JP4649911B2 - Treatment of organic matter and nitrogen-containing wastewater - Google Patents

Treatment of organic matter and nitrogen-containing wastewater Download PDF

Info

Publication number
JP4649911B2
JP4649911B2 JP2004239748A JP2004239748A JP4649911B2 JP 4649911 B2 JP4649911 B2 JP 4649911B2 JP 2004239748 A JP2004239748 A JP 2004239748A JP 2004239748 A JP2004239748 A JP 2004239748A JP 4649911 B2 JP4649911 B2 JP 4649911B2
Authority
JP
Japan
Prior art keywords
nitrogen
organic matter
nitrification
tank
containing wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004239748A
Other languages
Japanese (ja)
Other versions
JP2006055739A (en
Inventor
智弘 清川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004239748A priority Critical patent/JP4649911B2/en
Publication of JP2006055739A publication Critical patent/JP2006055739A/en
Application granted granted Critical
Publication of JP4649911B2 publication Critical patent/JP4649911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は有機物及び窒素含有排水の処理方法に係り、特に有機物及び窒素含有排水を生物学的に処理して含有される有機物及び窒素を効率的に除去する方法に関する。   The present invention relates to a method for treating organic matter and nitrogen-containing wastewater, and more particularly to a method for efficiently removing organic matter and nitrogen contained by biologically treating organic matter and nitrogen-containing wastewater.

排水中に含まれる窒素は河川、湖沼及び海洋などにおける富栄養化の原因物質の一つであり、排水処理工程で処理して、効率的に除去する必要がある。排水中の窒素成分を生物学的に除去する技術として、微生物を利用した生物学的な硝化・脱窒法が知られている。この方法では、排水中のアンモニア態窒素を好気的な反応槽においてアンモニア酸化細菌により生物学的に酸化(硝化)し、その酸化物である亜硝酸態窒素及び硝酸態窒素を嫌気的な条件下で、酸素受容体である有機物の存在下、脱窒菌により窒素ガスに還元(脱窒)する。酸素受容体である有機物の供給は、メタノール、酢酸などの生分解性有機物を人為的に添加する場合と、排水中に含まれるBOD成分を利用する場合がある。しかし、このような従来の硝化脱窒法では、硝化工程においては多量の酸素(曝気)が必要であり、また、脱窒工程においては有機物の添加が必要であるため、ランニングコストが高いという欠点がある。   Nitrogen contained in wastewater is one of the causative substances of eutrophication in rivers, lakes and oceans, and must be removed efficiently by treating it in the wastewater treatment process. Biological nitrification / denitrification methods using microorganisms are known as techniques for biologically removing nitrogen components in wastewater. In this method, ammonia nitrogen in waste water is biologically oxidized (nitrified) by ammonia-oxidizing bacteria in an aerobic reaction tank, and the nitrite nitrogen and nitrate nitrogen, which are oxides, are anaerobically treated. Below, it is reduced (denitrified) to nitrogen gas by denitrifying bacteria in the presence of an organic substance that is an oxygen acceptor. The organic substance that is an oxygen acceptor may be supplied artificially with a biodegradable organic substance such as methanol or acetic acid, or may utilize a BOD component contained in waste water. However, in such a conventional nitrification denitrification method, a large amount of oxygen (aeration) is required in the nitrification step, and addition of organic substances is necessary in the denitrification step, so that the running cost is high. is there.

これに対して、近年、排水に含まれる窒素の新しい除去方法として、アンモニア態窒素を電子供与体とし、亜硝酸態窒素を電子受容体とする独立栄養性脱窒微生物(自己栄養細菌:ANAMMOX菌)を利用し、アンモニア態窒素と亜硝酸態窒素とを反応させて脱窒する嫌気的アンモニア酸化処理法(ANAMMOX法)が開発された。ANAMMOX法はANAMMOX菌によってアンモニア態窒素と約1.3倍量の亜硝酸態窒素とを、以下のような反応で窒素ガスに分解する生物反応である。
NH4 ++1.32NO2 -+0.066HCO3 -+0.13H+
→1.02N2+0.26NO3 -+0.066CH20.50.15+0.13H2
On the other hand, in recent years, as a new method for removing nitrogen contained in wastewater, autotrophic denitrifying microorganisms (autotrophic bacteria: ANAMMOX bacteria) using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor ), An anaerobic ammonia oxidation method (ANAMMOX method) was developed in which ammonia nitrogen and nitrite nitrogen are reacted to denitrify. The ANAMMOX method is a biological reaction in which ammonia nitrogen and about 1.3 times the amount of nitrite nitrogen are decomposed into nitrogen gas by the following reaction.
NH 4 + + 1.32NO 2 - + 0.066HCO 3 - + 0.13H +
→ 1.02N 2 + 0.26NO 3 - + 0.066CH 2 O 0.5 N 0.15 + 0.13H 2 O

このANAMMOX法によりアンモニア態窒素を含む排水を処理する場合には、例えば、ANAMMOX処理工程の前段において、排水中に含まれるアンモニア態窒素の一部分を亜硝酸態窒素に酸化し、アンモニア態窒素とアンモニア態窒素の約1.3モル倍量の亜硝酸態窒素を含有する水とし、この水をANAMMOX処理工程の原水として、残留するアンモニア態窒素と亜硝酸態窒素とを反応させて除去する。   When wastewater containing ammonia nitrogen is treated by the ANAMOX method, for example, a part of the ammonia nitrogen contained in the wastewater is oxidized to nitrite nitrogen in the previous stage of the ANAMOX treatment step, and ammonia nitrogen and ammonia are oxidized. Water containing nitrite nitrogen in an amount of about 1.3 moles of the state nitrogen is used, and this water is used as raw water for the ANAMMOX treatment step to react and remove the remaining ammonia nitrogen and nitrite nitrogen.

この方法は、硝化工程と脱窒工程とを別々に設け、硝化工程では亜硝酸型硝化を維持するために、ある一定濃度以上のアンモニア態窒素が必要となることから、低濃度のアンモニア態窒素を含有する排水の処理には適していない。   In this method, a nitrification process and a denitrification process are provided separately, and in order to maintain nitrite-type nitrification in the nitrification process, ammonia nitrogen of a certain concentration or more is required. Is not suitable for the treatment of wastewater containing

ANAMMOX法を利用した低濃度のアンモニア含有排水の処理法として、特表2001−506535号公報には、単一槽で硝化工程と脱窒工程とを行う方法が提案されている。即ち、この方法は、硝化細菌層の内側にANAMMOX菌の層が形成された生物膜を槽内に保持させて、排水を外側の好気性下の硝化細菌と接触させてアンモニア態窒素の部分酸化により亜硝酸態窒素を生成する工程と、アンモニア態窒素と亜硝酸態窒素とを内側のANAMMOX菌により嫌気性条件で窒素ガスに還元して脱窒する嫌気的アンモニア酸化処理工程とを単一の槽で実施する方法であり、低濃度のアンモニアを含有する排水にも適用が可能である。
特表2001−506535号公報
As a treatment method for wastewater containing ammonia at a low concentration using the ANAMMOX method, Japanese Patent Publication No. 2001-506535 proposes a method of performing a nitrification step and a denitrification step in a single tank. That is, in this method, a biofilm in which a layer of ANAMMOX bacteria is formed inside the nitrifying bacteria layer is held in the tank, and the waste water is brought into contact with the outside aerobic nitrifying bacteria to partially oxidize ammonia nitrogen. A process of generating nitrite nitrogen by anaerobic, and an anaerobic ammonia oxidation process of denitrifying ammonia nitrogen and nitrite nitrogen by reducing them to nitrogen gas under anaerobic conditions by the inner ANAMMOX bacteria This method is carried out in a tank and can also be applied to wastewater containing low-concentration ammonia.
Special table 2001-506535 gazette

ANAMMOX反応は有機物により阻害されるので、脱窒工程での被処理水中のBOD濃度は低い方がよい。しかし、特表2001−506535号公報に記載される一槽式プロセス単独では直接有機物を除去することができないため、有機物を含む排水の場合は、有機物の阻害に対応ができない。   Since the ANAMOX reaction is inhibited by organic substances, the BOD concentration in the water to be treated in the denitrification process should be low. However, since the organic matter cannot be directly removed by the single tank process described in JP-T-2001-506535, the wastewater containing the organic matter cannot cope with the inhibition of the organic matter.

本発明は上記の問題点を解決し、有機物及び窒素含有排水を長期にわたり安定して窒素除去処理することができる有機物及び窒素含有排水の処理方法を提供することを目的とする。より具体的には、本発明は、単一槽で硝化・脱窒を行う窒素除去処理において、有機物による阻害を受けることなく、安定かつ効率的な処理を行って、高水質の処理水を得る方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide a method for treating organic matter and nitrogen-containing wastewater that can stably remove nitrogen from organic matter and nitrogen-containing wastewater over a long period of time. More specifically, the present invention obtains high-quality treated water by performing stable and efficient treatment without being inhibited by organic matter in nitrogen removal treatment in which nitrification and denitrification is performed in a single tank. It aims to provide a method.

本発明の有機物及び窒素含有排水の処理方法は、アンモニア態窒素を電子供与体とし、亜硝酸態窒素を電子受容体とする独立栄養性脱窒微生物が担体粒子表面に生物膜を形成したもの、又は前記脱窒微生物が自己造粒によりグラニュールになったもの(以下において、独立栄養性脱窒微生物が担体粒子表面に生物膜を形成したもの、及び独立栄養性脱窒微生物が自己造粒によりグラニュールになったものを「グラニュール」と総称する。)を槽内に保有する反応槽に、被処理水を供給し、該反応槽内で、グラニュールの外側の硝化細菌によりアンモニア態窒素の一部を亜硝酸態窒素に硝化し、内側の独立栄養性脱窒微生物の作用で脱窒を行う一槽式硝化・脱窒工程を有する有機物及び窒素含有排水の処理方法であって、有機物及び窒素含有排水を、硝化抑制条件下に有機物を分解する有機物除去工程を有し、該有機物除去工程の処理水を前記硝化・脱窒工程の被処理水として前記反応槽に供給する有機物及び窒素含有排水の処理方法であり、該有機物除去工程が好気性条件下で行うものであり、該有機物除去工程の汚泥滞留時間を3〜7日とすると共に、溶存酸素濃度を0.5〜2mg/Lとすることにより前記硝化抑制条件下の有機物分解を行うことを特徴とする。 The method for treating organic matter and nitrogen-containing wastewater of the present invention is a method in which an autotrophic denitrifying microorganism using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor forms a biofilm on the surface of carrier particles, Or the above-mentioned denitrifying microorganisms are granulated by self-granulation (in the following, autotrophic denitrifying microorganisms form a biofilm on the surface of carrier particles, and autotrophic denitrifying microorganisms are self-granulated. The treated water is supplied to a reaction tank that holds the granules in the tank, and ammonia nitrogen is added by nitrifying bacteria outside the granules in the reaction tank. A method for treating organic matter and nitrogen-containing wastewater having a one-tank nitrification / denitrification step in which a part of the nitrite is nitrified to nitrite nitrogen and denitrified by the action of an inner autotrophic denitrifying microorganism, And nitrogen-containing emissions Of organic matter and nitrogen-containing wastewater that has an organic matter removal step for decomposing organic matter under nitrification-suppressing conditions and that supplies treated water from the organic matter removal step to the reaction tank as treated water in the nitrification / denitrification step The organic substance removal step is performed under aerobic conditions, and the sludge retention time of the organic matter removal step is 3 to 7 days, and the dissolved oxygen concentration is 0.5 to 2 mg / L. To decompose organic substances under the nitrification-suppressing condition.

請求項2の有機物及び窒素含有排水の処理方法は、請求項1において、前記硝化・脱窒工程の処理水に凝集剤を添加して凝集処理及び固液分離処理する工程を備えることを特徴とする The method for treating organic matter and nitrogen-containing wastewater according to claim 2 comprises the step of adding a flocculant to the treated water in the nitrification / denitrification step and performing a coagulation treatment and a solid-liquid separation treatment in claim 1. To do .

求項の有機物及び窒素含有排水の処理方法は、請求項1又は2において、該有機物及び窒素含有排水中のアンモニア態窒素及び有機態窒素の合計と有機物との重量比((NH−N+Org−N)/BOD)が1未満であり、前記硝化・脱窒工程に導入される有機物除去工程の処理水中の有機物とアンモニア態窒素及び有機態窒素の合計との重量比(BOD/(NH−N+Org−N))が1以下であることを特徴とする。 Method of processing organic material and nitrogen-containing wastewater Motomeko 3, the weight ratio of the claims 1 or 2, the sum and organic matter of ammonia nitrogen and organic nitrogen in the organic matter and nitrogen-containing waste water ((NH 4 - N + Org-N) / BOD) is less than 1, and the weight ratio (BOD / (NH) of the organic matter in the treated water of the organic matter removing step introduced into the nitrification / denitrification step and the total amount of ammonia nitrogen and organic nitrogen. 4 −N + Org−N)) is 1 or less.

なお、以下において、ANAMMOX菌が担体粒子表面に生物膜を形成したもの、及びANAMMOX微生物の自己造粒により形成されたグラニュールを「グラニュール」と総称する。   In the following description, those in which ANAMMOX bacteria form a biofilm on the surface of carrier particles and granules formed by self-granulation of the ANAMMOX microorganisms are collectively referred to as “granule”.

本発明の有機物及び窒素含有排水の処理方法によれば、排水中に含まれる有機物の阻害を受けることなく、安定かつ効果的に脱窒処理することができる。   According to the method for treating organic matter and nitrogen-containing wastewater of the present invention, denitrification treatment can be performed stably and effectively without being inhibited by the organic matter contained in the wastewater.

本発明による脱窒効率の向上効果の作用機構は次の通りである。   The mechanism of the effect of improving the denitrification efficiency according to the present invention is as follows.

有機物を含む排水に特表2001−506535号公報に記載されるような一槽式硝化・脱窒プロセスを適用した場合、硝化細菌とANAMMOX菌のグラニュールの表面をBOD資化菌が覆うことにより、硝化反応及びANAMMOX反応が進行し得なくなる。これは、一槽式ANAMMOX反応槽では、通常、ANAMMOX反応を阻害しないように、溶存酸素(DO)濃度を制御して運転するため、この一槽式ANAMMOX反応槽内に有機物が流入すると、硝化菌よりも増殖速度の速いBOD資化菌が優先となって、硝化菌とANAMMOX菌のグラニュール表面を覆うようになり、このため硝化反応が阻害され、その後のANAMMOX反応も進行せず、窒素を除去し得なくなることによる。   When a one-tank nitrification / denitrification process as described in JP-T-2001-506535 is applied to wastewater containing organic matter, the surface of the granule of nitrifying bacteria and ANAMMOX bacteria is covered with BOD-assimilating bacteria. The nitrification reaction and the ANAMOX reaction cannot proceed. This is because a one-tank type AAMAMOX reaction tank is usually operated by controlling the dissolved oxygen (DO) concentration so as not to inhibit the ANAMMOX reaction. BOD assimilation bacteria with a faster growth rate than bacteria will be given priority, and the surface of granules of nitrifying bacteria and ANAMOX bacteria will be covered, so that the nitrification reaction will be inhibited and the subsequent ANAMOX reaction will not proceed, nitrogen It is because it becomes impossible to remove.

これに対して、本発明では、この硝化・脱窒工程に先立ち、排水中の有機物を除去することにより、このような一槽式ANAMMOX反応槽におけるBOD資化菌の増殖による硝化・脱窒阻害を防止することができる。また、この有機物除去工程では、有機物及び窒素含有排水が、窒素を有機態窒素(Org−N)として含む場合、有機態窒素をアンモニア態窒素に分解することもでき、この有機態窒素をも後段の硝化・脱窒反応より分解除去することができるようになる。ただし、本発明は、窒素を有機態窒素として含む排水に限らず、アンモニア態窒素として含む排水にも適用できることは言うまでもない。   On the other hand, in the present invention, prior to the nitrification / denitrification step, organic matter in the waste water is removed, thereby inhibiting nitrification / denitrification by the growth of BOD-assimilating bacteria in such a one-tank type ANAMOX reactor. Can be prevented. Further, in this organic matter removal step, when the organic matter and the nitrogen-containing wastewater contain nitrogen as organic nitrogen (Org-N), the organic nitrogen can be decomposed into ammonia nitrogen, and this organic nitrogen can be decomposed into a subsequent stage. It can be decomposed and removed by nitrification / denitrification reaction. However, it goes without saying that the present invention is applicable not only to wastewater containing nitrogen as organic nitrogen but also to wastewater containing ammonia nitrogen.

なお、この有機物除去工程において、硝化が進行すると、後段のANAMMOX反応に適した被処理水を得ることができない。即ち、有機物除去工程で硝化が進行した場合、硝化を亜硝酸態窒素で止めることは非常に困難であり、亜硝酸態窒素は直ちに硝酸態窒素にまで酸化されてしまう。生成した硝酸態窒素は、後段のANAMMOX菌による硝化・脱窒工程では除去し得ないため、そのまま最終処理水中に残留することとなる。従って、本発明では、前段の有機物除去工程を硝化抑制条件下に行う。   In this organic matter removal step, when nitrification proceeds, it is impossible to obtain water to be treated that is suitable for the subsequent ANAMOX reaction. That is, when nitrification proceeds in the organic substance removal step, it is very difficult to stop nitrification with nitrite nitrogen, and nitrite nitrogen is immediately oxidized to nitrate nitrogen. Since the produced nitrate nitrogen cannot be removed in the nitrification / denitrification step by the latter stage ANAMOX bacteria, it remains in the final treated water as it is. Therefore, in the present invention, the preceding organic substance removal step is performed under nitrification suppression conditions.

請求項2によれば、硝化・脱窒工程の処理水に凝集剤を添加して凝集処理及び固液分離処理することにより、汚泥の調質と共に、SS及びリンの除去を行うことができ、より一層良好な水質の処理水を得ることができる。   According to claim 2, SS and phosphorus can be removed along with sludge refining by adding a flocculant to the treated water of the nitrification / denitrification step and subjecting it to a coagulation treatment and a solid-liquid separation treatment. Even better treated water can be obtained.

本発明に従って、有機物除去工程の汚泥滞留時間を3〜日と短く設定すと共に、有機物除去工程の溶存酸素濃度を2mg/L以下と低く設定して運転することによって、硝化抑制条件下の有機物分解を容易に行うことができる。 In accordance with the present invention, the sludge retention time of the organic substance removing step with Ru 3-7 days and short setting Teisu, by that operating the dissolved oxygen concentration in the organic removal process is set lower than 2 mg / L, Organic matter decomposition under nitrification inhibition conditions can be easily performed.

また、請求項に規定されるように、本発明は、アンモニア態窒素及び有機態窒素の合計と有機物との重量比((NH−N+Org−N)/BOD)が1未満の有機物及び窒素含有排水の処理に有効であり、このような排水を予め有機物除去工程で処理して、有機物とアンモニア態窒素及び有機態窒素の合計との重量比(BOD/(NH−N+Org−N))が1以下である処理水を得、これを硝化・脱窒工程に供給することが好ましい。 Further, as defined in claim 3 , the present invention provides an organic substance and nitrogen having a weight ratio ((NH 4 -N + Org-N) / BOD) of the total of ammonia nitrogen and organic nitrogen to the organic substance of less than 1. It is effective for the treatment of wastewater contained, such wastewater is treated in advance in the organic matter removal step, and the weight ratio of organic matter to ammonia nitrogen and organic nitrogen (BOD / (NH 4 -N + Org-N)) It is preferable to obtain treated water having a water content of 1 or less and supply it to the nitrification / denitrification step.

以下に図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の有機物及び窒素含有排水の処理方法の実施の形態を示す系統図である。図1において、1は活性汚泥処理槽、2は第1沈殿槽、3は一槽式ANAMMOX反応槽、4は凝集処理槽、5は第2沈殿槽である。   FIG. 1 is a system diagram showing an embodiment of the method for treating organic matter and nitrogen-containing wastewater of the present invention. In FIG. 1, 1 is an activated sludge treatment tank, 2 is a first settling tank, 3 is a single tank type ANAMOX reaction tank, 4 is a coagulation treatment tank, and 5 is a second settling tank.

本発明において、処理対象となる有機物及び窒素含有排水としては、水中のアンモニア態窒素及び有機態窒素の合計と有機物との重量比((NH−N+Org−N)/BOD)が1未満の排水が挙げられる。即ち、本発明は、(NH−N+Org−N)/BOD<1、例えばN(NH−N+Org−N)/BOD=0.01〜0.9であるようなBODを多く含む有機物及び窒素含有排水の処理に有効である。 In the present invention, the organic matter and nitrogen-containing wastewater to be treated are wastewater having a weight ratio ((NH 4 −N + Org−N) / BOD) of less than 1 to the total amount of ammonia nitrogen and organic nitrogen in water and the organic matter. Is mentioned. In other words, the present invention relates to (NH 4 −N + Org−N) / BOD <1, for example, N (NH 4 −N + Org−N) /BOD=0.01 to 0.9. It is effective for the treatment of contained wastewater.

図1においては、このような有機物及び窒素含有排水を原水として、まず、活性汚泥処理槽1に導入して硝化抑制条件下に有機物を分解除去する。この活性汚泥処理槽1では、原水中に含有する有機態窒素もアンモニア態窒素に分解される。   In FIG. 1, using such organic matter and nitrogen-containing wastewater as raw water, it is first introduced into the activated sludge treatment tank 1 to decompose and remove the organic matter under nitrification suppression conditions. In the activated sludge treatment tank 1, organic nitrogen contained in the raw water is also decomposed into ammonia nitrogen.

本発明において、この有機物の分解除去工程を硝化抑制条件下に行うことは、前述の如く、硝酸態窒素の生成を防止して、後段の一槽式硝化・脱窒工程において、良好なANAMMOX反応を進行させ、窒素を高度に除去するために重要である。この硝化抑制条件を実現する方法として、次の(1)及び(2)の方法を採用する。 In the present invention, the organic substance decomposition / removal step is performed under nitrification-suppressing conditions, as described above, preventing the formation of nitrate nitrogen, and in the subsequent one-tank nitrification / denitrification step, a good ANAMOX reaction It is important to progress and to remove nitrogen highly. As a way to achieve this nitrification inhibition condition, we adopt the following methods (1) and (2).

(1) 活性汚泥処理槽1の汚泥滞留時間(SRT)を短く、3〜7日以下、好ましくは3〜5日間に設定して運転を行う。
活性汚泥処理槽のSRTを長く設定すると活性汚泥処理槽1内に硝化菌が増殖して硝化反応が起こる。この場合、アンモニア態窒素の硝化を亜硝酸態窒素で止め、硝酸態窒素の生成を抑制することは困難であることから、活性汚泥処理槽1のSRTを短く設定し、硝化を抑制することが好ましい。ただし、SRTを過度に短くすると、有機物の分解除去を十分に行うことができないため、原水の水質に応じて上記のSRTの範囲内で適宜調整することが好ましい。
(1) The sludge residence time (SRT) of the activated sludge treatment tank 1 is set short and is set to 3 to 7 days or less, preferably 3 to 5 days.
If the SRT of the activated sludge treatment tank is set long, nitrifying bacteria grow in the activated sludge treatment tank 1 and a nitrification reaction occurs. In this case, it is difficult to stop the nitrification of ammonia nitrogen with nitrite nitrogen and suppress the production of nitrate nitrogen. Therefore, the SRT of the activated sludge treatment tank 1 can be set short to suppress nitrification. preferable. However, if the SRT is excessively shortened, the organic matter cannot be sufficiently decomposed and removed. Therefore, it is preferable to adjust the SRT appropriately within the range of the SRT according to the quality of the raw water.

(2) 活性汚泥処理槽1内のDO濃度を低く、0.5〜2mg/L、好ましくは0.5〜1mg/Lに設定して運転を行う。
このように活性汚泥処理槽1の曝気量を制限してDO濃度を低く維持することによっても、硝化を抑制することができる。ただし、DO濃度を過度に低くすると、有機物の分解除去を十分に行うことができないため、原水の水質に応じて上記のDO濃度の範囲内で適宜調整することが好ましい。
(2) The operation is performed by setting the DO concentration in the activated sludge treatment tank 1 to a low value of 0.5 to 2 mg / L, preferably 0.5 to 1 mg / L.
Thus, nitrification can also be suppressed by restricting the amount of aeration in the activated sludge treatment tank 1 and keeping the DO concentration low. However, if the DO concentration is excessively low, the organic matter cannot be sufficiently decomposed and removed. Therefore, it is preferable to appropriately adjust the DO concentration within the above range according to the quality of the raw water.

性汚泥処理槽1の流出水は第2沈殿槽2で固液分離され、分離水は一槽式ANAMMOX反応槽3に導入される。また、分離汚泥は一部が余剰汚泥として系外へ排出され残部は活性汚泥処理槽1に返送される。 Effluent active sludge treatment tank 1 is solid-liquid separated by the second precipitation tank 2, separated water is introduced to one-vessel ANAMMOX reaction vessel 3. Further, part of the separated sludge is discharged out of the system as surplus sludge, and the remaining part is returned to the activated sludge treatment tank 1.

なお、図1では、有機物の分解除去工程に、原水を好気性条件下に活性汚泥と接触させて有機物を分解する活性汚泥処理を採用しているが、その他、微小動物処理を採用することもでき、また、両者の併用であっても良い。活性汚泥処理を採用する場合、標準活性汚泥の他、活性汚泥を充填材や円板等に付着させて処理する方法を採用することもできる。   In FIG. 1, an activated sludge treatment that decomposes organic matter by bringing raw water into contact with activated sludge under aerobic conditions is adopted in the decomposition and removal process of organic matter. Yes, or a combination of both. When employing the activated sludge treatment, a method of treating the activated sludge by adhering the activated sludge to a filler, a disk or the like in addition to the standard activated sludge can also be adopted.

本発明において、一槽式ANAMMOX反応槽3に導入される有機物除去処理水は、有機物とアンモニア態窒素及び有機態窒素の合計との重量比(BOD/(NH−N+Org−N))が1以下、より好ましくは0.5以下、例えば0.1〜0.3となるように有機物を分解除去したものであることが好ましく、このアンモニア態窒素及び有機態窒素の合計に対する有機物の含有量が多いと、一槽式ANAMMOX反応槽3において有機物による反応阻害を十分に防止し得ず、本発明の目的を達成し得ない。 In the present invention, the organic matter removal treatment water introduced into the one-tank type ANAMOX reaction vessel 3 has a weight ratio (BOD / (NH 4 -N + Org-N)) of 1 to the total of the organic matter, ammonia nitrogen and organic nitrogen. Hereinafter, it is preferable that the organic matter is decomposed and removed so as to be 0.5 or less, for example, 0.1 to 0.3, and the content of the organic matter with respect to the total of the ammonia nitrogen and organic nitrogen is If the number is too large, reaction inhibition by organic substances cannot be sufficiently prevented in the one-tank type ANAMMOX reaction tank 3, and the object of the present invention cannot be achieved.

一槽式ANAMMOX反応槽3では、導入されたアンモニア態窒素含有水が、グラニュール汚泥の外側の硝化細菌によりアンモニア態窒素の一部が亜硝酸態窒素に硝化され、内側のANAMMOX菌の作用でアンモニア態窒素と亜硝酸態窒素との反応で窒素ガスに分解される。   In the single tank type ANAMMOX reaction tank 3, the introduced ammonia nitrogen-containing water is partially nitrified into nitrite nitrogen by the nitrifying bacteria outside the granule sludge, and the action of the inside ANAMMOX bacteria It is decomposed into nitrogen gas by the reaction of ammonia nitrogen and nitrite nitrogen.

この一槽式ANAMMOX反応槽3では、このような硝化反応と脱窒反応とを単一槽内で実現するために、次のような条件を採用することが好ましい。
pH:5〜9
DO濃度:0.1〜2mg/L
温度:5〜40℃
BOD濃度:0〜50mg/L
窒素負荷:0.02〜10kg−N/m/day
In the one-tank type ANAMMOX reaction tank 3, in order to realize such nitrification reaction and denitrification reaction in a single tank, the following conditions are preferably adopted.
pH: 5-9
DO concentration: 0.1 to 2 mg / L
Temperature: 5-40 ° C
BOD concentration: 0 to 50 mg / L
Nitrogen load: 0.02 to 10 kg-N / m 3 / day

この一槽式ANAMMOX反応槽3の型式には特に制限はなく、固定床、流動床、グラニュール法、担体添加法等の生物膜式の反応槽を採用することができる。   There is no particular limitation on the type of the one-tank type ANAMMOX reaction tank 3, and a biofilm type reaction tank such as a fixed bed, a fluidized bed, a granule method, and a carrier addition method can be adopted.

一槽式ANAMMOX反応槽3からのANAMMOX処理水は、次いで、凝集処理槽4に導入され、凝集処理槽4において無機凝集剤及び高分子凝集助剤が添加されて凝集処理される。   The ANAMOX treated water from the one-tank type ANAMOX reaction tank 3 is then introduced into the agglomeration treatment tank 4, and an agglomeration treatment tank 4 is added with an inorganic flocculant and a polymer agglomeration aid to undergo agglomeration treatment.

無機凝集剤としては、ポリ塩化アルミニウム等のアルミニウム系凝集剤、塩化第二鉄、ポリ硫酸第二鉄等の鉄系凝集剤を用いることができ、無機凝集剤と高分子凝集助剤とを併用することにより良好な凝集効果が得られる。   As the inorganic flocculant, aluminum-based flocculants such as polyaluminum chloride, and iron-based flocculants such as ferric chloride and polyferric sulfate can be used. By doing so, a good aggregation effect can be obtained.

これらの無機凝集剤の添加量は、ANAMMOX処理水の水質によっても異なるが、通常100〜300mg/L程度である。また、高分子凝集助剤を併用する場合、高分子凝集助剤の添加量は通常0.1〜10mg/L程度である。   The amount of these inorganic flocculants added is usually about 100 to 300 mg / L, although it varies depending on the water quality of the ANAMOX treated water. Moreover, when using together a polymer aggregation aid, the addition amount of a polymer aggregation aid is about 0.1-10 mg / L normally.

このような凝集処理を行うことにより、沈殿分離汚泥の調質と共に、硝化・脱窒処理水中のSS及びリンを高度に除去することができ、より一層良好な水質の処理水を得ることができる。   By performing such a coagulation treatment, SS and phosphorus in the nitrification / denitrification treated water can be highly removed together with the refining of the precipitate separation sludge, and a treated water with even better water quality can be obtained. .

第2沈殿槽5の上澄水(凝集沈殿処理水)は処理水として系外へ排出される。また、分離汚泥は、系外へ排出されて脱水等の処理工程に送給される。   The supernatant water (coagulation precipitation treated water) of the second sedimentation tank 5 is discharged out of the system as treated water. The separated sludge is discharged out of the system and sent to a treatment process such as dehydration.

なお、図1は本発明の有機物及び窒素含有排水の処理方法の実施の形態の一例であって、本発明はその要旨を超えない限り、何ら図示の方法に限定されるものではない。   FIG. 1 is an example of an embodiment of a method for treating organic matter and nitrogen-containing wastewater of the present invention, and the present invention is not limited to the illustrated method as long as the gist thereof is not exceeded.

例えば、前段の活性汚泥処理工程は、活性汚泥処理槽と沈殿槽との組み合せの他、膜モジュールを浸漬した、浸漬膜型活性汚泥処理槽を用いて沈殿槽を省略しても良い。また、固定床式反応槽等を用いて沈殿槽を省略することもできる。更に、第1、第2沈殿槽の代りに膜分離装置等の他の固液分離手段を用いることもできる。また、凝集処理槽を省略して、直接沈殿槽への導入配管又は沈殿槽に無機凝集剤を添加して凝集処理することもできる。   For example, in the activated sludge treatment step in the previous stage, in addition to the combination of the activated sludge treatment tank and the precipitation tank, the precipitation tank may be omitted by using an immersion membrane type activated sludge treatment tank in which the membrane module is immersed. Moreover, a sedimentation tank can also be abbreviate | omitted using a fixed bed type reaction tank. Furthermore, other solid-liquid separation means such as a membrane separation device can be used instead of the first and second precipitation tanks. Further, the coagulation treatment tank may be omitted, and the coagulation treatment may be performed by adding an inorganic coagulant to the pipe for introduction into the direct precipitation tank or the precipitation tank.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1
図1に示す方法により、表1に示す水質の原水を、下記条件で通水して処理を行った。なお、一槽式ANAMMOX反応槽(型式ガスリフトリアクタ)には、集積培養して得た硝化菌とANAMMOX菌とのグラニュール汚泥を投入した。
(処理条件)
活性汚泥処理槽のDO濃度:1mg/L
活性汚泥処理槽のBOD負荷:0.6kg/m/day
活性汚泥処理槽のSRT:4day
活性汚泥処理槽の容積:50L
活性汚泥処理槽の温度:20℃
一槽式ANAMMOX反応槽のDO濃度:0.5mg/L
一槽式ANAMMOX反応槽の窒素負荷:1kg−N/m/day
一槽式ANAMMOX反応槽の容積:15L
一槽式ANAMMOX反応槽の温度:30℃
無機凝集剤(硫酸バンド)添加量:250mg/L
高分子凝集助剤(アニオン性)添加量:1mg/L
凝集槽の容積:1.5L
Example 1
By the method shown in FIG. 1, the raw water having the quality shown in Table 1 was passed through under the following conditions. In addition, the granular sludge of the nitrifying bacteria and ANAMMOX bacteria obtained by accumulation culture | cultivation was thrown into the 1 tank type ANAMMOX reaction tank (model gas lift reactor).
(Processing conditions)
DO concentration in activated sludge treatment tank: 1 mg / L
BOD load of activated sludge treatment tank: 0.6 kg / m 3 / day
Activated sludge treatment tank SRT: 4 days
Volume of activated sludge treatment tank: 50L
Temperature of activated sludge treatment tank: 20 ° C
DO concentration in a single tank type ANAMOX reactor: 0.5 mg / L
Nitrogen load of single tank type ANAMOX reaction tank: 1 kg-N / m 3 / day
Volume of one tank type ANAMMOX reaction tank: 15L
Temperature of one tank type ANAMMOX reactor: 30 ° C
Amount of inorganic flocculant (sulfuric acid band) added: 250 mg / L
Polymer aggregation aid (anionic) addition amount: 1 mg / L
Volume of coagulation tank: 1.5L

このときの活性汚泥処理水、一槽式ANAMMOX処理水、凝集沈殿処理水の水質は表1に示す通りであった。   The water quality of the activated sludge treated water, the one-tank type ANAMOX treated water, and the coagulated sediment treated water at this time was as shown in Table 1.

比較例1
実施例1において活性汚泥処理を行わなかったこと以外は同様にして処理を行い、各工程の処理水の水質を表1に示した。
Comparative Example 1
The treatment was performed in the same manner except that the activated sludge treatment was not performed in Example 1, and the quality of treated water in each step is shown in Table 1.

Figure 0004649911
Figure 0004649911

表1より、次のことが明らかである。即ち、一槽式ANAMMOX反応槽では、BODを多く含む水が導入されると硝化菌よりも増殖速度が速いBOD資化菌の増殖によって、槽内の汚泥量が増加していくため、汚泥の引き抜きが必要となる。引き抜きを繰り返すうちに、槽内汚泥中の硝化−ANAMMOXグラニュール量が低下し、BOD資化菌が優占化してしまうため、アンモニア態窒素の処理ができなくなる。   From Table 1, the following is clear. That is, in the single tank type ANAMMOX reaction tank, when water containing a large amount of BOD is introduced, the amount of sludge in the tank increases due to the growth of BOD-assimilating bacteria whose growth rate is faster than that of nitrifying bacteria. Pulling out is required. While the extraction is repeated, the amount of nitrification-ANAMMOX granules in the sludge in the tank decreases, and the BOD-assimilating bacteria become dominant, so that ammonia nitrogen cannot be treated.

これに対して、ANAMMOX反応に先立ち有機物を除去した実施例1では、一槽式ANAMMOX反応槽において、BOD資化菌が優先することはなく、アンモニア態窒素の硝化、及びアンモニア態窒素と亜硝酸態窒素との反応による脱窒が円滑に進行し、良好な水質の処理水を得ることができる。   In contrast, in Example 1 where organic substances were removed prior to the ANAMOX reaction, the BOD-assimilating bacteria did not have priority in the single tank type AMAMOX reaction tank, and nitrification of ammonia nitrogen, and ammonia nitrogen and nitrous acid. The denitrification by reaction with the state nitrogen proceeds smoothly, and treated water with good water quality can be obtained.

本発明の有機物及び窒素含有排水の処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method of the organic substance of this invention, and nitrogen-containing waste_water | drain.

1 活性汚泥処理槽
2 第1沈殿槽
3 一槽式ANAMMOX反応槽
4 凝集処理槽
5 第2沈殿槽
DESCRIPTION OF SYMBOLS 1 Activated sludge processing tank 2 1st sedimentation tank 3 One tank type ANAMMOX reaction tank 4 Coagulation treatment tank 5 2nd sedimentation tank

Claims (3)

アンモニア態窒素を電子供与体とし、亜硝酸態窒素を電子受容体とする独立栄養性脱窒微生物が担体粒子表面に生物膜を形成したもの、又は前記脱窒微生物が自己造粒によりグラニュールになったもの(以下において、独立栄養性脱窒微生物が担体粒子表面に生物膜を形成したもの、及び独立栄養性脱窒微生物が自己造粒によりグラニュールになったものを「グラニュール」と総称する。)を槽内に保有する反応槽に、被処理水を供給し、該反応槽内で、グラニュールの外側の硝化細菌によりアンモニア態窒素の一部を亜硝酸態窒素に硝化し、内側の独立栄養性脱窒微生物の作用で脱窒を行う一槽式硝化・脱窒工程を有する有機物及び窒素含有排水の処理方法であって、
有機物及び窒素含有排水を、硝化抑制条件下に有機物を分解する有機物除去工程を有し、該有機物除去工程の処理水を前記硝化・脱窒工程の被処理水として前記反応槽に供給する有機物及び窒素含有排水の処理方法であり、
該有機物除去工程が好気性条件下で行うものであり、該有機物除去工程の汚泥滞留時間を3〜7日とすると共に、溶存酸素濃度を0.5〜2mg/Lとすることにより前記硝化抑制条件下の有機物分解を行うことを特徴とする有機物及び窒素含有排水の処理方法。
An autotrophic denitrifying microorganism using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor formed a biofilm on the surface of carrier particles, or the denitrifying microorganism is granulated by self-granulation. (Hereinafter, autotrophic denitrifying microorganisms formed a biofilm on the surface of carrier particles and autotrophic denitrifying microorganisms granulated by self-granulation are collectively called “granule”.) To the reaction tank held in the tank, and in the reaction tank, a part of ammonia nitrogen is nitrified to nitrite nitrogen by nitrifying bacteria outside the granule, and the inside A method of treating organic matter and nitrogen-containing wastewater having a one-tank nitrification / denitrification process for denitrification by the action of autotrophic denitrification microorganisms of
Organic matter and nitrogen-containing wastewater have an organic matter removing step for decomposing the organic matter under nitrification suppression conditions, and the treated organic matter in the organic matter removing step is supplied to the reaction vessel as treated water in the nitrification / denitrification step, and A method for treating nitrogen-containing wastewater,
The organic matter removal step is performed under aerobic conditions, and the nitrification inhibition is achieved by setting the sludge residence time of the organic matter removal step to 3 to 7 days and the dissolved oxygen concentration to 0.5 to 2 mg / L. A method for treating organic matter and nitrogen-containing wastewater, wherein organic matter is decomposed under conditions.
請求項1において、前記硝化・脱窒工程の処理水に凝集剤を添加して凝集処理及び固液分離処理する工程を備えることを特徴とする有機物及び窒素含有排水の処理方法。   The method for treating organic matter and nitrogen-containing wastewater according to claim 1, comprising a step of adding a flocculant to the treated water in the nitrification / denitrification step to perform a flocculant treatment and a solid-liquid separation treatment. 請求項1又は2において、該有機物及び窒素含有排水中のアンモニア態窒素及び有機態窒素の合計と有機物との重量比((NH−N+Org−N)/BOD)が1未満であり、前記硝化・脱窒工程に導入される有機物除去工程の処理水中の有機物とアンモニア態窒素及び有機態窒素の合計との重量比(BOD/(NH−N+Org−N))が1以下であることを特徴とする有機物及び窒素含有排水の処理方法。 3. The nitrification method according to claim 1, wherein a weight ratio ((NH 4 −N + Org−N) / BOD) of a total amount of ammonia nitrogen and organic nitrogen in the organic matter and nitrogen-containing wastewater to the organic matter is less than 1. -The weight ratio (BOD / (NH 4 -N + Org-N)) of organic substances in the treated water of the organic substance removal process introduced into the denitrification process to the total of ammonia nitrogen and organic nitrogen is 1 or less. A method for treating organic matter and nitrogen-containing wastewater.
JP2004239748A 2004-08-19 2004-08-19 Treatment of organic matter and nitrogen-containing wastewater Active JP4649911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004239748A JP4649911B2 (en) 2004-08-19 2004-08-19 Treatment of organic matter and nitrogen-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004239748A JP4649911B2 (en) 2004-08-19 2004-08-19 Treatment of organic matter and nitrogen-containing wastewater

Publications (2)

Publication Number Publication Date
JP2006055739A JP2006055739A (en) 2006-03-02
JP4649911B2 true JP4649911B2 (en) 2011-03-16

Family

ID=36103660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004239748A Active JP4649911B2 (en) 2004-08-19 2004-08-19 Treatment of organic matter and nitrogen-containing wastewater

Country Status (1)

Country Link
JP (1) JP4649911B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110282820A (en) * 2019-06-25 2019-09-27 南京传业环保科技有限公司 A kind of high stability processing system for trade effluent
CN111733118A (en) * 2020-08-17 2020-10-02 中国科学院烟台海岸带研究所 Bacillus PL-2 and application thereof in aquaculture

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678577B2 (en) * 2004-11-05 2011-04-27 株式会社日立プラントテクノロジー Wastewater treatment system
JP4957229B2 (en) * 2006-12-21 2012-06-20 株式会社Ihi Waste water treatment method and waste water treatment apparatus
JP5115252B2 (en) * 2008-03-10 2013-01-09 株式会社Ihi Activated sludge treatment method and activated sludge treatment apparatus for wastewater
JP5006845B2 (en) * 2008-06-23 2012-08-22 大阪市 Method for suppressing generation of nitrous oxide
JP4837706B2 (en) * 2008-06-27 2011-12-14 水ing株式会社 Ammonia nitrogen removal equipment
JP5115908B2 (en) * 2008-09-10 2013-01-09 株式会社日立プラントテクノロジー Waste water treatment apparatus and treatment method
WO2010074008A1 (en) * 2008-12-28 2010-07-01 メタウォーター株式会社 Method and device for removing biological nitrogen and support therefor
US7972513B2 (en) 2009-10-09 2011-07-05 Leaderman & Associates Co., Ltd. Process for treating nitrogenous wastewater with simultaneous autotrophic denitrification, hetertrophic denitrification and COD removal
JP5814768B2 (en) * 2011-12-09 2015-11-17 株式会社クボタ Nitrogen-containing organic wastewater treatment system and treatment method
JP5858763B2 (en) * 2011-12-09 2016-02-10 株式会社クボタ Nitrogen-containing organic wastewater treatment system and treatment method
AU2014254527B2 (en) 2013-04-16 2017-11-16 Paques I.P. B.V. Process for biological removal of nitrogen from wastewater
CN104003517B (en) * 2014-06-20 2016-04-27 必德普(北京)环保科技有限公司 A kind of biological multiplication sewage water denitrification treatment system and sewage water denitrification handling method
WO2015192367A1 (en) 2014-06-20 2015-12-23 必德普(北京)环保科技有限公司 Bio-dopp sewage denitrification system and sewage denitrification method
JP6919304B2 (en) * 2017-04-20 2021-08-18 栗田工業株式会社 Ammonia nitrogen-containing wastewater denitrification treatment equipment and denitrification treatment method
JP2019177333A (en) * 2018-03-30 2019-10-17 Jfeエンジニアリング株式会社 Method for methane fermentation of organic waste
JP2019181377A (en) * 2018-04-11 2019-10-24 株式会社日立製作所 Nitrogen treatment method
WO2019202756A1 (en) * 2018-04-18 2019-10-24 鹿島建設株式会社 Wastewater treatment device and method
CN113845277A (en) * 2021-11-12 2021-12-28 西安优瑞卡环保科技有限公司 Pretreatment method of high-sulfur high-organic-nitrogen wastewater

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141294A (en) * 1995-11-21 1997-06-03 Kurita Water Ind Ltd Biological nitrogen removing method
JP2001293494A (en) * 2000-04-11 2001-10-23 Kurita Water Ind Ltd Biological nitrogen removing method
JP2002159992A (en) * 2000-10-13 2002-06-04 Korea Advanced Inst Of Sci Technol Method and equipment for treating high-concentration organic waste water using biomaker
JP2003024986A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Biological denitrification method and biological denitrification apparatus
JP2003024981A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Biological denitrification method and biological denitrification apparatus
JP2003033785A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2003033784A (en) * 2001-07-25 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2005305410A (en) * 2004-03-25 2005-11-04 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen
JP2005329399A (en) * 2004-04-20 2005-12-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141294A (en) * 1995-11-21 1997-06-03 Kurita Water Ind Ltd Biological nitrogen removing method
JP2001293494A (en) * 2000-04-11 2001-10-23 Kurita Water Ind Ltd Biological nitrogen removing method
JP2002159992A (en) * 2000-10-13 2002-06-04 Korea Advanced Inst Of Sci Technol Method and equipment for treating high-concentration organic waste water using biomaker
JP2003024986A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Biological denitrification method and biological denitrification apparatus
JP2003024981A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Biological denitrification method and biological denitrification apparatus
JP2003033784A (en) * 2001-07-25 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2003033785A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2005305410A (en) * 2004-03-25 2005-11-04 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen
JP2005329399A (en) * 2004-04-20 2005-12-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110282820A (en) * 2019-06-25 2019-09-27 南京传业环保科技有限公司 A kind of high stability processing system for trade effluent
CN111733118A (en) * 2020-08-17 2020-10-02 中国科学院烟台海岸带研究所 Bacillus PL-2 and application thereof in aquaculture

Also Published As

Publication number Publication date
JP2006055739A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
US20140367330A1 (en) Wastewater treatment process that utilizes granular sludge to reduce cod concentration in wastewater
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
JP2011189249A (en) Biological nitrogen treatment method for ammonia-containing waste water
JP5006845B2 (en) Method for suppressing generation of nitrous oxide
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP4302341B2 (en) Biological nitrogen removal method and apparatus
KR101063828B1 (en) Method of wastewater treatment using an anaerobic reactor having a biological nitrification process connected a cation exchange membrane
JP4570550B2 (en) Nitrogen removal method and apparatus for high concentration organic wastewater
JP6491056B2 (en) Nitrogen removal method and nitrogen removal apparatus
JP3958900B2 (en) How to remove nitrogen from wastewater
JP2003033784A (en) Method and device for denitrification
JP3933009B2 (en) Wastewater treatment method
JPH0788500A (en) Method for treating sewage countercurrent water
KR100783789B1 (en) Apparatus for wastewater treatment and method for wastewater treatment using the same
KR20010028550A (en) Treatment method for livestock waste water including highly concentrated organic, nitrogen and phosphate
JP6919304B2 (en) Ammonia nitrogen-containing wastewater denitrification treatment equipment and denitrification treatment method
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JP2002172399A (en) Denitrification treatment method
KR100470350B1 (en) Method for disposing of livestock waste water
JPH08318292A (en) Waste water treatment method and apparatus
JP3377346B2 (en) Organic wastewater treatment method and apparatus
KR20060081804A (en) Gradually operated sequencing batch reactor and method thereof
JP2003053382A (en) Nitrification-denitrification treatment method
JP2002102864A (en) Waste water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Ref document number: 4649911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3