JP2001314892A - Method for controlling denitrification apparatus of wastewater - Google Patents

Method for controlling denitrification apparatus of wastewater

Info

Publication number
JP2001314892A
JP2001314892A JP2000136070A JP2000136070A JP2001314892A JP 2001314892 A JP2001314892 A JP 2001314892A JP 2000136070 A JP2000136070 A JP 2000136070A JP 2000136070 A JP2000136070 A JP 2000136070A JP 2001314892 A JP2001314892 A JP 2001314892A
Authority
JP
Japan
Prior art keywords
denitrification
wastewater
tank
nitrogen
sedimentation basin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000136070A
Other languages
Japanese (ja)
Inventor
Makoto Tanokura
誠 田之倉
Jun Miyata
純 宮田
Toshiaki Tsubone
俊明 局
Kei Baba
圭 馬場
Kenichiro Mizuno
健一郎 水野
Tatsuo Takechi
辰夫 武智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Kawasaki City
Original Assignee
NKK Corp
Nippon Kokan Ltd
Kawasaki City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd, Kawasaki City filed Critical NKK Corp
Priority to JP2000136070A priority Critical patent/JP2001314892A/en
Publication of JP2001314892A publication Critical patent/JP2001314892A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Feedback Control In General (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling a denitrification apparatus of wastewater, capable of preventing the deterioration of denitrification capacity caused by the temporal fluctuations of water quality. SOLUTION: In the method for controlling the denitrification apparatus of wastewater by a biological denitrification treatment apparatus, the denitrification apparatus is equipped with a first sedimentation basin, a denitrification tank, a nitrification tank, a final sedimentation basin and an automatic analyser for measuring the total nitrogen concentration, ammonia nitrogen and chemical oxygen demand of the outlet water of the first sedimentation basin and organic matter is injected in the denitrification tank. The total nitrogen concentration, ammonia nitrogen and chemical oxygen demand of the outlet water of the first sedimentation basin are measured by the automatic analyser to obtain measured values and treatment estimate caliculation due to simulation constituted of a numerical value model is performed on the basis of the measured values in a short time and, when the deterioration of a nitrogen removing ratio is estimated, the injection amount of the organic matter is controlled on the basis of the simulation result.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水等の廃水処理
方法に係り、特に下水等の廃水からの窒素除去の制御方
法に関する。
The present invention relates to a method for treating wastewater such as sewage, and more particularly to a method for controlling nitrogen removal from wastewater such as sewage.

【0002】[0002]

【従来の技術】廃水中から有機物を除去するための従来
の代表的な処理プロセスとしては、活性汚泥法プロセス
が知られており、窒素化合物および有機物を同時に除去
する従来の方法としては生物学的硝化脱窒法がある。
2. Description of the Related Art Activated sludge process is known as a conventional representative treatment process for removing organic matter from wastewater, and biological treatment is used as a conventional method for simultaneously removing nitrogen compounds and organic matter. There is a nitrification denitrification method.

【0003】生物学的硝化脱窒法による廃水処理装置の
一例を、図5に示す。図示する廃水の処理装置は、最初
沈澱池2と、廃水中の窒素化合物を硝酸態窒素または亜
硝酸態窒素にまで酸化(硝化)する硝化槽4と、硝酸態
窒素または亜硝酸態窒素を窒素にまで還元(脱窒)する
脱窒槽3と、最終沈澱池7とから構成される。
FIG. 5 shows an example of a wastewater treatment apparatus based on the biological nitrification and denitrification method. The illustrated wastewater treatment apparatus includes a settling basin 2, a nitrification tank 4 for oxidizing (nitrifying) nitrogen compounds in the wastewater to nitrate nitrogen or nitrite nitrogen, and a nitrate nitrogen or nitrite nitrogen gas. And a final settling basin 7.

【0004】処理される廃水は、まず最初沈澱池2に導
入され、ここで比較的大きく重い固形物が除去される。
廃水中の窒素は、硝化槽4および脱窒槽3とでの反応を
経て最終的には窒素ガスの形で大気中に放散されること
によって、廃水中から除去される。また、廃水中の有機
物は、脱窒槽3および硝化槽4の双方において除去され
る。
The wastewater to be treated is first introduced into a sedimentation basin 2, where relatively large and heavy solids are removed.
Nitrogen in the wastewater is removed from the wastewater by reacting with the nitrification tank 4 and the denitrification tank 3 and finally being released into the atmosphere in the form of nitrogen gas. Organic matter in the wastewater is removed in both the denitrification tank 3 and the nitrification tank 4.

【0005】生物学的硝化脱窒法による廃水処理装置の
運転制御方法に関する従来の技術としては、次のような
ものが知られている。例えば、硝化槽内の溶存酸素濃度
を測定し、この測定値に基づいて硝化槽への送風量を制
御する方法(特開平7−80494号公報)、脱窒槽お
よび硝化槽内の亜硝酸態窒素濃度および硝酸態窒素濃度
を測定し、この測定値に基づいて脱窒槽と硝化槽との容
積比を制御する方法(特開平7−136687号公
報)、および脱窒槽へ導入される流入水のCOD濃度お
よびアンモニア態窒素濃度を測定し、この測定値に基づ
いてメタノール等の有機物注入量を制御する方法(特開
昭61−249597号公報)などである。
[0005] The following is known as a conventional technique relating to an operation control method of a wastewater treatment apparatus by a biological nitrification and denitrification method. For example, a method of measuring the concentration of dissolved oxygen in a nitrification tank and controlling the amount of air blown to the nitrification tank based on the measured value (Japanese Patent Laid-Open No. 7-80494), a method of controlling nitrite nitrogen in a denitrification tank and a nitrification tank A method of measuring the concentration and nitrate nitrogen concentration and controlling the volume ratio between the denitrification tank and the nitrification tank based on the measured values (Japanese Patent Application Laid-Open No. Hei 7-136687), and the COD of inflow water introduced into the denitrification tank A method of measuring the concentration and the concentration of ammonia nitrogen and controlling the injection amount of an organic substance such as methanol based on the measured values (JP-A-61-249597).

【0006】[0006]

【発明が解決しようとする課題】生物学的硝化脱窒法に
よる廃水処理装置を用いた廃水からの窒素除去において
は、廃水処理装置に流入する廃水の水質の時間変動に対
応して、廃水処理装置の処理性能を良好に維持管理する
ことが必要である。このためには、廃水の水質に対応し
た適切な値となるように、廃水処理装置の運転条件を制
御しなければならない。特に、生物学的窒素除去反応を
構成する硝化反応および脱窒反応のうち、脱窒反応で
は、硝酸態窒素または亜硝酸態窒素を窒素にまで還元
(脱窒)する際に、廃水中の有機物が還元反応の水素供
与体として消費される。したがって、廃水の有機物濃度
が窒素濃度に比して小である場合には、水素供与体濃度
の不足により所望の脱窒反応量を得ることができないと
いう問題がある。
In the removal of nitrogen from wastewater using a wastewater treatment apparatus by a biological nitrification and denitrification method, the wastewater treatment apparatus responds to the time variation of the quality of the wastewater flowing into the wastewater treatment apparatus. It is necessary to maintain and manage the processing performance well. For this purpose, the operating conditions of the wastewater treatment device must be controlled so as to have an appropriate value corresponding to the quality of the wastewater. In particular, of the nitrification and denitrification reactions that constitute the biological nitrogen removal reaction, in the denitrification reaction, when nitrate nitrogen or nitrite nitrogen is reduced to nitrogen (denitrification), the organic matter in the wastewater is reduced. Is consumed as a hydrogen donor in the reduction reaction. Therefore, when the organic matter concentration of the wastewater is smaller than the nitrogen concentration, there is a problem that a desired amount of denitrification reaction cannot be obtained due to an insufficient hydrogen donor concentration.

【0007】そこで本発明は、上述した問題点に対処す
るための具体的な装置の制御方法を提示するものであ
り、水質の時間変動による窒素除去性能の悪化を防止し
得る廃水の窒素除去装置の制御方法を提供することを目
的とする。
Accordingly, the present invention proposes a specific method of controlling a device for solving the above-mentioned problems, and a device for removing nitrogen from wastewater capable of preventing deterioration of the nitrogen removal performance due to temporal fluctuation of water quality. The purpose of the present invention is to provide a control method.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、生物学的窒素除去処理装置による廃水の
窒素除去の制御方法において、前記生物学的窒素除去処
理装置は、第1の固液分離装置と、脱窒槽と、硝化槽
と、第2の固液分離装置と、前記第1の固液分離装置の
出口水の全窒素濃度、アンモニア態窒素および化学的酸
素要求量を測定するための自動分析装置とを具備すると
ともに、(1)前記第1の固液分離装置は少なくとも2
つの最初沈澱池を含むこと、および(2)前記脱窒槽へ
の有機物の注入が行われること、の少なくとも一方の条
件を満たす装置であり、前記自動分析装置により前記第
1の固液分離装置の出口水の全窒素濃度、アンモニア態
窒素および化学的酸素要求量を測定して測定値を得、前
記測定値をもとに、数値モデルにより構成されたシミュ
レーションによる処理予測計算を短時間で行い、窒素除
去率が悪化することが予測された場合には、前記第1の
固液分離装置を構成する前記最初沈澱池の運転池数およ
び前記有機物注入量の少なくとも一方を、前記シミュレ
ーション結果に基づいて制御することを特徴とする廃水
の窒素除去の制御方法を提供する。
According to the present invention, there is provided a method for controlling nitrogen removal of wastewater by a biological nitrogen removal treatment apparatus, the biological nitrogen removal treatment apparatus comprising: Solid-liquid separator, denitrification tank, nitrification tank, second solid-liquid separator, total nitrogen concentration of outlet water of the first solid-liquid separator, ammonia nitrogen and chemical oxygen demand. (1) the first solid-liquid separation device has at least 2
An apparatus that satisfies at least one of the following conditions: (1) the first solid-liquid separation device, and (2) the injection of organic matter into the denitrification tank. Measure the total nitrogen concentration of the outlet water, ammonia nitrogen and chemical oxygen demand to obtain a measured value, based on the measured value, perform a process prediction calculation by a simulation configured by a numerical model in a short time, When it is predicted that the nitrogen removal rate is deteriorated, at least one of the number of operation ponds of the first settling basin constituting the first solid-liquid separation device and the organic substance injection amount is determined based on the simulation result. Provided is a method for controlling nitrogen removal of wastewater, which is characterized by controlling.

【0009】前記生物学的窒素除去処理装置は嫌気槽を
さらに具備してもよく、この場合には、前記有機物を嫌
気槽に注入することができる。
The biological nitrogen removal treatment apparatus may further include an anaerobic tank. In this case, the organic substance can be injected into the anaerobic tank.

【0010】本発明の制御方法においては、最初沈澱池
出口水の水質を分析し、この分析値に基づいて生物学的
動力学モデル等の数値モデルにより構成されたシミュレ
ーションモデルによる処理予測計算を短時間で行う。そ
の結果、脱窒槽内にNO2 -もしくはNO3 -が残留する場
合には、脱窒槽もしくは嫌気槽へのメタノール等の有機
物の注入量を大とする。もしくは最初沈澱池の運転池数
を削減することにより、本廃水処理装置に流入する有機
物の量を大とする。これによって、脱窒槽での脱窒反応
速度を高めて、脱窒反応量を増加させることができる。
In the control method of the present invention, the water quality of the outlet water of the sedimentation basin is first analyzed, and the process prediction calculation by a simulation model constituted by a numerical model such as a biological kinetic model is shortened based on the analyzed value. Do it in time. As a result, NO 2 into the denitrification tank - or NO 3 - in the case where the residual is large injection volume of organic material such as methanol to a denitrification tank or anaerobic tank. Alternatively, the amount of organic matter flowing into the wastewater treatment apparatus is increased by reducing the number of operation ponds in the first settling basin. Thereby, the rate of the denitrification reaction in the denitrification tank can be increased, and the amount of the denitrification reaction can be increased.

【0011】なお、有機物の流入量および最初沈澱池の
運転池削減池数は、このシミュレーションモデルによる
計算により効果が期待できる最小値とする。
[0011] The inflow of organic matter and the number of operation pond reduction ponds of the first settling basin are set to the minimum values that can be expected to be effective by calculation using this simulation model.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明の窒
素除去の制御方法を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for controlling nitrogen removal according to the present invention will be described with reference to the drawings.

【0013】本発明の方法を適用し得る廃水の生物学的
窒素除去処理装置の一例を、図1に示す。
FIG. 1 shows an example of a biological nitrogen removal treatment apparatus for wastewater to which the method of the present invention can be applied.

【0014】図示する装置は、主として最初沈澱池(最
初沈澱池2aおよび最初沈澱池2b)、脱窒槽(脱窒槽
3aおよび3b)、硝化槽(硝化槽4aおよび4b)、
および最終沈澱池7から構成される。脱窒槽3aおよび
脱窒槽3bでは、散気装置5による散気は行われず、攪
拌のみが行われる。脱窒槽3aには、必要に応じて有機
物注入装置10から有機物注入ポンプ11によりメタノ
ール等の有機物が供給される。引き続いた硝化槽4aお
よび硝化槽4bでは、散気装置5により酸素供給が行わ
れるとともに、散気に伴って生じる水流により攪拌が行
われる。
The illustrated apparatus mainly includes a first settling tank (first settling tank 2a and first settling tank 2b), a denitrification tank (denitrification tanks 3a and 3b), a nitrification tank (nitrification tanks 4a and 4b),
And the final sedimentation basin 7. In the denitrification tank 3a and the denitrification tank 3b, air is not diffused by the diffusion device 5, but only stirring is performed. An organic substance such as methanol is supplied to the denitrification tank 3a by an organic substance injection pump 11 from an organic substance injection device 10 as needed. In the subsequent nitrification tank 4a and nitrification tank 4b, oxygen is supplied by the air diffuser 5, and agitation is performed by a water flow generated by the air diffusion.

【0015】廃水1は、最初沈澱池2aおよび最初沈澱
池2bでの固液分離を経て、自動分析装置14により水
質分析が行われた後、脱窒槽3aおよび3b、硝化槽4
aおよb4bへと順次通水される。硝化槽4bを流出し
て最終沈澱池7に流入する流出液は、最終沈澱池で処理
水9と活性汚泥とに分離され、最終沈澱池で分離・濃縮
された活性汚泥の少なくとも一部は、活性汚泥8として
脱窒槽3aへ送られる。また、硝化槽4bを流出した流
出液の一部は、硝化循環液6として脱窒槽3aへ送られ
る。硝化槽においては、活性汚泥の作用により廃水中の
窒素化合物を硝酸性窒素または亜硝酸性窒素にまで酸化
(=硝化反応)するとともに、有機物の酸化分解除去を
行う。
The wastewater 1 is first subjected to solid-liquid separation in the first sedimentation basin 2a and the first sedimentation basin 2b, and then subjected to water quality analysis by the automatic analyzer 14. Thereafter, the denitrification tanks 3a and 3b and the nitrification tank 4
Water is sequentially passed to a and b4b. The effluent flowing out of the nitrification tank 4b and flowing into the final sedimentation basin 7 is separated into treated water 9 and activated sludge in the final sedimentation basin, and at least a part of the activated sludge separated and concentrated in the final sedimentation basin is It is sent to the denitrification tank 3a as activated sludge 8. A part of the effluent flowing out of the nitrification tank 4b is sent to the denitrification tank 3a as the nitrification circulating liquid 6. In the nitrification tank, the activated sludge oxidizes nitrogen compounds in the wastewater to nitrate nitrogen or nitrite nitrogen (= nitrification reaction), and oxidatively decomposes and removes organic substances.

【0016】脱窒槽においては、活性汚泥が最初沈澱池
出口水16および有機物注入装置10から供給されるメ
タノール等の有機物を利用して、最初沈澱池出口水1
6、返送汚泥8および硝化循環液6に含まれる硝酸性窒
素または亜硝酸性窒素を窒素ガスにまで還元(=脱窒反
応)し、脱窒処理する。脱窒槽3aに注入される有機物
としては、例えば、メタノール、エタノール、酢酸およ
びギ酸等を挙げることができるが、費用面を考慮すると
メタノールを用いることが好ましい。
In the denitrification tank, the activated sludge is first treated with the outlet water 16 of the sedimentation basin and the organic matter such as methanol supplied from the organic matter injecting device 10 to the outlet water 1 of the sedimentation basin.
6. The nitrate nitrogen or nitrite nitrogen contained in the returned sludge 8 and the nitrification circulating liquid 6 is reduced to nitrogen gas (= denitrification reaction), and denitrification treatment is performed. Examples of the organic substance injected into the denitrification tank 3a include, for example, methanol, ethanol, acetic acid, and formic acid. However, considering cost, it is preferable to use methanol.

【0017】なお、図1に示す装置においては、2つの
最初沈澱池2aおよび2bが設けられるとともに、脱窒
槽3aへの有機物の注入が行われているが、このような
2つの条件を同時に満たすことは、本発明において必ず
しも必要ではない。少なくとも一方が満足されていれば
よい。
In the apparatus shown in FIG. 1, two initial settling ponds 2a and 2b are provided, and an organic substance is injected into the denitrification tank 3a. These two conditions are simultaneously satisfied. This is not always necessary in the present invention. It suffices if at least one is satisfied.

【0018】本発明の制御方法においては、最初沈澱池
の出口水の水質に基づいて処理結果をシミュレートし、
この結果を用いて窒素除去に関連する運転条件を自動制
御するものである。具体的には、図1に示したような窒
素除去処理装置においては、最初沈澱池出口に設置され
た自動分析装置14により、最初沈澱池出口水の全窒素
濃度、アンモニア態窒素および化学的酸素要求量を測定
して、分析結果を制御装置15に自動入力する。なお、
測定は、連続的もしくは間欠的に行うことができる。
In the control method of the present invention, the treatment result is first simulated based on the quality of the outlet water of the sedimentation basin,
The operating conditions related to nitrogen removal are automatically controlled using the results. Specifically, in the nitrogen removal treatment apparatus as shown in FIG. 1, the automatic analyzer 14 installed at the outlet of the first settling basin firstly sets the total nitrogen concentration of the outlet water of the first settling basin, ammonia nitrogen and chemical oxygen. The required amount is measured, and the analysis result is automatically input to the control device 15. In addition,
The measurement can be performed continuously or intermittently.

【0019】制御装置15内では、生物学的動力学モデ
ル等の数値モデルにより構成されたシミュレーションモ
デルによる処理予測計算を短時間で行なう。図1に示し
たような装置による廃水の処理は、通常8時間程度で行
われるので、処理予測計算は、それより短い時間で行わ
なければならない。具体的には、1時間以内で処理予測
計算を行うことが望まれる。本発明においては、脱窒槽
内のNO2 -とNO3 -との和が0mg/Lとなり、かつ有
機物の注入量または最初沈澱池の削減池数が最少となる
ケースを、モデルを用いて計算する。
In the control device 15, processing prediction calculation is performed in a short time by a simulation model constituted by a numerical model such as a biological dynamics model. Since the treatment of wastewater by the apparatus as shown in FIG. 1 is usually performed in about eight hours, the treatment prediction calculation must be performed in a shorter time. Specifically, it is desired to perform the process prediction calculation within one hour. In the present invention, NO 2 in the denitrification tank - and NO 3 - the sum is 0 mg / L next, and the case where reduction pond number becomes minimum injection volume or the first sedimentation tank of the organic material, using a model calculation I do.

【0020】数値計算により、脱窒槽にNO2 -もしくは
NO3 -が残留すると予測された場合には、制御装置15
からの出力信号により、次に示す(1)〜(2)の運転
条件のうち、少なくとも1つを行う。
If NO 2 - or NO 3 - is predicted to remain in the denitrification tank by numerical calculation, the controller 15
, At least one of the following operating conditions (1) and (2) is performed.

【0021】(1)脱窒槽3aへ有機物を注入する有機
物注入ポンプ11の流量を増加させる。
(1) The flow rate of the organic substance injection pump 11 for injecting organic substances into the denitrification tank 3a is increased.

【0022】(2)バルブ12aの開度を大とするとと
もに、バルブ12bの開度を小とすることにより、最初
沈澱池2bをバイパスして脱窒槽3aに流入する廃水の
流量を大とする。
(2) By increasing the opening of the valve 12a and decreasing the opening of the valve 12b, the flow rate of wastewater flowing into the denitrification tank 3a bypassing the sedimentation basin 2b at first is increased. .

【0023】こうした制御は、手動により行うことがで
きる。あるいは、図1に示した装置において、制御装置
15から有機物注入ポンプ11やバルブ12a、12b
へ自動制御ラインを設けることによって、自動で行うこ
とも可能である。
Such control can be performed manually. Alternatively, in the apparatus shown in FIG. 1, the organic substance injection pump 11 and the valves 12a and 12b
By providing an automatic control line, it is also possible to carry out automatically.

【0024】なお、メタノール注入量および最初沈澱池
2bをバイパスして脱窒槽に流入する廃水の流量は、数
値計算により効果が期待できる最小値とすることで、運
転コストを最少とすることができる。
The operation cost can be minimized by setting the methanol injection amount and the flow rate of the wastewater flowing into the denitrification tank by bypassing the first sedimentation basin 2b to the minimum values that can be expected by numerical calculation. .

【0025】本発明において用いる廃水処理装置には、
脱窒工程および硝化工程に加えて、さらに別に工程が含
まれていてもよい。例えば、嫌気工程、脱窒工程(無酸
素工程)および硝化工程(好気工程)からなる廃水処理
装置においても、本発明に基づく窒素除去方法を適用す
ることができる。また、処理対象の廃水の性状および水
量の変動が著しいものでない場合には、自動分析装置に
よる分析が間欠的であっても、実際上の反応制御には支
障を来さない。
The wastewater treatment apparatus used in the present invention includes:
In addition to the denitrification step and the nitrification step, another step may be included. For example, the nitrogen removal method according to the present invention can be applied to a wastewater treatment apparatus including an anaerobic step, a denitrification step (anoxic step), and a nitrification step (aerobic step). In addition, when the properties and the amount of the wastewater to be treated do not significantly change, even if the analysis by the automatic analyzer is intermittent, the actual reaction control is not hindered.

【0026】図2には、本発明の方法を適用し得る生物
学的窒素除去処理装置の他の例を示す。図示する装置
は、脱窒槽3aの上流に嫌気槽17を設けた以外は、図
1に示したものと同様である。すなわち、図2に示した
装置は、最初沈澱池2aおよび2b、嫌気槽17、脱窒
槽3aおよび3b、硝化槽4aおよび4b、および最終
沈澱池7から構成される。
FIG. 2 shows another example of a biological nitrogen removal treatment apparatus to which the method of the present invention can be applied. The illustrated apparatus is the same as that shown in FIG. 1 except that an anaerobic tank 17 is provided upstream of the denitrification tank 3a. That is, the apparatus shown in FIG. 2 is initially composed of the sedimentation basins 2a and 2b, the anaerobic tank 17, the denitrification tanks 3a and 3b, the nitrification tanks 4a and 4b, and the final sedimentation basin 7.

【0027】図2に示した生物学的窒素除去処理装置に
おいて、嫌気槽17は攪拌のみが行われる槽であり、こ
の嫌気槽には廃水1および返送汚泥8が導入される。嫌
気槽17においては、活性汚泥が廃水1中の有機物を利
用して、最初沈澱池出口水16および返送汚泥8に含ま
れる硝酸性窒素または亜硝酸性窒素を窒素ガスにまで還
元(=脱窒反応)して、脱窒処理する。さらに、この嫌
気槽においては、活性汚泥が細胞内に蓄積したリン酸イ
オンを廃水中に放出する(=生物学的リン放出反応)す
る。脱窒槽3aおよび3b、硝化槽4aおよび4bにお
いては、活性汚泥が排水中のリン酸イオンを細胞内に摂
取する(生物学的リン摂取反応)。
In the biological nitrogen removal treatment apparatus shown in FIG. 2, the anaerobic tank 17 is a tank in which only stirring is performed, and wastewater 1 and returned sludge 8 are introduced into the anaerobic tank. In the anaerobic tank 17, the activated sludge uses the organic matter in the wastewater 1 to reduce nitrate nitrogen or nitrite nitrogen contained in the settling pond outlet water 16 and the return sludge 8 to nitrogen gas (= denitrification). Reaction) and denitrification. Further, in this anaerobic tank, activated sludge releases phosphate ions accumulated in cells into wastewater (= biological phosphorus release reaction). In the denitrification tanks 3a and 3b and the nitrification tanks 4a and 4b, the activated sludge takes in phosphate ions in the wastewater into cells (biological phosphorus uptake reaction).

【0028】なお、図2に示した装置においては、有機
物注入装置10から供給されるメタノール等の有機物を
嫌気槽17に流入してもよい。
In the apparatus shown in FIG. 2, an organic substance such as methanol supplied from the organic substance injector 10 may flow into the anaerobic tank 17.

【0029】[0029]

【実施例】以下、具体例を示して本発明をさらに詳細に
説明する。
Now, the present invention will be described in further detail with reference to specific examples.

【0030】構築するシミュレーションモデルは、実装
置を再現し得る動力学的モデルとし、混合液中の浮遊汚
泥量、返送汚泥濃度や余剰汚泥量は、常に実装置の測定
結果をもとに修正を加えておく。また、動力学的定数に
関しても、必要に応じてキャリブレーションを行ってお
く。
The simulation model to be constructed is a kinetic model capable of reproducing the actual apparatus, and the amount of suspended sludge in the mixed solution, the concentration of returned sludge, and the amount of excess sludge are always corrected based on the measurement results of the actual apparatus. I will add it. Calibration is also performed on kinetic constants as necessary.

【0031】動力学的な反応速度式は、Monod式を
基本とした微生物増殖速度式を用いる。
As the kinetic reaction rate equation, a microorganism growth rate equation based on the Monod equation is used.

【0032】本実施例では、図1に示したフローからな
る廃水処理装置を用いて、以下に示す運転条件で窒素除
去性能を調べた。
In this embodiment, the nitrogen removal performance was examined under the following operating conditions using the wastewater treatment apparatus having the flow shown in FIG.

【0033】 流入水量: 80L/day 硝化循環水量: 135L/day 返送汚泥量: 25L/day 脱窒槽容積: 20L 硝化槽容積: 20L 水温: 15℃ MLSS: 3000mg/L 送風量: 480L/day 本実施例におけるシミュレーションのためのパラメー
タ、および処理結果等の経時変化を図3〜図4のグラフ
に示す。
Inflow water volume: 80 L / day Nitrification circulating water volume: 135 L / day Returned sludge volume: 25 L / day Denitrification tank volume: 20 L Nitrification tank volume: 20 L Water temperature: 15 ° C. MLSS: 3000 mg / L Blow volume: 480 L / day The parameters for the simulation in the example and the changes over time of the processing results and the like are shown in the graphs of FIGS.

【0034】図3のグラフには、最初沈澱池出口水中の
COD濃度および好気槽中のNOx−N濃度の経時変化
を示した。図3のグラフ中、曲線aは最初沈澱池出口水
のCOD濃度を表し、曲線bは本発明の制御を行わない
場合のNOx−N濃度を表し、曲線cは、本発明の制御
を行った場合のNOx−N濃度を表している。
The graph of FIG. 3 shows the time-dependent changes in the COD concentration in the outlet water of the precipitation tank and the NO x -N concentration in the aerobic tank. In the graph of FIG. 3, curve a represents the COD concentration of the outlet water of the settling basin at the beginning, curve b represents the NO x -N concentration when the control of the present invention is not performed, and curve c represents the control of the present invention. Represents the NO x -N concentration in the case of the above.

【0035】本実施例においては、最初沈澱池出口水の
COD濃度、全窒素濃度およびアンモニア態窒素濃度に
基づいたシミュレーションにより処理結果を得て、この
結果に応じて有機物としてのメタノールの添加量を制御
する。図4のグラフには、本発明による制御時のメタノ
ール添加量の経時変化を示した。メタノールの添加量
は、図3に示した流入水のCOD濃度の減少および好気
槽中のNOx−N濃度の増加に対応して増加している。
In this embodiment, the treatment results are obtained by simulation based on the COD concentration, total nitrogen concentration and ammonia nitrogen concentration of the outlet water of the settling basin at first, and the amount of methanol as an organic substance is adjusted according to the results. Control. The graph in FIG. 4 shows the change over time in the amount of methanol added during control according to the present invention. The amount of methanol added increases in response to the decrease in the COD concentration of the influent water and the increase in the NO x -N concentration in the aerobic tank shown in FIG.

【0036】このようにメタノール添加量を増加させる
ことによって、図3のグラフ中に曲線cとして表される
ように、NOx−N濃度の増加を抑えることができた。
By increasing the amount of methanol added as described above, it was possible to suppress the increase in the NO x -N concentration as shown by the curve c in the graph of FIG.

【0037】なお、従来の運転を行った場合の処理結果
と、本発明の制御を行った運転での結果を、処理水中の
COD、全窒素濃度およびNOx−N濃度について、下
記表1にまとめる。
Table 1 below shows the results of the treatment in the case of the conventional operation and the results of the operation in which the control of the present invention was performed, for COD, total nitrogen concentration and NO x -N concentration in the treated water. Put together.

【0038】[0038]

【表1】 [Table 1]

【0039】表1に示されるように、本発明の制御を行
うことによって、処理水中の全窒素濃度を減少させるこ
とができた。
As shown in Table 1, by controlling the present invention, the total nitrogen concentration in the treated water could be reduced.

【0040】上述した例では、有機物としてのメタノー
ルの添加量を制御することによって目標処理窒素濃度を
達成したが、最初沈澱池の運転池数を制御した場合も、
廃水の水質の時間変動による窒素除去性能の悪化を防止
することが可能である。
In the above-mentioned example, the target treated nitrogen concentration was achieved by controlling the amount of methanol as an organic substance.
It is possible to prevent deterioration of the nitrogen removal performance due to the time variation of the quality of the wastewater.

【0041】[0041]

【発明の効果】以上説明したように本発明によれば、水
質の時間変動による窒素除去性能の悪化を防止し得る廃
水の窒素除去処理の制御方法が提供される。本発明の方
法を用いることによって、廃水の水質の時間変動により
廃水の有機物濃度が不足して、所望の窒素反応量を得る
ことができない場合でも、有機物を適切に補給すること
ができる。したがって、廃水水質の時間変動による窒素
除去性能の悪化を防止することが可能となる。本発明
は、窒素を含有する下水の処理に有効に用いることがで
き、その工業的価値は大きい。
As described above, according to the present invention, there is provided a method for controlling the nitrogen removal treatment of wastewater, which can prevent the deterioration of the nitrogen removal performance due to the time variation of water quality. By using the method of the present invention, it is possible to appropriately replenish the organic matter even when the concentration of the organic matter in the wastewater is insufficient due to the time variation of the quality of the wastewater and a desired nitrogen reaction amount cannot be obtained. Therefore, it is possible to prevent deterioration of the nitrogen removal performance due to the time variation of the wastewater quality. INDUSTRIAL APPLICABILITY The present invention can be effectively used for treating sewage containing nitrogen, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の制御方法が適用される廃水の生物学的
窒素除去処理装置の一例の構成を表す概略図。
FIG. 1 is a schematic diagram illustrating a configuration of an example of a biological nitrogen removal treatment apparatus for wastewater to which a control method of the present invention is applied.

【図2】本発明の制御方法が適用される廃水の生物学的
窒素除去処理装置の他の例の構成を表す概略図。
FIG. 2 is a schematic diagram showing the configuration of another example of the biological nitrogen removal treatment apparatus for wastewater to which the control method of the present invention is applied.

【図3】流入水中のCOD濃度および好気槽中のNOx
−N濃度の経時変化を表すグラフ図。
FIG. 3. COD concentration in influent water and NO x in aerobic tank
FIG. 4 is a graph showing a change over time in -N concentration.

【図4】メタノール添加量の経時変化を表すグラフ図。FIG. 4 is a graph showing the change over time in the amount of methanol added.

【図5】従来の廃水の処理装置の構成を表す概略図。FIG. 5 is a schematic diagram illustrating a configuration of a conventional wastewater treatment apparatus.

【符号の説明】[Explanation of symbols]

1…流入廃水 2,2a,2b…最初沈澱池 3,3a,3b…脱窒槽 4,4a,4b…硝化槽 5…散気装置 6…硝化循環液 7…最終沈澱池 8…返送汚泥 9…処理水 10…有機物注入装置 11…有機物注入ポンプ 12a,12b…バルブ 14…自動分析装置 15…制御装置 16…最初沈澱池出口水 17…嫌気槽 DESCRIPTION OF SYMBOLS 1 ... Inflow wastewater 2, 2a, 2b ... First sedimentation basin 3, 3a, 3b ... Denitrification tank 4, 4a, 4b ... Nitrification tank 5 ... Aeration device 6 ... Nitrification circulating liquid 7 ... Final sedimentation basin 8 ... Returned sludge 9 ... Treated water 10 ... Organic substance injection device 11 ... Organic substance injection pump 12a, 12b ... Valve 14 ... Automatic analyzer 15 ... Control device 16 ... First settling pond outlet water 17 ... Anaerobic tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮田 純 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 局 俊明 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 馬場 圭 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 水野 健一郎 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 武智 辰夫 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4D040 BB05 BB12 BB22 BB57 BB65 BB91 BB93 5H004 GB08 HA04 HB04 JB08 JB18 KA12 KC02 KC27 LA19  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Jun Miyata 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Toshiaki Inventor Bureau 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Sun (72) Inventor Kei Baba Kei 1-2-1 Marunouchi, Chiyoda-ku, Tokyo, Japan Nihon Kokan Co., Ltd. (72) Kenichiro Mizuno 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Nihon Kokan (72) Inventor Tatsuo Takechi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 4D040 BB05 BB12 BB22 BB57 BB65 BB91 BB93 5H004 GB08 HA04 HB04 JB08 JB18 KA12 KC02 KC27 LA19

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 生物学的窒素除去処理装置による廃水の
窒素除去の制御方法において、 前記生物学的窒素除去処理装置は、第1の固液分離装置
と、脱窒槽と、硝化槽と、第2の固液分離装置と、前記
第1の固液分離装置の出口水の全窒素濃度、アンモニア
態窒素および化学的酸素要求量を測定するための自動分
析装置とを具備するとともに、(1)前記第1の固液分
離装置は少なくとも2つの最初沈澱池を含むこと、およ
び(2)前記脱窒槽への有機物の注入が行われること、
の少なくとも一方の条件を満たす装置であり、 前記自動分析装置により前記第1の固液分離装置の出口
水の全窒素濃度、アンモニア態窒素および化学的酸素要
求量を測定して測定値を得、 前記測定値をもとに、数値モデルにより構成されたシミ
ュレーションによる処理予測計算を短時間で行い、 窒素除去率が悪化することが予測された場合には、前記
第1の固液分離装置を構成する前記最初沈澱池の運転池
数および前記有機物注入量の少なくとも一方を、前記シ
ミュレーション結果に基づいて制御することを特徴とす
る廃水の窒素除去の制御方法。
1. A method for controlling nitrogen removal of wastewater by a biological nitrogen removal treatment apparatus, wherein the biological nitrogen removal treatment apparatus comprises a first solid-liquid separation device, a denitrification tank, a nitrification tank, And (2) an automatic analyzer for measuring the total nitrogen concentration, ammonia nitrogen and chemical oxygen demand of outlet water of the first solid-liquid separator. The first solid-liquid separation device includes at least two primary sedimentation basins; and (2) an organic substance is injected into the denitrification tank.
An apparatus that satisfies at least one of the following conditions: The automatic analyzer is used to measure the total nitrogen concentration of the outlet water of the first solid-liquid separator, the ammonia nitrogen, and the chemical oxygen demand to obtain measurement values, Based on the measured values, a process prediction calculation by a simulation constituted by a numerical model is performed in a short time, and when it is predicted that the nitrogen removal rate is deteriorated, the first solid-liquid separation device is configured. A method for controlling nitrogen removal of wastewater, wherein at least one of the number of operating ponds of the first settling basin and the amount of injected organic matter is controlled based on the simulation result.
JP2000136070A 2000-05-09 2000-05-09 Method for controlling denitrification apparatus of wastewater Pending JP2001314892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000136070A JP2001314892A (en) 2000-05-09 2000-05-09 Method for controlling denitrification apparatus of wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000136070A JP2001314892A (en) 2000-05-09 2000-05-09 Method for controlling denitrification apparatus of wastewater

Publications (1)

Publication Number Publication Date
JP2001314892A true JP2001314892A (en) 2001-11-13

Family

ID=18644068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000136070A Pending JP2001314892A (en) 2000-05-09 2000-05-09 Method for controlling denitrification apparatus of wastewater

Country Status (1)

Country Link
JP (1) JP2001314892A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436043B1 (en) * 2001-11-20 2004-06-12 (주)극동기모도 Method for removing nitro-oxides in waste water
JP2007000859A (en) * 2005-05-24 2007-01-11 Toshiba Corp Phosphorous removal device in sewage disposal plant
CN1303010C (en) * 2003-10-23 2007-03-07 株式会社东芝 Water discharge treatment system
JP2012030232A (en) * 2005-05-24 2012-02-16 Toshiba Corp Phosphorous removal device in sewage disposal plant
CN105236681A (en) * 2015-10-13 2016-01-13 沈阳建筑大学 Modularization treatment system and method for reinforcing quality of secondary effluent through active sludge backflow
JP2017113723A (en) * 2015-12-25 2017-06-29 株式会社クボタ Operation method of organic wastewater treatment apparatus, and organic wastewater treatment system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436043B1 (en) * 2001-11-20 2004-06-12 (주)극동기모도 Method for removing nitro-oxides in waste water
CN1303010C (en) * 2003-10-23 2007-03-07 株式会社东芝 Water discharge treatment system
JP2007000859A (en) * 2005-05-24 2007-01-11 Toshiba Corp Phosphorous removal device in sewage disposal plant
JP2012030232A (en) * 2005-05-24 2012-02-16 Toshiba Corp Phosphorous removal device in sewage disposal plant
CN105236681A (en) * 2015-10-13 2016-01-13 沈阳建筑大学 Modularization treatment system and method for reinforcing quality of secondary effluent through active sludge backflow
JP2017113723A (en) * 2015-12-25 2017-06-29 株式会社クボタ Operation method of organic wastewater treatment apparatus, and organic wastewater treatment system

Similar Documents

Publication Publication Date Title
JP5932639B2 (en) Biological nitrogen removal method using anaerobic ammonia oxidation reaction
JP6720100B2 (en) Water treatment method and water treatment device
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP3351149B2 (en) Simultaneous removal of nitrogen and phosphorus from wastewater.
JP2001314892A (en) Method for controlling denitrification apparatus of wastewater
JP4386054B2 (en) Intermittent biological treatment method
JP3271521B2 (en) Wastewater nitrogen removal method and apparatus
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JP2015208723A (en) Water treatment process control system
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JP3677783B2 (en) Nitrification method
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
WO2019244964A1 (en) Water treatment method and water treatment device
JP2001038389A (en) Method for removing nitrogen of waste water
JPS58146495A (en) Treatment of organic waste liquid
JP2001038381A (en) Method for removing phosphorus in waste water
JP2001314889A (en) Method for controlling biological removal of phosphorus from wastewater
JP3782738B2 (en) Wastewater treatment method
JP3677811B2 (en) Biological denitrification method
JP2001314891A (en) Method for controlling denitrification apparatus of wastewater
JP3376905B2 (en) Intermittent aeration activated sludge treatment equipment
JP2000254683A (en) Method for controlling supply of excess sludge to sewage treatment facility and biological reaction vessel
JP2001029991A (en) Water treatment method
JP2002136990A (en) Wastewater treatment apparatus and control method
JP2001038382A (en) Method for removing phosphorus in waste water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109