JP3270652B2 - Wastewater nitrogen removal method - Google Patents

Wastewater nitrogen removal method

Info

Publication number
JP3270652B2
JP3270652B2 JP7921295A JP7921295A JP3270652B2 JP 3270652 B2 JP3270652 B2 JP 3270652B2 JP 7921295 A JP7921295 A JP 7921295A JP 7921295 A JP7921295 A JP 7921295A JP 3270652 B2 JP3270652 B2 JP 3270652B2
Authority
JP
Japan
Prior art keywords
aerobic
wastewater
tank
nitrogen
anaerobic tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7921295A
Other languages
Japanese (ja)
Other versions
JPH08267090A (en
Inventor
理 三木
伸幸 兼森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7921295A priority Critical patent/JP3270652B2/en
Publication of JPH08267090A publication Critical patent/JPH08267090A/en
Application granted granted Critical
Publication of JP3270652B2 publication Critical patent/JP3270652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、都市下水、有機性産業
廃水、汚泥処理水、および、有機性産業廃水が大量に流
入する都市下水など、有機性汚濁物質と還元性窒素化合
物である有機性窒素やアンモニア化合物を含有する廃水
から、窒素化合物を安定して効率的に除去する廃水の窒
素除去方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an organic pollutant and a reducing nitrogen compound, such as municipal sewage, organic industrial wastewater, sludge treated water, and municipal sewage into which a large amount of organic industrial wastewater flows. The present invention relates to a method for removing nitrogen from wastewater containing waste nitrogen and ammonia compounds stably and efficiently.

【0002】[0002]

【従来の技術】廃水中の窒素を除去する技術としては、
物理的、化学的処理方法も従来から研究されているが、
生物学的方法がコスト的に有利であり、最も普及してい
る。生物学的な窒素除去は、基本的には、好気的条件の
もとでの硝化細菌によるアンモニア性窒素(NH4
N)の酸化による硝酸性窒素(NO3 −N)の生成反応
(硝化反応、下記式(1)参照)と嫌気性条件のもとで
の通性嫌気性細菌によるNO3 −Nの還元による窒素ガ
ス生成(脱窒反応、下記式(2)参照)との組み合わせ
によって行われるものである。脱窒反応は通性嫌気性細
菌の溶存酸素(DO)が存在しない条件下での呼吸であ
り、下水の有機物やメタノールが炭素源(水素供与体)
として必要である。 NH4 −N→NO2 −N→NO3 −N(硝化反応) ………(1) NO3 −N→NO2 −N→N2 (脱窒反応) ………(2)
2. Description of the Related Art Technologies for removing nitrogen from wastewater include:
Although physical and chemical treatment methods have been studied,
Biological methods are cost-effective and most prevalent. Biological nitrogen removal is basically based on ammoniacal nitrogen (NH 4 −) by nitrifying bacteria under aerobic conditions.
N) Oxidation of N) to produce nitrate nitrogen (NO 3 -N) (nitrification reaction, see formula (1) below) and reduction of NO 3 -N by facultative anaerobic bacteria under anaerobic conditions It is carried out in combination with nitrogen gas generation (denitrification reaction, see the following formula (2)). The denitrification reaction is a respiration under the condition that dissolved oxygen (DO) of facultative anaerobic bacteria does not exist. Organic matter and methanol in sewage are carbon sources (hydrogen donor).
Is necessary. NH 4 -N → NO 2 -N → NO 3 -N ( nitrification) ......... (1) NO 3 -N → NO 2 -N → N 2 ( denitrification) ......... (2)

【0003】生物学的窒素除去プロセスは、設備面積の
削減、水素供与体としての有機炭素源の削減、中和剤と
してのアルカリ剤の削減などを目的として各種のプロセ
スが提案されている。大別すると直列方式、循環方式お
よびそれらの組み合わせに分類される。
[0003] Various biological nitrogen removal processes have been proposed for the purpose of reducing equipment area, reducing organic carbon sources as hydrogen donors, reducing alkali agents as neutralizing agents, and the like. It can be broadly classified into a series system, a circulation system, and a combination thereof.

【0004】直列方式は、最初に硝化を行い、次に脱窒
を行うもので、脱窒に必要な水素供与体を外部から添加
する場合と、添加を行わずに活性汚泥の内生呼吸を利用
する場合がある。
[0004] In the serial system, nitrification is first performed, and then denitrification is performed. The hydrogen donor required for denitrification is added from the outside, and the endogenous respiration of activated sludge without addition is performed. May be used.

【0005】一方、循環方式は、図3に示すように、最
初に脱窒を行い、次に硝化を行う硝化液循環方式が広く
検討されている(活性汚泥循環変法)。この方法は、硝
化液の循環により、硝化に伴なって消費されたアルカリ
度が脱窒によってある程度回収できるという利点があ
る。しかし、活性汚泥循環変法は、循環返送されない硝
化液の一部が脱窒槽を経由せずに流出するため、全窒素
除去率(T−N除去率)に限界がある。
On the other hand, as a circulation system, as shown in FIG. 3, a nitrification liquid circulation system in which denitrification is performed first and then nitrification is performed has been widely studied (modified activated sludge circulation method). This method has an advantage that the alkalinity consumed by nitrification can be recovered to some extent by denitrification by circulation of the nitrification liquid. However, in the activated sludge circulation modified method, since a part of the nitrification liquid which is not circulated and returned flows out without passing through the denitrification tank, the total nitrogen removal rate (TN removal rate) is limited.

【0006】さらに、硝化細菌は、通常の活性汚泥と比
較して増殖速度が遅く、リアクター内で高濃度に維持す
ることが難しい課題がある。そこで各種の担体をリアク
ターに添加し、硝化細菌を担体に付着させ、リアクター
内で硝化細菌を高濃度に維持し、効率化をはかる各種の
方法が提案されている。
[0006] Furthermore, nitrifying bacteria have a slower growth rate than ordinary activated sludge, and there is a problem that it is difficult to maintain a high concentration in a reactor. Therefore, various methods have been proposed in which various carriers are added to a reactor, nitrifying bacteria are adhered to the carrier, the nitrifying bacteria are maintained at a high concentration in the reactor, and efficiency is improved.

【0007】例えば、特開昭54−24774号公報に
は、活性汚泥が存在するリアクターを、嫌気1槽、好気
1槽、嫌気2槽、および好気2槽と4分割し、各種の好
気度、嫌気度を酸化還元電位(ORP:Oxygen
Reduction Potential)を指標にし
て制御するとともに、微生物の固定化担体として高炉水
砕スラグ、カーボンの微粉などをリアクターに添加し
て、都市下水のBOD、窒素化合物、リン化合物の除去
を行う生物学的方法が記載されている。
[0007] For example, Japanese Patent Application Laid-Open No. 54-24774 discloses that a reactor containing activated sludge is divided into four anaerobic tanks, one aerobic tank, two anaerobic tanks and two aerobic tanks. Odor and anaerobic are measured by oxidation-reduction potential (ORP: Oxygen).
Reducing the BOD, nitrogen compounds, and phosphorus compounds in municipal sewage by adding blast furnace granulated slag and carbon fine powder to the reactor as a carrier for immobilizing microorganisms while controlling using Reduction Potential as an index. A method is described.

【0008】[0008]

【発明が解決しようとする課題】従来の都市下水などの
生物学的な窒素除去プロセスでは、都市下水が硝化反応
や脱窒反応の阻害になるような成分を含んでいることが
少なく、しかも、NH4−Nが20〜50mg/l程度で
あるため、下水中のNH4 −NをNO3 −Nまで生物学
的に比較的容易に酸化でき、また、生成したNO3 −N
を窒素ガスまで、脱窒することが可能である。
In the conventional biological nitrogen removal process for municipal sewage and the like, municipal sewage rarely contains components that inhibit nitrification and denitrification reactions. NH 4 since -N is about 20-50 mg / l, the NH 4 -N in sewage can biologically relatively easily oxidized to NO 3 -N, also generated NO 3 -N
Can be denitrified to nitrogen gas.

【0009】しかし、廃水が、皮革工業、繊維工業、化
学工業などの各種の産業廃水や汚泥処理水のように、B
OD(Biological Oxygen Dema
nd)やCOD(Chemical Oxygen D
emand)で表示されるような有機物濃度が高く、し
かも、また硝化反応や脱窒反応に阻害がある芳香族系有
機物などのような成分を含むとともに、NH4 −Nが5
0mg/l以上含まれている場合には、従来の方法によっ
て脱窒素をはかることがかなり困難である。
[0009] However, wastewater is used as BW, such as various industrial wastewaters such as leather industry, textile industry, and chemical industry, and sludge treated water.
OD (Biological Oxygen Dema
nd) and COD (Chemical Oxygen D)
(e.g., organic compounds) such as aromatic organic substances that inhibit the nitrification reaction and the denitrification reaction, and that NH 4 —N is 5%.
When it is contained in an amount of 0 mg / l or more, it is very difficult to remove nitrogen by a conventional method.

【0010】以下、硝化反応および脱窒反応に分けて、
従来の生物学的な窒素除去プロセスの課題を説明する。
まず、硝化反応であるが、都市下水と比較して廃水中に
NH4 −Nが高濃度に含有されている場合には、リアク
ターにおいて、NH4 −NからNO3 −Nまでの反応が
完結せず、亜硝酸性窒素(NO2 −N)が蓄積する傾向
が強い。硝化細菌は、NH4 −NをNO2 −Nまで酸化
する細菌群(ニトロゾモナス:Nitrosomona
sなど)とNO2 −NをNO3 −Nまで酸化する細菌群
(ニトロバクター:Nitrobactorなど)に大
別されるが、ニトロゾモナスの方がニトロバクターより
も増殖速度が大きいため、都市下水が対象の場合には、
NO2 −Nが蓄積されることはない。しかし、溶存酸素
(DO)が不足したり、廃水中に阻害性物質が存在する
場合には、ニトロバクターの方がニトロゾモナスより阻
害を受けやすいため、ニトロバクターの増殖速度が極端
に低下する。このような場合、リアクターでNO2 −N
が蓄積しやすい。リアクターで大量に蓄積したNO2
Nは、有機物を分解する微生物や硝化細菌そのものの機
能を阻害する危険性がある。さらに、NO2 −Nが処理
水中に蓄積すると、NO2 −Nの1mgがCODとして
1.14mgとして計測されるため、処理水中のCODが
上昇する懸念がある。
Hereinafter, the nitrification reaction and the denitrification reaction are divided into
The problems of the conventional biological nitrogen removal process will be described.
First, regarding the nitrification reaction, when NH 4 —N is contained in wastewater at a higher concentration than in city sewage, the reaction from NH 4 —N to NO 3 —N is completed in the reactor. Instead, nitrite nitrogen (NO 2 -N) tends to accumulate. Nitrifying bacteria are a group of bacteria that oxidize NH 4 —N to NO 2 —N (Nitrozomonas: Nitrosomona).
s) and bacteria that oxidize NO 2 -N to NO 3 -N (Nitrobactor, etc.). Nitrozomonas have a higher growth rate than Nitrobactor, and are targeted at urban sewage. In Case of,
Does not NO 2 -N is accumulated. However, when dissolved oxygen (DO) is deficient or an inhibitory substance is present in the wastewater, the growth rate of Nitrobacter is extremely reduced because Nitrobacter is more susceptible to inhibition than Nitrozomonas. In such a case, NO 2 -N
Is easy to accumulate. NO 2 − accumulated in large quantities in the reactor
N has a danger of inhibiting the function of microorganisms that degrade organic substances and nitrifying bacteria themselves. Furthermore, when NO 2 -N accumulates in the treated water, 1 mg of the NO 2 -N is measured as 1.14 mg as the COD, and there is a concern that the COD in the treated water may increase.

【0011】このようなNO2 −Nを生成する硝化反応
を防止し、NO3 −Nを生成する硝化反応を促進するた
めには、リアクターへのNH4 −N負荷の低減、有機物
負荷の低減、リアクターの好気度制御、微生物滞留時間
(SRT:Sludge Retention Tim
e)の増大、リアクターの滞留時間(HRT:Hydr
aulic Retention Time)の増大な
どの方策が必要と思われる。しかし、従来の活性汚泥循
環変法のような浮遊状の硝化細菌を用いるプロセスを、
このような方法によって、NO2 −Nを生成する硝化反
応を効率的に防止するのはかなり難しい。これは、SR
TやHRTの増大は設備の大型化を招いてしまうためで
ある。
In order to prevent such a nitrification reaction for producing NO 2 -N and to promote a nitrification reaction for producing NO 3 -N, it is necessary to reduce the NH 4 -N load on the reactor and the organic matter load. , Aerobic control of reactor, microorganism retention time (SRT: Sludge Retention Time)
e) increase, reactor residence time (HRT: Hydr)
It seems necessary to take measures such as an increase in audio retention time. However, a process using suspended nitrifying bacteria, such as the conventional activated sludge circulation method,
It is quite difficult to efficiently prevent the nitrification reaction that produces NO 2 -N by such a method. This is SR
This is because an increase in T or HRT results in an increase in the size of the equipment.

【0012】このことは、例えば、「Wat.Res.,
1990年,Vol.24,No.3,pp.303〜312」
に指摘されている。NH4 −Nを80mg/l含有した人
工廃水を、溶存酸素(DO)を0.5mg/lに維持し、
リアクターのHRTが4日の条件で処理した場合、NO
2 −Nが60mg/l蓄積したと報告し、NO2 −Nを生
成する酸化反応は、DOが低くても進行してしまうと結
論づけている。さらに、流入水のCODを変動させた実
験を行い、有機物負荷がNO2 −Nの生成・蓄積に影響
すると報告している。
This is described, for example, in "Wat. Res.,
1990, Vol. 3, pp. 303-312 "
Has been pointed out. An artificial wastewater containing 80 mg / l of NH 4 —N, maintaining dissolved oxygen (DO) at 0.5 mg / l,
NO if the HRT of the reactor was processed on condition of 4 days
The authors reported that 60 mg / l of 2- N was accumulated, and concluded that the oxidation reaction to produce NO 2 -N would proceed even at low DO. Furthermore, an experiment was conducted in which the COD of the influent was varied, and it was reported that the organic matter load affected the generation and accumulation of NO 2 -N.

【0013】このように、有機物や難分解性物質の濃度
が高く、さらにNH4 −Nを高濃度に含む廃水を対象と
して、活性汚泥循環変法のような従来の浮遊型の活性汚
泥を用いる生物学的窒素除去プロセスによって硝化反応
を進行させようとする場合、NO2 −Nが蓄積しやす
く、硝化反応の制御について多くの課題が残されてい
る。
As described above, a conventional floating activated sludge, such as a modified activated sludge circulation method, is used for wastewater having a high concentration of organic substances and hardly decomposable substances and a high concentration of NH 4 -N. When a nitrification reaction is to be advanced by a biological nitrogen removal process, NO 2 —N tends to accumulate, and many problems remain regarding the control of the nitrification reaction.

【0014】さらに、プラスチック、高炉水砕スラグ、
カーボンの微粉などの結合固定化担体やポリアクリルア
ミドなどの包括固定化担体を活性汚泥循環変法などの硝
化用リアクターに添加して硝化反応を効率的に行おうと
する担体添加方法であるが、固定化担体に付着した硝化
細菌をリアクター内に高濃度に維持できる利点がある。
しかし、廃水の有機物や阻害成分の濃度が高い場合に
は、硝化細菌の機能自体が低下しやすいため、リアクタ
ーのHRTを飛躍的に短縮することはかなり困難であ
る。
Further, plastic, granulated blast furnace slag,
This is a method of adding a carrier for binding and immobilization such as fine carbon powder and a carrier for inclusive immobilization such as polyacrylamide to a reactor for nitrification such as a modified activated sludge circulation method in order to efficiently perform the nitrification reaction. There is an advantage that the nitrifying bacteria attached to the immobilized carrier can be maintained at a high concentration in the reactor.
However, when the concentration of the organic matter or the inhibitory component in the wastewater is high, the function of the nitrifying bacteria itself tends to decrease, and it is quite difficult to significantly reduce the HRT of the reactor.

【0015】次に、脱窒反応であるが、都市下水の有機
物やメタノールを炭素源として用いた場合には、リアク
ターにおいて、前記(2)式に示すようなNO3 −Nか
らN2 までの反応が完結し、NO2 −Nが蓄積すること
はない。しかし、脱窒反応の場合にも、硝化反応で述べ
た事項と同様の現象が生じる場合がある。すなわち、脱
窒細菌もNO3 −NをNO2 −Nまで還元する細菌群と
NO2 −NをN2 まで還元する細菌群に大別されると考
えられる。硝化細菌のように明確な分類はなされていな
いが、NO2 −NをN2 まで還元する細菌群が有機物な
どの阻害によって機能が低下し、脱窒用リアクター内に
NO2 −Nが蓄積する現象がしばしば観察される。さら
に、NO2 −Nが処理水中に蓄積すると、NO2 −Nの
1mgがCODとして1.14mgとして計測されるため、
処理水中のCODが上昇する懸念がある。
Next, regarding the denitrification reaction, when organic matter or municipal sewage or methanol is used as a carbon source, the reaction proceeds from NO 3 -N to N 2 as shown in the above formula (2) in the reactor. reaction is complete, nO 2 -N it will not be accumulated. However, in the case of the denitrification reaction, the same phenomenon as that described in the nitrification reaction may occur. That is, it is considered that the denitrifying bacteria are roughly classified into a group of bacteria that reduce NO 3 -N to NO 2 -N and a group of bacteria that reduce NO 2 -N to N 2 . Although there is no clear classification like nitrifying bacteria, the function of bacteria that reduce NO 2 -N to N 2 is reduced by inhibition of organic substances, and NO 2 -N accumulates in the denitrification reactor The phenomenon is often observed. Further, when NO 2 -N accumulates in the treated water, 1 mg of NO 2 -N is measured as 1.14 mg as COD,
There is a concern that COD in the treated water may increase.

【0016】さらに、硝化と脱窒の組み合わせの方法の
課題を説明する。まず、最初に硝化を行い、次に脱窒を
行う直列方式は、有機物や難分解性物質の濃度が高く、
さらにNH4 −Nを50mg/l以上含まれているような
廃水を対象とする場合、硝化反応がNO2 −Nの蓄積型
となりやすく不安定である。さらに、脱窒に必要なメタ
ノールなどの水素供与体を外部から全面的に添加する必
要があり、処理費用が増大してしまう。メタノール添加
を行わない活性汚泥の内生呼吸を利用する方法は、処理
速度が極めて遅く実用的ではない。
[0016] Further, the problem of the method of the combination of nitrification and denitrification will be described. First, the in-line method, in which nitrification is performed first and then denitrification is performed, has a high concentration of organic substances and persistent substances,
Furthermore, when the target is wastewater containing NH 4 —N of 50 mg / l or more, the nitrification reaction tends to be a NO 2 —N accumulation type and is unstable. Furthermore, it is necessary to add a hydrogen donor such as methanol necessary for denitrification from the outside to the whole, which increases the processing cost. The method of utilizing endogenous respiration of activated sludge without adding methanol is extremely slow in processing speed and is not practical.

【0017】次に、最初に脱窒を行い、続いて硝化を行
う硝化液循環方式(活性汚泥循環変法)であるが、この
方法は、硝化液の循環により、脱窒反応を必要な有機物
を廃水中の有機物を利用できるため、メタノールなどの
炭素添加を削減できる利点がある。しかし、活性汚泥循
環変法は、原理的に窒素削減率に限界があるとともに、
循環されない硝化液の一部が流出する。このため、硝化
過程でNO2 −Nが生成・蓄積した場合、そのまま、処
理水に流出し、CODの上昇を招いてしまう。また、脱
窒のため、廃水中の有機物を利用していることから嫌気
槽においてもNO2 −Nが蓄積する可能性がある。ま
た、循環する硝化液に含まれるDOが脱窒反応の阻害成
分として働く場合がある。
Next, a nitrification liquor circulation method (modified activated sludge circulation method) in which denitrification is performed first and then nitrification is performed. In this method, an organic substance requiring a denitrification reaction is circulated by circulating the nitrification liquid. Since organic matter in wastewater can be used, there is an advantage that addition of carbon such as methanol can be reduced. However, the activated sludge circulation method has a limit on the nitrogen reduction rate in principle,
A part of the nitrification liquid that is not circulated flows out. For this reason, when NO 2 —N is generated and accumulated in the nitrification process, it flows out into the treated water as it is, causing an increase in COD. Further, since the organic matter in the wastewater is used for denitrification, NO 2 -N may accumulate in the anaerobic tank. In addition, DO contained in the circulating nitrification liquid sometimes acts as an inhibitory component of the denitrification reaction.

【0018】最後に好気槽の制御方法であるが、一般的
にはDOが管理指標として用いられることが多い。しか
し、DOは、廃水中に阻害成分などがあり、微生物の活
性が低下しやすい状況においては有効な指標にはなりに
くい。硝化反応はDOが高いほど進行するなど、硝化反
応とDOの相関性については数多くの報告がある。しか
し、硝化反応にDOは必要であるが、DOが高いから硝
化が進行していることにはならない。すなわち、硝化細
菌が阻害を受けた場合などは、微生物による酸素消費が
減少するため、逆にDOは上昇する。したがって、硝化
反応の進行度をはかるという観点から、リアクターのD
O制御を行うことは評価できない。ただし、DOは硝化
細菌の増殖速度を維持するという観点からは重要であ
り、2mg/l以上に維持する必要がある。
Finally, regarding the control method of the aerobic tank, DO is generally used as a management index in many cases. However, DO has little inhibitory component in wastewater, and it is hard to be an effective index in a situation where the activity of microorganisms tends to decrease. There are many reports on the correlation between the nitrification reaction and DO, such that the nitrification reaction proceeds as the DO becomes higher. However, although DO is necessary for the nitrification reaction, nitrification does not necessarily proceed because DO is high. That is, for example, when nitrifying bacteria are inhibited, DO increases because oxygen consumption by microorganisms decreases. Therefore, from the viewpoint of measuring the progress of the nitrification reaction, the D
Performing O control cannot be evaluated. However, DO is important from the viewpoint of maintaining the growth rate of nitrifying bacteria, and needs to be maintained at 2 mg / l or more.

【0019】本発明は、上述のように有機物と高濃度の
窒素を含有する廃水に対して、従来の活性汚泥循環変法
のような処理方法を適用した場合の問題点を取り除き、
安定的、かつ、効率的に廃水の窒素化合物を除去する方
法を確立することを目的とする。
The present invention eliminates the problems when a treatment method such as a conventional activated sludge circulation method is applied to wastewater containing organic matter and high concentration of nitrogen as described above,
An object of the present invention is to establish a method for stably and efficiently removing nitrogen compounds in wastewater.

【0020】[0020]

【課題を解決するための手段】本発明は、有機物濃度が
高く、さらに還元性窒素化合物を50mg/l以上含む有機
性廃水の処理において、嫌気槽による脱窒処理を行った
後、好気槽による有機物の酸化処理を行い、その後に好
気性固定床型リアクターによる硝化処理を行い、次に、
好気性固定床型リアクターの硝化処理水を前段の嫌気槽
に循環させることを特徴とする廃水の窒素除去方法であ
る。
According to the present invention, there is provided a method for controlling the concentration of an organic substance.
In the treatment of organic wastewater containing 50 mg / l or more of reducing nitrogen compounds at a high rate, after performing denitrification treatment in an anaerobic tank, oxidizing organic substances in an aerobic tank, and then aerobic fixed bed reactor Nitrification treatment, and then
This is a method for removing nitrogen from wastewater, which comprises circulating nitrification-treated water of an aerobic fixed-bed reactor to an anaerobic tank at a preceding stage.

【0021】前記処理方法において、嫌気槽の酸化還元
電位(Ag/AgCl基準)が、−100mV以下に維持
されるように、好気性固定床型リアクターの硝化処理水
の循環量を、最終目標の窒素除去率の範囲で、廃水量に
対して最大300%まで循環調整するとともに、循環量
を下げても酸化還元電位が−100mV以下に低下しない
場合には、嫌気槽にメタノールなどの水素供与体を添加
して嫌気槽の酸化還元電位を−100mV以下とすること
が効率的である。
In the above-mentioned treatment method, the circulation amount of nitrification treatment water in the aerobic fixed-bed reactor is adjusted to the final target so that the oxidation-reduction potential (based on Ag / AgCl) of the anaerobic tank is maintained at -100 mV or less. In the range of the nitrogen removal rate, circulate the wastewater to a maximum of 300%, and if the oxidation-reduction potential does not decrease to -100 mV or less even if the circulation is reduced, supply a hydrogen donor such as methanol to the anaerobic tank. It is efficient that the oxidation-reduction potential of the anaerobic tank is adjusted to -100 mV or less by adding methane.

【0022】さらには、好気槽の酸化還元電位(Ag/
AgCl基準)が−50〜+50mV、好気性固定床型リ
アクターの酸化還元電位(Ag/AgCl基準)が+1
00〜+200mVに維持されるように、好気槽および好
気性固定床型リアクターへの空気および/または酸素富
化空気および/または酸素の吹き込み量を制御すること
も有効である。
Further, the oxidation-reduction potential (Ag /
AgCl (based on AgCl) is -50 to +50 mV, and the redox potential (based on Ag / AgCl) of the aerobic fixed bed reactor is +1.
It is also effective to control the amount of air and / or oxygen-enriched air and / or oxygen blown into the aerobic tank and the aerobic fixed bed reactor so as to be maintained at 00 to +200 mV.

【0023】[0023]

【作用】以下、本発明について詳しく説明する。図1に
本発明の処理フローを示す。なお、本発明における嫌気
槽による脱窒と好気槽による有機物酸化および沈殿汚泥
の嫌気槽への返送を含めて嫌気・好気活性汚泥法と呼
ぶ。
Hereinafter, the present invention will be described in detail. FIG. 1 shows a processing flow of the present invention. The term “anaerobic / aerobic activated sludge method” includes the denitrification in the anaerobic tank, the organic matter oxidation in the aerobic tank, and the return of the precipitated sludge to the anaerobic tank in the present invention.

【0024】従来法の活性汚泥循環変法における好気槽
では、有機物除去と硝化反応の促進をはかるが、本発明
における嫌気・好気活性汚泥法の好気槽は、廃水中に含
まれる有機物を除去するのみである。
The aerobic tank in the conventional activated sludge circulation modification method removes organic substances and promotes the nitrification reaction. However, the aerobic tank in the anaerobic / aerobic activated sludge method according to the present invention uses organic substances contained in wastewater. Is only removed.

【0025】嫌気・好気活性汚泥法の好気槽のORPと
廃水の有機物の除去性能は、密接な関係がある。好気槽
のORPを−50〜+50mV(Ag/AgCl基準)に
維持することによって、廃水中の有機物の分解を十分に
促進することができる。好気槽のORPを+50mV以上
に保つと、有機物の除去性能はさらに向上するが、処理
水中にNO2 −Nの蓄積が生じやすいので好ましくな
い。また、廃水中の有機物濃度が高い場合、空気による
曝気では好気槽のORPを−50〜+50mVに維持する
のが困難な場合がある。このような場合、あまりに大量
の空気を用いると、好気槽の活性汚泥の破壊、細分化が
起こり、汚泥沈降槽で十分に沈降しないで、処理水中に
流出し、処理水質の悪化を招く場合がある。このような
場合には酸素富化空気、および/または酸素を供給して
曝気を行う方法が望ましい。さらに、好気槽のORPを
−50〜+50mV、できれば0mVに維持することによっ
て、NO2 −Nの蓄積を防止することができる。NO2
−Nは、有機物を分解する細菌に対して阻害作用がある
ため、蓄積を防止することが望ましい。
There is a close relationship between the ORP of the aerobic tank in the anaerobic / aerobic activated sludge process and the organic matter removal performance of wastewater. By maintaining the ORP of the aerobic tank at -50 to +50 mV (based on Ag / AgCl), the decomposition of organic substances in the wastewater can be sufficiently promoted. If the ORP of the aerobic tank is kept at +50 mV or more, the performance of removing organic substances is further improved, but the accumulation of NO 2 -N in the treated water tends to occur, which is not preferable. When the concentration of organic matter in the wastewater is high, it may be difficult to maintain the ORP of the aerobic tank at -50 to +50 mV by aeration with air. In such a case, if too much air is used, the activated sludge in the aerobic tank will be destroyed and fragmented, and will not settle sufficiently in the sludge sedimentation tank, but will flow out into the treated water and cause deterioration in the treated water quality. There is. In such a case, a method of supplying oxygen-enriched air and / or oxygen to perform aeration is desirable. Further, by maintaining the ORP of the aerobic tank at -50 to +50 mV, preferably 0 mV, accumulation of NO 2 -N can be prevented. NO 2
Since -N has an inhibitory effect on bacteria that degrade organic substances, it is desirable to prevent accumulation.

【0026】本発明における好気性固定床型リアクター
は、廃水中に含まれる窒素化合物、主に有機性窒素、N
4 −N等の還元性窒素化合物を硝化反応により、NO
3 −Nまで生物学的に効率的に酸化する。前段の嫌気・
好気活性汚泥法によって、廃水中の有機物は十分に除去
されている。このため、有機物の硝化反応に及ぼす阻害
効果が削減され、NO3 −Nを生成する硝化反応を効率
的に進めることができる。
The aerobic fixed-bed reactor according to the present invention comprises a nitrogen compound, mainly organic nitrogen, N
NO 4 is reduced by nitrification reaction of a reducing nitrogen compound such as H 4 —N.
Biologically oxidizes efficiently to 3- N. Disgust
Organic matter in the wastewater has been sufficiently removed by the aerobic activated sludge method. For this reason, the inhibitory effect of the organic substance on the nitrification reaction is reduced, and the nitrification reaction for generating NO 3 —N can be efficiently advanced.

【0027】さらに、高炉水砕スラグを主原料としたサ
ドル型セラミックス、シリカ−アルミナ系セラミックス
およびプラスチックなどの担体に増殖速度の遅いニトロ
バクターなどの硝化細菌が高濃度に固定化されているた
め、NO3 −Nを生成する硝化反応を効率的に進めるこ
とができる。特に、高炉水砕スラグを主原料としたサド
ル型セラミックスは、多孔質で表面積が大きく、硝化細
菌が固定化されやすい。また、サドル型という形状のた
め、固定床型リアクター内の気液混合性能が優れてお
り、固定床型リアクター用の固定化担体として最も望ま
しいものである。
Furthermore, nitrifying bacteria such as Nitrobacter, which has a slow growth rate, are immobilized at a high concentration on a carrier such as saddle-type ceramics, silica-alumina-based ceramics, and plastics mainly made of granulated blast furnace slag. The nitrification reaction that produces NO 3 —N can be efficiently advanced. In particular, saddle-type ceramics mainly made of granulated blast furnace slag are porous and have a large surface area, and nitrifying bacteria are easily immobilized. Further, because of the saddle shape, the gas-liquid mixing performance in the fixed bed reactor is excellent, and it is most desirable as an immobilized carrier for the fixed bed reactor.

【0028】さらに、好気的固定床型リアクターのOR
Pを+100mV(Ag/AgCl基準)以上に維持する
ことによって、NH4 −Nなどの還元性窒素化合物を、
硝化反応により、NO3 −Nまで効率的に酸化すること
ができる。廃水中の還元性窒素化合物の濃度が高い場合
などでは、空気曝気ではリアクターのORPを+100
mV以上に維持するのが困難な場合があり、このような場
合には酸化富化空気、および/または酸素を供給して曝
気を行うとよい。さらに、硝化細菌は水温の影響を受け
やすく、水温が低下すると処理能力が低下しやすいが、
本発明の好気性固定床型リアクターは、水温が5〜10
℃のような条件下でも、10mgN/l・h以上の処理能
力を有している。
Furthermore, the OR of the aerobic fixed bed reactor
By maintaining P at +100 mV (based on Ag / AgCl), reducing nitrogen compounds such as NH 4 —N
By the nitrification reaction, it can be efficiently oxidized to NO 3 -N. In the case where the concentration of reducing nitrogen compounds in wastewater is high, the ORP of the reactor is increased by +100 by air aeration.
In some cases, it may be difficult to maintain the voltage at mV or more, and in such a case, it is preferable to supply the oxidation-enriched air and / or oxygen to perform aeration. Furthermore, nitrifying bacteria are susceptible to water temperature, and when the water temperature decreases, the processing capacity tends to decrease.
The aerobic fixed-bed reactor of the present invention has a water temperature of 5 to 10
It has a processing capacity of 10 mgN / l · h or more even under conditions such as ° C.

【0029】固定床型リアクターを硝化された処理水
は、嫌気槽に返送される。嫌気槽は、固定床型リアクタ
ー処理水中に含まれるNO3 −Nを窒素ガスまで生物学
的に効率的に還元する。高炉水砕スラグを主原料とした
サドル型セラミックス、シリカ−アルミナ系粘土を主原
料としたセラミックスまたはプラスチックなどを、担体
として嫌気槽に充填してもよい。微生物の固定化担体に
増殖速度の遅い脱窒細菌を高濃度に固定化することによ
り、脱窒反応を効率的に進めることができる。ただし、
嫌気槽に、担体を添加した場合、脱窒細菌の増殖によっ
て閉塞が生じやすいので、逆洗操作が必要である。
The treated water obtained by nitrifying the fixed bed reactor is returned to the anaerobic tank. The anaerobic tank biologically and efficiently reduces NO 3 —N contained in the fixed-bed reactor treated water to nitrogen gas. The anaerobic tank may be filled as a carrier with a saddle type ceramic made mainly of granulated blast furnace slag, a ceramic or a plastic made mainly of silica-alumina clay, or the like. By immobilizing a denitrifying bacterium with a slow growth rate at a high concentration on a microorganism-immobilized carrier, the denitrification reaction can be efficiently advanced. However,
When a carrier is added to the anaerobic tank, clogging is likely to occur due to the growth of denitrifying bacteria, so a backwashing operation is required.

【0030】さらに、嫌気槽において、脱窒細菌の活動
を良好に保つためには、嫌気槽のORPを−100〜−
150mV(Ag/AgCl基準)に維持することによっ
て、NO3 −Nを脱窒反応により、窒素ガスまで生物学
的に効率的に還元することができる。ORPは、廃水や
有機物やNH4 −Nなどの還元性窒素化合物によって低
下し、また、逆に、NO3 −NやDOによって上昇する
傾向がある。嫌気槽のORP管理は、以下の方法で行
う。
Further, in order to keep the activity of the denitrifying bacteria in the anaerobic tank good, the ORP of the anaerobic tank should be -100 to-
By maintaining at 150 mV (based on Ag / AgCl), NO 3 —N can be biologically and efficiently reduced to nitrogen gas by a denitrification reaction. ORP tends to decrease due to wastewater, organic substances, and reducing nitrogen compounds such as NH 4 —N, and conversely tends to increase due to NO 3 —N and DO. ORP management of the anaerobic tank is performed by the following method.

【0031】一般的には処理水の窒素濃度の目標値に応
じて、好気性固定床型リアクター処理水の循環量を変動
させる。例えば、循環比が2の場合、理論窒素除去率は
66%となるが、循環比を3に増加させると、理論窒素
除去率は75%となる。 理論窒素除去率={R/(1+R)}×100 R:循環比(循環量/廃水量) 計算上は循環比を増加させると、理論窒素除去率は増大
するが、実際には、嫌気槽に大量のNO3 −NやDOが
流入することにより、嫌気槽のORPが上昇しやすい。
嫌気槽のORPが−100mV以上になると、脱窒細菌の
阻害が生じるため、処理性能が悪化しやすい。また、逆
に嫌気槽のORPが低下しすぎると、メタンガスや硫化
水素ガスなどの発生により、脱窒細菌の機能が阻害され
る場合がある。
Generally, the circulation amount of the treated water in the aerobic fixed-bed type reactor is varied according to the target value of the nitrogen concentration of the treated water. For example, when the circulation ratio is 2, the theoretical nitrogen removal rate is 66%, but when the circulation ratio is increased to 3, the theoretical nitrogen removal rate becomes 75%. Theoretical nitrogen removal rate = {R / (1 + R)} × 100 R: Circulation ratio (Circulation amount / Wastewater amount) In theory, increasing the circulation ratio increases the theoretical nitrogen removal rate, but actually, the anaerobic tank ORP in the anaerobic tank is likely to increase due to a large amount of NO 3 -N or DO flowing into the anaerobic tank.
When the ORP of the anaerobic tank is -100 mV or more, the treatment performance tends to deteriorate because inhibition of denitrifying bacteria occurs. Conversely, if the ORP in the anaerobic tank is too low, the function of the denitrifying bacteria may be hindered by the generation of methane gas, hydrogen sulfide gas, and the like.

【0032】このため、嫌気槽のORPを指標として、
循環ポンプの流量を変化させることにより、循環比を増
減させる方式が有効である。例えば、処理目標の窒素除
去率が65%以上の場合、通常は、余裕を見て循環比=
2.5で運転し、嫌気槽のORPを上昇あるいは低下す
る場合、以下の運転を計る。 ・嫌気槽のORP:−200mV以下 →循環比を最大3まで増加 ・嫌気槽のORP:−100mV〜−200mV→循環比=2.5で運転 ・嫌気槽のORP:−100mV以上 →循環比を最小2まで減少 ・嫌気槽のORP:− 50mV以上 →循環比=最小2とするととも に、メタノール、イソプロピル アルコールなどを添加
Therefore, using the ORP of the anaerobic tank as an index,
It is effective to change the circulation ratio by changing the flow rate of the circulation pump. For example, when the nitrogen removal rate of the treatment target is 65% or more, the circulation ratio =
If the ORP of the anaerobic tank is increased or decreased by operating at 2.5, the following operation is measured. -ORP of the anaerobic tank: -200 mV or less → Increase the circulation ratio to a maximum of 3.-ORP of the anaerobic tank: -100 mV to -200 mV-Operation at a circulation ratio = 2.5-ORP of the anaerobic tank: -100 mV or more-The circulation ratio Reduced to a minimum of 2-ORP in anaerobic tank: -50 mV or more → Circulation ratio = minimum 2 and addition of methanol, isopropyl alcohol, etc.

【0033】さらに、嫌気・好気活性汚泥処理法の嫌気
槽に循環する好気性固定床型リアクターの処理水の全量
または一部を嫌気・好気活性汚泥処理法の返送汚泥ライ
ンに注入することにより、固定床型リアクター処理水の
DOをあらかじめ削減し、嫌気槽のORPの上昇を防ぐ
ことも可能である。
Further, all or a part of the treated water of the aerobic fixed-bed type reactor circulating in the anaerobic tank of the anaerobic / aerobic activated sludge treatment method is injected into the return sludge line of the anaerobic / aerobic activated sludge treatment method. As a result, the DO of the treated water in the fixed-bed reactor can be reduced in advance, and the ORP in the anaerobic tank can be prevented from rising.

【0034】さらにまた、嫌気槽のORPを循環比を最
大3まで増加させても、ORPが−200mV以下に低下
する場合がある。このようにORPが異常な場合、先に
述べたように、メタンガスや硫化水素ガスなどの発生に
より、脱窒細菌の機能が阻害される場合がある。このよ
うな場合に備え、嫌気槽にもORP制御により空気を供
給する装置を設置することも望ましい。
Further, even if the circulating ratio of the ORP in the anaerobic tank is increased to a maximum of 3, the ORP may be reduced to -200 mV or less. When the ORP is abnormal as described above, the function of the denitrifying bacteria may be hindered by the generation of methane gas, hydrogen sulfide gas, and the like, as described above. In order to prepare for such a case, it is also desirable to install a device for supplying air to the anaerobic tank by ORP control.

【0035】[0035]

【実施例】有機性産業廃水が大量に流入する都市下水処
理場において、実下水を用いた現場実験を行った。図2
に方法の概要を示す。実下水の性状は、BODが平均5
00mg/l、CODが平均500mg/l、アンモニア性
窒素が平均150mg/lであり、都市下水と比較して有
機物濃度、アンモニア性窒素濃度が高い下水であった。
冬期のリアクター3の水温は、5〜12℃の範囲で変動
した。
EXAMPLE An on-site experiment using actual sewage was conducted in an urban sewage treatment plant into which a large amount of organic industrial wastewater flows. FIG.
Shows an outline of the method. The actual sewage has an average BOD of 5
00 mg / l, COD was 500 mg / l on average, and ammonia nitrogen was 150 mg / l on average, and the sewage was higher in organic matter concentration and ammonia nitrogen concentration than municipal sewage.
The water temperature of the reactor 3 in winter varied in the range of 5 to 12 ° C.

【0036】リアクター3は、HRTが嫌気槽4で6時
間、好気槽5で12時間になるように実下水を通水し処
理を行った。嫌気槽4のORPは、表1のように設定
し、ORP制御装置7を用いて循環比の変動やメタノー
ル添加(メタノール添加ポンプ11により、メタノール
タンク12から嫌気槽4へ添加)により制御した。
The reactor 3 was treated by passing actual sewage water so that the HRT was 6 hours in the anaerobic tank 4 and 12 hours in the aerobic tank 5. The ORP of the anaerobic tank 4 was set as shown in Table 1, and was controlled by using the ORP controller 7 by changing the circulation ratio and adding methanol (adding from the methanol tank 12 to the anaerobic tank 4 by the methanol addition pump 11).

【0037】[0037]

【表1】 [Table 1]

【0038】また、好気槽5のORPは、空気によっ
て、ORP制御装置9によってブロアー10から空気を
供給して+0mVに制御した。高炉水砕スラグを主原料と
したサドル型セラミックスを微生物固定化担体として充
填した好気性固定床型リアクター17は、まず、実際の
下水処理場から採取した活性汚泥をリアクター内に投入
し、1日間循環運転することにより、活性汚泥をセラミ
ックスに固定化した。その後、リアクターのHRTが8
時間になるように、嫌気・好気活性汚泥法リアクター処
理水を通水して処理を行った。また、好気性固定床型リ
アクター17のORPは、ORP制御装置24を介して
酸素富化空気製造装置25からブロアー26を通して送
られる酸素富化空気によって、+150mVに制御した。
さらに、好気性固定床型リアクター17のpHは、硝化
の進行に伴い、低下しやすいのでpH制御装置22によ
ってNaOHタンク20からNaOHを投入し、pH=
7に制御した。また、嫌気・好気活性汚泥処理法の嫌気
槽4に循環する好気性固定床型リアクター17の硝化処
理水の全量を、循環ポンプ18を用いて嫌気・好気活性
汚泥処理法の返送汚泥ラインに注入した。
The ORP of the aerobic tank 5 was controlled to +0 mV by supplying air from the blower 10 by the ORP controller 9 using air. The aerobic fixed-bed reactor 17 filled with saddle-type ceramics mainly made of granulated blast furnace slag as a carrier for immobilizing microorganisms was first charged with activated sludge collected from an actual sewage treatment plant into the reactor for one day. Activated sludge was fixed to ceramics by circulating. After that, the HRT of the reactor became 8
An anaerobic / aerobic activated sludge process was passed through the reactor treated water so that the treatment time was reached. The ORP of the aerobic fixed-bed reactor 17 was controlled at +150 mV by oxygen-enriched air sent from the oxygen-enriched air production device 25 through the blower 26 via the ORP control device 24.
Further, the pH of the aerobic fixed-bed reactor 17 tends to decrease with the progress of nitrification. Therefore, NaOH is charged from the NaOH tank 20 by the pH control device 22, and pH =
Controlled at 7. Further, the entire amount of nitrification treatment water of the aerobic fixed-bed reactor 17 circulating in the anaerobic tank 4 of the anaerobic / aerobic activated sludge treatment method is returned to the sludge line of the anaerobic / aerobic activated sludge treatment method using the circulation pump 18. Was injected.

【0039】1〜3月の冬期の低水温期の実験結果を表
2に示す。表2の結果より、本法の最終処理水は、BO
Dが20mg/l以下、CODが50mg/l以下、T−N
が50mg/l以下と良好な結果が得られた。この実験結
果から、本法は、冬期の低水温期においても、総処理時
間が20〜24時間程度で、下水中の有機物と窒素化合
物を効率的に除去できることが明らかになった。
Table 2 shows the experimental results of the low water temperature period in winter from January to March. From the results in Table 2, the final treated water in this method was BO
D: 20 mg / l or less, COD: 50 mg / l or less, TN
Was 50 mg / l or less, and good results were obtained. From this experimental result, it was clarified that the present method can efficiently remove organic substances and nitrogen compounds in sewage even in a low water temperature period in winter with a total treatment time of about 20 to 24 hours.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【発明の効果】以上のことから、本発明は、アンモニア
性化合物などの還元性窒素化合物を高濃度に含有する廃
水の処理において、次のような利点を有している。すな
わち、このような廃水の処理の場合、単一の嫌気・好気
活性汚泥法では、廃水の成分による硝化・脱窒阻害があ
る。このため、処理水中にCOD源となるNO2 −Nが
蓄積しやすく、この制御が最も問題となる。本法は、有
機物除去プロセスと好気性固定床型リアクターによる窒
素化合物酸化プロセスの2段処理とORP制御を行って
いるので、単独生物処理プロセスと比較して、阻害成分
の影響が少ない。この結果、廃水中のアンモニア性窒素
などの還元性窒素化合物を効率的に除去することができ
る。
As described above, the present invention has the following advantages in treating wastewater containing a high concentration of reducing nitrogen compounds such as ammoniacal compounds. That is, in the case of such a wastewater treatment, in a single anaerobic / aerobic activated sludge method, nitrification and denitrification are inhibited by the wastewater component. For this reason, NO 2 —N serving as a COD source easily accumulates in the treated water, and this control is the most problematic. In this method, the two-stage treatment of the organic compound removal process and the nitrogen compound oxidation process by the aerobic fixed-bed reactor and the ORP control are performed, so that the influence of the inhibitory component is smaller than that of the single biological treatment process. As a result, reducing nitrogen compounds such as ammonia nitrogen in wastewater can be efficiently removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における廃水の窒素除去方法フローを示
す図である。
FIG. 1 is a diagram showing a flow of a method for removing nitrogen from wastewater in the present invention.

【図2】本発明の実施例を示す図である。FIG. 2 is a diagram showing an embodiment of the present invention.

【図3】従来の活性汚泥循環変法による廃水処理のフロ
ーを示す図である。
FIG. 3 is a diagram showing a flow of wastewater treatment by a conventional activated sludge circulation modified method.

【符号の説明】[Explanation of symbols]

1 廃水タンク 2 廃水ポンプ 3 嫌気・好気活性汚泥リアクター 4 嫌気槽 5 好気槽 6 ORPセンサー 7 ORP制御装置 8 ORPセンサー 9 ORP制御装置 10 ブロア 11 メタノール添加ポンプ 12 メタノールタンク 13 汚泥沈降槽 14 返送汚泥ポンプ 15 処理水槽 16 移送ポンプ 17 好気性固定床型リアクター 18 硝化液循環ポンプ 19 NaOHポンプ 20 NaOHタンク 21 pHセンサー 22 pH制御装置 23 ORPセンサー 24 ORP制御装置 25 酸素富化空気製造装置 26 ブロア 27 処理水槽 28 最終処理水 Reference Signs List 1 wastewater tank 2 wastewater pump 3 anaerobic / aerobic activated sludge reactor 4 anaerobic tank 5 aerobic tank 6 ORP sensor 7 ORP controller 8 ORP sensor 9 ORP controller 10 blower 11 methanol addition pump 12 methanol tank 13 sludge sedimentation tank 14 return Sludge pump 15 Treatment water tank 16 Transfer pump 17 Aerobic fixed-bed reactor 18 Nitrification liquid circulation pump 19 NaOH pump 20 NaOH tank 21 pH sensor 22 pH control device 23 ORP sensor 24 ORP control device 25 Oxygen-enriched air production device 26 Blower 27 Treated water tank 28 Final treated water

フロントページの続き (56)参考文献 特開 平2−139093(JP,A) 特開 昭60−54792(JP,A) 特開 昭64−51197(JP,A) 特開 平6−31297(JP,A) 特開 平6−496(JP,A) 特開 平7−100485(JP,A) 特開 平7−39899(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 3/34 101 C02F 3/30 Continuation of the front page (56) References JP-A-2-139909 (JP, A) JP-A-60-54792 (JP, A) JP-A-64-51197 (JP, A) JP-A-6-31297 (JP) JP-A-6-496 (JP, A) JP-A-7-100485 (JP, A) JP-A-7-39899 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB Name) C02F 3/34 101 C02F 3/30

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機物濃度が高く、さらに還元性窒素化
合物を50mg/l以上含む有機性廃水の処理において、嫌
気槽による脱窒処理を行った後、好気槽による有機物の
酸化処理を行い、その後に好気性固定床型リアクターに
よる硝化処理を行い、次に、好気性固定床型リアクター
の硝化処理水を前段の嫌気槽に循環させることを特徴と
する廃水の窒素除去方法。
In the treatment of an organic wastewater having a high organic matter concentration and further containing a reducing nitrogen compound in an amount of 50 mg / l or more , after performing a denitrification treatment in an anaerobic tank, an oxidation treatment of the organic matter is performed in an aerobic tank, Thereafter, nitrification treatment is performed by an aerobic fixed-bed reactor, and then nitrification treatment water of the aerobic fixed-bed reactor is circulated to an anaerobic tank in a preceding stage.
【請求項2】 嫌気槽の酸化還元電位(Ag/AgCl
基準)が、−100〜−200mVに維持されるように、
好気性固定床型リアクターの硝化処理水の循環量を、最
終目標の窒素除去率の範囲で、廃水量に対して最大30
0%まで循環により調整するとともに、循環量を下げて
も嫌気槽の酸化還元電位が−100mV以下に低下しない
場合には、嫌気槽にメタノールなどの水素供与体を添加
して嫌気槽の酸化還元電位を−100mV以下とすること
を特徴とする請求項1記載の廃水の窒素除去方法。
2. An oxidation-reduction potential (Ag / AgCl) in an anaerobic tank.
Criterion) is maintained at -100 to -200 mV,
In the aerobic fixed-bed type reactor, the circulating amount of nitrification treatment water should be up to 30 times the amount of wastewater within the range of the final target nitrogen removal rate.
If the oxidation-reduction potential of the anaerobic tank does not decrease to -100 mV or less even if the circulation amount is adjusted to 0% and the circulation amount is reduced, a hydrogen donor such as methanol is added to the anaerobic tank to oxidize the anaerobic tank. 2. The method for removing nitrogen from wastewater according to claim 1, wherein the potential is -100 mV or less.
【請求項3】 好気槽の酸化還元電位(Ag/AgCl
基準)が−50〜+50mV、好気性固定床型リアクター
の酸化還元電位(Ag/AgCl基準)が+100〜+
200mVに維持されるように、好気槽および好気性固定
床型リアクターへの空気および/または酸素富化空気お
よび/または酸素の吹き込み量を制御することを特徴と
する請求項1または2記載の廃水の窒素除去方法。
3. The oxidation-reduction potential of an aerobic tank (Ag / AgCl
(Reference) is -50 to +50 mV, and the oxidation-reduction potential (based on Ag / AgCl) of the aerobic fixed bed reactor is +100 to ++
3. The method according to claim 1, wherein the amount of air and / or oxygen-enriched air and / or oxygen blown into the aerobic tank and the aerobic fixed-bed reactor is controlled so as to be maintained at 200 mV. Wastewater nitrogen removal method.
【請求項4】 嫌気槽に循環する好気性固定床型リアク
ターの硝化処理水の全量または一部を、返送汚泥ライン
に注入することを特徴とする請求項1,2または3記載
の廃水の窒素除去方法。
4. The nitrogen of the wastewater according to claim 1, 2, or 3, wherein the whole or a part of the nitrification-treated water of the aerobic fixed-bed reactor circulating in the anaerobic tank is injected into a return sludge line. Removal method.
【請求項5】 固定床型リアクターに、微生物固定化担
体として、高炉水砕スラグを主原料とするサドル型セラ
ミックスを用いることを特徴とする請求項1,2,3ま
たは4記載の廃水の窒素除去方法。
5. The nitrogen of the wastewater according to claim 1, 2, 3 or 4, wherein the fixed bed type reactor uses a saddle type ceramic mainly composed of granulated blast furnace slag as a carrier for immobilizing microorganisms. Removal method.
JP7921295A 1995-04-04 1995-04-04 Wastewater nitrogen removal method Expired - Fee Related JP3270652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7921295A JP3270652B2 (en) 1995-04-04 1995-04-04 Wastewater nitrogen removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7921295A JP3270652B2 (en) 1995-04-04 1995-04-04 Wastewater nitrogen removal method

Publications (2)

Publication Number Publication Date
JPH08267090A JPH08267090A (en) 1996-10-15
JP3270652B2 true JP3270652B2 (en) 2002-04-02

Family

ID=13683636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7921295A Expired - Fee Related JP3270652B2 (en) 1995-04-04 1995-04-04 Wastewater nitrogen removal method

Country Status (1)

Country Link
JP (1) JP3270652B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000066472A (en) * 1999-04-16 2000-11-15 유호원 Denitrification Processing System and the Method for the Wastewater
CN102432141B (en) * 2011-11-04 2013-10-02 北京工业大学 Pre-anaerobic fermentation synchronous denitrification sewage denitrification and sludge reduction integrated device and method
CN103663867B (en) * 2013-12-02 2015-01-07 北京工业大学 Device and method of residual sludge alkaline fermentation and inner carbon source development technology coupled with A-A-O nitrogen and phosphorous removal system
CN110902966A (en) * 2019-12-10 2020-03-24 中国科学院生态环境研究中心 Anaerobic membrane biological-shortcut nitrification and denitrification wastewater treatment method and system

Also Published As

Publication number Publication date
JPH08267090A (en) 1996-10-15

Similar Documents

Publication Publication Date Title
KR100415252B1 (en) Biological Nitrogen Removal from Nitrogen-Rich Wastewaters by Partial Nitrification and Anaerobic Ammonium Oxidation
US20140367330A1 (en) Wastewater treatment process that utilizes granular sludge to reduce cod concentration in wastewater
US8323487B2 (en) Waste water treatment apparatus
JP4106203B2 (en) How to remove nitrogen from water
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
JP4426105B2 (en) Treatment process of wastewater containing specific components such as ammonia
JP4729810B2 (en) Biological denitrification method
JP2003053384A (en) Method for removing nitrogen and phosphorus from waste water and facility therefor
JP2004298841A (en) Method for treating nitrogen-containing wastewater
JP3958900B2 (en) How to remove nitrogen from wastewater
KR100783789B1 (en) Apparatus for wastewater treatment and method for wastewater treatment using the same
JP3269957B2 (en) How to remove nitrogen from wastewater
JP3270652B2 (en) Wastewater nitrogen removal method
KR20210040632A (en) Wastewater treatment system using anaerobic ammonium oxidation system in mainstream of mwtp by nitrification reaction of various high concentration waste liquid and microorganism culture reinforcement
KR100632487B1 (en) Gradually operated sequencing batch reactor and method thereof
JP2012020262A (en) Nitritification treatment method of ammoniacal nitrogen
JP2002172399A (en) Denitrification treatment method
JP2003071490A (en) Method for removing nitrogen from wastewater
KR100425335B1 (en) Wastewater treatment system using SBBR(Sequencing batch biofilm reactor) and equalization tank
KR100335761B1 (en) Waste water treatment process for removing orgnic material and nitrogen
JP2002018479A (en) Method for removing nitrogen from water
JP3358388B2 (en) Treatment method for selenium-containing water
JP2946163B2 (en) Wastewater treatment method
KR100783790B1 (en) Apparatus for wastewater treatment with multi-stage denitification-filtration and method for wastewater treatment using the same
Moriyama et al. Retrofitting and operation of small extended aeration plants for advanced treatment–some experiences in Japan

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011211

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080118

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080118

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees