JPH0957288A - Biological treatment using spongy carrier - Google Patents

Biological treatment using spongy carrier

Info

Publication number
JPH0957288A
JPH0957288A JP21503595A JP21503595A JPH0957288A JP H0957288 A JPH0957288 A JP H0957288A JP 21503595 A JP21503595 A JP 21503595A JP 21503595 A JP21503595 A JP 21503595A JP H0957288 A JPH0957288 A JP H0957288A
Authority
JP
Japan
Prior art keywords
tank
nitrification
sponge
sludge
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21503595A
Other languages
Japanese (ja)
Inventor
Masahide Shibata
雅秀 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP21503595A priority Critical patent/JPH0957288A/en
Publication of JPH0957288A publication Critical patent/JPH0957288A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to rapidly fluidize spongly carriers carrying microorganisms in a reaction vessel without using medicines by shrinking the carriers by pressure reduction or pressurization, then charging the carriers in which water or a liquid mixed with biological sludge is absorbed into this reaction vessel in a method for biologically treating raw water by fluidizing the carriers. SOLUTION: Raw water and return sludge are first introduced into a denitrification vessel 1 and a nitrified liquid subjected to nitrification in a nitrification vessel 2 is introduced therein and is mixed with activated sludge, by which the denitrification is executed. Next, the denitrified liquid in the denitrification vessel 1 is taken out and is introduced into an aeration vessel 32, where the air from an air supply path 12 is diffused from an air diffuser 34 to create an aerobic condition. BOD components are thus removed. The air is then diffused similarly from an air diffuser 35 to the liquid after the removal of the BOD components in the nitrification vessel 2 and nitrification is executed in the fluidizing state of the charged carriers 24 consisting of the sponge. The carriers are shrunk by the pressure reduction or pressurization and are charged into the nitrification vessel 2 in the state that the liquid in the nitrification vessel 2 is absorbed therein. As a result, the carriers 14 are fluidizied in a short period of time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は微生物を担持するス
ポンジ状担体を用いる生物処理方法に関する。
TECHNICAL FIELD The present invention relates to a biological treatment method using a sponge-like carrier carrying microorganisms.

【0002】[0002]

【従来の技術】アンモニア性または有機性窒素化合物を
含む排液を処理する方法として、生物学的硝化脱窒処理
法がある。この方法は活性汚泥により排液中のCOD、
BOD成分を分解するとともに、有機性窒素化合物をア
ンモニア性窒素とし、このアンモニア性窒素を硝化細菌
により亜硝酸性または硝酸性窒素に硝化(酸化)した
後、脱窒細菌により脱窒(還元)する方法である。この
処理法では、脱窒槽を前段に設け、硝化液および分離汚
泥を脱窒槽に返送して原水と混合して、脱窒を行うと同
時にBOD成分を分解する方法も行われている。
2. Description of the Related Art As a method for treating an effluent containing an ammoniacal or organic nitrogen compound, there is a biological nitrification denitrification treatment method. This method uses activated sludge to remove COD,
Along with decomposing BOD components, organic nitrogen compounds are converted to ammonia nitrogen, and the ammonia nitrogen is nitrified (oxidized) into nitrite or nitrate nitrogen by nitrifying bacteria, and then denitrified (reduced) by denitrifying bacteria. Is the way. In this treatment method, a denitrification tank is provided in the preceding stage, and the nitrification solution and the separated sludge are returned to the denitrification tank and mixed with raw water to perform denitrification and at the same time decompose BOD components.

【0003】このような生物学的硝化脱窒法は実績も多
く、し尿処理分野などで広く採用されている。しかし、
生物学的硝化脱窒法における硝化方法では、硝化槽内の
硝化細菌の保持量を多くすることが困難であるため、硝
化槽の滞留時間を長くとる必要があり、このため硝化槽
が大きくなるなどの問題点がある。
Such a biological nitrification denitrification method has a lot of achievements and is widely adopted in the field of human waste treatment. But,
In the nitrification method in the biological nitrification denitrification method, it is difficult to increase the retention amount of nitrifying bacteria in the nitrification tank, so it is necessary to lengthen the residence time in the nitrification tank, which results in a larger nitrification tank. There is a problem.

【0004】このような問題点を改善する方法として、
硝化槽にスポンジなどの担体を投入し、担体表面に硝化
細菌を付着させて硝化細菌の保持量を多くし、これによ
り硝化槽全体としての硝化速度(NH4−N除去速度)
を向上させて窒素除去機能をより安定化する方法が知ら
れている(例えば、特開昭57−75192号、特開平
6−304593号、特開平6−335698号)。
As a method of improving such problems,
A carrier such as a sponge is put into the nitrification tank, and the nitrifying bacteria are attached to the surface of the carrier to increase the amount of nitrifying bacteria retained, whereby the nitrification rate of the entire nitrification tank (NH 4 -N removal rate)
Is known to further stabilize the nitrogen removal function (for example, JP-A-57-75192, JP-A-6-304593 and JP-A-6-356356).

【0005】このほか通常の活性汚泥処理法において、
活性汚泥をスポンジに付着させて高密度化し、これによ
り高負荷処理する方法も知られている(例えば特公平4
−55757号)。また特開平7−68285号には、
曝気槽にスポンジを投入し、このスポンジに活性汚泥を
担持させて有機性排液を好気性処理する好気性処理方法
が記載されている。
In addition to this, in the ordinary activated sludge treatment method,
A method is also known in which activated sludge is adhered to a sponge to increase its density, and thus high-load treatment is performed (for example, Japanese Patent Publication No.
-55757). Further, in Japanese Patent Laid-Open No. 7-68285,
An aerobic treatment method is described in which a sponge is put into an aeration tank, and activated sludge is supported on the sponge to aerobically treat the organic waste liquid.

【0006】しかし、担体としてポリウレタンなどのス
ポンジを用いた場合、スポンジが疎水性であるためスポ
ンジをそのまま硝化槽や曝気槽に投入しただけでは、槽
内液がスポンジの空隙内にすぐには浸透せず、このため
素材自体の比重が1以上の場合でもすぐには流動化せ
ず、一部のスポンジは液面付近に浮上した状態にある。
このため大部分のスポンジが硝化槽または曝気槽内を流
動して、スポンジ投入の効果が最大限発揮されるまでに
は少し時間がかかる。
However, when a sponge such as polyurethane is used as a carrier, since the sponge is hydrophobic, the liquid in the tank immediately permeates into the voids of the sponge if the sponge is put into the nitrification tank or the aeration tank as it is. Therefore, even if the specific gravity of the material itself is 1 or more, it does not immediately fluidize, and some sponges are floating near the liquid surface.
Therefore, it takes some time for most of the sponge to flow in the nitrification tank or the aeration tank and to maximize the effect of adding the sponge.

【0007】スポンジの流動性を改善するため、前記特
公平4−55757号には、高級アルコール、脂肪酸エ
ステルまたはシリコン油を主成分とする担体ぬれ性改良
剤を添加する方法が記載されている。しかし、この方法
ではぬれ性改良剤を0.2〜5g/l添加する必要があ
るため、それだけコスト高になるほか、添加したぬれ性
改良剤の処理が問題となる。
In order to improve the fluidity of the sponge, Japanese Patent Publication No. 4-55757 describes a method of adding a carrier wettability improver containing a higher alcohol, a fatty acid ester or silicon oil as a main component. However, in this method, it is necessary to add the wettability improver in an amount of 0.2 to 5 g / l, which increases the cost and the treatment of the added wettability improver becomes a problem.

【0008】また特開平5−15889号には、多孔質
担体をアルコールまたは界面活性剤溶液中に浸漬した後
反応槽に投入する微生物固定化担体の親水化処理方法が
記載されている。この方法によれば担体の表面の気孔部
および内部の連通気孔部は親水化されるので、被処理水
が速やかに担体の気孔部に入り込みやすくなり、微生物
が付着しやすい。しかし、この方法も薬剤を使用するた
めそれだけコスト高になるほか、使用済の薬剤を処理し
なければならないという新たな問題が生じる。
Further, JP-A-5-15889 describes a method for hydrophilizing a microorganism-immobilized carrier in which a porous carrier is immersed in an alcohol or surfactant solution and then charged into a reaction tank. According to this method, the pores on the surface of the carrier and the communicating pores inside are hydrophilized, so that the water to be treated easily enters the pores of the carrier quickly, and microorganisms are easily attached. However, since this method also uses the drug, the cost is increased, and a new problem arises in that the used drug must be treated.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、反応
槽に投入したスポンジ状担体を、薬剤を用いることなく
短期間で流動化させることができ、このため低コスト
で、しかも使用済薬剤の処理を行う必要がなく、スポン
ジ状担体の効果を短期間で発揮させることができるスポ
ンジ状担体を用いる生物処理方法を提案することであ
る。
The object of the present invention is to make it possible to fluidize a sponge-like carrier charged in a reaction tank in a short period of time without using a chemical agent, and therefore at a low cost and in a used chemical agent. It is an object of the present invention to propose a biological treatment method using a sponge-like carrier, which is capable of exhibiting the effect of the sponge-like carrier in a short period of time without the need to perform the treatment.

【0010】[0010]

【課題を解決するための手段】本発明は反応槽に微生物
を担持するスポンジ状担体を流動させて被処理液を生物
処理する方法において、減圧または加圧してスポンジ状
担体を収縮させた後、水または生物汚泥混合液を吸水さ
せたスポンジ状担体を反応槽に投入することを特徴とす
るスポンジ状担体を用いる生物処理方法である。
Means for Solving the Problems The present invention is a method of biologically treating a liquid to be treated by flowing a sponge-like carrier carrying microorganisms in a reaction tank, and after contracting the sponge-like carrier by depressurizing or pressurizing, In the biological treatment method using a sponge-like carrier, a sponge-like carrier in which water or a mixed solution of biological sludge is absorbed is charged into a reaction tank.

【0011】本発明の生物処理方法は、微生物を担持す
るスポンジ状担体を用いて有機性排液等の被処理液を生
物処理する処理法であればどのような処理法にも適用可
能である。このような処理方法としては、例えば硝化菌
を用いた硝化方法や硝化脱窒処理方法、BODの分解を
主な目的とする活性汚泥処理方法、BOD分解と脱窒と
を同時に行う生物学的硝化脱窒処理方法、あるいは嫌気
性菌を用いる生物処理方法などがあげられ、好気性処理
方法でも嫌気性処理方法でもよい。
The biological treatment method of the present invention can be applied to any treatment method as long as it is a treatment method for biologically treating a liquid to be treated such as an organic drainage using a sponge-like carrier carrying microorganisms. . Examples of such a treatment method include a nitrification method using nitrifying bacteria, a nitrification denitrification treatment method, an activated sludge treatment method whose main purpose is the decomposition of BOD, and a biological nitrification that simultaneously decomposes BOD and denitrification. Examples thereof include denitrification treatment methods and biological treatment methods using anaerobic bacteria, and either aerobic treatment methods or anaerobic treatment methods may be used.

【0012】スポンジ状担体としては、連続気泡を有す
る弾力性のある多孔質体であって、減圧または加圧によ
り圧縮することができ、常圧に戻すことにより完全また
はほぼ完全に元の形に復元する多孔質体が使用できる。
具体的なものとしては、ポリウレタン等の樹脂製のスポ
ンジなどがあげられる。
The sponge-like carrier is an elastic porous body having open cells, which can be compressed by decompression or pressurization, and can be completely or almost completely returned to its original shape by returning to normal pressure. A porous body that restores can be used.
Specific examples include sponges made of resin such as polyurethane.

【0013】スポンジ状担体の形状は限定されず、サイ
コロ状、球状、不定形のものなどが使用できる。大きさ
は、長径が1〜50mm程度のものが好ましい。スポン
ジ状担体の細孔の大きさは限定されないが、50〜10
00μm、好ましくは100〜500μmのものが適当
である。孔が大きくなりすぎると孔に浸透した水が曝気
により曝気エアーと置換するため、上記上限値を越えな
いものが好ましい。細孔の数も限定されないが、長さ2
5mm当りのセル数が25個以上のものが好ましい。
The shape of the sponge-like carrier is not limited, and those having a dice shape, a spherical shape, an amorphous shape or the like can be used. The size is preferably such that the major axis is about 1 to 50 mm. Although the size of the pores of the sponge-like carrier is not limited, it is 50 to 10
A particle size of 00 μm, preferably 100 to 500 μm is suitable. If the pores become too large, the water that has penetrated into the pores will replace the aerated air due to aeration, so that those that do not exceed the above upper limit value are preferred. The number of pores is not limited, but the length is 2
It is preferable that the number of cells per 5 mm is 25 or more.

【0014】本発明では、上記のようなスポンジ状担体
を減圧または加圧して収縮させることにより、内部に含
まれていた気体(空気)を排出した後、水または生物汚
泥混合液を吸水させ、この吸水した担体を反応槽に投入
する。スポンジ状担体を収縮させるには、ビニール袋な
どの密閉容器に入れて真空ポンプにより減圧する方法、
ピストン等で加圧して圧縮する方法などの方法により行
うことができる。
In the present invention, the sponge-like carrier as described above is contracted by decompressing or pressurizing it to discharge the gas (air) contained therein, and then absorb the water or the biological sludge mixed solution, This water-absorbed carrier is put into a reaction tank. To shrink the sponge-like carrier, put it in a closed container such as a vinyl bag and depressurize it with a vacuum pump.
It can be performed by a method such as a method of pressurizing with a piston or the like and compressing.

【0015】収縮させたスポンジ状担体に吸水させるに
は、収縮した状態で水または生物汚泥混合液を供給し、
常圧に戻すことにより行うことができる。水としては水
道水、工業用水、処理水などが使用できる。生物汚泥混
合液としては、活性汚泥混合液のようなスポンジ状担体
を投入する反応槽または他の反応槽の槽内液などが使用
できる。これらの中では、より短期間でスポンジ状担体
を流動化させることができるので、生物汚泥混合液を使
用するのが好ましい。吸水に際しては、水または生物汚
泥混合液に加えて、アルコール、界面活性剤などの親水
化剤を併用することもできる。
In order for the contracted sponge-like carrier to absorb water, water or a biological sludge mixture is supplied in a contracted state,
It can be performed by returning to normal pressure. As water, tap water, industrial water, treated water or the like can be used. As the biological sludge mixed solution, a solution in a reaction tank or another reaction tank into which a sponge-like carrier such as an activated sludge mixed solution is charged can be used. Among these, it is preferable to use the biological sludge mixed liquid because the sponge-like carrier can be fluidized in a shorter period of time. At the time of water absorption, a hydrophilic agent such as alcohol or a surfactant can be used in combination with water or a biological sludge mixed solution.

【0016】このようにして吸水させることにより、細
孔が水または生物汚泥混合液で満され、細孔中の気体が
液体で置換された状態となる。スポンジ状担体の細孔は
できるだけ多くの空間が水または生物汚泥混合液で満さ
れるのが好ましいが、細孔の合計容積の1/3程度が水
または生物汚泥混合液で満されれば、スポンジ状担体の
流動性は向上するので、約1/3以上の容積の細孔が水
または生物汚泥混合液で満されていればよい。
By absorbing water in this manner, the pores are filled with water or the biological sludge mixed solution, and the gas in the pores is replaced with the liquid. It is preferable that the pores of the sponge-like carrier fill as much space as possible with the water or the biological sludge mixed solution, but if about 1/3 of the total volume of the pores is filled with the water or the biological sludge mixed solution, Since the fluidity of the sponge-like carrier is improved, it is sufficient that the pores having a volume of about 1/3 or more are filled with water or the biological sludge mixed solution.

【0017】このようにして吸水したスポンジ状担体は
細孔中の気体が液体で置換されているため比重が大きく
なっており、また微生物が短期間で付着するので、短期
間で流動化する。吸水に生物汚泥混合液を用いた場合は
通常1〜8日後、水道水を用いた場合は通常1〜12日
後には、投入したスポンジ状担体の90%以上が流動化
する。これらの日数は、流動化または親水性化のために
薬剤を用いる従来の方法と同程度である。
The spongy carrier thus absorbed has a large specific gravity because the gas in the pores is replaced by a liquid, and since microorganisms adhere to it in a short period of time, it is fluidized in a short period of time. When the biological sludge mixture is used for water absorption, 90% or more of the added sponge-like carrier is fluidized after 1 to 8 days, and when tap water is used after 1 to 12 days. These days are comparable to conventional methods of using drugs for fluidization or hydrophilization.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を図面
により説明する。図1は本発明の生物処理方法を採用し
た有機性排液の生物学的硝化脱窒処理法を示すフロー図
であり、1つの好気槽を前段の曝気槽と後段の硝化槽に
区画し、後段の硝化槽にスポンジ状担体を投入する場合
の実施例である。図1において、1は脱窒槽、2は硝化
槽、3は最終脱窒槽、4は最終好気処理槽、5は固液分
離槽であり、硝化槽2で硝化を行うようになっている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flow chart showing a biological nitrification / denitrification treatment method of an organic waste liquid, which adopts the biological treatment method of the present invention. One aerobic tank is divided into a front aeration tank and a rear nitrification tank. This is an example of the case where a sponge-like carrier is put into a nitrification tank in the subsequent stage. In FIG. 1, 1 is a denitrification tank, 2 is a nitrification tank, 3 is a final denitrification tank, 4 is a final aerobic treatment tank, and 5 is a solid-liquid separation tank, and the nitrification tank 2 performs nitrification.

【0019】脱窒槽1には原水路6、汚泥返送路7、循
環液路8および連絡路9が接続し、攪拌器10で緩やか
に攪拌し、嫌気状態を維持して脱窒を行うようになって
いる。
A raw water channel 6, a sludge return channel 7, a circulating fluid channel 8 and a connecting channel 9 are connected to the denitrification tank 1, and are gently stirred by an agitator 10 so that denitrification is performed while maintaining an anaerobic state. Has become.

【0020】好気槽30内には原水の流れる方向に対し
て直交して区画板31が設けられ、前段の曝気槽32と
後段の硝化槽2とに区画されており、後段の硝化槽2に
はスポンジからなる担体14が投入され、後段の硝化槽
2の出口には担体14流失防止用のスクリーン15が設
けられている。前段の曝気槽32には脱窒槽1からの連
絡路9、後段の硝化槽2には最終脱窒槽3への連絡路1
1が接続している。そして空気供給路12から前段の曝
気槽32および後段の硝化槽2に空気を送り、前段の散
気装置34および後段の散気装置35から散気して、前
段の曝気槽32ではBOD成分の除去、後段の硝化槽2
では硝化を行うようになっている。区画板31と好気槽
30の壁面または底面には流路36が設けられており、
この流路36から前段の曝気槽32の液は後段の硝化槽
2へ流れ込むようになっている。流路36には金網(図
示せず)が設けられ、担体14が前段の曝気槽32に逆
流しないようになっている。
A partition plate 31 is provided in the aerobic tank 30 at right angles to the flow direction of the raw water, and is partitioned into an aeration tank 32 at the front stage and a nitrification tank 2 at the rear stage, and a nitrification tank 2 at the rear stage. A carrier 14 made of sponge is charged into the container, and a screen 15 for preventing the carrier 14 from flowing out is provided at the outlet of the nitrification tank 2 in the subsequent stage. A passage 9 from the denitrification tank 1 to the aeration tank 32 in the first stage, and a passage 1 to the final denitrification tank 3 in the nitrification tank 2 in the second stage.
1 is connected. Then, air is sent from the air supply path 12 to the front aeration tank 32 and the rear nitrification tank 2, and is diffused from the front aeration device 34 and the rear aeration device 35, and the BOD component of the front aeration tank 32 Removal, nitrification tank 2 in the latter stage
Then, nitrification is performed. A flow path 36 is provided on the wall surface or bottom surface of the partition plate 31 and the aerobic tank 30,
The liquid in the aeration tank 32 at the front stage flows into the nitrification tank 2 at the rear stage from the flow path 36. A wire mesh (not shown) is provided in the flow path 36 so that the carrier 14 does not flow back into the aeration tank 32 in the previous stage.

【0021】最終脱窒槽3には連絡路11、17および
有機物供給路18が接続し、攪拌器19により緩やかに
攪拌して嫌気状態を保つようになっている。最終好気処
理槽4には連絡路17、20が接続し、空気供給路21
から空気を送り、最終散気装置22から散気して、好気
処理を行うようになっている。
The final denitrification tank 3 is connected to the communication paths 11 and 17 and the organic material supply path 18, and is gently stirred by a stirrer 19 to maintain an anaerobic state. Communication paths 17 and 20 are connected to the final aerobic treatment tank 4, and an air supply path 21 is provided.
Air is sent from the air, and air is diffused from the final diffuser 22 to perform aerobic treatment.

【0022】固液分離槽5には連路20、処理水路23
および汚泥路24が接続し、沈降分離により固液分離す
るようになっている。汚泥路24は汚泥返送路7および
汚泥排出路25に分岐し、分離汚泥の一部は汚泥返送路
7を通して脱窒槽1に返送されるようになっている。
The solid-liquid separation tank 5 has a communication passage 20 and a treatment water passage 23.
Also, the sludge path 24 is connected to perform solid-liquid separation by sedimentation separation. The sludge passage 24 branches into a sludge return passage 7 and a sludge discharge passage 25, and a part of the separated sludge is returned to the denitrification tank 1 through the sludge return passage 7.

【0023】図1にフローに従って原水を処理するに
は、まず脱窒槽1に窒素化合物およびBOD成分を含む
原水を原水路6から導入するとともに、返送汚泥を汚泥
返送路7から導入し、また後段の硝化槽2で硝化を受け
た硝化液を循環液路8から導入し、攪拌器10により脱
窒細菌を含む活性汚泥と混合し、嫌気状態を維持して脱
窒を行う。硝化液の循環量は原水量に対して通常100
〜500容量%とする。このような脱窒工程では循環液
中の硝酸または亜硝酸イオンを窒素に還元する脱窒細菌
が優勢となり、原水中の窒素成分が除去されるととも
に、BOD成分も除去される。
To treat the raw water according to the flow shown in FIG. 1, first, the raw water containing the nitrogen compound and the BOD component is introduced into the denitrification tank 1 through the raw water channel 6, the return sludge is introduced through the sludge return channel 7, and the latter stage is performed. The nitrification liquid that has undergone nitrification in the nitrification tank 2 is introduced from the circulation liquid path 8 and mixed with the activated sludge containing the denitrifying bacteria by the stirrer 10 to perform denitrification while maintaining the anaerobic state. The circulation amount of nitrification liquid is usually 100 relative to the raw water
~ 500% by volume. In such a denitrification step, the denitrifying bacteria that reduce nitric acid or nitrite ion in the circulating liquid to nitrogen become dominant, and the nitrogen component in the raw water is removed as well as the BOD component.

【0024】脱窒槽1内の脱窒液は一部ずつ連絡路9か
ら取出して、前段の曝気槽32に導入し、空気供給路1
2から空気を送って前段の散気装置34から散気して好
気性条件とし、浮遊汚泥によりBOD成分を実質的に除
去し、BOD濃度を10mg/l以下にする。この場
合、窒素化合物の一部を硝化してもよい。前段の曝気槽
32内の混合液は、一部ずつ汚泥を分離することなくそ
のまま流路36から後段の硝化槽2に流入する。
The denitrifying liquid in the denitrification tank 1 is taken out part by part from the communication passage 9 and introduced into the aeration tank 32 at the previous stage, and the air supply passage 1
Air is sent from 2 to diffuse air from the air diffuser 34 in the previous stage to make it an aerobic condition, and the BOD component is substantially removed by the floating sludge to make the BOD concentration 10 mg / l or less. In this case, part of the nitrogen compound may be nitrified. The mixed liquid in the aeration tank 32 at the front stage flows into the nitrification tank 2 at the rear stage as it is from the flow path 36 without separating the sludge part by part.

【0025】後段の硝化槽2では、前段の曝気槽32で
BOD成分を除去した液に空気供給路12から空気を送
って後段の散気装置35から散気して好気性条件とし、
投入した担体14が流動する状態で硝化細菌により硝化
を行い、原水中の窒素成分を硝酸イオンまたは亜硝酸イ
オンにまで硝化する。ここでは通常のBOD除去のため
の曝気よりも過剰に曝気して、硝化細菌を優勢にする。
この場合、スポンジからなる担体14は、減圧または加
圧して収縮させた後、硝化槽2の槽内液を供給して吸水
させ、スポンジの細孔に槽内液を保持させた状態で硝化
槽2に投入する。これにより担体14は短期間で流動化
するようになり、硝化脱窒処理系は短期間で定常状態に
達する。
In the latter nitrification tank 2, air is sent from the air supply passage 12 to the liquid from which the BOD component has been removed in the former aeration tank 32, and air is diffused from the latter air diffuser 35 to make it an aerobic condition.
Nitrification is performed by nitrifying bacteria in a state where the charged carrier 14 is flowing, and the nitrogen component in the raw water is nitrified to nitrate ions or nitrite ions. Here, the nitrifying bacteria are predominant by aeration in excess of the aeration for normal BOD removal.
In this case, the carrier 14 made of a sponge is contracted by depressurizing or pressurizing it, and then the liquid in the nitrification tank 2 is supplied to absorb water, and the nitrification tank is held with the liquid in the tank held in the pores of the sponge. Add to 2. As a result, the carrier 14 becomes fluidized in a short period of time, and the nitrification denitrification treatment system reaches a steady state in a short period of time.

【0026】好気槽30では、区画板31の下部の流路
36に金網を張って、後段の硝化槽2中の担体14が前
段の曝気槽32に流入しないようにしている。このよう
に好気槽30を区画し、前段の曝気槽32でBOD成分
を除去した後、後段の硝化槽2で担体を流動させて硝化
することにより、硝化細菌が担体14に短期間で安定し
て多量に保持され、高い硝化活性が維持される。
In the aerobic tank 30, a wire net is stretched over the flow path 36 below the partition plate 31 so that the carrier 14 in the nitrification tank 2 in the subsequent stage does not flow into the aeration tank 32 in the preceding stage. In this way, the aerobic tank 30 is divided, the BOD component is removed by the aeration tank 32 at the front stage, and the carrier is flown in the nitrification tank 2 at the rear stage to nitrify the nitrifying bacteria in the carrier 14 in a short period of time. Then, a large amount is retained, and high nitrification activity is maintained.

【0027】好気槽30の条件は、pHが6〜9、好ま
しくは7〜8.5、温度が0〜40℃、好ましくは15
〜35℃とするのが望ましい。
The conditions of the aerobic tank 30 are as follows: pH 6-9, preferably 7-8.5, temperature 0-40 ° C., preferably 15
It is desirable to set the temperature to 35 ° C.

【0028】後段の硝化槽2において硝化を行った硝化
液の一部は連絡路11から最終脱窒槽3に導入し、水素
供与体としてメタノール等の有機物を有機物供給路18
から供給して、脱窒槽1の場合と同様にして最終的な脱
窒を行う。最終脱窒槽3の最終脱窒液は最終好気処理槽
4において再曝気することにより、残留する有機物を除
去する。
A part of the nitrification solution that has been nitrified in the subsequent nitrification tank 2 is introduced into the final denitrification tank 3 from the communication path 11, and an organic matter such as methanol as a hydrogen donor is supplied to the organic matter supply path 18
And denitrification is performed in the same manner as in the denitrification tank 1. The final denitrification liquid in the final denitrification tank 3 is re-aerated in the final aerobic treatment tank 4 to remove the residual organic matter.

【0029】最終好気処理槽4内の最終好気処理液は一
部ずつ連絡路20から取出して、固液分離槽5に導入し
て固液分離し、分離液と分離汚泥とに分離する。分離液
は処理水として処理水路23から排出する。分離汚泥は
汚泥路24から取出し、その一部は返送汚泥として汚泥
返送路7から脱窒槽1に返送する。残部は余剰汚泥とし
て汚泥排出路25から系外に排出する。なお図1の方法
では、最終脱窒槽3および最終好気処理槽4は省略する
ことができる。
The final aerobic treatment liquid in the final aerobic treatment tank 4 is taken out part by part from the communication passage 20 and introduced into the solid-liquid separation tank 5 for solid-liquid separation to separate it into a separated liquid and separated sludge. . The separated liquid is discharged from the treated water channel 23 as treated water. The separated sludge is taken out from the sludge passage 24, and part of it is returned to the denitrification tank 1 from the sludge return passage 7 as return sludge. The rest is discharged as excess sludge from the sludge discharge path 25 to the outside of the system. In the method of FIG. 1, the final denitrification tank 3 and the final aerobic treatment tank 4 can be omitted.

【0030】図2は本発明の生物処理方法を採用した有
機性排液の好気性処理方法を示すフロー図であり、曝気
槽にスポンジ状担体を投入する場合の実施例であって、
余剰汚泥をオゾン処理した後曝気槽に導入して好気性処
理することにより、余剰汚泥の減容化を図る実施例であ
る。図2において、41は好気性処理系、42はオゾン
処理系、43は曝気槽、44は固液分離槽、45はスポ
ンジからなる担体、46はオゾン処理槽である。
FIG. 2 is a flow chart showing an aerobic treatment method of an organic waste liquid which employs the biological treatment method of the present invention, which is an embodiment in the case of introducing a sponge-like carrier into an aeration tank.
In this example, the excess sludge is treated with ozone and then introduced into an aeration tank for aerobic treatment to reduce the volume of the excess sludge. In FIG. 2, 41 is an aerobic treatment system, 42 is an ozone treatment system, 43 is an aeration tank, 44 is a solid-liquid separation tank, 45 is a carrier made of sponge, and 46 is an ozone treatment tank.

【0031】図2のフローに従って原水を処理するに
は、曝気槽43に原水路51から原水を導入し、担体4
5、汚泥返送路52から返送する返送汚泥、オゾン処理
汚泥循環路53から循環するオゾン処理汚泥、および曝
気槽43内の浮遊活性汚泥と混合し、空気供給路54か
ら空気を送り、散気装置55から散気して曝気を行い、
好気性処理を行う。これによりBODを分解する。この
場合、スポンジからなる担体45は、減圧または加圧し
て収縮させた後、曝気槽43の槽内液を供給して吸水さ
せ、スポンジの細孔に槽内液を保持させた状態で曝気槽
43に投入する。これにより担体45は短期間に流動化
するようになり、好気性処理系は短期間に定常状態に達
する。担体45の投入量は曝気槽43容量の5〜40
%、好ましくは10〜30%とするのが好ましい。
In order to treat the raw water according to the flow of FIG. 2, the raw water is introduced into the aeration tank 43 from the raw water channel 51 and the carrier 4
5. Return sludge returned from the sludge return passage 52, ozone treated sludge circulated from the ozone treatment sludge circulation passage 53, and floating activated sludge in the aeration tank 43, and air is sent from the air supply passage 54 to diffuse the air. Aerate from 55 and perform aeration,
Perform aerobic treatment. This decomposes BOD. In this case, the carrier 45 made of a sponge is decompressed or pressurized to shrink it, and then the liquid in the tank of the aeration tank 43 is supplied to absorb water, and the liquid in the tank is held in the pores of the sponge. Throw in 43. As a result, the carrier 45 becomes fluidized in a short period, and the aerobic treatment system reaches a steady state in a short period. The amount of the carrier 45 charged is 5 to 40 of the aeration tank 43 capacity.
%, Preferably 10 to 30%.

【0032】曝気槽43の混合液(槽内液)の一部は担
体45が流出しないように、スクリーン56を通して固
液分離槽44に導き、固液分離を行う。分離液は処理水
として処理水路57から排出し、分離汚泥の一部は汚泥
返送路52から返送汚泥として、ポンプP1により曝気
槽43に返送する。
A part of the mixed liquid (in-tank liquid) in the aeration tank 43 is guided to the solid-liquid separation tank 44 through the screen 56 so that the carrier 45 does not flow out, and solid-liquid separation is performed. The separated liquid is discharged from the treated water channel 57 as treated water, and a part of the separated sludge is returned to the aeration tank 43 by the pump P 1 as returned sludge from the sludge return passage 52.

【0033】一方、分離汚泥の他の一部を被オゾン処理
汚泥として、ポンプP2により汚泥引抜路58からオゾ
ン処理槽46に循環する。ここではオゾン供給路59か
らオゾンを供給して被オゾン処理汚泥とオゾンとを接触
させ、オゾン処理する。これにより被オゾン処理汚泥は
オゾンにより酸化分解されてBODおよび微量の難生物
分解性のCODに変換される。オゾン処理汚泥はオゾン
処理汚泥循環路53から曝気槽43に戻し(循環し)、
負荷として好気性処理する。オゾン排ガスは排オゾン路
60から排出する。余剰汚泥が生じる場合には余剰汚泥
排出路61から排出する。
On the other hand, the other part of the separated sludge is treated as ozone-treated sludge and circulated from the sludge extraction passage 58 to the ozone treatment tank 46 by the pump P 2 . Here, ozone is supplied from the ozone supply path 59 to bring the sludge to be treated into contact with ozone to perform ozone treatment. As a result, the ozone-treated sludge is oxidatively decomposed by ozone and converted into BOD and a trace amount of biodegradable COD. The ozone-treated sludge is returned (circulated) from the ozone-treated sludge circulation path 53 to the aeration tank 43,
Aerobic treatment as load. The ozone exhaust gas is discharged from the exhaust ozone passage 60. When excess sludge is generated, it is discharged from the excess sludge discharge path 61.

【0034】図2のフローにより好気性処理する場合、
分離汚泥の一部をオゾン処理してBOD化した後、曝気
槽43に戻して好気性処理しているので、余剰汚泥の排
出量は少なくなり、多量の分離汚泥をオゾン処理する場
合には余剰汚泥をゼロにすることもできる。この場合、
好気性処理性能を低下させず、安定した処理を行うため
には、曝気槽43内に一定量の好気性微生物を保持する
必要があるので、曝気槽43に前記の方法により担体4
5を投入する。
When performing aerobic treatment according to the flow of FIG.
After a part of the separated sludge is ozone-treated and converted into BOD, it is returned to the aeration tank 43 for aerobic treatment, so the amount of surplus sludge discharged is reduced, and when a large amount of separated sludge is ozone-treated, it is excessive. Sludge can be reduced to zero. in this case,
In order to carry out a stable treatment without degrading the aerobic treatment performance, it is necessary to retain a certain amount of aerobic microorganisms in the aeration tank 43.
Turn on 5.

【0035】[0035]

【実施例】次に本発明の試験例について説明する。 試験例1 10 literの透明な塩化ビニル製の曝気槽を用い、ペプ
トン、イーストエキス主体の合成排水を、BOD槽負荷
=1kg/m3・日、曝気槽のMLSS濃度=2500
mg/lの条件で好気性処理した。この曝気槽に5×5
×5mmの直方体状のポリウレタンフォーム製の吸水ス
ポンジ(長さ25mm当りのセル数25)を曝気槽容量
の30%の割合で投入し、スポンジの流動化を評価し
た。スポンジへの吸水方法および評価方法は次の通りで
ある。
Next, test examples of the present invention will be described. Test Example 1 A synthetic effluent mainly composed of peptone and yeast extract was used in a BOD tank load of 1 kg / m 3 · day using a 10 liter transparent vinyl chloride aeration tank, and the MLSS concentration of the aeration tank was 2500.
Aerobic treatment was carried out under the condition of mg / l. 5x5 in this aeration tank
A water-absorbing sponge (25 cells per length 25 mm) made of polyurethane foam in the shape of a cuboid of 5 mm (25 cells per length 25 mm) was added at a rate of 30% of the aeration tank capacity, and fluidization of the sponge was evaluated. The water absorption method and evaluation method for the sponge are as follows.

【0036】〔吸水方法〕スポンジをビニール袋に入
れ、真空ポンプで減圧にして1/5の体積まで収縮させ
た後、曝気槽の槽内液を供給して吸水させた。 〔評価方法〕曝気状態で液面直下に浮上しているスポン
ジ容積を測定した(浮上スポンジ)。投入したスポンジ
の全容積から上記浮上スポンジの容積を減じて流動して
いるスポンジの量とし、これから流動しているスポンジ
の割合を算出した。結果を図3に示す。なお、吸水させ
ていないスポンジを用いて行った試験を対照とした。
[Water Absorption Method] The sponge was placed in a vinyl bag, the pressure was reduced by a vacuum pump to shrink the volume to ⅕, and then the tank liquid of the aeration tank was supplied to absorb water. [Evaluation Method] The volume of the sponge floating just below the liquid surface in the aerated state was measured (floating sponge). The volume of the floating sponge was subtracted from the total volume of the added sponge to obtain the amount of flowing sponge, and the ratio of the flowing sponge was calculated. The results are shown in FIG. The test conducted using a sponge that did not absorb water was used as a control.

【0037】試験例2 試験例1において、槽内液の代わりに水道水を吸水させ
たスポンジを用いた以外は試験例1と同様にして行っ
た。結果を図3に示す。
Test Example 2 Test Example 2 was carried out in the same manner as in Test Example 1 except that a sponge in which tap water was absorbed was used instead of the liquid in the tank. The results are shown in FIG.

【0038】図3の結果から、試験例1および2では、
投入後2〜3日で90%以上のスポンジが流動し、対照
(無処理)に比べて短期間で流動することがわかる。
From the results of FIG. 3, in Test Examples 1 and 2,
It can be seen that 90% or more of the sponge flows in 2 to 3 days after the addition, and flows in a shorter period than the control (untreated).

【0039】試験例3 試験例1と同様にして、ただしセル数の異なるスポンジ
を用いて、また吸水させる液をMLSS濃度が約200
0mg/lの活性汚泥混合液に変更して試験した。結果
を図4に示す。
Test Example 3 In the same manner as in Test Example 1, except that sponges having different numbers of cells were used and the liquid to be absorbed had an MLSS concentration of about 200.
The test was carried out by changing to a 0 mg / l activated sludge mixture. FIG. 4 shows the results.

【0040】図4から、長さ25mm当りのセル数が2
5個以上のスポンジの場合、流動に要する期間がより短
くなることがわかる。
From FIG. 4, the number of cells per length of 25 mm is 2
It can be seen that for five or more sponges, the period required for flow is shorter.

【0041】[0041]

【発明の効果】本発明の生物処理方法は、減圧または加
圧してスポンジ状担体を収縮させた後、水または生物汚
泥混合液を吸水させたスポンジ状担体を反応槽に投入す
るようにしたので、スポンジ状担体を薬剤を用いないで
も短期間で流動化させることができる。このため低コス
トでの処理が可能になり、しかも使用済の薬剤の処理を
行う必要はなく、かつスポンジ状担体の効果を短期間で
発揮させることができる。
EFFECT OF THE INVENTION In the biological treatment method of the present invention, the sponge-like carrier is contracted under reduced pressure or pressure, and then the sponge-like carrier in which water or the biological sludge mixed liquid is absorbed is put into the reaction tank. The spongy carrier can be fluidized in a short period of time without using a drug. Therefore, the treatment can be performed at low cost, and it is not necessary to treat the used medicine, and the effect of the sponge-like carrier can be exhibited in a short period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の生物処理方法を採用した生物学的硝化
脱窒処理方法を示すフロー図である。
FIG. 1 is a flow chart showing a biological nitrification denitrification treatment method adopting the biological treatment method of the present invention.

【図2】本発明の生物処理方法を採用した好気性処理方
法を示すフロー図である。
FIG. 2 is a flow chart showing an aerobic treatment method adopting the biological treatment method of the present invention.

【図3】試験例1〜2の結果を示すグラフである。FIG. 3 is a graph showing the results of Test Examples 1 and 2.

【図4】試験例3の結果を示すグラフである。FIG. 4 is a graph showing the results of Test Example 3.

【符号の説明】[Explanation of symbols]

1 脱窒槽 2 硝化槽 3 最終脱窒槽 4 最終好気処理槽 5 固液分離槽 6 原水路 7 汚泥返送路 8 循環液路 9、11、17、20 連絡路 10、19 攪拌器 12、21 空気供給路 13 散気装置 14 担体 15 スクリーン 18 有機物供給路 22 最終散気装置 23 処理水路 24 汚泥路 25 汚泥排出路 30 好気槽 31 区画板 32 曝気槽 34 前段の散気装置 35 後段の散気装置 36 流路 41 好気性処理系 42 オゾン処理系 43 曝気槽 44 固液分離槽 45 担体 46 オゾン処理槽 51 原水路 52 汚泥返送路 53 オゾン処理汚泥循環路 54 空気供給路 55 散気装置 56 スクリーン 57 処理水路 58 汚泥引抜路 59 オゾン供給路 60 排オゾン路 61 余剰汚泥排出路 1 Denitrification tank 2 Nitrification tank 3 Final denitrification tank 4 Final aerobic treatment tank 5 Solid-liquid separation tank 6 Raw water channel 7 Sludge return channel 8 Circulating fluid channel 9, 11, 17, 20 Communication channel 10, 19 Stirrer 12, 21 Air Supply channel 13 Air diffuser 14 Carrier 15 Screen 18 Organic matter supply channel 22 Final air diffuser 23 Treated water channel 24 Sludge channel 25 Sludge discharge channel 30 Aerobic tank 31 Partition plate 32 Aeration tank 34 Front air diffuser 35 Rear air diffuser Equipment 36 Flow path 41 Aerobic treatment system 42 Ozone treatment system 43 Aeration tank 44 Solid-liquid separation tank 45 Carrier 46 Ozone treatment tank 51 Raw water channel 52 Sludge return channel 53 Ozone treatment sludge circulation channel 54 Air supply channel 55 Air diffuser 56 Screen 57 Treated water channel 58 Sludge extraction channel 59 Ozone supply channel 60 Exhaust ozone channel 61 Excess sludge discharge channel

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 反応槽に微生物を担持するスポンジ状担
体を流動させて被処理液を生物処理する方法において、 減圧または加圧してスポンジ状担体を収縮させた後、水
または生物汚泥混合液を吸水させたスポンジ状担体を反
応槽に投入することを特徴とするスポンジ状担体を用い
る生物処理方法。
1. A method for biologically treating a liquid to be treated by flowing a sponge-like carrier carrying microorganisms into a reaction tank, wherein the sponge-like carrier is contracted by depressurizing or pressurizing, and then water or a biological sludge mixture is added. A biological treatment method using a sponge-like carrier, which comprises charging a water-absorbed sponge-like carrier into a reaction tank.
JP21503595A 1995-08-23 1995-08-23 Biological treatment using spongy carrier Pending JPH0957288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21503595A JPH0957288A (en) 1995-08-23 1995-08-23 Biological treatment using spongy carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21503595A JPH0957288A (en) 1995-08-23 1995-08-23 Biological treatment using spongy carrier

Publications (1)

Publication Number Publication Date
JPH0957288A true JPH0957288A (en) 1997-03-04

Family

ID=16665682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21503595A Pending JPH0957288A (en) 1995-08-23 1995-08-23 Biological treatment using spongy carrier

Country Status (1)

Country Link
JP (1) JPH0957288A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423266B1 (en) * 1998-08-21 2004-06-24 현대중공업 주식회사 Selective Media Injection Method in Nitrogen Removal Process of Sewage Treatment Plant
JP2007105580A (en) * 2005-10-12 2007-04-26 Kurita Water Ind Ltd Method and apparatus for biologically treating organic drainage
JP2007296499A (en) * 2006-05-08 2007-11-15 Japan Organo Co Ltd Waste water treatment method
JP2008246420A (en) * 2007-03-30 2008-10-16 Kurita Water Ind Ltd Multistage biological treatment apparatus and method
WO2014167952A1 (en) * 2013-04-08 2014-10-16 栗田工業株式会社 Biological treatment method and device for organic wastewater
JP2016190203A (en) * 2015-03-31 2016-11-10 国立大学法人北海道大学 Wastewater treatment method and wastewater treatment device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423266B1 (en) * 1998-08-21 2004-06-24 현대중공업 주식회사 Selective Media Injection Method in Nitrogen Removal Process of Sewage Treatment Plant
JP2007105580A (en) * 2005-10-12 2007-04-26 Kurita Water Ind Ltd Method and apparatus for biologically treating organic drainage
JP2007296499A (en) * 2006-05-08 2007-11-15 Japan Organo Co Ltd Waste water treatment method
JP2008246420A (en) * 2007-03-30 2008-10-16 Kurita Water Ind Ltd Multistage biological treatment apparatus and method
WO2014167952A1 (en) * 2013-04-08 2014-10-16 栗田工業株式会社 Biological treatment method and device for organic wastewater
JP2014200760A (en) * 2013-04-08 2014-10-27 栗田工業株式会社 Biological treatment method and apparatus of organic waste water
JP2016190203A (en) * 2015-03-31 2016-11-10 国立大学法人北海道大学 Wastewater treatment method and wastewater treatment device

Similar Documents

Publication Publication Date Title
JP2000015288A (en) Waste water treatment method and apparatus
JPH0957288A (en) Biological treatment using spongy carrier
JP3136902B2 (en) Wastewater treatment method
JP3391057B2 (en) Biological nitrogen removal equipment
JP3677783B2 (en) Nitrification method
JP3136900B2 (en) Wastewater treatment method
US7056438B2 (en) Flood and drain wastewater treatment system and associated methods
JP3345874B2 (en) Comprehensive immobilization carrier and treatment device for wastewater containing ammonia
JP3136901B2 (en) Wastewater treatment method
JP3215349B2 (en) Nitrification and denitrification of nitrogen-containing wastewater
KR20160105364A (en) High concentration wastewater treatment apparatus using a microorganism amplification device
JPH07241584A (en) Waste water treatment method and apparatus using composite activated sludge carrier
JP3973069B2 (en) Organic wastewater treatment method and apparatus
JP3407342B2 (en) Biological denitrification / phosphorus removal equipment
JPH06182377A (en) Method for treating sewage
JP3222014B2 (en) Biological water treatment method for wastewater containing ammonia nitrogen
JP2565429B2 (en) Method and apparatus for biological nitrification denitrification of organic wastewater
JP3215348B2 (en) How to denitrify nitrogen-containing wastewater
JPH03229693A (en) Treatment of organic waste water
JPH1057984A (en) Biological treating device
JPH0985285A (en) High-degree removal of nitrogen in organic sewage
JPH0884998A (en) Organic sewage treatment device
JPH1080697A (en) Complete treatment of organic sewage
JPH0760284A (en) Nitrification and denitrification treatment device
JPH05154495A (en) Method for nitrifying and denitrifying organic waste water