KR100783789B1 - Apparatus for wastewater treatment and method for wastewater treatment using the same - Google Patents

Apparatus for wastewater treatment and method for wastewater treatment using the same Download PDF

Info

Publication number
KR100783789B1
KR100783789B1 KR20070046575A KR20070046575A KR100783789B1 KR 100783789 B1 KR100783789 B1 KR 100783789B1 KR 20070046575 A KR20070046575 A KR 20070046575A KR 20070046575 A KR20070046575 A KR 20070046575A KR 100783789 B1 KR100783789 B1 KR 100783789B1
Authority
KR
South Korea
Prior art keywords
tank
effluent
denitrification
sewage treatment
wastewater treatment
Prior art date
Application number
KR20070046575A
Other languages
Korean (ko)
Inventor
이철
김현배
안동근
남해욱
고주형
윤주환
이찬호
한진희
권민
Original Assignee
주식회사 포스코건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코건설 filed Critical 주식회사 포스코건설
Priority to KR20070046575A priority Critical patent/KR100783789B1/en
Application granted granted Critical
Publication of KR100783789B1 publication Critical patent/KR100783789B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • C02F3/085Fluidized beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/108Immobilising gels, polymers or the like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

A wastewater treatment apparatus comprising a denitrifying reactor and a denitrifying filtration tank and a wastewater treatment method using the wastewater treatment apparatus are provided to secure a stable quality of the effluent by reducing a nitrogen content of final effluent during wastewater treatment, thereby preventing nitrogen contained in the effluent from having a bad influence on an ecological environment of a water system. A wastewater treatment apparatus comprises: a first sedimentation tank(10) into which wastewater is flown, and in which a settling process of wastewater is performed; a bioreactor including an aerobic tank(40) for nitrifying effluent of the first sedimentation tank using microorganisms; a second sedimentation tank(50) for settling a microorganism sludge of the bioreactor; a denitrifying reactor(60) which contains effluent of the second sedimentation tank, and in which carriers are embedded to denitrify the effluent; and a denitrifying filtration tank(70) in which a filter medium is contained to remove suspended solids contained in effluent of the denitrifying reactor, and which removes residual nitrates of the effluent. The carriers are waste tire-processed fluidized bed carriers or polyurethane carriers. The filter medium has a filtration ratio of 50 to 100 m^3/m^2.d. The bioreactor additionally includes an anaerobic tank(20) and an anoxic tank(30).

Description

하수처리장치 및 이를 이용한 하수처리방법{APPARATUS FOR WASTEWATER TREATMENT AND METHOD FOR WASTEWATER TREATMENT USING THE SAME}Sewage treatment apparatus and sewage treatment method using the same {APPARATUS FOR WASTEWATER TREATMENT AND METHOD FOR WASTEWATER TREATMENT USING THE SAME}

도 1은 본 발명의 하수처리장치를 나타내는 개념도.1 is a conceptual diagram showing a sewage treatment apparatus of the present invention.

도 2a는 여과율에 따른 NO3 제거율을 나타내는 그래프.Figure 2a is NO 3 according to the filtration rate Graph showing removal rate.

도 2b는 여과율에 따른 부유물 제거율을 나타내는 그래프.Figure 2b is a graph showing the removal rate of suspended matter according to the filtration rate.

도 3은 외부탄소원 주입량에 따른 NO3제거율을 나타내는 그래프.3 is a graph showing the NO 3 removal rate according to the external carbon source injection amount.

도 4는 온도에 따른 NO3제거율을 나타내는 그래프.Figure 4 is a graph showing the NO 3 removal rate with temperature.

도 5는 본 발명의 하수처리방법을 장기적으로 운전하여 NO3제거율의 변화를 나타내는 그래프.5 is a graph showing the change in NO 3 removal rate by operating the sewage treatment method of the present invention for a long time.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10: 1차 침전조 20: 혐기조10: primary sedimentation tank 20: anaerobic tank

30: 무산소조 40: 호기조 30: anoxic tank 40: aerobic tank

50: 2차 침전조 60: 탈질반응조50: secondary precipitation tank 60: denitrification reactor

70: 탈질여과조70: denitrification tank

본 발명은 하수처리장치 및 이를 이용한 하수처리방법에 관한 것으로서, 더욱 상세하게는 하수처리공정의 탈질효율을 향상시켜 유출수에 질소가 함유되어 수계의 환경을 저해하는 것을 방지 한 하수처리장치 및 이를 이용한 하수처리방법에 관한 것이다.The present invention relates to a sewage treatment apparatus and a sewage treatment method using the same, and more particularly, to improve the denitrification efficiency of a sewage treatment process, to contain nitrogen in the effluent to prevent damaging the environment of the water system and using the same. It relates to a sewage treatment method.

일반적으로, 하수처리는 유입하수를 1차침전 후에 혐기조, 무산소조, 호기조로 구성되는 미생물반응조에서 미생물을 이용하여 처리시킨 후에 다시 2차 침전지에서 침전 방류하는 방법을 택하고 있다. In general, the sewage treatment is a method of sedimentation and discharge from the secondary sedimentation basin after the influent sewage is treated with microorganisms in the microbial reaction tank consisting of anaerobic tank, anoxic tank, and aerobic tank after the first settling.

이때, 미생물반응조에서 생산된 미생물을 슬러지(sludge)라고 하며, 이는 2차 침전조에서 침전된다. 침전된 슬러지는 일부 미생물반응조로 순환되고, 일부는 방출되어 폐슬러지 처리되는 공정으로 이루어진다At this time, the microorganisms produced in the microbial reaction tank is called sludge, which is precipitated in the secondary settling tank. Precipitated sludge is circulated to some microbial reactors, and some is discharged to waste sludge treatment.

한편, 이와 같은 하수처리 흐름에서 수계로 방류되는 유출수에는 유량에 비하여 질소농도가 높아 수계의 생태환경을 저해하는 요인으로 작용하는 문제점이 있었다.On the other hand, the effluent discharged to the water system in such a sewage treatment stream has a problem that acts as a factor that inhibits the ecological environment of the water system because the nitrogen concentration is higher than the flow rate.

즉, 하수종말처리시설 운영실태분석 보고서(2005년, 환경부)를 보면, 일반하수처리장에서 유입수와 방류수의 T-N(총질소)평균농도는 각각 32.1; 16.3mg/L로 제거율은 약 49%에 불과하며, 일부 하수처리장에서는 T-N의 연평균 방류수질이 수질 기준을 초과하였다. In other words, the Sewage Terminal Treatment Facility Analysis Report (2005, Ministry of Environment) shows that the average concentrations of T-N (total nitrogen) of influent and effluent in general sewage treatment plants were 32.1; At 16.3 mg / L, the removal rate was only about 49%, and in some sewage treatment plants, the annual average discharge quality of T-N exceeded the water quality standard.

한편, 고도처리시설로 운영중인 하수처리장 152개소의 평균 T-N 유출수질은 13.0mg/L로 재이용수질 권고기준인 10mg/L를 크게 상회하고 있다. 이는 고도처리시설로 운영되는 하수처리장의 유출수가 하천유지를 위해 수계로 방류되기에도 적합하지 않다는 것을 의미한다. 따라서 추가적인 질소제거의 필요성이 대두되고 있으며, 하수처리장 유출수 중 T-N의 대부분은 질산염(NO3) 형태로 존재하므로 이러한 질산염을 추가적으로 제거할 수 있는 후탈질 공정이 절실히 요구되고 있는 실정이다. On the other hand, the average TN effluent quality of 152 sewage treatment plants operated as advanced treatment facilities is 13.0mg / L, far exceeding the recommended 10mg / L recycled water quality standard. This means that the effluent from the sewage treatment plant operated as an advanced treatment facility is not suitable for being discharged into the water system for river maintenance. Therefore, there is a need for additional nitrogen removal, and since most of the TN in the sewage treatment plant effluent is present in the form of nitrate (NO 3 ), a post-denitrification process that can additionally remove such nitrate is urgently needed.

본 발명은 상기한 종래의 문제점을 개선하기 위하여 안출된 것으로서, 하수처리시 최종 유출수의 질소함유량을 저감시켜 수계의 생태환경에 악영향이 미치는 것을 예방함으로써 안정적인 유출수질을 확보할 수 있는 하수처리장치 및 이를 이용한 하수처리방법을 제공하는데 그 목적이 있다.The present invention has been made to improve the above-mentioned problems, sewage treatment apparatus that can ensure a stable effluent quality by reducing the nitrogen content of the final effluent during sewage treatment to prevent adverse effects on the ecological environment of the water system and The purpose is to provide a sewage treatment method using the same.

상기한 목적을 달성하기 위한 수단으로서, 본 발명의 하수처리장치는, 하수를 유입시켜 침전시키는 1차침전조와, 상기 1차침전조의 유출수를 미생물을 이용하여 질산화시키는 호기조를 포함하는 미생물반응조와, 상기 미생물반응조의 미생물 슬러지를 침전시키는 2차침전조와, 상기 2차침전조의 유출수가 수용되며, 내부의 담체를 통해 탈질하는 탈질반응조 및 상기 탈질반응조의 유출수에 포함된 부유물을 내부의 여재를 통해 제거하며 상기 유출수의 잔존 질산염을 제거하는 탈질여과조를 포함하여 이루어진 것을 특징으로 한다.As a means for achieving the above object, the sewage treatment apparatus of the present invention, a microbial reaction tank including a primary sedimentation tank for introducing sewage into the sewage, and an aerobic tank for nitrifying the effluent of the primary sedimentation tank using microorganisms, The secondary sedimentation tank for precipitating the microbial sludge of the microbial reaction tank, and the effluent of the secondary sedimentation tank is accommodated, the denitrification tank for denitrification through the carrier therein and the suspended substances contained in the effluent of the denitrification tank are removed through the internal media. And a denitrification filtration tank for removing residual nitrate from the effluent.

또한, 본 발명의 하수처리방법은, 하수를 유입시켜 침전시키는 1차 침전공정과, 상기 1차 침전공정의 유출수를 미생물을 이용하여 호기조건에서 질산화시키는 공정을 포함하는 미생물반응공정과, 상기 미생물반응공정의 미생물 슬러지를 침전시키는 2차 침전공정과, 상기 2차 침전공정의 유출수가 수용되며, 상기 유출수에 외부탄소원을 투입하고 내부의 담체를 통해 탈질하는 탈질공정 및 상기 탈질공정의 유출수에 포함된 부유물을 제거하며, 상기 유출수의 잔존 질산염을 제거하는 탈질여과공정을 포함하여 이루어진 것을 특징으로 한다. In addition, the sewage treatment method of the present invention, a microbial reaction process comprising a first precipitation step of introducing sewage by introducing sewage, and a step of nitrifying the effluent of the first precipitation step under aerobic conditions using a microorganism, and the microorganism The secondary precipitation step of precipitating the microbial sludge of the reaction process, and the effluent water of the secondary precipitation step is accommodated, the denitrification step of denitrification process by introducing an external carbon source to the effluent and denitrification through an internal carrier and included in the effluent of the denitrification process It is characterized in that it comprises a denitrification filtration process to remove the suspended matter, and to remove the residual nitrate of the effluent.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참고로 하여 상세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 하수처리장치를 나타내는 개념도이다.1 is a conceptual diagram showing a sewage treatment apparatus of the present invention.

도 1에 나타낸 바와 같이, 본 발명의 하수처리장치는, 하수를 유입시켜 침전시키는 1차침전조(10)와, 상기 1차침전조(10)의 유출수를 미생물을 이용하여 처리하는 미생물반응조와, 상기 미생물반응조의 유출수를 침전시키는 2차침전조(50)와, 탈질을 위한 탈질반응조(60) 및 부유물을 내부의 여재를 통해 제거하기 위한 탈질여과조(70)로 구성된다.As shown in Figure 1, the sewage treatment apparatus of the present invention, the first settling tank 10 for introducing the sewage into the sediment, and the microbial reaction tank for treating the effluent of the first settling tank 10 by using microorganisms, It consists of a secondary settling tank (50) for precipitating the effluent of the microbial reaction tank, a denitrification reactor (60) for denitrification, and a denitrification filtration tank (70) for removing suspended matters through the internal media.

상기 미생물반응조는, 혐기조(20)와 무산소조(30) 및 호기조(40)로 구성된 미생물반응조에 1차침전조(10)를 통과한 처리수를 유입시켜 질소(N), 인(P) 및 유 기물질을 제거한다. 즉, 상기 1차 침전공정 이후 혐기조에서 인(P)을 방출하고 무산소조(30)에서 호기조(40)로부터 반송되는 내부반송수 내의 질산염(NO3)을 탈질하며, 호기조(40)에서 유기물 산화, 질산화, 인(P) 축적하는 순서로 미생물을 처리한다. The microbial reaction tank, nitrogen (N), phosphorus (P) and organic by introducing the treated water passing through the first settling tank 10 to the microbial reaction tank consisting of anaerobic tank 20, anoxic tank 30 and aerobic tank 40 Remove the material. That is, after the first precipitation process to release phosphorus (P) in the anaerobic tank and denitrate the nitrate (NO 3 ) in the internal transport water returned from the aerobic tank 40 in the anoxic tank 30, the organic matter oxidation in the aerobic tank 40, The microorganisms are processed in the order of nitrification and phosphorus accumulation.

한편, 상기 미생물반응조는 혐기조(20), 무산소조(30) 및 호기조(40)로 구성된 생물학적 질소, 인 제거공정뿐만 아니라, 표준활성화슬러지공정과 같이 전체가 하나의 호기조(40)로 이루어질 수 있다. 즉, 본 발명은 종래의 생물학적 질소, 인 제거공정뿐만 아니라 표준활성화슬러지공정 등과 같이 호기조(40)를 포함한 공정에 동일하게 적용될 수 있는데, 이하에서는 전자를 중심으로 설명하기로 한다.On the other hand, the microbial reaction tank may be composed of a single aerobic tank 40 as well as biological nitrogen, phosphorus removal process consisting of anaerobic tank 20, anoxic tank 30 and aerobic tank 40, as well as standard activated sludge process. That is, the present invention can be equally applied to a process including the aeration tank 40, such as a conventional biological nitrogen, phosphorus removal process, as well as a standard activated sludge process, will be described below with reference to the former.

탈질반응조(60)에는 담체가 부피비 10%로 충진되어 미생물이 담체에 부착됨으로써 상기 미생물이 부유되어 유출되는 것을 방지하여 탈질반응조(60) 내의 미생물의 농도를 조절하게 된다. 이때, 탈질반응조(60)에는 교반기가 마련되어 상기 담체의 부유를 촉진시키는 것이 바람직하다. 또한, 상기 담체는 폴리우레탄의 스폰지형 또는 폐타이어를 가공한 유동상 담체가 적용될 수 있다.The denitrification reaction tank 60 is filled with a carrier in a volume ratio of 10% to prevent the microorganisms from floating out by being attached to the carrier, thereby controlling the concentration of the microorganisms in the denitrification reaction tank 60. At this time, the denitrification tank 60 is preferably provided with a stirrer to promote the suspension of the carrier. In addition, the carrier may be applied to the fluidized bed carrier processed sponge or waste tire of polyurethane.

탈질반응조(60)는 유출수에 포함된 부유물을 내부에 일정높이로 이루어진 모래층(여재)을 통해 제거하여 최종 유출시킨다.The denitrification tank 60 removes the suspended matter contained in the effluent through a sand layer (media) made of a predetermined height therein and finally discharges it.

이하, 상기와 같은 구성을 갖는 하수처리장치를 이용한 하수처리방법에 대해 설명한다.  Hereinafter, a sewage treatment method using the sewage treatment apparatus having the above configuration will be described.

본 발명의 하수처리방법은, 1차 침전공정→ 미생물반응공정→ 2차 침전공정→ 탈질공정→ 탈질여과공정의 순으로 이루어진다. The sewage treatment method of the present invention comprises a first precipitation step → a microbial reaction step → a second precipitation step → a denitrification step → a denitrification filtration step.

1) 1차 침전공정은, 하수처리장의 하수를 1차침전조(10)에 유입시켜 하수 내의 부유 고형물질을 침전시킨 다음 처리수를 미생물반응공정으로 방출한다.1) In the first precipitation process, sewage from the sewage treatment plant is introduced into the primary sedimentation tank 10 to precipitate suspended solids in the sewage, and then the treated water is discharged into the microbial reaction process.

2) 미생물반응공정은, 혐기조(20)와 무산소조(30) 및 호기조(40)로 구성된 미생물반응조에 1차침전조(10)를 통과한 처리수를 유입시켜 질소(N), 인(P) 및 유기물질을 제거한다. 즉, 상기 1차 침전공정 이후 혐기조(20)에서 인(P)을 방출하고 무산소조(30)에서 질산염(NO3)을 탈질하며, 호기조(40)에서 유기물 산화, 질산화, 인(P) 축적하는 순서로 처리한다.2) The microbial reaction process flows the treated water passing through the primary settling tank 10 into the microbial reaction tank consisting of the anaerobic tank 20, the anoxic tank 30 and the aerobic tank 40, nitrogen (N), phosphorus (P) and Remove organic matter. That is, after the first precipitation process, the phosphorus (P) is released from the anaerobic tank 20, the nitrate (NO 3 ) is denitrated in the anoxic tank 30, and the organic matter is oxidized, nitrified, and phosphorus (P) accumulates in the aerobic tank 40. Process in order.

3) 2차 침전공정은, 상기 미생물반응공정에서 생산된 미생물을 2차침전조(50)에 침전시켜 제거하고, 이때, 침전된 미생물(슬러지)의 일부는 미생물반응공정 중의 혐기조(20)로 반송되고 나머지 슬러지는 폐슬러지처리된다.3) In the secondary precipitation step, the microorganisms produced in the microbial reaction step are precipitated and removed in the secondary settling tank 50, and at this time, a part of the precipitated microorganisms (sludge) is returned to the anaerobic tank 20 during the microbial reaction step. And the remaining sludge is treated as waste sludge.

4) 탈질공정은, 상기 2차침전조(50)의 유출수가 수용되는 탈질반응조(60)에 외부탄소원을 투입하여 탈질반응조(60)에 수용된 미생물에게 탄소를 공급하게 된다.4) In the denitrification process, carbon is supplied to the microorganisms contained in the denitrification tank 60 by inputting an external carbon source into the denitrification tank 60 in which the outflow water of the secondary precipitation tank 50 is accommodated.

한편, 탈질반응조(60)에는 담체가 충진되어 미생물이 담체에 부착됨으로써 상기 미생물이 부유되어 이탈되는 것을 방지하여 탈질반응조(60) 내의 미생물의 농도를 조절하게 된다. On the other hand, the denitrification reaction tank 60 is filled with a carrier to prevent the microorganisms from floating and detached by attaching the microorganisms to the carrier to control the concentration of the microorganisms in the denitrification reaction tank 60.

즉, 상기 미생물은 질산염을 탈질시키는 탈질균의 역할을 수행하는 것이며, 이 탈질균에 외부탄소원을 주입하여 탄소원을 공급함으로써 탈질반응을 활성화시키는 것이다.That is, the microorganism is to perform the role of denitrification bacteria to denitrate nitrates, and to activate the denitrification reaction by supplying a carbon source by injecting an external carbon source to the denitrification bacteria.

5) 탈질여과공정은, 탈질반응조(60)의 유출수에 포함된 부유물을 탈질여과조(70)의 여재를 통해 제거하여 최종 유출시킨다. 이때, 탈질여과공정에는 탈질반응조(60)에서 투입된 외부탄소원이 잔존하여 탈질여과조(70) 내에서 미생물에 탄소원을 공급함으로써 부가적인 탈질이 이루어지게 된다. 따라서 탈질여과공정에서는 부유물제거뿐만 아니라 2차 탈질도 이루어지는 것이다. 5) The denitrification filtration process removes the suspended matter contained in the effluent of the denitrification tank 60 through the media of the denitrification filtration tank 70 and finally discharges it. At this time, in the denitrification filtration process, an external carbon source input from the denitrification tank 60 is left to supply additional carbon denitrification to the microorganisms in the denitrification filtration tank 70. Therefore, in the denitrification filtration process, not only the removal of suspended solids but also secondary denitrification takes place.

이와 같은 공정을 갖는 본 발명의 하수처리방법의 작용에 대해 살펴보면 다음과 같다.Looking at the operation of the sewage treatment method of the present invention having such a process as follows.

도 2a는 여과율에 따른 NO3 및 부유물 제거율을 나타내는 그래프이고, 도 2b는 여과율에 따른 부유물 제거율을 나타내는 그래프이다.Figure 2a is NO 3 according to the filtration rate And it is a graph showing the removal of suspended matter, Figure 2b is a graph showing the removal of suspended matter according to the filtration rate.

도 2a 및 도 2b와 같이, 탈질여과조(70)의 여재에 대한 여과율을 50 m3/m2ㆍd에서 150 m3/m2ㆍd까지 변화시켰는데 질소 제거율과 부유물 제거율 모두 크게 영향을 받았다. As shown in Figures 2a and 2b, the filtration rate for the filter medium of the denitrification tank 70 was changed from 50 m 3 / m 2 · d to 150 m 3 / m 2 · d, both nitrogen removal rate and suspended solids removal rate was significantly affected .

즉, 여과율이 50~100m3/m2ㆍd일 때 부유물 제거율은 81.6%~79.4%로 거의 변화가 없었으나 150m3/m2ㆍd에서 52.4%로 감소하였다. 한편, NO3 제거율은 여과율 100m3/m2ㆍd에서 68.1%였으나, 150m3/m2ㆍd에서 50.4%로 감소하였다. 따라서 탈질여과조(70)의 적정 여과율은 50~100m3/m2ㆍd가 바람직한 것을 알 수 있다. That is, when the filtration rate was 50-100m 3 / m 2 ㆍ d, the removal rate of the suspended solids was almost unchanged from 81.6% to 79.4%, but decreased to 52.4% at 150m 3 / m 2 ㆍ d. On the other hand, the NO 3 removal rate was 68.1% at a filtration rate of 100m 3 / m 2 ㆍ d, but decreased to 50.4% at 150m 3 / m 2 ㆍ d. Therefore, it can be seen that the proper filtration rate of the denitrification filtration tank 70 is preferably 50 to 100 m 3 / m 2 · d.

도 3은 외부탄소원 주입량에 따른 NO3제거율을 나타내는 그래프이다.3 is a graph showing the NO 3 removal rate according to the external carbon source injection amount.

호기조(40)에서 질산화된 유출수의 탈질을 위해 투입되는 외부탄소원의 투입량은, 이론량(이론적 탄소원 요구량)의 0%, 50% 및 100%의 메탈올을 투입하였으며 도 3과 같이, 이론량의 100%에 해당하는 메탄올이 투입되었을 때 탈질율은 70.2%로 가장 효율적 것을 알 수 있다. 이때, 상기 이론량은 경험식(McCarty et al., 1969)에 의거하여 산정할 수 있다.The input amount of the external carbon source for the denitrification of the nitrified effluent in the aerobic tank 40 was 0%, 50% and 100% of the metalol of the theoretical amount (theoretical carbon source requirement), and as shown in FIG. When 100% of methanol is added, the denitrification rate is 70.2%, which is the most efficient. In this case, the theoretical amount may be calculated based on an empirical equation (McCarty et al., 1969).

Cm = 2.47 N0 + 1.53 N1 + 0.87 D0 Cm = 2.47 N 0 + 1.53 N 1 + 0.87 D 0

여기서, Cm = 메탄올 요구량(Methanol requirement)(mg/L)이고, N0 = NO3 --N (mg/L)이며, N1 = NO2 --N(mg/L)이고, D0 = DO(mg/L)이다.Where Cm = Methanol requirement (mg / L), N 0 = NO 3 -- N (mg / L), N 1 = NO 2 -- N (mg / L), D 0 = DO (mg / L).

즉, 수학식 1에 의해 산출된 값을 이론적 탄소원 요구량 100%으로 가정하여 0%, 50% 및 100%를 투입한 것이다.That is, 0%, 50%, and 100% are input by assuming that the value calculated by Equation 1 is 100% of the theoretical carbon source requirement.

도 4는 온도에 따른 NO3제거율을 나타내는 그래프이다.4 is a graph showing the NO 3 removal rate with temperature.

도 4와 같이 탈질반응조(60) 및 탈질여과조(70)의 반응온도를 18℃에서 30℃로 변화시켰을 때 NO3제거율은 65.7%~70.5% 사이를 안정적으로 유지하는 것을 알 수 있어 온도는 크게 영향을 끼치지 않는 것을 알 수 있다. As shown in FIG. 4, when the reaction temperature of the denitrification tank 60 and the denitrification tank 70 was changed from 18 ° C. to 30 ° C., the NO 3 removal rate was stably maintained between 65.7% and 70.5%. It can be seen that it does not affect.

도 5는 본 발명의 하수처리방법을 장기적으로 운전하여 NO3제거율의 변화를 나타내는 그래프이고, 표 1은 장기 운전시에 운전조건을 나타낸다.5 is a graph showing the change in the NO 3 removal rate by operating the sewage treatment method of the present invention for a long time, Table 1 shows the operating conditions during long-term operation.

Figure 112007035424953-pat00001
Figure 112007035424953-pat00001

표 1과 같이, 상술한 바와 같은 조건으로 장기적으로 운전한 경우 여과율이 지나치게 높았던 경우(Mode 3)와 외부탄소원이 요구량보다 적게 주입된 경우(Mode 4, 5) 이외에, 정상적인 운전 조건(Mode 6, 7, 8, 9)에서는 70% 내외의 높은 탈질율을 보이는 것을 알 수 있다.(도 5와 같이) 즉, 여과율이 50~100m3/m2ㆍd이고, 외부탄소원 투입량이 100%의 조건으로 운전한 Mode 6 내지 Mode 9가 가장 효율적인 NO3제거율을 보이는 것을 알 수 있어 가장 효율적인 운전조건임을 알 수 있다.As shown in Table 1, in the long-term operation under the above-described conditions, the normal operating conditions (Mode 6, 6), except that the filtration rate is too high (Mode 3) and the external carbon source is injected less than the required amount (Mode 4, 5) 7, 8, and 9) show a high denitrification rate of about 70% (as shown in FIG. 5). That is, the filtration rate is 50 to 100 m 3 / m 2 ㆍ d and the amount of external carbon source is 100%. It can be seen that Mode 6 to Mode 9 operated show the most efficient NO 3 removal rate, which is the most efficient operation condition.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and it is common in the art that various substitutions, modifications, and changes can be made without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.

이상에서 설명한 바와 같이, 본 발명의 하수처리장치 및 이를 이용한 하수처 리방법은, 하수처리시 탈질반응조에 외부탄소원과 담체를 통해 탈질하고 탈질여과조에서 부유물을 제거하고 부가적인 탈질이 이루어져 최종 유출수의 총질소 농도를 저감시켜 수계의 생태환경에 악영향이 미치는 것을 예방할 수 있는 효과가 있다.As described above, the sewage treatment apparatus of the present invention and the sewage treatment method using the same, the denitrification reaction tank denitrification through the external carbon source and the carrier during the sewage treatment, removing the suspended matter in the denitrification filtration tank and additional denitrification is made of the final effluent By reducing the total nitrogen concentration it is possible to prevent adverse effects on the ecological environment of the water system.

Claims (5)

하수를 유입시켜 침전시키는 1차침전조;A primary sedimentation tank for introducing sewage into the sewage; 상기 1차침전조의 유출수를 미생물을 이용하여 질산화시키는 호기조를 포함하는 미생물반응조; A microbial reaction tank including an aerobic tank for nitrifying the effluent of the primary precipitation tank using microorganisms; 상기 미생물반응조의 미생물 슬러지를 침전시키는 2차침전조;A secondary sedimentation tank for precipitating the microbial sludge of the microbial reaction tank; 상기 2차침전조의 유출수가 수용되며, 내부의 담체를 통해 탈질하는 탈질반응조; 및A denitrification tank containing the effluent water of the secondary precipitation tank and denitrifying through a carrier therein; And 상기 탈질반응조의 유출수에 포함된 부유물을 내부의 여재를 통해 제거하며, 상기 유출수의 잔존 질산염을 제거하는 탈질여과조를 포함하여 이루어진 것을 특징으로 하는 하수처리장치.Sewage treatment apparatus comprising a denitrification filtration tank to remove the suspended matter contained in the effluent of the denitrification tank through the internal filter medium, and to remove the residual nitrate of the effluent. 제1항에 있어서,The method of claim 1, 상기 담체는, The carrier, 폐타이어를 가공한 유동상 담체 또는 폴리우레탄 담체인 것을 특징으로 하는 하수처리장치.Sewage treatment apparatus, characterized in that the waste tire is processed fluidized bed carrier or polyurethane carrier. 제1항에 있어서,The method of claim 1, 상기 여재의 여과율은 50~100m3/m2ㆍd인 것을 특징으로 하는 하수처리장치.The filtration rate of the filter medium is a sewage treatment apparatus, characterized in that 50 ~ 100m 3 / m 2 ㆍ d. 하수를 유입시켜 침전시키는 1차 침전공정;A primary precipitation step of introducing sewage into the sewage; 상기 1차 침전공정의 유출수를 미생물을 이용하여 호기조건에서 질산화시키는 공정을 포함하는 미생물반응공정; A microbial reaction process comprising nitrifying the effluent of the primary precipitation process under aerobic conditions using microorganisms; 상기 미생물반응공정의 미생물 슬러지를 침전시키는 2차 침전공정;A secondary precipitation step of precipitating the microbial sludge of the microbial reaction process; 상기 2차 침전공정의 유출수가 수용되며, 상기 유출수에 외부탄소원을 투입하고 내부의 담체를 통해 탈질하는 탈질공정; 및A denitrification process in which the effluent water of the secondary precipitation process is accommodated, and an external carbon source is introduced into the effluent and denitrified through an internal carrier; And 상기 탈질공정의 유출수에 포함된 부유물을 제거하며, 상기 유출수의 잔존 질산염을 제거하는 탈질여과공정을 포함하여 이루어진 것을 특징으로 하는 하수처리방법.And a denitrification filtration step of removing suspended solids contained in the effluent of the denitrification step and removing residual nitrate of the effluent. 제4항에 있어서,The method of claim 4, wherein 상기 외부탄소원은 메탈올로서, 이론량 대비 100%가 투입되며,The external carbon source is a metalol, 100% compared to the theoretical amount, 상기 이론량은 하기 수학식에 의해 산출되는 것을 특징으로 하는 하수처리방법:The theoretical amount is sewage treatment method characterized in that it is calculated by the following equation: Cm = 2.47 N0 + 1.53 N1 + 0.87 D0 Cm = 2.47 N 0 + 1.53 N 1 + 0.87 D 0 {여기서, Cm = 메탈올 요구량(mg/L), N0 = NO3 --N(mg/L), N1 = NO2 --N(mg/L), D0 = DO(mg/L)}{Where Cm = metalol demand (mg / L), N 0 = NO 3 -- N (mg / L), N 1 = NO 2 -- N (mg / L), D 0 = DO (mg / L )}
KR20070046575A 2007-05-14 2007-05-14 Apparatus for wastewater treatment and method for wastewater treatment using the same KR100783789B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20070046575A KR100783789B1 (en) 2007-05-14 2007-05-14 Apparatus for wastewater treatment and method for wastewater treatment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20070046575A KR100783789B1 (en) 2007-05-14 2007-05-14 Apparatus for wastewater treatment and method for wastewater treatment using the same

Publications (1)

Publication Number Publication Date
KR100783789B1 true KR100783789B1 (en) 2007-12-10

Family

ID=39140263

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20070046575A KR100783789B1 (en) 2007-05-14 2007-05-14 Apparatus for wastewater treatment and method for wastewater treatment using the same

Country Status (1)

Country Link
KR (1) KR100783789B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102453675A (en) * 2010-10-15 2012-05-16 中国石油化工股份有限公司 Culture system of function strengthened microbe and directional concentration method
KR101346604B1 (en) 2013-11-22 2014-01-03 주식회사 이피에스이앤이 Bio-film water treatment apparatus capable of back washing without power
KR101892276B1 (en) * 2018-04-11 2018-08-27 주식회사 장산이엔지 advanced water treating apparatus using media filtering
KR102182069B1 (en) 2020-02-14 2020-11-23 주식회사 퓨리 Bio-film water treatment apparatus combined with vegetation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000061356A (en) * 1999-03-25 2000-10-16 채문식 Method of denitrification and denitrification for the purification of wastewater
KR20070006468A (en) * 2005-07-08 2007-01-11 최현주 A method for efficient treatment of wastewater using a rapid nitrification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000061356A (en) * 1999-03-25 2000-10-16 채문식 Method of denitrification and denitrification for the purification of wastewater
KR20070006468A (en) * 2005-07-08 2007-01-11 최현주 A method for efficient treatment of wastewater using a rapid nitrification

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102453675A (en) * 2010-10-15 2012-05-16 中国石油化工股份有限公司 Culture system of function strengthened microbe and directional concentration method
KR101346604B1 (en) 2013-11-22 2014-01-03 주식회사 이피에스이앤이 Bio-film water treatment apparatus capable of back washing without power
KR101892276B1 (en) * 2018-04-11 2018-08-27 주식회사 장산이엔지 advanced water treating apparatus using media filtering
KR102182069B1 (en) 2020-02-14 2020-11-23 주식회사 퓨리 Bio-film water treatment apparatus combined with vegetation

Similar Documents

Publication Publication Date Title
AU2007238520B2 (en) Method and system for nitrifying and denitrifying wastewater
KR101828212B1 (en) Wastewater treatment system using anaerobic ammonium oxidation in mainstream
KR100784933B1 (en) Apparatus for treating organic matter and nitrogen of high density organic wastewater
US20180257966A1 (en) Wastewater treatment apparatus adopting biofiltration process for pretreatment of shortened nitrogen removal process
KR100643775B1 (en) Treatment hybrid process for remove nutrient using floating microorganism
KR101063828B1 (en) Method of wastewater treatment using an anaerobic reactor having a biological nitrification process connected a cation exchange membrane
KR100783789B1 (en) Apparatus for wastewater treatment and method for wastewater treatment using the same
KR102002230B1 (en) Wastewater treatment system based on anaerobic ammonium oxidation in mainstream for improving efficiency of nitrogen treatment
KR100800550B1 (en) Method of recycle water treatment with fluidized biofilm media for wastewater treatment
KR101959145B1 (en) Mainstream anabolic ammonium oxidation in wastewater treatment plant for improving efficiency of removal of nitrogen and phosphorus
KR100632487B1 (en) Gradually operated sequencing batch reactor and method thereof
KR100440748B1 (en) High-Rate Live Stock Wastewater Treatment Method using Advanced Treatment Process Hybrid SBAR
KR101345642B1 (en) Method for removing nitrogen in waste water
KR101135011B1 (en) A sewage and wastewater treatment and an apparatus for thereof
JP2002172399A (en) Denitrification treatment method
KR100435107B1 (en) Advance Treatment Equipment and Process for Nitrogen and Phosphate Removal in Sewage and Wastewater
KR100783790B1 (en) Apparatus for wastewater treatment with multi-stage denitification-filtration and method for wastewater treatment using the same
KR100583904B1 (en) High intergated Biological Nutrient Removal System
KR20010045253A (en) Advanced method for treating wastewater and apparatus therefor
KR100398912B1 (en) Nutrients removing method of sewage and industrial waste water
KR100443410B1 (en) Apparatus for Wastewater treatment with Simultaneous Nitrification/Denitrification and A Treatment method thereof
KR101048666B1 (en) Advanced wastewater treatment system which combined suspended and attached biological nutrient removal process and physical-chemical phosphorous removal process
KR100321679B1 (en) Advanced wastewater treatment method
KR101959144B1 (en) Wastewater treatment system using anaerobic ammonium oxidation in mainstream for simutaneous removal of nitrogen and phosphorus
KR20010076873A (en) Organic and nitrogen compound removal methods from landfill leachate using an anaerobic-aerobic-anoxic system

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121203

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131202

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141201

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151201

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161201

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171201

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181203

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191202

Year of fee payment: 13