JPH09141294A - Biological nitrogen removing method - Google Patents

Biological nitrogen removing method

Info

Publication number
JPH09141294A
JPH09141294A JP30263895A JP30263895A JPH09141294A JP H09141294 A JPH09141294 A JP H09141294A JP 30263895 A JP30263895 A JP 30263895A JP 30263895 A JP30263895 A JP 30263895A JP H09141294 A JPH09141294 A JP H09141294A
Authority
JP
Japan
Prior art keywords
aeration tank
tank
orp
denitrification
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30263895A
Other languages
Japanese (ja)
Inventor
Tetsuro Fukase
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP30263895A priority Critical patent/JPH09141294A/en
Publication of JPH09141294A publication Critical patent/JPH09141294A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably and efficiently execute biological nitrification and denitrification without executing intermittent aeration in an aeration tank. SOLUTION: At the time of introducing a water containing an organic nitrogen or an ammonia nitrogen in an aeration tank 1 to biologically nitrificate and denitrificate under an aerobic condition, the DO(dissolved oxygen) concentration in the aeration tank 1 is controlled to >=1mg/l and the ORP(oxidation- reduction potential) is controlled to <=+100mV. As a result, the nitrification reaction is surely carried out since sufficient oxygen exceeding 1mg/l in DO is supplied to a raw water in the aeration tank 1. The denitrification reaction also proceeds to efficiently remove nitrogen since the ORP is kept lower regardlessly of high DO.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は生物的窒素除去方法
に係り、特に、有機態窒素又はアンモニア態窒素を含む
水を、曝気槽内で生物的に硝化及び脱窒する生物的窒素
除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological nitrogen removal method, and more particularly to a biological nitrogen removal method for biologically nitrifying and denitrifying water containing organic nitrogen or ammonia nitrogen in an aeration tank. .

【0002】[0002]

【従来の技術】従来の生物的窒素除去方法は、硝化菌(N
itrobacter) 、亜硝酸菌(Nitrosomonas)という独立栄養
の硝化細菌による硝化工程と、通性嫌気細菌による脱窒
工程との2つの工程から成り立っており、装置構成等の
面から、次の〜による方法が知られている。
2. Description of the Related Art Conventional biological nitrogen removal methods are based on nitrifying bacteria (N
Itrobacter), nitrite (Nitrosomonas) nitrifying process with autotrophic nitrifying bacteria, and denitrifying process with facultative anaerobic bacteria. It has been known.

【0003】 硝化槽及び脱窒槽を直列配置し、原水
を硝化処理した後脱窒処理する方法。 脱窒槽及び硝化槽を直列配置すると共に、硝化槽か
ら脱窒槽への循環系路を設け、脱窒処理液を硝化処理
し、再度脱窒処理する方法。 上記の方法において、硝化槽に原水を分注するス
テップ脱窒法。 単一槽内で間欠曝気することにより、時間的に嫌気
条件(脱窒工程)と好気条件(硝化工程)とを交互に設
定して処理する方法。
A method in which a nitrification tank and a denitrification tank are arranged in series and the raw water is nitrified and then denitrified. A method of arranging a denitrification tank and a nitrification tank in series, providing a circulation system path from the nitrification tank to the denitrification tank, nitrifying the denitrification treatment liquid, and performing denitrification again. In the above method, a step denitrification method in which raw water is dispensed into a nitrification tank. A method in which anaerobic conditions (denitrification process) and aerobic conditions (nitrification process) are alternately set temporally by performing intermittent aeration in a single tank.

【0004】また、曝気槽内で硝化と脱窒とを同時に生
起させる方法として、特開昭54−94756号公報に
記載の方法がある。この方法は、曝気槽内を溶存酸素
(DO)濃度1mg/L以下、酸化還元電位(ORP)
−100〜−400mVの範囲とすることで、間欠曝気
を行うことなく、硝化と共に嫌気性脱窒を行う方法であ
る。
Further, as a method for simultaneously causing nitrification and denitrification in the aeration tank, there is a method described in JP-A-54-94756. This method uses a dissolved oxygen (DO) concentration of 1 mg / L or less and an oxidation-reduction potential (ORP) in the aeration tank.
By setting the voltage in the range of −100 to −400 mV, it is a method of performing anaerobic denitrification together with nitrification without performing intermittent aeration.

【0005】[0005]

【発明が解決しようとする課題】上記従来の生物的窒素
除去方法のうち、,及びの方法では、脱窒(嫌
気)槽と硝化(好気)槽との2つの槽を設ける必要があ
り、設置槽数の点で不利である。また、の方法では、
硝化を円滑に進行させるために、原水中のBODを予め
除去する必要がある。,の方法であれば、このよう
なBODの除去は不要であるが、の方法では、更に循
環のためのポンプを必要とするという欠点がある。ま
た、の方法では、被処理水を分注する必要があり、原
水導入系統が複雑化するという欠点がある。
Among the above-mentioned conventional biological nitrogen removal methods, in the methods of and, it is necessary to provide two tanks, a denitrification (anaerobic) tank and a nitrification (aerobic) tank, It is disadvantageous in terms of the number of installation tanks. In the method of
In order to promote the nitrification smoothly, it is necessary to remove BOD in the raw water in advance. The method (1) does not require such removal of BOD, but the method (2) has a drawback that a pump for circulation is further required. In addition, the method (1) has a drawback in that the water to be treated needs to be dispensed, which complicates the raw water introduction system.

【0006】の方法であれば、1つの槽のみで硝化、
脱窒を行うことができるが、曝気サイクル、即ち、槽内
を嫌気条件とする時間と好気条件とする時間とを適切に
制御するのが難しく、この時間配分が不適当であると、
硝化及び脱窒に長時間を要するようになり処理効率が低
下するという欠点がある。
According to the method of 1, the nitrification in only one tank,
Although it is possible to denitrify, it is difficult to appropriately control the aeration cycle, that is, the time for making the anaerobic condition in the tank and the time for the aerobic condition, and if this time allocation is inappropriate,
There is a drawback that it takes a long time to nitrify and denitrify and the treatment efficiency is lowered.

【0007】特開昭54−94756号公報に記載され
る、DO濃度1mg/L以下でORPを−100〜−4
00mVの範囲とする方法では、有機物濃度とアンモニ
ア態窒素濃度が高い排水、例えばし尿を処理する場合に
は、硝化と脱窒を行うことができるが、これらの濃度が
低い排水を処理する場合には、有機物の分解は進むもの
の、アンモニアの硝化が不十分となり、窒素除去を安定
して行うことができないという不具合がある。
[0007] As disclosed in JP-A-54-94756, ORP is -100 to -4 at a DO concentration of 1 mg / L or less.
In the method of setting the range of 00 mV, nitrification and denitrification can be performed when treating wastewater having a high organic matter concentration and ammonia nitrogen concentration, for example, human waste, but when treating wastewater having a low concentration of these substances. However, although organic substances are decomposed, nitrification of ammonia is insufficient and nitrogen cannot be removed stably.

【0008】本発明は上記従来の問題点を解決して、曝
気槽内で間欠曝気を行うことなく、安定かつ効率的に生
物的硝化・脱窒を行うことができる生物的窒素除去方法
を提供することを目的とする。
The present invention solves the above-mentioned conventional problems and provides a biological nitrogen removing method capable of performing stable and efficient biological nitrification and denitrification without performing intermittent aeration in an aeration tank. The purpose is to do.

【0009】[0009]

【課題を解決するための手段】本発明の生物的窒素除去
方法は、有機態窒素又はアンモニア態窒素を含む水(原
水)を、曝気槽に導入して好気性条件下に生物的に硝化
・脱窒を行う方法において、曝気槽の溶存酸素(DO)
濃度を1mg/Lより高く維持すると共に酸化還元電位
(ORP)が+100mV以下となるように調整するこ
とを特徴とする。
The biological nitrogen removing method of the present invention comprises introducing water (raw water) containing organic nitrogen or ammonia nitrogen into an aeration tank to biologically nitrify under aerobic conditions. In the denitrification method, dissolved oxygen (DO) in the aeration tank
It is characterized in that the concentration is kept higher than 1 mg / L and the redox potential (ORP) is adjusted to +100 mV or less.

【0010】通常の場合、曝気槽では、DOを1mg/
L以上に維持する。この場合、ORPは+150mV以
上になる。特に、硝化・脱窒を曝気槽内で行う場合に
は、硝化効率を上げるために、DOは高く設定される。
この場合にはORPはより一層高くなり、一般には、+
200mV以上となる。
Normally, in the aeration tank, DO is 1 mg /
Keep above L. In this case, the ORP becomes +150 mV or more. In particular, when nitrification / denitrification is performed in an aeration tank, the DO is set high in order to improve the nitrification efficiency.
In this case the ORP will be much higher, typically +
200 mV or more.

【0011】本発明では、このような曝気槽のDOを1
mg/Lより高く維持した状態において、適当な手段を
講じてORPを+100mV以下となるように制御する
ことにより、曝気槽内で硝化及び脱窒を行う。
In the present invention, the DO of such an aeration tank is
Nitrogenation and denitrification are performed in the aeration tank by controlling ORP to be +100 mV or less by taking appropriate means in a state of being kept higher than mg / L.

【0012】本発明では、曝気槽の原水に対してDOが
1mg/Lを超える程度に十分な酸素を供給するため、
硝化反応が確実に行われる。
In the present invention, since sufficient oxygen is supplied to the raw water in the aeration tank so that DO exceeds 1 mg / L,
The nitrification reaction is performed reliably.

【0013】しかも、DOが高いにも係わらず、ORP
が低く維持されているため、脱窒反応も円滑に進行し、
効率的な窒素除去が行われる。
Moreover, despite the high DO, the ORP
Is kept low, the denitrification reaction proceeds smoothly,
Efficient nitrogen removal is performed.

【0014】このように、DO>1mg/LでORP≦
+100mVとすることで、曝気槽内で脱窒が行われる
理由の詳細は明らかではないが、曝気槽内をこのような
条件に維持すると硝酸は殆ど検出されなくなる。一方、
NO2 -又はNH4 +は検出される場合があることから、嫌
気細菌とは異なる栄養細菌による好気性脱窒が生起して
いるものと推定される。
As described above, when DO> 1 mg / L, ORP ≦
By setting the voltage to +100 mV, the details of the reason for denitrification in the aeration tank are not clear, but nitric acid is hardly detected when the inside of the aeration tank is maintained under such conditions. on the other hand,
Since NO 2 or NH 4 + may be detected, it is presumed that aerobic denitrification by trophic bacteria different from anaerobic bacteria occurs.

【0015】[0015]

【発明の実施の形態】以下図面を参照して本発明を詳細
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.

【0016】図1〜3は本発明の一実施例方法を示す系
統図である。
1 to 3 are system diagrams showing a method according to an embodiment of the present invention.

【0017】本発明においては、従来、DO>1mg/
Lとした場合において、ORP≧+150mV或いはO
RP≧+200mVとなる曝気槽内を、DO>1mg/
LでORP≦+100mVとなるように制御する。DO
が1mg/L以下では、酸素が不十分で硝化を安定に行
うことができない。また、ORPが+100mVを超え
ると脱窒が起こらない。DOは過度に高いと脱窒効率が
低下し、また、ORPは過度に低いと硝化速度が低下す
る場合がある。従って、1mg/L<DO≦5mg/
L,ORP=−100〜−300mVとするのが好まし
い。
In the present invention, conventionally, DO> 1 mg /
When L is set, ORP ≧ + 150 mV or O
In the aeration tank where RP ≧ + 200 mV, DO> 1 mg /
The L is controlled so that ORP ≦ + 100 mV. DO
Is less than 1 mg / L, oxygen is insufficient and nitrification cannot be performed stably. Further, if the ORP exceeds +100 mV, denitrification does not occur. If the DO is too high, the denitrification efficiency may decrease, and if the ORP is too low, the nitrification rate may decrease. Therefore, 1 mg / L <DO ≦ 5 mg /
L, ORP = −100 to −300 mV is preferable.

【0018】このように、曝気槽内をDO>1mg/L
でORP≦+100mVに調整する方法としては、例え
ば、次の〜の方法を採用することができる。
In this way, DO> 1 mg / L in the aeration tank
As a method for adjusting ORP ≦ + 100 mV in (1), for example, the following methods (1) to (4) can be adopted.

【0019】 図1に示す如く、原水を曝気槽1及び
沈殿槽2で処理するに当り、亜硫酸ソーダ、ヒドラジン
等の還元剤を曝気槽1に添加する。特に、ヒドラジンは
分解され難く、ORPの低下に有効である。これらの還
元剤の添加量は、曝気槽のORP値が所定範囲となる程
度であれば良く、また、その添加箇所は、曝気槽、曝気
槽への原水導入配管、或いは、後工程の沈殿槽等から曝
気槽に汚泥を返送する場合、その汚泥返送配管等のいず
れであっても良い。
As shown in FIG. 1, when treating raw water in the aeration tank 1 and the precipitation tank 2, a reducing agent such as sodium sulfite and hydrazine is added to the aeration tank 1. In particular, hydrazine is difficult to decompose and is effective in reducing ORP. The amount of these reducing agents added may be such that the ORP value of the aeration tank falls within a predetermined range, and the addition location is at the aeration tank, the raw water introduction pipe to the aeration tank, or the settling tank at the subsequent step. When sludge is returned to the aeration tank from the above, etc., any of the sludge return piping and the like may be used.

【0020】 図2に示す如く、原水を曝気槽1及び
沈殿槽2で処理するに当り、沈殿槽2からの返送汚泥の
一部又は全部を嫌気槽3に導入して一定時間滞留させ
る。この場合には、返送される汚泥濃度が高い程、滞留
時間が長い程、ORPが低下し、結果的に曝気槽内のO
RPも低下する。一般に、返送汚泥の滞留時間は原水の
曝気槽滞留時間と同程度、或いはそれ以上とされ、例え
ば6〜24時間とするのが好ましい。
As shown in FIG. 2, when the raw water is treated in the aeration tank 1 and the precipitation tank 2, a part or all of the sludge returned from the precipitation tank 2 is introduced into the anaerobic tank 3 and retained for a certain period of time. In this case, the higher the sludge concentration to be returned and the longer the retention time, the lower the ORP, and as a result, the O 2 in the aeration tank increases.
RP also decreases. Generally, the retention time of the returned sludge is set to the same level as or longer than the retention time of the raw water in the aeration tank, and it is preferably 6 to 24 hours, for example.

【0021】 図3に示す如く、原水を曝気槽1及び
沈殿槽2で処理するに当り、嫌気槽3を設け、原水と沈
殿槽2からの返送汚泥とを予め嫌気槽3で混合する。こ
の場合、原水BOD濃度が高い程、また、嫌気槽滞留時
間が長い程、ORPがより低下する。この場合における
嫌気槽滞留時間は、原水の曝気槽滞留時間と同程度、或
いはそれ以上とされ、例えば6〜24時間とするのが好
ましい。
As shown in FIG. 3, when the raw water is treated in the aeration tank 1 and the precipitation tank 2, the anaerobic tank 3 is provided, and the raw water and the sludge returned from the precipitation tank 2 are mixed in the anaerobic tank 3 in advance. In this case, the higher the raw water BOD concentration and the longer the anaerobic tank residence time, the more the ORP decreases. In this case, the residence time of the anaerobic tank is about the same as or longer than the residence time of the raw water in the aeration tank, and is preferably 6 to 24 hours, for example.

【0022】上記,,の方法は、2以上を組み合
わせて採用しても良い。
The above methods may be used in combination of two or more.

【0023】なお、本発明において、曝気槽における好
気性生物処理は、汚泥が浮遊状態で保持された浮遊法で
も、汚泥が担体に保持された接触酸化法でも良いが、曝
気槽は、完全混合槽であることが好ましい。
In the present invention, the aerobic biological treatment in the aeration tank may be a floating method in which sludge is held in a floating state or a contact oxidation method in which sludge is held in a carrier. It is preferably a tank.

【0024】このような本発明の方法は、特に、有機物
濃度、アンモニア態窒素濃度の低い排水、例えば、BO
D1000mg/L以下、NH4 −N100mg/L以
下であるような、初沈下水、食品排水等の処理に有効で
ある。
Such a method of the present invention is particularly applicable to wastewater having a low organic matter concentration and ammonia nitrogen concentration, such as BO.
D1000 mg / L or less and NH 4 —N 100 mg / L or less, which is effective for treating the first settling water, food wastewater, and the like.

【0025】[0025]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0026】説明の便宜上まず比較例を挙げる。First, a comparative example will be described for convenience of explanation.

【0027】比較例1 還元剤を添加しないこと以外は、図1に示す方法と同様
にして原水の生物的窒素除去を行った。
Comparative Example 1 Biological nitrogen removal from raw water was carried out in the same manner as in FIG. 1 except that no reducing agent was added.

【0028】なお、曝気槽容量は2L,沈殿槽容量は
2.5Lとし、原水としては、下記水質の初沈下水を6
L/日の流速で通水した。
The aeration tank capacity is 2 L and the sedimentation tank capacity is 2.5 L.
Water was passed at a flow rate of L / day.

【0029】原水水質 BOD:160mg/L SS :45mg/L T−N:39mg/L NH4 −N:28mg/L NOx −N:ND また、曝気槽には、下水活性汚泥をMLSS3500m
g/Lとなるように添加して運転を開始し、pH7以下
とならないように、必要に応じてNaOHを自動制御で
添加した。
Raw water quality BOD: 160 mg / L SS: 45 mg / LT-N: 39 mg / L NH 4 -N: 28 mg / L NO x -N: ND In addition, the sewage activated sludge is MLSS 3500 m in the aeration tank.
The operation was started by adding so as to be g / L, and NaOH was automatically added as needed so that the pH did not become 7 or less.

【0030】通水1週間後の処理水を分析したところ、
BOD 5mg/L以下,NH4 −N 0.7mg/
L,NO3 −N 29mg/L,NO2 −N 0.1m
g/Lであった。
When the treated water after 1 week of water flow was analyzed,
BOD 5 mg / L or less, NH 4 —N 0.7 mg /
L, NO 3 -N 29mg / L , NO 2 -N 0.1m
g / L.

【0031】このときの曝気槽のDOは2.1mg/
L,ORPは+200mVであった。
The DO in the aeration tank at this time is 2.1 mg /
L and ORP were +200 mV.

【0032】なお、BODの測定においては、硝化抑制
剤としてアリルチオ尿素2mg/Lとなるように添加し
てBODを測定した。
In the measurement of BOD, BOD was measured by adding allylthiourea as a nitrification inhibitor in an amount of 2 mg / L.

【0033】実施例1 比較例1において、曝気槽の曝気量をそのままで、ヒド
ラジンを0.5mg/L添加した。その結果、曝気槽の
DOは2.2mg/L,ORPは−10〜+20mVに
低下した。
Example 1 In Comparative Example 1, 0.5 mg / L of hydrazine was added with the amount of aeration in the aeration tank unchanged. As a result, DO in the aeration tank was lowered to 2.2 mg / L and ORP was lowered to -10 to +20 mV.

【0034】得られた処理水中には当初NH4 −Nが6
mg/L程度検出されたが、2日後には低下し、2mg
/L以下となった。これと同時にNO3 −Nも低下し、
0.1〜0.4mg/Lとなった。NO2 −Nは0.9
〜3.7mg/L検出された。BODは5mg/L以下
であった。
The treated water thus obtained initially contained 6% NH 4 --N.
Approximately mg / L was detected, but it decreased after 2 days and decreased to 2 mg
/ L or less. At the same time, NO 3 -N also decreases,
It became 0.1-0.4 mg / L. NO 2 -N is 0.9
-3.7 mg / L was detected. BOD was 5 mg / L or less.

【0035】実施例2 実施例1において、曝気量を増加して、曝気槽のDOを
5mg/L以上としたところ、ORPも上昇して+85
〜+97mVとなった。
Example 2 In Example 1, when the aeration amount was increased and the DO in the aeration tank was set to 5 mg / L or more, the ORP was also increased to +85.
It became +97 mV.

【0036】得られた処理水は、NH4 −N:2.9〜
3.4mg/L,NO3 −N:1.1〜1.6mg/
L,NO2 −N:2.9〜3.4mg/Lであった。B
ODは5mg/L以下であった。
The treated water thus obtained is NH 4 --N: 2.9-
3.4 mg / L, NO 3 -N: 1.1 to 1.6 mg /
L, NO 2 -N: was 2.9~3.4mg / L. B
The OD was 5 mg / L or less.

【0037】実施例3 図3に示す方法に従って、比較例1で処理した原水と同
様の原水の生物的窒素除去を行った。
Example 3 Biological nitrogen removal similar to the raw water treated in Comparative Example 1 was performed according to the method shown in FIG.

【0038】嫌気槽としては容量1Lのものを用い、沈
殿槽の汚泥返送率(原水水量に対する返送汚泥流量の割
合)は25%とした。その他の条件は、比較例1と同様
とした。
An anaerobic tank having a capacity of 1 L was used, and the sludge return rate (ratio of the returned sludge flow rate to the raw water amount) in the settling tank was 25%. The other conditions were the same as in Comparative Example 1.

【0039】その結果、曝気槽のDOは1.2mg/L
に低下し、ORPも+88〜+95mVに低下した。
As a result, the DO in the aeration tank was 1.2 mg / L.
And ORP also fell to +88 to +95 mV.

【0040】得られた処理水はNH4 −N:0.8〜
2.5mg/L,NO3 −N:0〜1.2mg/L,N
2 −N:0.7〜2.5mg/LでBODは5mg/
L以下であった。
The obtained treated water is NH 4 --N: 0.8-
2.5 mg / L, NO 3 -N: 0 to 1.2 mg / L, N
O 2 -N: 0.7-2.5 mg / L and BOD 5 mg / L
L or less.

【0041】比較例2 比較例1において、曝気量を減らすことにより、曝気槽
のDOを1mg/L以下の0.3〜0.5mg/Lとす
ると共に、ORPを−100〜−150mVとしたこと
以外は同様に行ったところ、得られた処理水はNH4
N:23〜32mg/L,NO3 −N:0.1〜0.8
mg/L,NO2 −N:0.4〜3.1mg/L,BO
D:5〜12mg/Lであった。
Comparative Example 2 In Comparative Example 1, by reducing the aeration amount, the DO in the aeration tank was set to 0.3 to 0.5 mg / L, which is 1 mg / L or less, and the ORP was set to -100 to -150 mV. Other than that, the treated water obtained was NH 4 −.
N: 23~32mg / L, NO 3 -N: 0.1~0.8
mg / L, NO 2 -N: 0.4~3.1mg / L, BO
D: It was 5-12 mg / L.

【0042】以上の結果を表1にまとめて示す。The above results are summarized in Table 1.

【0043】[0043]

【表1】 [Table 1]

【0044】表1より、本発明の方法によれば、曝気槽
内で硝化及び脱窒を行って、窒素を効率的に除去するこ
とができることが明らかである。
From Table 1, it is clear that according to the method of the present invention, nitrogen can be efficiently removed by performing nitrification and denitrification in the aeration tank.

【0045】[0045]

【発明の効果】以上詳述した通り、本発明の生物的窒素
除去方法によれば、曝気槽内で間欠曝気を行うことな
く、安定かつ確実に生物的硝化・脱窒を行って、窒素を
効率的に除去することができる。
As described in detail above, according to the method for removing biological nitrogen of the present invention, nitrogen is stably and reliably biologically nitrified and denitrified without intermittent aeration in the aeration tank. It can be removed efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の生物的窒素除去方法の一実施例方法を
示す系統図である。
FIG. 1 is a system diagram showing a method of an embodiment of the biological nitrogen removal method of the present invention.

【図2】本発明の生物的窒素除去方法の他の実施例方法
を示す系統図である。
FIG. 2 is a system diagram showing another embodiment method of the biological nitrogen removal method of the present invention.

【図3】本発明の生物的窒素除去方法の別の実施例方法
を示す系統図である。
FIG. 3 is a system diagram showing another example method of the biological nitrogen removal method of the present invention.

【符号の説明】[Explanation of symbols]

1 曝気槽 2 沈殿槽 3 嫌気槽 1 Aeration tank 2 Precipitation tank 3 Anaerobic tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有機態窒素又はアンモニア態窒素を含む
水を、曝気槽に導入して好気性条件下に生物的に硝化、
脱窒を行う方法において、曝気槽の溶存酸素濃度を1m
g/Lより高く維持すると共に酸化還元電位が+100
mV以下となるように調整することを特徴とする生物的
窒素除去方法。
1. Water containing organic nitrogen or ammonia nitrogen is introduced into an aeration tank to biologically nitrify under aerobic conditions,
In the denitrification method, the dissolved oxygen concentration in the aeration tank is set to 1 m.
Maintained higher than g / L and redox potential +100
A method for removing biological nitrogen, which comprises adjusting the concentration to be mV or less.
JP30263895A 1995-11-21 1995-11-21 Biological nitrogen removing method Pending JPH09141294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30263895A JPH09141294A (en) 1995-11-21 1995-11-21 Biological nitrogen removing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30263895A JPH09141294A (en) 1995-11-21 1995-11-21 Biological nitrogen removing method

Publications (1)

Publication Number Publication Date
JPH09141294A true JPH09141294A (en) 1997-06-03

Family

ID=17911400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30263895A Pending JPH09141294A (en) 1995-11-21 1995-11-21 Biological nitrogen removing method

Country Status (1)

Country Link
JP (1) JPH09141294A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055739A (en) * 2004-08-19 2006-03-02 Kurita Water Ind Ltd Treating method of organic matter- and nitrogen-containing wastewater
KR100721682B1 (en) * 2006-07-07 2007-05-25 서울산업대학교 산학협력단 A treatment method of wastewater for removing organics and nitrogen compounds simultaneously in a single reactor)
JP2014018744A (en) * 2012-07-19 2014-02-03 Yachiyo Industry Co Ltd Wastewater treatment system
JP2016067979A (en) * 2014-09-29 2016-05-09 電源開発株式会社 Volume reduction processing method for jellyfish waste and volume reduction processing device for jellyfish waste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055739A (en) * 2004-08-19 2006-03-02 Kurita Water Ind Ltd Treating method of organic matter- and nitrogen-containing wastewater
JP4649911B2 (en) * 2004-08-19 2011-03-16 栗田工業株式会社 Treatment of organic matter and nitrogen-containing wastewater
KR100721682B1 (en) * 2006-07-07 2007-05-25 서울산업대학교 산학협력단 A treatment method of wastewater for removing organics and nitrogen compounds simultaneously in a single reactor)
JP2014018744A (en) * 2012-07-19 2014-02-03 Yachiyo Industry Co Ltd Wastewater treatment system
JP2016067979A (en) * 2014-09-29 2016-05-09 電源開発株式会社 Volume reduction processing method for jellyfish waste and volume reduction processing device for jellyfish waste

Similar Documents

Publication Publication Date Title
JP2803941B2 (en) Control method of intermittent aeration type activated sludge method
US5182021A (en) Biological process for enhanced removal of ammonia, nitrite, nitrate, and phosphate from wastewater
US4488967A (en) Treatment of wastewater containing phosphorus compounds
JP2003053384A (en) Method for removing nitrogen and phosphorus from waste water and facility therefor
JP2716348B2 (en) Sewage return water treatment method
JP4386054B2 (en) Intermittent biological treatment method
KR100705541B1 (en) A configuration of process and system for bnr/cpr with a filamentous bio-solids bulking control
KR100632487B1 (en) Gradually operated sequencing batch reactor and method thereof
JPH09141294A (en) Biological nitrogen removing method
JP2001079593A (en) Removing method of nitrogen in waste water
JP3377346B2 (en) Organic wastewater treatment method and apparatus
KR20010027643A (en) Method for removing nitrogen in waste water
JP2841131B2 (en) Activated sludge treatment method for sewage
KR100470350B1 (en) Method for disposing of livestock waste water
JP2003266096A (en) Wastewater treatment apparatus
KR100420647B1 (en) Waste water disposal method by continuos inflow Sequencing Bath Reactor
JP3125628B2 (en) Wastewater treatment method
JP3270652B2 (en) Wastewater nitrogen removal method
KR100312544B1 (en) Method for highly biologically the tannery waste-water
JP3293218B2 (en) Biological nitrification denitrification treatment method
JPH1157778A (en) Waste water treating device and treatment
US5500119A (en) Submerged fixed media for nitrification
JPH03275196A (en) Nitrous acid type nitrifying and denitrifying treatment device
JP3376905B2 (en) Intermittent aeration activated sludge treatment equipment
JP3639679B2 (en) Nitrogen removal method of wastewater by modified activated sludge circulation method