m 2 Filtration pressure: −0 0.5-3.0 mAq Returned sludge amount: 31 m 3 / day Circulating nitrification liquid amount: 315 m 3 / day Aeration tank MLSS: 11000 mg / L

【0016】結果を表1に示す。The results are shown in Table 1.

【表1】 [Table 1]

【0017】比較のため、表1の実験の後、貯留槽の除
渣浄化槽汚泥の攪拌風量を4.8m3 /時間から36m
3 /時間に増加したところ、それまで平均3500mg
/リットルに保たれていた除渣浄化槽汚泥のBOD濃度
は、次第に低下してT−N濃度の3倍の1200mg/
リットルにまで減少した(この時の除渣浄化槽汚泥T−
Nは400mg/リットルであった)ところ、硝化槽の
NOx−N濃度が上昇し、処理水中にNOx−Nの残留
が始まったため、第1脱窒槽にメタノールを注入した。
For comparison, after the experiment in Table 1, the stirring air volume of the sludge removal tank in the storage tank was increased from 4.8 m 3 / hour to 36 m.
3 / hour increased to 3500mg on average
The BOD concentration of the sludge in the septic tank, which was kept at 1 / liter, gradually decreased to 1200 mg / l, which was three times the TN concentration.
Liters (at this time, the sludge removal tank sludge T-
(N was 400 mg / liter), however, the NOx-N concentration in the nitrification tank increased, and NOx-N began to remain in the treated water. Therefore, methanol was injected into the first denitrification tank.

【0018】その後、除渣浄化槽汚泥のBOD濃度が更
に低下し200mg/リットルにまで減少したが、この
時、表1と同等の水質を得るために必要であった第1脱
窒槽へのメタノール添加量は38リットル/日であっ
た。これより、第1脱窒槽にメタノールを注入せずに、
脱窒を行うためには、貯留槽の除渣浄化槽汚泥のBOD
/T−N比を3以上に保つことが必要であり、また攪拌
の風量は貯留除渣浄化槽汚泥のBODをBOD/T−N
比が3以下に低下しない所定量に保つ必要のあることが
判明した。
Thereafter, the BOD concentration of the sludge in the septic tank was further reduced to 200 mg / liter. At this time, methanol was added to the first denitrification tank, which was necessary to obtain the same water quality as in Table 1. The volume was 38 liters / day. Thus, without injecting methanol into the first denitrification tank,
In order to perform denitrification, BOD of sludge removal tank in storage tank
/ TN ratio must be maintained at 3 or more, and the amount of air for stirring is determined by the BOD / TN
It has been found that it is necessary to keep the ratio at a predetermined value which does not drop below 3.

【0019】実施例2 この実施例は、図2の工程図に従って除渣浄化槽汚泥1
0m3 /日を処理した処理例である。処理装置は貯留槽
の前段に沈殿槽(直径1.6m、容積3.0m3 )を介
在させ、貯留槽の攪拌空気量を1.2m3 とした以外は
実施例1と同じである。流量、MLSSの条件も実施例
1とほぼ同じである。
Example 2 In this example, the sludge removal tank sludge 1 according to the process diagram of FIG.
This is a processing example of processing 0 m 3 / day. The processing apparatus is the same as that of Example 1 except that a sedimentation tank (diameter 1.6 m, volume 3.0 m 3 ) is interposed in the preceding stage of the storage tank, and the amount of agitated air in the storage tank is 1.2 m 3 . The conditions of the flow rate and the MLSS are almost the same as in the first embodiment.

【0020】結果を表2に示す。The results are shown in Table 2.

【表2】 [Table 2]

【0021】比較のため、空気量を4.8m3 /時間で
攪拌した貯留槽の除渣浄化槽汚泥にカチオンポリマーを
50mg/リットル添加したところ、除渣浄化槽汚泥の
沈殿分離水のBOD濃度が500mg/リットルにな
り、脱窒が不良になったため、メタノールを第1脱窒槽
に添加した。40リットル/日のメタノールを添加した
ところ表2と同等の窒素除去率を得ることができた。
For comparison, when the cationic polymer was added at 50 mg / l to the sludge removal tank sludge of the storage tank in which the amount of air was stirred at 4.8 m 3 / hour, the BOD concentration of the sediment separation water of the sludge removal tank sludge was 500 mg. Per liter and the denitrification became poor, so methanol was added to the first denitrification tank. When 40 liters / day of methanol was added, the same nitrogen removal rate as in Table 2 could be obtained.

【0022】実施例3 この実施例は、図3の工程図に従って除渣浄化槽汚泥1
0m3 /日を処理した処理例である。処理装置は、第1
脱窒槽の前段に嫌気槽(1.2m3 )を介在させた以外
は実施例1と同じである。流量、MLSSの条件は実施
例1とほぼ同じである。
Example 3 In this example, a sludge removal tank sludge 1 according to the process diagram of FIG.
This is a processing example of processing 0 m 3 / day. The processing device is the first
This is the same as Example 1 except that an anaerobic tank (1.2 m 3 ) was interposed in front of the denitrification tank. The conditions of the flow rate and the MLSS are almost the same as in the first embodiment.

【0023】結果を表3に示す。The results are shown in Table 3.

【表3】 [Table 3]

【0024】比較のため、表3の実験の後、貯留槽の除
渣浄化槽汚泥の攪拌風量を4.8m3 /時間から36m
3 /時間に増加したところ、それまで平均3600mg
/リットルに保たれていた除渣浄化槽汚泥のBOD濃度
は、次第に低下してT−N濃度の4.5倍、T−P濃度
の25倍の1760mg/リットルにまで減少し(この
時の除渣浄化槽汚泥T−N、T−Pはそれぞれ390、
70mg/リットルであった)。この後、窒素除去性能
に影響はなかったが、処理水中のリン濃度が次第に上昇
を始めた。その後BOD濃度はT−Pの25倍以下に漸
次減少するにしたがって生物脱リン性能はますます低下
し、生物脱リンを行うことが不可能となった。
For the purpose of comparison, after the experiment in Table 3, the stirring air volume of the sludge removal tank in the storage tank was increased from 4.8 m 3 / hour to 36 m.
3 / hour increased to 3600mg on average
The BOD concentration of the sludge from the septic tank maintained at 1 / L gradually decreased to 4.5 times the TN concentration and 1760 mg / L which was 25 times the TP concentration (the removal at this time). Residue septic tank sludge TN, TP each 390,
70 mg / liter). Thereafter, the nitrogen removal performance was not affected, but the phosphorus concentration in the treated water gradually began to increase. Thereafter, as the BOD concentration gradually decreased to 25 times or less of TP, the biological dephosphorization performance further decreased, and it became impossible to perform the biological dephosphorization.

【0025】この結果から、貯留槽の除渣浄化槽汚泥の
BOD/T−N比が脱窒が十分行われる値であっても、
BOD/T−P比が25以下では生物脱リンを行うこと
ができないことが判明した。従って、生物学的な脱窒、
脱リンを同時に行うためには、貯留槽の除渣浄化槽汚泥
のBOD/T−N比を3以上、BOD/T−P比を25
以上の両方の条件を満たすことが必要であり、また攪拌
の風量は貯留除渣浄化槽汚泥のBOD/T−N比が3以
下、BOD/T−P比が25以下に低下しない所定量に
保つ必要がある。
From these results, it can be seen that even if the BOD / TN ratio of the sludge in the wastewater treatment tank in the storage tank is a value at which denitrification is sufficiently performed,
It has been found that biological dephosphorization cannot be performed when the BOD / TP ratio is 25 or less. Therefore, biological denitrification,
In order to simultaneously perform the dephosphorization, the BOD / TN ratio of the sludge removal tank in the storage tank is 3 or more, and the BOD / TP ratio is 25.
It is necessary to satisfy both of the above conditions, and the amount of air to be stirred is maintained at a predetermined amount such that the BOD / TN ratio of the stored sludge purification tank sludge is 3 or less and the BOD / TP ratio is not reduced to 25 or less. There is a need.

【0026】[0026]

【発明の効果】本発明によれば、次のような効果を奏す
ることができる。 (1)脱窒を第1脱窒槽にメタノールを添加せずに行う
ことができる。 (2)浄化槽汚泥の生物脱リンが可能となる。 (3)浄化槽汚泥の前処理工程において、固形物16中
のコロイダルなSSの含有量が低減できるので、脱水用
薬品の使用量を減少し、しかも脱水ケーキの含水率を低
下することができる。 (4)脱リンのための凝集処理を行わなくて済むので、
難脱水性の凝集汚泥が減少あるいは発生しない。従っ
て、脱水機への汚泥負荷が軽減(脱水機の縮小、薬品注
入量の減少)し、しかも脱水ケーキの含水率を低下させ
ることができる。
According to the present invention, the following effects can be obtained. (1) Denitrification can be performed without adding methanol to the first denitrification tank. (2) Biological dephosphorization of septic tank sludge becomes possible. (3) In the pretreatment process of the septic tank sludge, the content of the colloidal SS in the solid matter 16 can be reduced, so that the amount of the dehydrating chemical used can be reduced and the water content of the dewatered cake can be reduced. (4) Since there is no need to perform an aggregation treatment for dephosphorization,
The hardly dewaterable flocculated sludge is reduced or not generated. Therefore, the sludge load on the dehydrator can be reduced (reduction of the dehydrator, reduction of the amount of injected chemicals), and the water content of the dewatered cake can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の処理方法の一実施態様を示す工程図。FIG. 1 is a process chart showing one embodiment of a processing method of the present invention.

【図2】本発明の処理方法の他の実施態様を示す工程
図。
FIG. 2 is a process chart showing another embodiment of the processing method of the present invention.

【図3】本発明の処理方法のもう一つの実施態様を示す
工程図。
FIG. 3 is a process chart showing another embodiment of the processing method of the present invention.

【符号の説明】[Explanation of symbols]

1:浄化槽汚泥、2:スクリーン、3:除渣浄化槽汚
泥、4:貯留槽、5:沈殿槽、6:分離水、7:返送汚
泥、8:循環硝化液、9:第1脱窒槽、10:硝化槽、
11:第2脱窒槽、12:再曝機槽、13:固液分離工
程、14:余剰汚泥、15:夾雑物、16:固形物、1
7:嫌気槽、18:分離水
1: septic tank sludge, 2: screen, 3: sediment removal septic tank sludge, 4: storage tank, 5: sedimentation tank, 6: separated water, 7: return sludge, 8: circulating nitrification liquid, 9: first denitrification tank, 10 : Nitrification tank,
11: second denitrification tank, 12: re-exposure tank, 13: solid-liquid separation step, 14: excess sludge, 15: contaminants, 16: solid matter, 1
7: Anaerobic tank, 18: Separated water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 伸二 東京都港区港南1丁目6番27号 荏原イ ンフィルコ株式会社内 (56)参考文献 特開 昭57−15896(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 11/00 ZAB ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Shinji Yoshida 1-6-27 Konan, Minato-ku, Tokyo Inside Ebara Infilco Co., Ltd. (56) References JP-A-57-15896 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C02F 11/00 ZAB

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 夾雑物除去工程を経由した浄化槽汚泥
を、貯留工程で、毎分の空気量が0.01〜0.04m
3/m2(貯留槽面積)の空気攪拌、機械攪拌、水流攪
拌あるいは貯留工程の気相部のガスを用いた内部ガス循
環式攪拌により攪拌した後、該汚泥中のコロイダルなS
S性のBOD成分を分離水側に移行して、重力式沈殿槽
を用いて無薬注で該浄化槽汚泥中の固形物を沈殿分離
し、該沈殿槽分離水を生物学的硝化脱窒工程又は生物学
的脱窒・脱リン工程で処理し、前記沈殿槽沈殿固形物と
該硝化脱窒工程又は生物学的脱窒・脱リン工程の余剰活
性汚泥を汚泥処理工程で処理することを特徴とする浄化
槽汚泥の生物学的処理法。
1. A septic tank sludge that has passed through a contaminant removal step is subjected to a storage step in which the amount of air per minute is 0.01 to 0.04 m.
After stirring by 3 / m2 (storage tank area) air stirring, mechanical stirring, water jet stirring or internal gas circulation type stirring using gas in the gas phase part of the storage process, the colloidal S in the sludge is stirred.
The S-soluble BOD component is transferred to the separation water side, and solid matter in the septic tank sludge is sedimented and separated without chemical using a gravity sedimentation tank, and the sedimentation tank separated water is subjected to a biological nitrification denitrification step. Alternatively, the sludge is treated in a biological denitrification / dephosphorization step, and the activated solid sludge in the settling tank and the excess activated sludge in the nitrification denitrification step or the biological denitrification / phosphorus removal step are treated in a sludge treatment step. The biological treatment method of septic tank sludge.
【請求項2】 浄化槽汚泥から夾雑物を除去する夾雑物
除去装置と、夾雑物を除去した汚泥を貯留する毎分の空
気量が0.01〜0.04m3/m2(貯留槽面積)の
空気攪拌、機械攪拌、水流攪拌あるいは貯留工程の気相
部のガスを用いた内部ガス循環式攪拌による攪拌手段を
有する貯留槽と、該貯留槽からのコロイダルなSS性の
BOD成分を分離水側に移行した汚泥を無薬注で固形物
を沈殿分離する重力式沈殿槽と、該沈殿槽の分離水を生
物学的に処理する硝化脱窒装置又は脱窒・脱リン装置
と、前記沈殿槽の固形物及び硝化脱窒装置又は脱窒・脱
リン装置の余剰活性汚泥を処理する汚泥処理装置とを有
することを特徴とする浄化槽汚泥の生物学的処理装置。
2. A contaminant removing device for removing contaminants from a septic tank sludge, and air having a capacity of 0.01 to 0.04 m3 / m2 (storage tank area) per minute for storing the sludge from which contaminants have been removed. Stirring, mechanical stirring, water flow stirring or a storage tank having stirring means by internal gas circulation type stirring using gas in the gas phase part of the storage step, and the colloidal SS BOD component from the storage tank is separated water side. A gravity sedimentation tank for sedimenting and separating solid matter without chemical transfer of the transferred sludge, a nitrification denitrification apparatus or a denitrification / dephosphorization apparatus for biologically treating the separated water in the sedimentation tank, A sludge treatment device for treating excess activated sludge of a solid substance and a nitrification denitrification device or a denitrification / dephosphorization device.
JP06598693A 1993-03-03 1993-03-03 Septic tank sludge treatment method and equipment Expired - Lifetime JP3327979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06598693A JP3327979B2 (en) 1993-03-03 1993-03-03 Septic tank sludge treatment method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06598693A JP3327979B2 (en) 1993-03-03 1993-03-03 Septic tank sludge treatment method and equipment

Publications (2)

Publication Number Publication Date
JPH06254598A JPH06254598A (en) 1994-09-13
JP3327979B2 true JP3327979B2 (en) 2002-09-24

Family

ID=13302851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06598693A Expired - Lifetime JP3327979B2 (en) 1993-03-03 1993-03-03 Septic tank sludge treatment method and equipment

Country Status (1)

Country Link
JP (1) JP3327979B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100328338B1 (en) * 1999-10-29 2002-03-13 정문헌 A waste water disposal plant
JP6833555B2 (en) * 2017-02-20 2021-02-24 三井E&S環境エンジニアリング株式会社 Organic waste treatment system

Also Published As

Publication number Publication date
JPH06254598A (en) 1994-09-13

Similar Documents

Publication Publication Date Title
JP2659167B2 (en) Sewage denitrification dephosphorization method and apparatus
JP3473328B2 (en) Biological dephosphorization equipment
JP3368938B2 (en) Wastewater treatment method and apparatus
JP2796909B2 (en) Wastewater treatment method
JP2970730B2 (en) Sewage treatment method
JP3327979B2 (en) Septic tank sludge treatment method and equipment
JP2912905B1 (en) Denitrification and dephosphorization of organic wastewater
JPS6117558B2 (en)
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JP3442204B2 (en) Organic wastewater phosphorus removal and recovery method
JP4464035B2 (en) Treatment method of sludge return water
JPS5980398A (en) Biological waste water disposal
JP3916697B2 (en) Wastewater treatment method
JPS60206498A (en) Treatment of excretion sewage
JPS645959B2 (en)
JP3819457B2 (en) Biological denitrification of wastewater
JPH11104693A (en) Method for treatment of returning water in sludge treatment system
JP3376905B2 (en) Intermittent aeration activated sludge treatment equipment
JPH0722756B2 (en) Biological denitrification and dephosphorization methods for wastewater
JP2001347291A (en) Method and apparatus for treating organic wasteliquid
JPH0568993A (en) Treatment of sludge of purifying tank
JP3257943B2 (en) Wastewater treatment method
JPH0919700A (en) Sewage treating device
JPS61192395A (en) Treatment of organic sewage
JPH0134119B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

EXPY Cancellation because of completion of term