JP3677783B2 - Nitrification method - Google Patents

Nitrification method Download PDF

Info

Publication number
JP3677783B2
JP3677783B2 JP12730593A JP12730593A JP3677783B2 JP 3677783 B2 JP3677783 B2 JP 3677783B2 JP 12730593 A JP12730593 A JP 12730593A JP 12730593 A JP12730593 A JP 12730593A JP 3677783 B2 JP3677783 B2 JP 3677783B2
Authority
JP
Japan
Prior art keywords
tank
nitrification
sludge
carrier
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12730593A
Other languages
Japanese (ja)
Other versions
JPH06335698A (en
Inventor
雅秀 柴田
美由紀 諏佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP12730593A priority Critical patent/JP3677783B2/en
Publication of JPH06335698A publication Critical patent/JPH06335698A/en
Application granted granted Critical
Publication of JP3677783B2 publication Critical patent/JP3677783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、有機性排液中の窒素化合物を生物学的に硝化する硝化方法に関し、有機性排液の生物学的硝化脱窒法に利用可能な硝化方法に関するものである。
【0002】
【従来の技術】
アンモニア性または有機性窒素化合物を含む排液を処理する方法として、生物学的硝化脱窒処理法がある。この方法は活性汚泥により排液中のCOD、BOD成分を分解するとともに、有機性窒素化合物をアンモニア性窒素とし、このアンモニア性窒素を硝化細菌により亜硝酸性または硝酸性窒素に硝化(酸化)した後、脱窒細菌により脱窒(還元)する方法である。この処理法では、脱窒槽を前段に設け、硝化液と分離汚泥を脱窒槽に返送して原水と混合して、脱窒を行うと同時にBOD成分を分解する方法も行われている。
【0003】
このような生物学的硝化脱窒法は実績も多く、し尿処理分野などで広く採用されている。しかし、従来の生物学的硝化脱窒法における硝化方法では、硝化槽内の硝化細菌の保持量を多くすることが困難であるため、硝化槽の滞留時間を長くとる必要があり、このため硝化槽が大きくなるという問題点がある。
【0004】
このような問題点を改善する方法として、硝化槽にスポンジなどの担体を投入し、担体表面に硝化細菌を付着させて硝化細菌の保持量を多くし、これにより硝化槽全体としての硝化速度(NH4−N除去速度)を向上させる方法が知られている。
【0005】
図2は前段に脱窒槽を設置し、硝化槽に担体を投入した従来の硝化方法を採用した生物学的硝化脱窒法を示すフロー図である。図において、1は脱窒槽、2は硝化槽、3は最終脱窒槽、4は最終好気処理槽、5は固液分離槽であり、硝化槽2で硝化を行うようになっている。
【0006】
図2のフローに従って原水を処理するには、まず脱窒槽1に窒素化合物およびBOD成分を含む原水を原水管6から導入するとともに、返送汚泥を汚泥返送管7から導入し、また硝化槽2で硝化を受けた硝化液を循環液管8から導入し、撹拌器10により脱窒細菌を含む活性汚泥と混合し、嫌気状態を維持して脱窒を行う。このような脱窒工程では循環液中の硝酸または亜硝酸イオンを窒素に還元する脱窒細菌が優勢となり、原水中の窒素成分が除去されるとともに、BOD成分も除去される。
【0007】
脱窒槽1内の脱窒液は一部ずつ連絡管9から取出して、硝化槽2に導入し、浮遊汚泥と担体14とを共存させて硝化を行う。硝化は、空気管12から空気を送って散気装置13から散気して好気性条件とし、添加した担体14が浮遊する状態で行い、ここでもBODを除去するとともに原水中の窒素成分を硝酸イオンまたは亜硝酸イオンにまで硝化する。担体14の流出はスクリーン15により防止される。
【0008】
硝化槽2において硝化を行った硝化液の一部は連絡管11から最終脱窒槽3に導入し、水素供与体としてメタノール等の有機物を有機物供給管18から供給して、脱窒槽1の場合と同様にして最終的な脱窒を行う。
最終脱窒槽3の最終脱窒液は最終好気処理槽4において、空気管21から空気を送って最終散気装置22から散気して再曝気することにより、残留する有機物を除去する。
【0009】
最終好気処理槽4内の最終好気処理液は一部ずつ連絡管20から取出して、固液分離槽5に導入して固液分離し、分離液と分離汚泥とに分離する。分離液は処理水として処理水管23から排出する。分離汚泥は汚泥管24から取出し、その一部は返送汚泥として汚泥返送管7から脱窒槽1に返送する。残部は余剰汚泥として汚泥排出管25から系外に排出する。
【0010】
このような生物学的硝化脱窒法に採用されている上記従来の硝化方法は、既設の硝化槽(曝気槽)に担体を投入するだけで簡単に実施できるので、装置の改造コストがほとんどかからず、汎用性の高い方法である。
担体を使用する硝化方法において硝化速度を上昇させるためには、担体表面にできるだけ多くの硝化細菌を付着させることが必要である。
【0011】
しかしこのような従来の硝化方法では、担体表面には硝化細菌のほかに他栄養性細菌も付着するので、両細菌により付着場所の競合が生じる。このため排液中のBOD濃度が高い場合には、BOD分解菌も担体に付着するため硝化細菌だけを多く付着させることが困難となり、担体の硝化活性を高くすることができず、硝化速度はそれほど上昇しないという問題点がある。
【0012】
一方、特開昭57−75192号には、第1段の曝気槽でBOD成分の大部分を除去したのち、第2段の硝化槽で担体の存在下に硝化を行う方法が提案されている。しかしこの方法では、担体を投入した硝化槽において、残留するBOD成分を除去するとともに硝化を行っているため、前記と同様の問題点があるほか、第1段の曝気槽と第2段の硝化槽の間に汚泥分離槽を設置するため、装置が大型化し、操作も複雑になるなどの問題点がある。
【0013】
【発明が解決しようとする課題】
本発明の目的は、上記問題点を解決するため、BOD濃度が高い排液を処理する場合でも、簡単な装置と操作により効率よくBOD成分を除去して、担体の硝化活性を高め、これにより高窒素負荷の場合でも硝化速度を速くすることが可能な硝化方法を提案することである。
【0014】
【課題を解決するための手段】
本発明は、窒素化合物を含む有機性排液を、返送汚泥とともに硝化槽内で曝気し、硝化槽には硝化細菌を付着させる担体を投入して硝化細菌による硝化を行う硝化方法において、
担体を投入した硝化槽の前段に、曝気槽および硝化槽の合計容量の5〜20容量%の曝気槽を設け、
有機性排液を前段の曝気槽で曝気し、浮遊汚泥にBOD成分を吸着させて実質的に除去したのち、
汚泥を分離することなく後段の硝化槽に導入し、担体の存在下に曝気を行って硝化を行うことを特徴とする硝化方法である。
【0015】
担体を投入した硝化槽の前段に曝気槽を設けるには、それぞれ独立した別の槽により各槽を形成することもできるが、1つの好気槽を有機性排液が流れる方向に複数に区画して前段の曝気槽と後段の硝化槽を形成し、後段の硝化槽に担体を投入し、この投入した担体が前段の曝気槽に流入しないようにするのが好ましい。
【0016】
1つの好気槽を区画するには板状のものや金網などが使用できる。1つの好気槽が区画された各槽間では、前段の槽から後段の槽へ汚泥を分離することなく液が流れるように、両槽間に流路を設けておく必要がある。硝化槽は前段の曝気槽と区画されれば効果が得られるが、さらに2つ以上設けてもよい。
【0017】
本発明の方法では、後段の硝化槽に担体を投入し、前段の曝気槽には担体は投入してもしなくてもよい。そして前段の曝気槽において、酸素含有ガスまたは空気を曝気し、浮遊汚泥にBOD成分を吸着させて実質的に除去する。この場合BOD濃度が10mg/l以下、特に6mg/l以下になるのが好ましい。このようにBOD成分が実質的に除去された液を、汚泥を分離することなくそのまま後段の硝化槽に導入し、後段の硝化槽において酸素含有ガスまたは空気を用いて曝気し、浮遊汚泥に吸着されたBOD成分を酸化分解するとともに、担体を浮遊させた状態で硝化細菌を選択的に付着させて硝化する。
【0018】
曝気槽と硝化槽は汚泥の生物相が異なるため、一般的には特開昭57−75192号のように、中間で汚泥を分離する必要があるとされているが、本発明のように前段の曝気槽でBOD成分を実質的に除去すると、中間で汚泥を分離することなくそのまま後段の硝化槽に流入させても、後段の硝化槽におけるBOD分解細菌の増殖が抑制され、浮遊汚泥は吸着したBOD成分を酸化分解し、担体には硝化細菌が選択的に付着し、硝化細菌の保持量が多くなって硝化速度が上昇する。
【0019】
前段の曝気槽容量と、担体を投入する後段の硝化槽容量との比率は、前段の曝気槽でのBOD成分の除去速度および後段の硝化槽での硝化速度を考慮して、曝気槽および硝化槽全体として硝化速度が速くなるように設定する。通常吸着によるBOD成分の除去速度は硝化速度に比べて非常に速いので、前段の曝気槽の容量は小さくても、後段の硝化槽における硝化速度は速くなる。従って、前段の曝気槽および後段の硝化槽の合計容量に対する前段の曝気槽の比率は、後段の硝化槽に投入する担体の量などにより変動するが、5〜20容量%とする。
【0020】
1つの好気槽を区画した場合、担体が前段の曝気槽(BOD除去部)に流入すると、硝化細菌以外のBOD分解細菌が流入した担体に付着するので、好気槽全体としての硝化細菌の保持量が減少し、硝化速度(NH4−N除去速度)が低下する。従って、後段の硝化槽に投入した担体が前段の曝気槽に流入しない状態で処理する必要がある。担体の曝気槽への流入防止は、前段の曝気槽から後段の硝化槽へ液が溢流するようにすればよく、また前段の曝気槽に流入する水量(圧)、または後段の硝化槽から流出する水量(圧)を調節する方法、槽を金網で仕切る方法、あるいは流路に金網を設けるなどの方法により行うことができる。
【0021】
硝化細菌を付着させる担体としては、スポンジが好ましいが、ポリマーからなる多孔質体など硝化細菌が付着するものなら制限なく使用できる。担体の投入量は、後段の硝化槽の場合槽の容量に対して5〜40容量%、好ましくは10〜30容量%とするのが望ましい。
【0022】
担体としては比表面積が大きいものが好ましい。担体の大きさは、浮遊汚泥との分離性を考慮すれば2〜20mmのものが好ましい。形状は特に限定されず、例えば球状、立方体状のものなどが使用できる。また担体の素材も特に限定されず、例えばポリウレタンなどがあげられる。
【0023】
本発明の硝化方法は、有機性排液の生物学的窒素除去法(硝化脱窒法)における硝化方法として好適に採用することができ、これにより高窒素負荷の条件においても効率よく窒素を除去することができる。
【0024】
【実施例】
以下、本発明の実施例を図面により説明する。
図1は本発明の硝化方法を採用した有機性排液の生物学的硝化脱窒法を示すフロー図であり、1つの好気槽を前段の曝気槽と後段の硝化槽に区画した場合の実施例である。図において、図2と同一符号は同一または相当部分を示す。
【0025】
脱窒槽1には原水管6、汚泥返送管7、循環液管8および連絡管9が接続し、撹拌器10で緩やかに攪拌し、嫌気状態を維持して脱窒を行うようになっている。
【0026】
好気槽30内には原水の流れる方向に対して直交して区画板31が設けられ、前段の曝気槽32と後段の硝化槽2とに区画されており、後段の硝化槽2にはスポンジからなる担体14が投入され、後段の硝化槽2の出口には担体14流失防止用のスクリーン15が設けられている。前段の曝気槽32には脱窒槽1からの連絡管9、後段の硝化槽2には最終脱窒槽3への連絡管11が接続している。そして空気管12から前段の曝気槽32および後段の硝化槽2に空気を送り、前段の散気装置34および後段の散気装置35から散気して、前段の曝気槽32ではBOD成分の除去、後段の硝化槽2では硝化を行うようになっている。区画板31と好気槽30の壁面または底面には流路36が設けられており、この流路36から前段の曝気槽32の液は後段の硝化槽2へ流れ込むようになっている。流路36には金網(図示せず)が設けられ、担体14が前段の曝気槽32に逆流しないようになっている。
【0027】
最終脱窒槽3には連絡管11、17および有機物供給管18が接続し、攪拌器19により緩やかに攪拌して嫌気状態を保つようになっている。
最終好気処理槽4には連絡管17、20が接続し、空気管21から空気を送り、最終散気装置22から散気して、好気処理を行うようになっている。
【0028】
固液分離槽5には連絡管20、処理水管23および汚泥管24が接続し、沈降分離により固液分離するようになっている。汚泥管24は汚泥返送管7および汚泥排出管25に分岐し、分離汚泥の一部は汚泥返送管7を通して脱窒槽1に返送されるようになっている。
【0029】
図1のフローに従って原水を処理するには、まず脱窒槽1に窒素化合物およびBOD成分を含む原水を原水管6から導入するとともに、返送汚泥を汚泥返送管7から導入し、また後段の硝化槽2で硝化を受けた硝化液を循環液管8から導入し、撹拌器10により脱窒細菌を含む活性汚泥と混合し、嫌気状態を維持して脱窒を行う。硝化液の循環量は原水量に対して通常100〜500容量%とする。このような脱窒工程では循環液中の硝酸または亜硝酸イオンを窒素に還元する脱窒細菌が優勢となり、原水中の窒素成分が除去されるとともに、BOD成分も除去される。
【0030】
脱窒槽1内の脱窒液は一部ずつ連絡管9から取出して、前段の曝気槽32に導入し、空気管12から空気を送って前段の散気装置34から散気して好気性条件とし、浮遊汚泥によりBOD成分を実質的に除去し、BOD濃度を10mg/l以下にする。この場合、窒素化合物の一部を硝化してもよい。前段の曝気槽32内の混合液は、一部ずつ汚泥を分離することなくそのまま流路36から後段の硝化槽2に流入する。後段の硝化槽2では、前段の曝気槽32でBOD成分を除去した液に空気管12から空気を送って後段の散気装置35から散気して好気性条件とし、投入した担体14が浮遊する状態で硝化細菌により硝化を行い、原水中の窒素成分を硝酸イオンまたは亜硝酸イオンにまで硝化する。ここでは通常のBOD除去のための曝気よりも過剰に曝気して、硝化細菌を優勢にする。
【0031】
好気槽30では、区画板31の下部の流路36に金網を張って、後段の硝化槽2中の担体14が前段の曝気槽32に流入しないようにしている。
このように好気槽30を区画し、前段の曝気槽32でBOD成分を除去した後、後段の硝化槽2で硝化することにより、硝化細菌が担体14に安定して多量に保持され、高い硝化活性が維持される。
【0032】
好気槽30の条件は、pHが6〜9、好ましくは7〜8.5、温度が0〜40℃、好ましくは15〜35℃とするのが望ましい。
【0033】
後段の硝化槽2において硝化を行った硝化液の一部は連絡管11から最終脱窒槽3に導入し、水素供与体としてメタノール等の有機物を有機物供給管18から供給して、脱窒槽1の場合と同様にして最終的な脱窒を行う。最終脱窒槽3の最終脱窒液は最終好気処理槽4において再曝気することにより、残留する有機物を除去する。
【0034】
最終好気処理槽4内の最終好気処理液は一部ずつ連絡管20から取出して、固液分離槽5に導入して固液分離し、分離液と分離汚泥とに分離する。分離液は処理水として処理水管23から排出する。分離汚泥は汚泥管24から取出し、その一部は返送汚泥として汚泥返送管7から脱窒槽1に返送する。残部は余剰汚泥として汚泥排出管25から系外に排出する。
なお図1の方法では、最終脱窒槽3および最終好気処理槽4は省略することができる。
【0035】
次に試験例について説明する。
試験例1
最終脱窒槽3および最終好気処理槽4を省略した以外は図1の方法に従って、有機性排液の生物学的硝化脱窒を次のようにして行い、好気槽30におけるNH4−N除去速度を判定した。
【0036】
原水としては合成排水(窒素源:NH4Cl、BOD源:グルコース、酢酸)を用いた。処理条件は表1に示すように、好気槽30容量全体に対する前段の曝気槽32の比率を0(対照)、5、10、15または20容量%とし、それ以外は同一条件で各試験を行った。担体14としては3mm角のポリウレタン製のスポンジを用い、後段の硝化槽2の容量に対して20容量%となるように添加した。pHは好気槽30のpHを7.5にコントロールした。循環液量は原水量の3倍とした。返送汚泥量は原水量に対して30%とした。
試験は窒素除去可能な最大能力を調べるために、過大の窒素負荷をかけて、処理水のNH4−N水質を知ることで全体の硝化能力を知ることができるようにして行った。運転条件および結果を表1に示す。
【0037】
【表1】

Figure 0003677783
【0038】
表1から、前段の曝気槽の比率を5容量%、10容量%と増加するに従ってNH4−N除去速度は速くなり、10容量%で最も高いNH4−N除去速度を示し、その後は徐々に減少することがわかる。
【0039】
【発明の効果】
以上の通り、本発明の硝化方法によれば、担体を投入する硝化槽の前段に、曝気槽および硝化槽の合計容量の5〜20容量%の曝気槽を設け、有機性排液を前段の曝気槽で曝気し、浮遊汚泥にBOD成分を吸着させて実質的に除去したのち、汚泥を分離することなく後段の硝化槽に導入して、担体の存在下に曝気を行って硝化を行うようにしたので、BOD濃度が高い排液を処理する場合でも効率よくBOD成分を除去して、担体の硝化活性を高めることができ、これにより高窒素負荷の場合でも硝化速度を速くして処理時間を短縮できるとともに、中間の汚泥分離を省略して、装置を小型化し、操作も簡略化することができる。
【図面の簡単な説明】
【図1】本発明の硝化方法を採用した生物学的硝化脱窒法を示すフロー図である。
【図2】従来の硝化方法を採用した生物学的硝化脱窒法を示すフロー図である。
【符号の説明】
1 脱窒槽
2 硝化槽
3 最終脱窒槽
4 最終好気処理槽
5 固液分離槽
6 原水管
7 汚泥返送管
8 循環液管
9、11、17、20 連絡管
10、19 攪拌器
12、21 空気管
13 散気装置
14 担体
15 スクリーン
18 有機物供給管
22 最終散気装置
23 処理水管
24 汚泥管
25 汚泥排出管
30 好気槽
31 区画板
32 曝気槽
34 前段の散気装置
35 後段の散気装置
36 流路[0001]
[Industrial application fields]
The present invention relates to a nitrification method for biologically nitrifying nitrogen compounds in organic effluents, and relates to a nitrification method that can be used in a biological nitrification denitrification method for organic effluents.
[0002]
[Prior art]
There is a biological nitrification denitrification method as a method for treating a drainage liquid containing ammoniacal or organic nitrogen compounds. This method decomposes COD and BOD components in the effluent with activated sludge, converts the organic nitrogen compound to ammonia nitrogen, and nitrifies (oxidizes) the ammonia nitrogen to nitrite or nitrate nitrogen by nitrifying bacteria. Then, it is a method of denitrifying (reducing) with denitrifying bacteria. In this treatment method, a denitrification tank is provided in the previous stage, and the nitrification liquid and the separated sludge are returned to the denitrification tank and mixed with raw water to perform denitrification and simultaneously decompose the BOD component.
[0003]
Such a biological nitrification denitrification method has many achievements and is widely adopted in the field of human waste treatment. However, in the nitrification method in the conventional biological nitrification denitrification method, it is difficult to increase the amount of nitrifying bacteria retained in the nitrification tank, so it is necessary to increase the residence time of the nitrification tank. There is a problem that becomes larger.
[0004]
As a method for solving such problems, a carrier such as a sponge is put into a nitrification tank, and nitrifying bacteria are attached to the surface of the carrier to increase the amount of nitrifying bacteria retained. A method for improving (NH 4 —N removal rate) is known.
[0005]
FIG. 2 is a flow chart showing a biological nitrification denitrification method employing a conventional nitrification method in which a denitrification tank is installed in the previous stage and a carrier is introduced into the nitrification tank. In the figure, 1 is a denitrification tank, 2 is a nitrification tank, 3 is a final denitrification tank, 4 is a final aerobic treatment tank, 5 is a solid-liquid separation tank, and nitrification is performed in the nitrification tank 2.
[0006]
In order to treat the raw water according to the flow of FIG. 2, first, raw water containing nitrogen compounds and BOD components is introduced into the denitrification tank 1 from the raw water pipe 6, and return sludge is introduced from the sludge return pipe 7. The nitrifying liquid that has undergone nitrification is introduced from the circulating liquid pipe 8 and mixed with the activated sludge containing denitrifying bacteria by the agitator 10, and denitrification is performed while maintaining the anaerobic state. In such a denitrification step, denitrifying bacteria that reduce nitric acid or nitrite ions in the circulating fluid to nitrogen are dominant, and the nitrogen component in the raw water is removed and the BOD component is also removed.
[0007]
A part of the denitrification liquid in the denitrification tank 1 is taken out from the connecting pipe 9 and introduced into the nitrification tank 2, and nitrification is carried out in the presence of the suspended sludge and the carrier 14. Nitrification is performed in a state where aerobic conditions are obtained by sending air from the air pipe 12 and diffused from the air diffuser 13, and the added carrier 14 is in a floating state. Here again, BOD is removed and nitrogen components in the raw water are mixed with nitric acid. Nitrates to ions or nitrite ions. Outflow of the carrier 14 is prevented by the screen 15.
[0008]
A part of the nitrification liquid nitrified in the nitrification tank 2 is introduced into the final denitrification tank 3 from the communication pipe 11, and an organic substance such as methanol is supplied from the organic substance supply pipe 18 as a hydrogen donor. The final denitrification is performed in the same manner.
In the final aerobic treatment tank 4, the final denitrification liquid in the final denitrification tank 3 sends air from the air pipe 21, diffuses from the final air diffuser 22, and is re-aerated to remove residual organic substances.
[0009]
The final aerobic treatment liquid in the final aerobic treatment tank 4 is taken out from the connecting pipe 20 one by one, introduced into the solid-liquid separation tank 5 and separated into solid and liquid, and separated into separated liquid and separated sludge. The separation liquid is discharged from the treated water pipe 23 as treated water. The separated sludge is taken out from the sludge pipe 24 and a part thereof is returned to the denitrification tank 1 from the sludge return pipe 7 as return sludge. The remainder is discharged out of the system from the sludge discharge pipe 25 as excess sludge.
[0010]
The conventional nitrification method employed in such biological nitrification / denitrification method can be implemented simply by putting the carrier into the existing nitrification tank (aeration tank), so the cost of remodeling the equipment is almost negligible. It is a highly versatile method.
In order to increase the nitrification rate in a nitrification method using a carrier, it is necessary to attach as many nitrifying bacteria as possible to the surface of the carrier.
[0011]
However, in such a conventional nitrification method, other vegetative bacteria in addition to nitrifying bacteria adhere to the surface of the carrier, and competition between the attachment sites is caused by both bacteria. For this reason, when the BOD concentration in the effluent is high, BOD-degrading bacteria also adhere to the carrier, making it difficult to attach only a large amount of nitrifying bacteria, making it impossible to increase the nitrification activity of the carrier, and the nitrification rate is There is a problem that it does not rise so much.
[0012]
On the other hand, JP-A-57-75192 proposes a method in which most of the BOD component is removed in the first stage aeration tank and then nitrification is performed in the presence of the carrier in the second stage nitrification tank. . However, in this method, since the remaining BOD component is removed and nitrification is performed in the nitrification tank into which the carrier is charged, there are the same problems as described above, and the first stage aeration tank and the second stage nitrification. Since the sludge separation tank is installed between the tanks, there is a problem that the apparatus becomes large and the operation becomes complicated.
[0013]
[Problems to be solved by the invention]
The purpose of the present invention is to solve the above-mentioned problems, even in the case of treating a drainage liquid having a high BOD concentration, the BOD component is efficiently removed by a simple apparatus and operation, and the nitrification activity of the carrier is thereby increased. The purpose is to propose a nitrification method capable of increasing the nitrification rate even in the case of a high nitrogen load.
[0014]
[Means for Solving the Problems]
The present invention relates to a nitrification method in which an organic effluent containing a nitrogen compound is aerated in a nitrification tank together with return sludge, and a nitrification tank is charged with a carrier for adhering nitrifying bacteria to perform nitrification by nitrifying bacteria.
An aeration tank of 5 to 20% by volume of the total capacity of the aeration tank and the nitrification tank is provided in the front stage of the nitrification tank into which the carrier is charged,
After the organic drainage is aerated in the preceding aeration tank and the BOD component is adsorbed to the suspended sludge and substantially removed,
In this nitrification method, sludge is introduced into a nitrification tank at a subsequent stage without separation, and aeration is performed in the presence of a carrier to perform nitrification.
[0015]
In order to provide an aeration tank in the previous stage of the nitrification tank into which the carrier is introduced, each tank can be formed by separate independent tanks, but one aerobic tank is partitioned into a plurality of directions in which the organic drainage flows. Thus, it is preferable to form a first-stage aeration tank and a second-stage nitrification tank, and load the carrier into the second-stage nitrification tank so that the loaded carrier does not flow into the first-stage aeration tank.
[0016]
In order to partition one aerobic tank, a plate-shaped object or a wire mesh can be used. Between each tank in which one aerobic tank is partitioned, it is necessary to provide a flow path between both tanks so that the liquid flows without separating the sludge from the preceding tank to the subsequent tank. The effect can be obtained if the nitrification tank is separated from the preceding aeration tank, but two or more nitrification tanks may be provided.
[0017]
In the method of the present invention, the carrier may be charged into the latter nitrification tank, and the carrier may or may not be charged into the preceding aeration tank. Then, in the preceding aeration tank, oxygen-containing gas or air is aerated, and the BOD component is adsorbed to the suspended sludge and substantially removed. In this case, the BOD concentration is preferably 10 mg / l or less, particularly 6 mg / l or less. In this way, the liquid from which the BOD component has been substantially removed is introduced into the latter nitrification tank as it is without separating the sludge, and is aerated with oxygen-containing gas or air in the latter nitrification tank and adsorbed on the floating sludge. The BOD component is oxidized and decomposed , and nitrifying bacteria are selectively attached in a state where the carrier is suspended to nitrify.
[0018]
Since the aeration tank and the nitrification tank have different sludge biota, it is generally said that it is necessary to separate the sludge in the middle as disclosed in JP-A-57-75192. When the BOD component is substantially removed in the aeration tank, the growth of BOD-degrading bacteria in the latter nitrification tank is suppressed even if it flows directly into the latter nitrification tank without separating the sludge in the middle, and the suspended sludge is adsorbed. The BOD component is oxidized and decomposed, and nitrifying bacteria selectively adhere to the carrier, and the amount of nitrifying bacteria retained increases and the nitrification rate increases.
[0019]
The ratio of the aeration tank capacity in the previous stage and the nitrification tank capacity in the subsequent stage where the carrier is introduced is determined by considering the removal rate of the BOD component in the previous aeration tank and the nitrification speed in the subsequent nitrification tank. It is set so that the nitrification speed of the entire tank is increased. Since the removal rate of the BOD component by normal adsorption is much faster than the nitrification rate, the nitrification rate in the subsequent nitrification tank is increased even if the capacity of the previous aeration tank is small. Accordingly, the ratio of the preceding aeration tank to the total capacity of the preceding aeration tank and the subsequent nitrification tank varies depending on the amount of carrier introduced into the subsequent nitrification tank, but is 5 to 20% by volume.
[0020]
When one aerobic tank is partitioned, if the carrier flows into the preceding aeration tank (BOD removal section), BOD-degrading bacteria other than nitrifying bacteria adhere to the inflowed carrier, so that the nitrifying bacteria as a whole aerobic tank The retention amount decreases, and the nitrification rate (NH 4 —N removal rate) decreases. Therefore, it is necessary to perform the treatment in a state in which the carrier charged into the subsequent nitrification tank does not flow into the previous aeration tank. In order to prevent the carrier from entering the aeration tank, the liquid should overflow from the preceding aeration tank to the subsequent nitrification tank, and the amount of water (pressure) flowing into the previous aeration tank or from the subsequent nitrification tank It can be performed by a method of adjusting the amount (pressure) of flowing water, a method of partitioning the tank with a wire mesh, or a method of providing a wire mesh in the flow path.
[0021]
As a carrier to which nitrifying bacteria are attached, a sponge is preferable, but any nitrifying bacteria such as a porous body made of a polymer can be used without limitation. In the case of a nitrification tank in the latter stage, the amount of the carrier introduced is 5 to 40% by volume, preferably 10 to 30% by volume, with respect to the tank capacity.
[0022]
A carrier having a large specific surface area is preferable. The size of the carrier is preferably 2 to 20 mm in consideration of separability from suspended sludge. The shape is not particularly limited, and for example, a spherical shape or a cubic shape can be used. The material of the carrier is not particularly limited, and examples thereof include polyurethane.
[0023]
The nitrification method of the present invention can be suitably employed as a nitrification method in a biological nitrogen removal method (nitrification denitrification method) of organic effluent, thereby efficiently removing nitrogen even under high nitrogen load conditions. be able to.
[0024]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a flow chart showing a biological nitrification denitrification method for organic drainage employing the nitrification method of the present invention, and is performed when one aerobic tank is divided into a front aeration tank and a rear nitrification tank. It is an example. In the figure, the same reference numerals as those in FIG. 2 denote the same or corresponding parts.
[0025]
A raw water pipe 6, a sludge return pipe 7, a circulating liquid pipe 8 and a connecting pipe 9 are connected to the denitrification tank 1, and are gently stirred by a stirrer 10 to maintain an anaerobic state for denitrification. .
[0026]
A partition plate 31 is provided in the aerobic tank 30 so as to be orthogonal to the flow direction of the raw water, and is divided into a front aeration tank 32 and a rear nitrification tank 2. The carrier 14 made of the above is introduced, and a screen 15 for preventing the carrier 14 from being lost is provided at the outlet of the nitrification tank 2 in the subsequent stage. A communication pipe 9 from the denitrification tank 1 is connected to the aeration tank 32 in the front stage, and a communication pipe 11 to the final denitrification tank 3 is connected to the nitrification tank 2 in the rear stage. Then, air is sent from the air pipe 12 to the preceding aeration tank 32 and the subsequent nitrification tank 2 and diffused from the preceding aeration apparatus 34 and the subsequent aeration apparatus 35, and the BOD component is removed in the preceding aeration tank 32. In the latter nitrification tank 2, nitrification is performed. A flow path 36 is provided on the wall surface or bottom surface of the partition plate 31 and the aerobic tank 30, and the liquid in the front aeration tank 32 flows from the flow path 36 into the nitrification tank 2 in the subsequent stage. A wire net (not shown) is provided in the flow path 36 so that the carrier 14 does not flow backward to the aeration tank 32 in the preceding stage.
[0027]
Connecting pipes 11 and 17 and an organic substance supply pipe 18 are connected to the final denitrification tank 3 and are gently stirred by a stirrer 19 to maintain an anaerobic state.
Connecting pipes 17 and 20 are connected to the final aerobic treatment tank 4, and air is sent from the air pipe 21 and diffused from the final air diffuser 22 to perform the aerobic treatment.
[0028]
The solid-liquid separation tank 5 is connected to a communication pipe 20, a treated water pipe 23, and a sludge pipe 24 so that solid-liquid separation is performed by sedimentation separation. The sludge pipe 24 branches to the sludge return pipe 7 and the sludge discharge pipe 25, and a part of the separated sludge is returned to the denitrification tank 1 through the sludge return pipe 7.
[0029]
In order to treat the raw water according to the flow of FIG. 1, first, raw water containing a nitrogen compound and a BOD component is introduced into the denitrification tank 1 from the raw water pipe 6, and the return sludge is introduced from the sludge return pipe 7. The nitrification liquid that has undergone nitrification in 2 is introduced from the circulating liquid pipe 8 and mixed with the activated sludge containing denitrifying bacteria by the agitator 10 to perform denitrification while maintaining an anaerobic state. The circulation amount of the nitrification liquid is usually 100 to 500% by volume with respect to the raw water amount. In such a denitrification step, denitrifying bacteria that reduce nitric acid or nitrite ions in the circulating fluid to nitrogen are dominant, and the nitrogen component in the raw water is removed and the BOD component is also removed.
[0030]
The denitrification liquid in the denitrification tank 1 is taken out from the connecting pipe 9 part by part, introduced into the aeration tank 32 in the preceding stage, sent from the air pipe 12 and diffused from the aeration device 34 in the previous stage to aerobic conditions The BOD component is substantially removed by floating sludge, and the BOD concentration is 10 mg / l or less. In this case, a part of the nitrogen compound may be nitrified. The liquid mixture in the upstream aeration tank 32 flows from the flow path 36 into the subsequent nitrification tank 2 without separating the sludge part by part. In the latter stage nitrification tank 2, air is sent from the air pipe 12 to the liquid from which the BOD component has been removed in the previous stage aeration tank 32 and diffused from the subsequent stage diffuser 35 to obtain an aerobic condition. In this state, nitrification is performed by nitrifying bacteria, and the nitrogen component in the raw water is nitrified to nitrate ions or nitrite ions. Here, aeration in excess of the aeration for normal BOD removal makes the nitrifying bacteria dominant.
[0031]
In the aerobic tank 30, a wire net is stretched in the flow path 36 below the partition plate 31 so that the carrier 14 in the nitrification tank 2 in the subsequent stage does not flow into the aeration tank 32 in the preceding stage.
In this way, the aerobic tank 30 is partitioned, the BOD component is removed in the preceding aeration tank 32, and then nitrified in the subsequent nitrification tank 2, whereby the nitrifying bacteria are stably retained in the carrier 14 in a large amount, and high Nitrification activity is maintained.
[0032]
The conditions of the aerobic tank 30 are pH 6-9, preferably 7-8.5, temperature 0-40 ° C, preferably 15-35 ° C.
[0033]
A part of the nitrification liquid nitrified in the latter nitrification tank 2 is introduced into the final denitrification tank 3 from the communication pipe 11, and an organic substance such as methanol is supplied from the organic substance supply pipe 18 as a hydrogen donor. Final denitrification is performed as in the case. The final denitrification liquid in the final denitrification tank 3 is re-aerated in the final aerobic treatment tank 4 to remove remaining organic substances.
[0034]
The final aerobic treatment liquid in the final aerobic treatment tank 4 is taken out from the connecting pipe 20 one by one, introduced into the solid-liquid separation tank 5 and separated into solid and liquid, and separated into separated liquid and separated sludge. The separation liquid is discharged from the treated water pipe 23 as treated water. The separated sludge is taken out from the sludge pipe 24 and a part thereof is returned to the denitrification tank 1 from the sludge return pipe 7 as return sludge. The remainder is discharged out of the system from the sludge discharge pipe 25 as excess sludge.
In the method of FIG. 1, the final denitrification tank 3 and the final aerobic treatment tank 4 can be omitted.
[0035]
Next, test examples will be described.
Test example 1
According to the method of Figure 1 but omitting the final denitrification tank 3 and final aerobic treatment tank 4, a biological nitrification and denitrification of organic waste liquid was as follows, NH 4 -N in aerobic tank 30 The removal rate was determined.
[0036]
As raw water, synthetic waste water (nitrogen source: NH 4 Cl, BOD source: glucose, acetic acid) was used. As shown in Table 1, the treatment conditions were set such that the ratio of the previous aeration tank 32 with respect to the entire volume of the aerobic tank 30 was 0 (control), 5, 10, 15 or 20% by volume. went. A 3 mm square polyurethane sponge was used as the carrier 14 and added so as to be 20% by volume with respect to the volume of the nitrification tank 2 in the subsequent stage. The pH of the aerobic tank 30 was controlled at 7.5. The amount of circulating fluid was 3 times the amount of raw water. The amount of returned sludge was 30% of the amount of raw water.
In order to investigate the maximum capacity capable of removing nitrogen, the test was carried out by applying an excessive nitrogen load and knowing the NH 4 -N water quality of the treated water so that the overall nitrification ability can be known. The operating conditions and results are shown in Table 1.
[0037]
[Table 1]
Figure 0003677783
[0038]
From Table 1, the NH 4 —N removal rate increases as the ratio of the previous aeration tank increases to 5% by volume and 10% by volume, and the highest NH 4 —N removal rate is shown at 10% by volume. It can be seen that the number decreases.
[0039]
【The invention's effect】
As described above, according to the nitrification method of the present invention, an aeration tank of 5 to 20% by volume of the total capacity of the aeration tank and the nitrification tank is provided in the previous stage of the nitrification tank into which the carrier is introduced, and the organic waste liquid is supplied in the previous stage. Aeration is performed in an aeration tank, and BOD components are adsorbed to the suspended sludge and substantially removed. Then, the sludge is introduced into a subsequent nitrification tank without separation, and aeration is performed in the presence of a carrier to perform nitrification. As a result, it is possible to efficiently remove the BOD component and increase the nitrification activity of the carrier even when processing the drainage with a high BOD concentration, thereby increasing the nitrification rate even in the case of a high nitrogen load and the processing time. The intermediate sludge separation can be omitted, the apparatus can be downsized, and the operation can be simplified.
[Brief description of the drawings]
FIG. 1 is a flow diagram showing a biological nitrification denitrification method employing the nitrification method of the present invention.
FIG. 2 is a flow diagram showing a biological nitrification denitrification method employing a conventional nitrification method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Denitrification tank 2 Nitrification tank 3 Final denitrification tank 4 Final aerobic treatment tank 5 Solid-liquid separation tank 6 Raw water pipe 7 Sludge return pipe 8 Circulating liquid pipe 9, 11, 17, 20 Connecting pipe 10, 19 Stirrer 12, 21 Air Pipe 13 Air diffuser 14 Carrier 15 Screen 18 Organic substance supply pipe 22 Final air diffuser 23 Treated water pipe 24 Sludge pipe 25 Sludge discharge pipe 30 Aerobic tank 31 Partition plate 32 Aeration tank 34 Air diffuser 35 in the previous stage Air diffuser in the subsequent stage 36 flow path

Claims (1)

窒素化合物を含む有機性排液を、返送汚泥とともに硝化槽内で曝気し、硝化槽には硝化細菌を付着させる担体を投入して硝化細菌による硝化を行う硝化方法において、
担体を投入した硝化槽の前段に、曝気槽および硝化槽の合計容量の5〜20容量%の曝気槽を設け、
有機性排液を前段の曝気槽で曝気し、浮遊汚泥にBOD成分を吸着させて実質的に除去したのち、
汚泥を分離することなく後段の硝化槽に導入し、担体の存在下に曝気を行って硝化を行うことを特徴とする硝化方法。
In the nitrification method in which organic waste liquid containing nitrogen compounds is aerated in the nitrification tank together with the return sludge, and the nitrification tank is charged with a carrier for adhering nitrifying bacteria to perform nitrification by nitrifying bacteria.
An aeration tank of 5 to 20% by volume of the total capacity of the aeration tank and the nitrification tank is provided in the front stage of the nitrification tank into which the carrier is charged,
After the organic drainage is aerated in the preceding aeration tank and the BOD component is adsorbed to the suspended sludge and substantially removed,
A nitrification method comprising introducing sludge into a subsequent nitrification tank without separation and performing aeration in the presence of a carrier to perform nitrification.
JP12730593A 1993-05-28 1993-05-28 Nitrification method Expired - Fee Related JP3677783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12730593A JP3677783B2 (en) 1993-05-28 1993-05-28 Nitrification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12730593A JP3677783B2 (en) 1993-05-28 1993-05-28 Nitrification method

Publications (2)

Publication Number Publication Date
JPH06335698A JPH06335698A (en) 1994-12-06
JP3677783B2 true JP3677783B2 (en) 2005-08-03

Family

ID=14956668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12730593A Expired - Fee Related JP3677783B2 (en) 1993-05-28 1993-05-28 Nitrification method

Country Status (1)

Country Link
JP (1) JP3677783B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686066A (en) * 1995-10-05 1997-11-11 Mitsui Toatsu Chemicals, Inc. Polyaspartic acid Zwitterionic derivatives, preparation processes thereof, hair-treating compositions and cosmetic compositions
KR20020018502A (en) * 2000-09-02 2002-03-08 김창준 dirty water purifier using bacteria supporting medium
KR100419429B1 (en) * 2001-12-27 2004-02-18 삼성엔지니어링 주식회사 Apparatus for treating highly concentrated nitrogenous waste water and method for treating highly concentrated nitrogenous waste water using the same
JP4892917B2 (en) * 2005-10-12 2012-03-07 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater
JP4859192B2 (en) * 2005-12-09 2012-01-25 三菱重工環境・化学エンジニアリング株式会社 Advanced sewage treatment method and system
JP2011092811A (en) * 2009-10-27 2011-05-12 Asahi Kasei Engineering Kk Waste water treatment apparatus and waste water treatment method

Also Published As

Publication number Publication date
JPH06335698A (en) 1994-12-06

Similar Documents

Publication Publication Date Title
JPS5840198A (en) Method and device for biologically purifying waste water
JP3351149B2 (en) Simultaneous removal of nitrogen and phosphorus from wastewater.
JP3150506B2 (en) Wastewater treatment method
JP3677783B2 (en) Nitrification method
JP3391057B2 (en) Biological nitrogen removal equipment
US6159372A (en) Method for treating waste water with a high concentration of organic matter by using ball shaped circulating and elongated stationary ciliary filter cakes
JPS60187396A (en) Apparatus for biologically removing nitrogen in waste water
JP3221168B2 (en) Wastewater nitrogen removal method and apparatus
JPH07313992A (en) Treatment of sewage
JPH1034185A (en) Drainage treatment method
JP3478241B2 (en) Biological treatment equipment
JPH09225494A (en) Sewage treating device
JP2000140886A (en) Equipment for treatment of nitrogen-containing drainage
JPH0957288A (en) Biological treatment using spongy carrier
JP2001314892A (en) Method for controlling denitrification apparatus of wastewater
JP3136901B2 (en) Wastewater treatment method
JP3285754B2 (en) Sewage treatment apparatus and operation method thereof
JP2000334490A (en) Biological denitrification and dephosphorization apparatus
JP2504248B2 (en) Sewage treatment equipment
JP3782738B2 (en) Wastewater treatment method
JPH06304593A (en) Biologically denitrifying method of organic waste liquid
JP3396985B2 (en) Wastewater nitrogen removal method and apparatus
JP3407342B2 (en) Biological denitrification / phosphorus removal equipment
JP3222014B2 (en) Biological water treatment method for wastewater containing ammonia nitrogen
JP3376905B2 (en) Intermittent aeration activated sludge treatment equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees