JP3285754B2 - Sewage treatment apparatus and operation method thereof - Google Patents

Sewage treatment apparatus and operation method thereof

Info

Publication number
JP3285754B2
JP3285754B2 JP08107096A JP8107096A JP3285754B2 JP 3285754 B2 JP3285754 B2 JP 3285754B2 JP 08107096 A JP08107096 A JP 08107096A JP 8107096 A JP8107096 A JP 8107096A JP 3285754 B2 JP3285754 B2 JP 3285754B2
Authority
JP
Japan
Prior art keywords
tank
sewage
denitrification
activated sludge
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08107096A
Other languages
Japanese (ja)
Other versions
JPH09271796A (en
Inventor
清司 和泉
山田  豊
雅治 塗師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP08107096A priority Critical patent/JP3285754B2/en
Publication of JPH09271796A publication Critical patent/JPH09271796A/en
Application granted granted Critical
Publication of JP3285754B2 publication Critical patent/JP3285754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生活排水などの汚
水を脱窒素する汚水処理装置およびその運転方法に関す
る。
The present invention relates to a sewage treatment apparatus for denitrifying sewage such as domestic wastewater and a method of operating the same.

【0002】[0002]

【従来の技術】合併処理浄化槽等、生活排水などの汚水
を脱窒素する汚水処理装置として、図3に示したよう
な、ケーシング1の内部に複数の膜カートリッジ2を適
当間隔で配列した膜分離装置3を利用したものが実用化
されており、このような膜分離装置3を組み込んだ際の
処理フローはたとえば以下のようなものである。
2. Description of the Related Art As a sewage treatment apparatus for denitrifying sewage such as domestic wastewater, such as a merger treatment septic tank, a membrane separation system in which a plurality of membrane cartridges 2 are arranged at appropriate intervals inside a casing 1 as shown in FIG. An apparatus utilizing the apparatus 3 has been put into practical use, and a processing flow when such a membrane separation apparatus 3 is incorporated is as follows, for example.

【0003】図4に示した処理フローでは、汚水4を前
処理設備5に導入して夾雑物を除去するなどの前処理を
施し、前処理した汚水4aを流量調整槽6に導入して適
当流量に調整する。そして、適当流量となった汚水4b
を活性汚泥を投入した脱窒槽7と硝化槽8に順次導入し
つつ、硝化槽8内の活性汚泥混合液の一部9を脱窒槽8
へ循環返送することにより、汚水4b中の窒素を活性汚
泥の作用により除去し、このとき、硝化槽8内の残りの
活性汚泥混合液を槽内に浸漬設置した膜分離装置により
固液分離する。膜分離装置の膜面を透過した膜透過水1
0は消毒槽11に送って消毒した後、処理水12として
放流する。
In the treatment flow shown in FIG. 4, the wastewater 4 is introduced into a pretreatment facility 5 to perform a pretreatment such as removal of contaminants, and the pretreated wastewater 4a is introduced into a flow control tank 6 to be appropriately treated. Adjust to flow rate. Then, the sewage 4b having the appropriate flow rate
Is sequentially introduced into the denitrification tank 7 and the nitrification tank 8 into which the activated sludge has been introduced, and a part 9 of the activated sludge mixed liquid in the nitrification tank 8 is denitrated in the denitrification tank 8.
The nitrogen in the sewage 4b is removed by the action of activated sludge, and at this time, the remaining activated sludge mixed liquid in the nitrification tank 8 is solid-liquid separated by a membrane separation device immersed and installed in the tank. . Membrane permeated water 1 that has passed through the membrane surface of the membrane separator
0 is sent to a disinfection tank 11 for disinfection, and then discharged as treated water 12.

【0004】活性汚泥による窒素除去を具体的に説明す
ると、脱窒槽7において、汚水4b中および硝化槽8よ
り循環返送される活性汚泥混合液9中に含まれる硝酸性
窒素を嫌気条件下で活性汚泥の作用により還元して窒素
ガスとして除去し、硝化槽8において、脱窒槽7より移
送される活性汚泥混合液13中に含まれるアンモニア性
窒素を好気条件下で活性汚泥の作用により酸化して硝酸
性窒素とする。このような方法は循環脱窒法と呼ばれて
おり、通常は、硝化槽8から脱窒槽7へ循環返送する活
性汚泥混合液9の循環量を日平均汚水量の4倍量程度と
することにより、80%程度の窒素除去率を得ている。
The nitrogen removal by activated sludge will be described in detail. In the denitrification tank 7, nitrate nitrogen contained in the wastewater 4b and the activated sludge mixture 9 circulated and returned from the nitrification tank 8 is activated under anaerobic conditions. In the nitrification tank 8, the ammonia nitrogen contained in the activated sludge mixture 13 transferred from the denitrification tank 7 is oxidized under the aerobic condition by the action of the activated sludge. To nitrate nitrogen. Such a method is called a circulating denitrification method. Usually, the amount of circulation of the activated sludge mixture 9 circulated and returned from the nitrification tank 8 to the denitrification tank 7 is set to about four times the daily average amount of sewage. , 80%.

【0005】しかし、窒素除去率を90%以上にする場
合には、上記したような循環脱窒法では効率が悪いた
め、間欠曝気法を採用するのが一般的である。間欠曝気
法では、図5に示したように、流量調整槽6において適
当流量に調整した汚水4bを、膜分離装置を浸漬設置し
た曝気槽14へ導く。その際、汚水4bの流入を停止
し、膜分離装置により固液分離しながら、曝気を行う好
気性雰囲気下に汚水4b中のアンモニア性窒素を硝化す
る硝化工程と、汚水4bを流入させ、曝気を停止した嫌
気性雰囲気下に汚水4b中の硝酸性窒素を還元・脱窒す
る脱窒工程とを適当時間ずつ交互に行う。
However, when the nitrogen removal rate is set to 90% or more, the intermittent aeration method is generally employed because the above-described circulating denitrification method is inefficient. In the intermittent aeration method, as shown in FIG. 5, the sewage 4b adjusted to an appropriate flow rate in the flow rate adjustment tank 6 is guided to an aeration tank 14 in which a membrane separation device is immersed. At that time, the inflow of the sewage 4b is stopped, and a nitrification step of nitrifying ammonia nitrogen in the sewage 4b under an aerobic atmosphere for aeration while solid-liquid separation is performed by a membrane separation device; And a denitrification step of reducing and denitrifying nitrate nitrogen in the sewage water 4b under an anaerobic atmosphere in which the process has been stopped is alternately performed for an appropriate time.

【0006】さらに窒素除去率を高くする場合には(9
0%以上)、し尿処理などにおいて採用されている2段
脱窒法を採用する以外、生物処理のみによって窒素除去
率を高くするのは困難である。2段脱窒法では、図6に
示したように、適当流量の汚水4bを活性汚泥を投入し
た脱窒槽7と硝化槽8に順次導入しつつ、硝化槽8内の
活性汚泥混合液の一部9を脱窒槽8へ循環返送すること
により、汚水4b中の窒素を活性汚泥の作用により除去
する。そして、硝化槽8内の残りの活性汚泥混合液15
を、第2脱窒槽16に導入し、脱窒菌などのための呼吸
基質および細胞合成基質としてのメタノールなどの有機
物17を添加しながら、さらに脱窒素する。そして、第
2脱窒槽16内の活性汚泥混合液18を再曝気槽19に
導入して、第2脱窒槽16で添加した有機物17の過剰
分を除去するとともに、槽内に浸漬設置した膜分離装置
により固液分離する。再曝気槽19内に堆積した汚泥は
適宜、返送汚泥20として脱窒槽7へ返送する。
In order to further increase the nitrogen removal rate, (9)
0% or more), it is difficult to increase the nitrogen removal rate only by biological treatment except for employing the two-stage denitrification method employed in human waste treatment. In the two-stage denitrification method, as shown in FIG. 6, a part of the activated sludge mixed liquid in the nitrification tank 8 is introduced while sequentially introducing an appropriate flow of sewage 4 b into the denitrification tank 7 and the nitrification tank 8 into which activated sludge has been introduced. By circulating and returning 9 to the denitrification tank 8, nitrogen in the wastewater 4b is removed by the action of activated sludge. Then, the remaining activated sludge mixed solution 15 in the nitrification tank 8
Is introduced into a second denitrification tank 16 and further denitrified while adding an organic substance 17 such as methanol as a respiration substrate for denitrifying bacteria and a cell synthesis substrate. Then, the activated sludge mixed solution 18 in the second denitrification tank 16 is introduced into the re-aeration tank 19 to remove the excess of the organic substances 17 added in the second denitrification tank 16, and the membrane separation immersed and installed in the tank. Solid-liquid separation is performed by the device. The sludge deposited in the re-aeration tank 19 is appropriately returned to the denitrification tank 7 as return sludge 20.

【0007】[0007]

【発明が解決しようとする課題】ところが、上記したよ
うに再曝気槽内に浸漬型膜分離装置を設置する場合は、
浸漬型膜分離装置が設置できるある程度以上の槽容量が
必要であり、現状ではこの槽容量は滞留時間換算で5〜
9時間程度にもなっている。
However, when the immersion type membrane separation device is installed in the re-aeration tank as described above,
It is necessary to have a tank capacity of a certain degree or more to be able to install the immersion type membrane separation device.
It has been around 9 hours.

【0008】また、生活排水などの汚水を脱窒素する汚
水処理装置に膜分離装置を利用する場合は通常、雨水な
どの不明水を含む多量の汚水が流入する緊急時を勘案し
て、日平均汚水量の3倍量程度の汚水を処理できる膜面
積を設定することが必要とされる。しかるに、3倍量の
汚水が流入する時は、膜分離装置の透過流束を通常運転
時の2倍量として運転することが多いので、実際には、
日平均汚水量の約1.5倍程度の膜面積を設定するよう
にしている。このように、多量の汚水が流入する緊急時
のための対策として、通常流入量の汚水を処理するのに
必要な膜面積の1.5倍量の膜面積が必要となるため、
再曝気槽も1.5倍の槽容量を設定することが必要とさ
れる。
When a membrane separation device is used in a sewage treatment device for denitrifying sewage such as domestic wastewater, the average daily amount is usually taken into consideration in an emergency when a large amount of sewage including unknown water such as rainwater flows in. It is necessary to set a membrane area capable of treating about three times the amount of wastewater. However, when three times the amount of wastewater flows in, the membrane is often operated with the permeation flux of the membrane separation device being twice the amount of normal operation.
The membrane area is set to be about 1.5 times the average daily sewage volume. As described above, as a measure for an emergency in which a large amount of sewage flows, a membrane area of 1.5 times the membrane area required for processing the normal inflow sewage is required,
The re-aeration tank also needs to be set to 1.5 times the tank capacity.

【0009】一方、再曝気槽内の脱窒菌などの活性汚泥
は、基質に相当する有機物等が不足すると、体内に取り
込んだ有機物を分解してエネルギーを得る内性呼吸を行
い、その際に体内より窒素が排出される。この窒素を活
性汚泥中の硝化菌が硝化してしまうため、槽内で新たに
硝酸性窒素が生成することになり、再曝気槽における混
合液の滞留時間が長くなると、それにほぼ比例して硝酸
性窒素の残留量が増大してしまう。
On the other hand, when the activated sludge such as denitrifying bacteria in the re-aeration tank lacks an organic substance corresponding to a substrate, the activated sludge decomposes the organic substance taken into the body and performs internal respiration to obtain energy. More nitrogen is exhausted. Nitrification bacteria in the activated sludge nitrify this nitrogen, so that nitrate nitrogen is newly generated in the tank.When the residence time of the mixed solution in the re-aeration tank increases, The residual amount of nitrogen is increased.

【0010】このように、再曝気槽内に浸漬型膜分離装
置を設置する場合、槽容量が大きくなって槽内滞留時間
が長くなるため、活性汚泥の基質に相当する有機物等が
不足しがちであり、そのような時には活性汚泥の体内よ
り窒素が放出されて硝酸性窒素とされるため、2段脱窒
法によっても処理水中の硝酸性窒素を安定して5mg/
L以下にすることはできなかった。
As described above, when the immersion type membrane separation device is installed in the re-aeration tank, the capacity of the tank is increased and the residence time in the tank is prolonged, so that the organic matter corresponding to the activated sludge substrate tends to be insufficient. In such a case, nitrogen is released from the body of the activated sludge to be nitrate nitrogen, so that even in the two-stage denitrification method, the nitrate nitrogen in the treated water can be stably reduced to 5 mg / ml.
It could not be less than L.

【0011】本発明は上記問題を解決するもので、浸漬
型膜分離装置を設置した再曝気槽内における硝酸性窒素
の発生を抑制できる汚水処理装置およびその運転方法を
提供することを目的とするものである。
An object of the present invention is to provide a sewage treatment apparatus capable of suppressing the generation of nitrate nitrogen in a re-aeration tank provided with an immersion type membrane separation apparatus, and an operation method thereof. Things.

【0012】[0012]

【課題を解決するための手段】上記問題を解決するため
に、本発明の汚水処理装置は、脱窒槽と硝化槽と第2脱
窒槽と再曝気槽とをこの順に配置し、生活排水などの汚
水を導入する汚水導入手段を脱窒槽内に開口させ、脱窒
槽と硝化槽と第2脱窒槽の内部の活性汚泥混合液をそれ
ぞれ後段の槽に送る第1と第2と第3の送液手段と、硝
化槽内の活性汚泥混合液の一部を脱窒槽に循環返送する
循環手段とを設け、再曝気槽の内部に浸漬型膜分離装置
を設置した汚水処理装置において、前記硝化槽の内部に
別途に緊急時に使用する浸漬型膜分離装置を設置し、前
記再曝気槽は通常流入量相当の汚水量を処理可能な浸漬
型膜分離装置を収容できる槽容積に構成したものであ
る。
In order to solve the above-mentioned problems, a sewage treatment apparatus according to the present invention comprises a denitrification tank, a nitrification tank, a second denitrification tank, and a re-aeration tank arranged in this order, and supplies waste water and the like. A first, second, and third liquid feeder for opening a sewage introduction means for introducing sewage into a denitrification tank, and sending an activated sludge mixed liquid in the denitrification tank, the nitrification tank, and the second denitrification tank to a subsequent tank, respectively. Means, and a circulating means for circulating and returning a part of the activated sludge mixed solution in the nitrification tank to the denitrification tank, and in a sewage treatment apparatus in which a immersion type membrane separation device is installed inside the re-aeration tank, A separate immersion type membrane separation device used in an emergency is installed inside, and the re-aeration tank is configured to have a tank volume capable of accommodating a immersion type membrane separation device capable of treating an amount of sewage equivalent to a normal inflow amount.

【0013】また本発明の汚水処理装置は、上記した構
成において、再曝気槽と硝化槽の内部にそれぞれ設置す
る浸漬型膜分離装置の膜面積の比率を約2対1としたも
のである。
In the sewage treatment apparatus of the present invention, the ratio of the membrane area of the immersion type membrane separation device installed in each of the re-aeration tank and the nitrification tank is about 2: 1 in the above configuration.

【0014】また本発明の汚水処理装置の運転方法は、
生活排水などの汚水を汚水導入手段と第1の送液手段と
により脱窒槽と硝化槽とに順次導入するとともに、硝化
槽内の活性汚泥混合液の一部を循環手段により脱窒槽に
循環し、硝化槽内の残りの活性汚泥混合液を第2と第3
の送液手段により第2脱窒槽と再曝気槽とに順次導入し
て脱窒素するに際し、通常時は、再曝気槽において、槽
内に設置した浸漬型膜分離装置により活性汚泥混合液を
固液分離して、膜透過水を消毒槽などの次処理系へ送
り、多量の汚水が流入する緊急時は、硝化槽において
も、槽内に設置した浸漬型膜分離装置により活性汚泥混
合液を固液分離し、膜透過水を前記消毒槽などの次処理
系へ直接送るようにしたものである。
[0014] The method for operating the sewage treatment apparatus of the present invention includes:
Sewage such as domestic wastewater is sequentially introduced into the denitrification tank and the nitrification tank by the sewage introduction means and the first liquid sending means, and a part of the activated sludge mixture in the nitrification tank is circulated to the denitrification tank by the circulation means. And the remaining activated sludge mixture in the nitrification tank
During the denitrification by sequentially introducing the activated sludge mixture into the second denitrification tank and the re-aeration tank by the liquid sending means, the activated sludge mixed liquid is usually solidified by the immersion type membrane separation device installed in the tank in the re-aeration tank. Separates the liquid, sends the permeated water to the next treatment system such as a disinfection tank, and in an emergency where a large amount of sewage flows, even in the nitrification tank, the activated sludge mixed liquid is immersed by the immersion type membrane separation device installed in the tank. Solid-liquid separation is performed, and the membrane permeated water is directly sent to the next processing system such as the above-mentioned disinfection tank.

【0015】上記した汚水処理装置およびその運転方法
によれば、多量の汚水が流入する緊急時には、硝化槽内
に設置した浸漬型膜分離装置により対応するようにし
て、再曝気槽に設置する膜面積および膜分離装置並びに
再曝気槽の槽容量は、通常流入量の汚水を処理できる大
きさとしたため、再曝気槽における槽内滞留時間を短く
することができ、硝酸性窒素の発生を抑制できる。
According to the above-described sewage treatment apparatus and its operation method, in the event of an emergency when a large amount of sewage flows, the immersion type membrane separation device installed in the nitrification tank responds to the emergency and the membrane installed in the re-aeration tank. Since the area, the membrane separation device, and the tank capacity of the re-aeration tank were set to be large enough to treat the inflowing amount of sewage, the residence time in the tank in the re-aeration tank can be shortened, and the generation of nitrate nitrogen can be suppressed.

【0016】このとき、再曝気槽と硝化槽の内部にそれ
ぞれ設置する浸漬型膜分離装置の膜面積の比率を約2対
1としておけば、通常時、すなわち汚水の流入量が日平
均汚水量の1倍程度の時は、再曝気槽内の膜分離装置を
日平均汚水量より算出した設計透過流束にて運転し、汚
水の流入量が日平均汚水量の1〜1.5倍の時は、再曝
気槽と硝化槽の内部の各膜分離装置を設計透過流束にて
運転し、それ以上の流入汚水量の時は、再曝気槽と硝化
槽の内部の各膜分離装置を設計透過流束より大きい透過
流束にて運転することで、対応できる。各膜分離装置を
設計透過流束の約2倍の透過流束にて運転すれば、緊急
時として想定される日平均汚水量の3倍量の汚水にも対
応できる。
At this time, if the ratio of the membrane area of the immersion type membrane separator installed in each of the re-aeration tank and the nitrification tank is set to about 2: 1, the inflow of the sewage is equal to the daily average amount of sewage. At about 1 time, the membrane separation device in the re-aeration tank is operated at the design permeate flux calculated from the daily average sewage volume, and the inflow of sewage is 1 to 1.5 times the daily average sewage volume. At the time, each membrane separation device inside the re-aeration tank and the nitrification tank is operated at the design permeation flux. This can be handled by operating with a permeation flux larger than the designed permeation flux. If each membrane separation device is operated at a permeation flux about twice as large as the designed permeation flux, it is possible to cope with sewage three times the daily average sewage expected in an emergency.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照しながら説明する。図1に示した汚水処理装置にお
いて、脱窒槽21と硝化槽22と第2脱窒槽23と再曝
気槽24がこの順に配置されており、流量調整槽(図示
せず)からの汚水を導入する汚水導入管25が脱窒槽2
1内に開口し、脱窒槽21,硝化槽22,第2脱窒槽2
3の内部の活性汚泥混合液26,27,28をそれぞれ
後段の槽に送る送液手段29,30,31と、硝化槽2
2内の活性汚泥混合液27の一部を脱窒槽21に循環返
送する循環ポンプ32を介装した循環管33とが設けら
れている。硝化槽22と再曝気槽24の内部にはそれぞ
れ、浸漬型膜分離装置34,35が設置されている。第
2脱窒槽23内には、メタノールなどの有機物を供給す
る有機物供給管37が開口している。再曝気槽24の底
部には、槽内の活性汚泥混合液38より堆積した汚泥を
脱窒槽21へ向けて返送する汚泥返送管39が導かれて
おり、汚泥返送管39にはポンプ40が介装されてい
る。
Embodiments of the present invention will be described below with reference to the drawings. In the sewage treatment apparatus shown in FIG. 1, a denitrification tank 21, a nitrification tank 22, a second denitrification tank 23, and a re-aeration tank 24 are arranged in this order, and sewage from a flow rate adjustment tank (not shown) is introduced. Sewage introduction pipe 25 is denitrification tank 2
1, denitrification tank 21, nitrification tank 22, second denitrification tank 2
A liquid sending means 29, 30, 31 for sending the activated sludge mixed liquid 26, 27, 28 inside the tank 3 respectively to a subsequent tank;
A circulation pipe 33 provided with a circulation pump 32 for circulating and returning a part of the activated sludge mixed liquid 27 in 2 to the denitrification tank 21 is provided. Inside the nitrification tank 22 and the re-aeration tank 24, immersion type membrane separation devices 34 and 35 are installed, respectively. An organic substance supply pipe 37 for supplying an organic substance such as methanol is opened in the second denitrification tank 23. A sludge return pipe 39 for returning sludge deposited from the activated sludge mixture liquid 38 in the tank to the denitrification tank 21 is led to the bottom of the re-aeration tank 24, and a pump 40 is connected to the sludge return pipe 39. Is equipped.

【0018】膜分離装置34,35は、図3を用いて説
明したものとほぼ同様に構成されており、それぞれ、吸
引ポンプ34aを介装した膜透過水管34bまたは吸引
ポンプ35aを介装した膜透過水管35bを上部に有
し、ブロワ34cに連通する散気管34dまたはブロワ
35cに連通する散気管35dを下部に有している。再
曝気槽24内の膜分離装置35は、日平均汚水量にほぼ
見合った大きさの膜面積を有し、硝化槽22内の膜分離
装置34は、その約2分の1の膜面積を有している。
The membrane separators 34 and 35 have substantially the same construction as those described with reference to FIG. 3, and are respectively provided with a permeated water pipe 34b provided with a suction pump 34a or a membrane provided with a suction pump 35a. A permeate pipe 35b is provided at the upper part, and a diffuser pipe 34d communicating with the blower 34c or a diffuser pipe 35d communicating with the blower 35c is provided at the lower part. The membrane separation device 35 in the re-aeration tank 24 has a membrane area of a size almost corresponding to the daily average amount of sewage, and the membrane separation device 34 in the nitrification tank 22 has a membrane area of about a half thereof. Have.

【0019】この汚水処理装置を用いた処理フローは、
図6を用いて説明した2段脱窒法のフローとほぼ同様で
あり、汚水導入管25により汚水を脱窒槽21に導入
し、脱窒槽21内の活性汚泥混合液を26を送液手段2
9により硝化槽22に導入するとともに、硝化槽22内
の活性汚泥混合液27の一部を循環管33により脱窒槽
21に循環することにより脱窒素する。硝化槽22内の
残りの活性汚泥混合液27は送液手段30により第2脱
窒槽23に導入して、有機物供給管37により有機物を
添加しつつさらに脱窒素し、第2脱窒槽23内の活性汚
泥混合液28を再曝気槽24に導入して、過剰分の有機
物を除去する。
The treatment flow using this sewage treatment apparatus is as follows:
The flow of the two-stage denitrification method described with reference to FIG. 6 is almost the same. Sewage is introduced into the denitrification tank 21 by the sewage introduction pipe 25, and the activated sludge mixed liquid 26 in the denitrification tank 21 is sent to the liquid sending means 2.
9, the mixture is introduced into the nitrification tank 22, and a part of the activated sludge mixture liquid 27 in the nitrification tank 22 is circulated to the denitrification tank 21 by the circulation pipe 33 to denitrify. The remaining activated sludge mixture 27 in the nitrification tank 22 is introduced into the second denitrification tank 23 by the liquid sending means 30, and further denitrified while adding an organic substance through the organic substance supply pipe 37. The activated sludge mixture 28 is introduced into the re-aeration tank 24 to remove excess organic matter.

【0020】ただし、通常時は、再曝気槽24において
のみ槽内の活性汚泥混合液38を膜分離装置35により
固液分離し、膜透過水管35bにより膜透過水を消毒槽
(図示せず)に送り、適宜放流する。
However, under normal conditions, the activated sludge mixture 38 in the tank is separated into solid and liquid only by the membrane separator 35 in the re-aeration tank 24, and the membrane permeated water is disinfected by the membrane permeation pipe 35b (not shown). And release it as appropriate.

【0021】多量の汚水が流入する緊急時は、硝化槽2
2においても槽内の活性汚泥混合液27を膜分離装置3
4により固液分離し、膜透過水管34bにより膜透過水
を直接消毒槽(図示せず)へ送る。
In an emergency where a large amount of wastewater flows, the nitrification tank 2
2 also, the activated sludge mixed liquid 27 in the tank is separated into the membrane separation device 3
The liquid is separated into solid and liquid by 4 and the permeated water is directly sent to a disinfection tank (not shown) by a permeated water pipe 34b.

【0022】具体的には、汚水の流入量が日平均汚水量
の1倍程度の時は、再曝気槽24内の膜分離装置35を
日平均汚水量より算出した設計透過流束にて運転する。
汚水4bの流入量が日平均汚水量の1〜1.5倍の時
は、再曝気槽24と硝化槽22の内部の膜分離装置3
5,34をそれぞれ設計透過流束にて運転し、それ以上
の流入汚水量の時は、再曝気槽24と硝化槽22の内部
の膜分離装置35,34をそれぞれ設計透過流束より大
きい透過流束にて運転する。緊急時として想定される日
平均汚水量の3倍量の汚水が流入した時は、膜分離装置
35,34をそれぞれ設計透過流束の約2倍の透過流束
にて運転する。
Specifically, when the amount of inflow of sewage is about one time the daily average amount of sewage, the membrane separation device 35 in the re-aeration tank 24 is operated at the designed permeation flux calculated from the average amount of sewage daily. I do.
When the inflow of the sewage 4b is 1 to 1.5 times the daily average sewage, the membrane separation device 3 inside the re-aeration tank 24 and the nitrification tank 22 is used.
5 and 34 are operated at the designed permeation flux, respectively, and when the inflow sewage is larger than that, the membrane separation devices 35 and 34 inside the re-aeration tank 24 and the nitrification tank 22 are each operated at a permeation flux larger than the designed permeation flux. Operate with flux. When three times the amount of sewage flows in daily average sewage assumed in an emergency, the membrane separation devices 35 and 34 are operated at a permeation flux approximately twice as large as the designed permeation flux.

【0023】上記した汚水処理装置および処理フローで
は、多量の汚水が流入する緊急時には硝化槽22内に設
置した膜分離装置34により対処するようにして、再曝
気槽24に設置する膜面積および膜分離装置35をほぼ
日平均汚水量に見合った大きさとし、再曝気槽24の槽
容量を従来より小さくしたので、再曝気槽24における
槽内滞留時間が短くなり、脱窒菌などの内性呼吸による
硝酸性窒素の発生は抑制される。
In the above-described sewage treatment apparatus and treatment flow, in case of emergency when a large amount of sewage flows, the membrane area and the membrane installed in the re-aeration tank 24 are handled by the membrane separator 34 installed in the nitrification tank 22. Since the size of the separator 35 is set to be approximately equal to the daily average amount of sewage, and the tank capacity of the re-aeration tank 24 is made smaller than before, the residence time in the tank in the re-aeration tank 24 becomes shorter, and internal respiration such as denitrification bacteria occurs. The generation of nitrate nitrogen is suppressed.

【0024】以下の表1に、再曝気槽から取り出される
膜透過水中の硝酸性窒素濃度を示す。表1に示した従来
の汚水処理装置と本発明の汚水処理装置とでは、再曝気
槽に浸漬設置する膜面積が、本発明の汚水処理装置の方
が小さくなっており、再曝気槽の槽容量はそれぞれ膜面
積に比例した大きさとなっている。
Table 1 below shows the nitrate nitrogen concentration in the permeated water taken out of the re-aeration tank. In the conventional sewage treatment apparatus shown in Table 1 and the sewage treatment apparatus of the present invention, the membrane area immersed and installed in the re-aeration tank is smaller in the sewage treatment apparatus of the present invention, Each of the capacitors has a size proportional to the film area.

【0025】[0025]

【表1】 [Table 1]

【0026】また図2に、再曝気槽より取り出される膜
透過水中の硝酸性窒素濃度の経時的変化を示す。図2か
ら、膜透過水中の硝酸性窒素濃度は再曝気槽内での曝気
時間すなわち槽内滞留時間が長くなるほど大きくなるこ
とがわかり、表1から、本発明の汚水処理装置は従来の
汚水処理装置と比べて、再曝気槽における槽内滞留時間
が短くなっており、膜透過水中の硝酸性窒素濃度が低減
されていることがわかる。
FIG. 2 shows the change over time in the concentration of nitrate nitrogen in the permeated water taken out of the re-aeration tank. From FIG. 2, it can be seen that the concentration of nitrate nitrogen in the membrane permeated water increases as the aeration time in the re-aeration tank, that is, the residence time in the tank, increases. From Table 1, it can be seen that the sewage treatment apparatus of the present invention is a conventional sewage treatment apparatus. It can be seen that the residence time in the re-aeration tank is shorter than that of the apparatus, and the concentration of nitrate nitrogen in the permeated water is reduced.

【0027】[0027]

【発明の効果】以上のように本発明によれば、再曝気槽
内にほぼ日平均汚水量を処理するに十分な膜面積を有し
た膜分離装置を設置し、雨水などの不明水が流入する緊
急時の対策として、硝化槽内にも膜分離装置を設置する
ことにより、再曝気槽の槽容量を従来より小さくするこ
とができ、その結果、再曝気槽における槽内滞留時間を
短くし、脱窒菌などの内性呼吸による硝酸性窒素の発生
を抑制できる。
As described above, according to the present invention, a membrane separation device having a membrane area sufficient to treat almost daily average sewage is installed in the re-aeration tank, and unknown water such as rainwater flows in. As an emergency measure, by installing a membrane separation device in the nitrification tank, the tank capacity of the re-aeration tank can be made smaller than before, and as a result, the residence time in the tank in the re-aeration tank can be shortened. In addition, the generation of nitrate nitrogen due to endogenous respiration such as denitrifying bacteria can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の汚水処理装置の全体構成
を示した説明図である。
FIG. 1 is an explanatory diagram showing an overall configuration of a sewage treatment apparatus according to an embodiment of the present invention.

【図2】再曝気槽から取り出した膜透過水中の硝酸性窒
素濃度と再曝気槽における曝気時間との関係を示したグ
ラフである。
FIG. 2 is a graph showing the relationship between the concentration of nitrate nitrogen in the permeated water taken out of the re-aeration tank and the aeration time in the re-aeration tank.

【図3】図1に示した汚水処理装置に用いられる従来よ
りある膜分離装置の全体構成を示した一部破断斜視図で
ある。
FIG. 3 is a partially broken perspective view showing the entire configuration of a conventional membrane separation device used in the sewage treatment apparatus shown in FIG.

【図4】従来より行われている循環脱窒法を説明するフ
ローチャートである。
FIG. 4 is a flowchart illustrating a conventional circulation denitrification method.

【図5】従来より行われている間欠曝気法を説明するフ
ローチャートである。
FIG. 5 is a flowchart for explaining a conventional intermittent aeration method.

【図6】従来より行われている2段脱窒法を説明するフ
ローチャートである。
FIG. 6 is a flowchart illustrating a conventional two-stage denitrification method.

【符号の説明】[Explanation of symbols]

21 脱窒槽 22 硝化槽 23 第2脱窒槽 24 再曝気槽 25 汚水導入管 27 活性汚泥混合液 29,30,31 送液手段 33 循環管 34,35 膜分離装置 34b,35b 膜透過水管 38 活性汚泥混合液 21 Denitrification tank 22 Nitrification tank 23 Second denitrification tank 24 Reaeration tank 25 Sewage inlet pipe 27 Activated sludge mixture 29,30,31 Liquid supply means 33 Circulation pipe 34,35 Membrane separator 34b, 35b Membrane permeate pipe 38 Activated sludge Mixture

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−232597(JP,A) 特開 平3−77699(JP,A) 特開 昭60−94196(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 3/30 - 3/34 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-232597 (JP, A) JP-A-3-77699 (JP, A) JP-A-60-94196 (JP, A) (58) Investigation Field (Int.Cl. 7 , DB name) C02F 3/30-3/34

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 脱窒槽と硝化槽と第2脱窒槽と再曝気槽
とをこの順に配置し、生活排水などの汚水を導入する汚
水導入手段を脱窒槽内に開口させ、脱窒槽と硝化槽と第
2脱窒槽の内部の活性汚泥混合液をそれぞれ後段の槽に
送る第1と第2と第3の送液手段と、硝化槽内の活性汚
泥混合液の一部を脱窒槽に循環返送する循環手段とを設
け、再曝気槽の内部に浸漬型膜分離装置を設置した汚水
処理装置において、前記硝化槽の内部に別途に緊急時に
使用する浸漬型膜分離装置を設置し、前記再曝気槽は通
常流入量相当の汚水量を処理可能な浸漬型膜分離装置を
収容できる槽容積に構成したことを特徴とする汚水処理
装置。
1. A denitrification tank, a nitrification tank, a second denitrification tank, and a re-aeration tank are arranged in this order, and a sewage introduction means for introducing sewage such as domestic wastewater is opened in the denitrification tank. First, second, and third liquid feeding means for sending the activated sludge mixed liquid in the second and third denitrification tanks to the subsequent tank, respectively, and circulating and returning a part of the activated sludge mixed liquid in the nitrification tank to the denitrification tank In the sewage treatment apparatus provided with a circulating means to perform, the immersion type membrane separation device is installed inside the re-aeration tank, in the case of an emergency separately inside the nitrification tank
A sewage treatment apparatus, wherein a immersion type membrane separation device to be used is installed, and the re-aeration tank is configured to have a tank capacity capable of accommodating an immersion type membrane separation device capable of treating a sewage amount corresponding to a normal inflow amount.
【請求項2】 再曝気槽と硝化槽の内部にそれぞれ設置
する浸漬型膜分離装置の膜面積の比率を約2対1とした
ことを特徴とする請求項1記載の汚水処理装置。
2. The sewage treatment apparatus according to claim 1, wherein the ratio of the membrane area of the immersion type membrane separation device installed in each of the re-aeration tank and the nitrification tank is about 2: 1.
【請求項3】 請求項1または請求項2に記載の汚水処
理装置の運転方法であって、生活排水などの汚水を汚水
導入手段と第1の送液手段とにより脱窒槽と硝化槽とに
順次導入するとともに、硝化槽内の活性汚泥混合液の一
部を循環手段により脱窒槽に循環し、硝化槽内の残りの
活性汚泥混合液を第2と第3の送液手段により第2脱窒
槽と再曝気槽とに順次導入して脱窒素するに際し、通常
時は、再曝気槽において、槽内に設置した浸漬型膜分離
装置により活性汚泥混合液を固液分離して、膜透過水を
消毒槽などの次処理系へ送り、多量の汚水が流入する緊
急時は、硝化槽においても、槽内に設置した浸漬型膜分
離装置により活性汚泥混合液を固液分離し、膜透過水を
前記消毒槽などの次処理系へ直接送ることを特徴とする
汚水処理装置の運転方法。
3. The method for operating a sewage treatment apparatus according to claim 1 or 2, wherein sewage such as domestic wastewater is supplied to a denitrification tank and a nitrification tank by a sewage introduction means and a first liquid supply means. In addition, the activated sludge mixture in the nitrification tank is partly circulated to the denitrification tank by the circulation means, and the remaining activated sludge mixture in the nitrification tank is subjected to the second dehydration by the second and third liquid sending means. At the time of introducing nitrogen into the nitrification tank and the re-aeration tank in order to perform denitrification, usually, in the re-aeration tank, the activated sludge mixed liquid is solid-liquid separated by the immersion type membrane separation device installed in the tank, and the membrane permeated water is discharged. To the next treatment system such as a disinfection tank, and in the event of a large amount of wastewater flowing into the tank, even in the nitrification tank, the activated sludge mixture is separated into solid and liquid by the immersion type membrane separation device installed in the tank, Operation of a sewage treatment apparatus characterized in that the wastewater is directly sent to the next treatment system such as the disinfection tank. Method.
JP08107096A 1996-04-03 1996-04-03 Sewage treatment apparatus and operation method thereof Expired - Lifetime JP3285754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08107096A JP3285754B2 (en) 1996-04-03 1996-04-03 Sewage treatment apparatus and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08107096A JP3285754B2 (en) 1996-04-03 1996-04-03 Sewage treatment apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
JPH09271796A JPH09271796A (en) 1997-10-21
JP3285754B2 true JP3285754B2 (en) 2002-05-27

Family

ID=13736138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08107096A Expired - Lifetime JP3285754B2 (en) 1996-04-03 1996-04-03 Sewage treatment apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP3285754B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2366534T3 (en) * 2002-01-07 2011-10-21 Berliner Wasserbetriebe BIOLOGICAL WATER TREATMENT PROCESS THAT IMPLIES A POST-DESNITRIFICATION MECHANISM AND A MEMBRANE FILTER.
US6998048B1 (en) * 2002-12-09 2006-02-14 Keith Dobie Method and apparatus for cleaning effluent
US7198717B2 (en) * 2004-08-26 2007-04-03 Graham John Gibson Juby Anoxic biological reduction system

Also Published As

Publication number Publication date
JPH09271796A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
JP4796631B2 (en) Method and system for nitrifying and denitrifying sewage
JP2006272172A (en) Method and apparatus for biologically treating nitrogen-containing water
KR100566321B1 (en) Membrane combined Advanced wastewater treatment system which applies Trisectional aeration and Changed inflow course and it's operation methods
JP3285754B2 (en) Sewage treatment apparatus and operation method thereof
JP3677783B2 (en) Nitrification method
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JP3558204B2 (en) Wastewater biological treatment equipment
JP2504248B2 (en) Sewage treatment equipment
JP2004202387A (en) Sewage disposal treatment method
JP2004105872A (en) Method of treating waste water
JP3819457B2 (en) Biological denitrification of wastewater
JP2001087793A (en) Method and apparatus for treating waste water
JP2000325986A (en) Waste water treatment apparatus having phosphorus removing process
KR200171727Y1 (en) Processing system for excretions of animals
JPH05154495A (en) Method for nitrifying and denitrifying organic waste water
JP3376905B2 (en) Intermittent aeration activated sludge treatment equipment
JP3916697B2 (en) Wastewater treatment method
JP2500974B2 (en) Method for denitrifying and dephosphorizing organic wastewater
JP3327979B2 (en) Septic tank sludge treatment method and equipment
JP2001347291A (en) Method and apparatus for treating organic wasteliquid
JP2980534B2 (en) Carrier circulation method
JP3396985B2 (en) Wastewater nitrogen removal method and apparatus
JP3257943B2 (en) Wastewater treatment method
JPS61192395A (en) Treatment of organic sewage
JP2004089956A (en) Nitrogen and phosphorus removing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140308

Year of fee payment: 12

EXPY Cancellation because of completion of term