JP3391057B2 - Biological nitrogen removal equipment - Google Patents

Biological nitrogen removal equipment

Info

Publication number
JP3391057B2
JP3391057B2 JP21968093A JP21968093A JP3391057B2 JP 3391057 B2 JP3391057 B2 JP 3391057B2 JP 21968093 A JP21968093 A JP 21968093A JP 21968093 A JP21968093 A JP 21968093A JP 3391057 B2 JP3391057 B2 JP 3391057B2
Authority
JP
Japan
Prior art keywords
denitrification
biological
filtration layer
reaction tank
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21968093A
Other languages
Japanese (ja)
Other versions
JPH0768293A (en
Inventor
元之 依田
敦 渡辺
浩昭 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP21968093A priority Critical patent/JP3391057B2/en
Publication of JPH0768293A publication Critical patent/JPH0768293A/en
Application granted granted Critical
Publication of JP3391057B2 publication Critical patent/JP3391057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は生物学的窒素除去装置に
係り、特に下水、し尿、産業排水などの窒素(有機態、
アンモニア態、硝酸亜硝酸態)を含有する排水から、富
栄養化の原因物質の一つである窒素を効率良く、安価に
除去する生物学的窒素除去装置に関する。 【0002】 【従来の技術】下水、し尿、産業排水などの下排水中の
窒素は、湖沼、内湾などの閉鎖性水域における富栄養化
現象の原因とされている。従来、これらの排水中からの
窒素除去技術としては、微生物を利用した生物学的硝化
・脱窒法が良く知られている。微生物による硝化・脱窒
反応は、自栄養細菌であるNitrosomonasとNitrobacter
のアンモニア酸化能を利用して、排水中のアンモニア態
窒素(NH4 −N)を亜硝酸(NO2 −N)を経由して
硝酸(NO3 −N)に酸化し、その後に、他栄養細菌で
硝酸塩中の酸素を呼吸に利用できる、いわゆる脱窒細菌
の働きにより、排水中の有機物又は外部から供給される
有機物等を電子供与体としてNO3 −NからN2 ガスに
還元することにより、排水中から除去するものである。
この方法は浮遊型反応槽(活性汚泥法)や固定床法など
により実用化されている。 【0003】従来、最も効率の高いこの種の硝化・脱窒
装置として、一槽で一連の硝化・脱窒反応を行える上向
流タイプの反応槽がある。これは、反応槽内にアンスラ
サイト、プラスチック充填材等を充填し、上向流で排水
を通水して、濾材の中間から曝気するもので、充填層の
下層は脱窒部、上層は硝化部に利用し、硝酸化された水
を脱窒部に循環することにより、上記の機構により窒素
を除去するものである。 【0004】また、特開昭62−225296号公報に
は、汚泥粒となった脱窒細菌の汚泥床を有する脱窒槽
と、担体を充填した固定床式の硝化槽とを設け、原水を
循環硝化液とともに脱窒槽に導入し、その流出水を硝化
槽に導入する装置が記載されている。 【0005】 【発明が解決しようとする課題】上記従来の装置のう
ち、下部充填層を脱窒部、上部充填層を硝化部として一
槽で硝化・脱窒反応を行なうものでは、充填材の種類や
大きさ(比表面積)等にもよるが比較的効率が高く、高
負荷での処理が可能である。しかし、この種の反応槽で
は原水に含まれる浮遊性固形物(SS)の捕捉や濾材の
表面や空隙に増殖する微生物によって、充填層の目詰ま
りが生ずるため、濾層の圧力損失に応じるか、或いは定
期的に濾層の逆洗操作が不可欠であった。特に、脱窒細
菌は他栄養細菌であるため、自栄養性の硝化細菌と比較
して菌体の増殖速度も速く、濾床の下部での圧力損失の
上昇が著しい。 【0006】このような反応槽における逆洗操作は、水
と空気、或いはその両方を反応槽内に導入することによ
り行われるが、通常、多量の逆洗水(多くの場合、処理
水が利用される。)を使用するため、あまり頻度が多く
なると処理水の大部分が逆洗用となってしまう可能性が
ある。特に、窒素を比較的高濃度に含む排水では、同じ
窒素負荷でも反応槽への通液量は相対的に少ないので、
この逆洗水の量の多少は重要な要素であり、事実上、窒
素濃度が100mg/l以上の排水には適用が難しいの
が現状である。 【0007】一方、特開昭62−225296号公報記
載の装置では、脱窒槽と硝化槽とを別々に設けることか
ら、設備費が嵩むという欠点がある。 【0008】本発明は上記従来の問題点を解決し、一つ
の反応槽で硝化・脱窒を行う生物濾過層形成型の安価な
生物学的窒素除去装置であって、少ない逆洗頻度により
良好な反応を維持させることができる生物学的窒素除去
装置を提供することを目的とする。 【0009】 【課題を解決するための手段】本発明の生物学的窒素除
去装置は、槽内の上部に硝化部が、下部に脱窒部が形成
された反応槽と、原水を該反応槽の下部から導入して上
向流通水し、処理水を該反応槽上部から排出する手段
と、該処理水の一部を反応槽下部に戻す循環手段とを備
える生物学的窒素除去装置において、前記硝化部には、
硝化細菌を付着させた浮上性濾材よりなる担体が充填さ
れた生物濾過層を形成し、前記脱窒部には脱窒細菌が自
己造粒作用により粒状化した汚泥粒の濾過層を形成し
前記生物濾過層と該汚泥粒の濾過層との間の部分に逆洗
排水排出配管を設けたことを特徴とする。 【0010】 【作用】本発明の生物学的窒素除去装置は、一つの反応
槽内に硝化部と脱窒部とが形成されているため、設備の
小型化、簡易化及び低コスト化が図れる。 【0011】また、硝化部のみ、増殖速度が小さい硝化
細菌の付着増殖の場を確保するために担体を充填して生
物濾過層を形成し、充填材による濾過層を形成した場
合、圧力損失の大きい脱窒部は、増殖速度の大きい脱窒
細菌の自己造粒物(グラニュール)による濾過層とした
ため、逆洗は硝化部のみ行なえば良く、脱窒部の逆洗は
不要である。 【0012】このため、逆洗水量の減少、処理運転維持
時間の延長、脱窒部の負荷の増大を図ることができる。 【0013】 【実施例】以下、図面を参照して本発明の生物学的窒素
除去装置の実施例について詳細に説明する。 【0014】図1は本発明の生物学的窒素除去装置の一
実施例を示す系統図である。 【0015】本実施例の生物学的窒素除去装置は、反応
槽1の上部に硝化細菌を付着させた浮上性濾材よりなる
担体が充填された生物濾過層2により硝化部が形成さ
れ、反応槽1の下部には脱窒細菌が自己造粒作用により
粒状化した汚泥粒(自己造粒物:グラニュール)3の濾
過層4が形成されている。反応槽1の下部には原水の導
入配管5が設けられており、上部には処理水の排出配管
6が設けられている。排出配管6から抜き出された処理
水は、処理水槽7を経て配管8,9から系外へ排出され
る。処理水の一部は配管10より配管5に導入される。
また、生物濾過層2の下部には散気管11が設けられて
いる。 【0016】本実施例においては、処理水槽7内の処理
水を生物濾過層2の上部に導入して逆洗するための配管
12と、逆洗排水を生物濾過層2の下方部(生物濾過層
2と濾過層4との間の部分)から排出するための配管1
3とが設けられている。 【0017】V1 ,V2 はバルブである。なお、配管1
3は濾過層4の汚泥引き抜き配管としても用いられる。 【0018】本実施例の生物学的窒素除去装置において
は、バルブV1 を開閉として原水の処理を行なう。即
ち、原水は、配管10より循環される処理水の一部と共
に配管5よりまず濾過層4の脱窒部に導入され、この脱
窒部において硝酸塩がN2 ガスに還元される。脱窒細菌
は増殖速度が大きく、菌体の窒素当りの転換率も0.4
5g/g−Nと大きいが、増殖した余剰菌体は脱窒部の
上部に設けられた汚泥引き抜き配管13により、連続的
又は間欠的に外部に取り出される。 【0019】脱窒部4を通過した水は、次いで硝化部2
に流入する。硝化部2では生物濾過層の直下に設置され
た散気管11から空気を導入し、水中に含まれる有機窒
素及びアンモニア態窒素を硝酸、亜硝酸に酸化する。硝
化細菌は脱窒細菌と比較して窒素当りの菌体の転換率は
0.17g/g−Nと格段に小さいため、硝化部2での
濾過層の目詰まり、即ち圧力損失の上昇も小さい。 【0020】硝化部2を通過した処理水は、配管6より
反応槽2から抜き出され、処理水槽7に貯留される。処
理水槽7内の処理水は、配管8,10を経てその一部が
原水側に循環水として循環され、残部は配管9より系外
へ排出される。 【0021】このような生物学的窒素除去装置において
は、脱窒部の濾過層4においては逆洗を行なう必要はな
く、逆洗は硝化部の生物濾過層2のみで良いため、逆洗
頻度は従来の槽内の下部充填層を脱窒部、上部充填層を
硝化部とする反応槽に比べて1/3程度以下に大幅に低
減される。 【0022】本発明において、生物濾過層2に充填する
担体としては、浮上性濾材を充填し、逆洗を下記の手順
で行なう。 【0023】即ち、まず、バルブV1 を閉として原水の
供給を停止し、また、散気管11からの空気の供給も停
止する。次に、バルブV2 を開として、処理水槽7内の
処理水を配管12より下向流にて生物濾過層2に通過さ
せ、浮上性濾材を流動させながら逆洗し、逆洗排水を配
管13より排出する。その後、バルブV2 を閉として、
散気管11からの空気の供給を行ない、浮上性濾材を気
泡で流動させて余剰菌体を剥離させる。再びバルブV2
を開として、剥離した菌体と共に逆洗排水を配管13よ
り槽外へ引き抜く。 【0024】なお、浮上性濾材としては特に制限はない
が、発泡ポリスチレン,発泡ポリエチレン,発泡ポリプ
ロピレン等を用いることができる。 【0025】 【0026】 【発明の効果】以上詳述した通り、本発明の生物学的窒
素除去装置によれば、 一つの反応槽にて硝化・脱窒処理することができる
ことから、設備の小型化、簡易化、低コスト化が図れ
る。 逆洗は硝化部のみでよく、脱窒の逆洗は不要である
ことから、逆洗水量の減少、処理運転維持時間の延長、
脱窒部の負荷の増大を図ることができる。などの効果が
奏され、排水を容易かつ効率的に、安価に処理すること
が可能とされる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological nitrogen removing apparatus, and more particularly, to a nitrogen (organic, organic, etc.) method for sewage, night soil, industrial waste water, etc.
The present invention relates to a biological nitrogen removing device that efficiently and inexpensively removes nitrogen, which is one of the causative substances of eutrophication, from wastewater containing ammonia and nitrite. [0002] Nitrogen in sewage such as sewage, night soil, and industrial effluent is considered to be a cause of eutrophication in closed water bodies such as lakes and marshes and inner bays. Conventionally, as a technique for removing nitrogen from these wastewaters, a biological nitrification / denitrification method utilizing microorganisms is well known. Microbial nitrification and denitrification reactions are caused by autotrophic bacteria Nitrosomonas and Nitrobacter
Ammonia nitrogen (NH 4 -N) in waste water is oxidized to nitric acid (NO 3 -N) via nitrous acid (NO 2 -N) by utilizing the ammonia oxidizing ability of available oxygen in nitrate in bacterial respiration, by the action of so-called denitrifying bacteria, organic substances or the like supplied from organic or outside in wastewater by reducing the NO 3 -N into N 2 gas as an electron donor , From the wastewater.
This method has been put to practical use by a floating reaction tank (activated sludge method), a fixed bed method, or the like. Conventionally, as the most efficient nitrification / denitrification apparatus of this type, there is an upward flow type reaction tank capable of performing a series of nitrification / denitrification reactions in one tank. In this method, anthracite, plastic filler, etc. are filled in a reaction tank, drainage water is passed upward, and aeration is performed from the middle of the filter medium.The lower layer of the packed layer is a denitrification section, and the upper layer is nitrification. The nitrogen is removed by the above mechanism by circulating the nitrated water to the denitrification section by utilizing the water in the denitrification section. Further, <br/> in JP 62-225296 Gazette is a denitrification tank having a sludge bed of denitrifying bacteria became sludge particles, and a nitrification tank of fixed bed packed with a carrier An apparatus is described in which raw water is introduced into a denitrification tank together with a circulating nitrification solution, and the effluent is introduced into the nitrification tank. [0005] Among the above-mentioned conventional apparatuses, in which the nitrification / denitrification reaction is carried out in a single tank using the lower packed bed as a denitrification section and the upper packed bed as a nitrification section, Although it depends on the type and size (specific surface area), the efficiency is relatively high, and processing under a high load is possible. However, in this type of reaction tank, clogging of the packed bed occurs due to trapping of suspended solids (SS) contained in the raw water and microorganisms growing on the surface and voids of the filter medium. Alternatively, a backwash operation of the filter layer was indispensable periodically. In particular, since the denitrifying bacteria are allotrophic bacteria, the growth rate of the cells is higher than that of the autotrophic nitrifying bacteria, and the pressure loss at the lower part of the filter bed is significantly increased. [0006] The backwashing operation in such a reaction tank is carried out by introducing water and / or air into the reaction tank. Usually, a large amount of backwash water (in many cases, treated water is used). If the frequency is too high, most of the treated water may be used for backwashing. In particular, in wastewater containing nitrogen at a relatively high concentration, the amount of liquid flowing into the reaction tank is relatively small even with the same nitrogen load.
The amount of this backwash water is an important factor, and it is practically difficult to apply it to wastewater with a nitrogen concentration of 100 mg / l or more. On the other hand, the apparatus described in Japanese Patent Application Laid-Open No. 62-225296 has a drawback that equipment costs increase because a denitrification tank and a nitrification tank are separately provided. The present invention solves the above-mentioned conventional problems, and is an inexpensive biological nitrogen removal apparatus of a biological filtration layer type in which nitrification and denitrification are performed in one reaction tank. It is an object of the present invention to provide a biological nitrogen removing device capable of maintaining a proper reaction. [0009] The biological nitrogen removing apparatus of the present invention comprises: a reaction tank having a nitrification section formed in an upper part of a tank and a denitrification part formed in a lower part; In a biological nitrogen removal apparatus comprising: means for introducing upward from the lower part of the reactor and flowing upward, and means for discharging treated water from the upper part of the reaction tank, and circulating means for returning a part of the treated water to the lower part of the reaction tank. In the nitrification section,
Forming a biological filtration layer filled with a carrier consisting of a buoyant filter medium to which nitrifying bacteria are attached, and forming a filtration layer of sludge particles in which the denitrifying bacteria are granulated by a self-granulating action in the denitrification part ,
Backwashing between the biological filtration layer and the filtration layer of the sludge granules
A drain discharge pipe is provided . In the biological nitrogen removing apparatus of the present invention, the nitrification section and the denitrification section are formed in one reaction tank, so that the equipment can be reduced in size, simplified, and reduced in cost. . In addition, only the nitrification portion is filled with a carrier to form a biological filtration layer in order to secure a place for the adhering and growing nitrifying bacteria having a low growth rate, and a biological filtration layer is formed. Since the large denitrification part was formed as a filtration layer using self-granulated substances (granules) of denitrification bacteria having a high growth rate, backwashing only needs to be performed in the nitrification part, and backwashing of the denitrification part is unnecessary. [0012] For this reason, it is possible to reduce the amount of backwash water, extend the treatment operation maintaining time, and increase the load on the denitrification unit. An embodiment of a biological nitrogen removing apparatus according to the present invention will be described below in detail with reference to the drawings. FIG. 1 is a system diagram showing one embodiment of the biological nitrogen removing apparatus of the present invention. In the biological nitrogen removing apparatus according to the present embodiment, a nitrification portion is formed by a biological filtration layer 2 filled with a carrier made of a buoyant filter medium having nitrifying bacteria adhered to an upper portion of a reaction tank 1. A filtration layer 4 of sludge granules (self-granulated material: granules) 3 in which denitrifying bacteria are granulated by a self-granulating action is formed in a lower portion of the reaction tank 1. A raw water introduction pipe 5 is provided at a lower part of the reaction tank 1, and a treated water discharge pipe 6 is provided at an upper part. The treated water extracted from the discharge pipe 6 is discharged from the pipes 8 and 9 through the treated water tank 7 to the outside of the system. Part of the treated water is introduced into the pipe 5 from the pipe 10.
An air diffuser 11 is provided below the biological filtration layer 2. In the present embodiment, a pipe 12 for introducing the treated water in the treated water tank 7 to the upper part of the biological filtration layer 2 for backwashing, and the backwash wastewater is supplied to the lower part of the biological filtration layer 2 (biological filtration). Pipe 1 for discharging from the portion between the layer 2 and the filter layer 4)
3 are provided. V 1 and V 2 are valves. In addition, piping 1
Reference numeral 3 is also used as a sludge extraction pipe for the filtration layer 4. [0018] In biological nitrogen removal device of the present embodiment performs processing of the raw water valve V 1 as an opening and closing. That is, the raw water is first introduced into the denitrification section of the filtration layer 4 through the pipe 5 together with a part of the treated water circulated through the pipe 10, where the nitrate is reduced to N 2 gas. Denitrifying bacteria have a high growth rate and the conversion rate of cells per nitrogen is 0.4.
Excessive bacterial cells, which are as large as 5 g / g-N, are proliferated, and are continuously or intermittently taken out to the outside by a sludge extraction pipe 13 provided above the denitrification unit. The water that has passed through the denitrification section 4 is then passed to the nitrification section 2
Flows into. In the nitrification unit 2, air is introduced from the air diffuser 11 installed immediately below the biological filtration layer, and the organic nitrogen and ammonia nitrogen contained in the water are oxidized to nitric acid and nitrous acid. Since the nitrifying bacteria have a remarkably low conversion rate of cells per nitrogen of 0.17 g / g-N as compared with the denitrifying bacteria, clogging of the filter layer in the nitrifying section 2, that is, increase in pressure loss is small. . The treated water that has passed through the nitrification section 2 is extracted from the reaction tank 2 through a pipe 6 and stored in a treated water tank 7. A part of the treated water in the treated water tank 7 is circulated as circulating water to the raw water side via the pipes 8 and 10, and the remaining part is discharged out of the system through the pipe 9. In such a biological nitrogen removing apparatus, it is not necessary to perform backwashing in the filter layer 4 in the denitrification section, and the backwash only needs to be performed in the biological filter layer 2 in the nitrification section. Is significantly reduced to about 1/3 or less as compared with a conventional reaction tank in which a lower packed bed in a tank is a denitrification section and an upper packed bed is a nitrification section. [0022] In the present invention, a carrier to be filled in biological filtration layer 2, filled with a levitation filter media will rows backwash the following procedure. First, the supply of raw water is stopped by closing the valve V 1, and the supply of air from the air diffuser 11 is also stopped. Next, the valve V 2 is opened, the treated water in the treated water tank 7 is passed through the biological filtration layer 2 in a downward flow from the pipe 12, backwashed while the buoyant filter medium is flowing, and the backwash drainage is piped. 13 to discharge. Then, the valve V 2 is closed,
The air is supplied from the air diffuser 11 and the buoyant filter medium is caused to flow by air bubbles to remove the excess bacterial cells. Again valve V 2
, And the backwash drainage together with the detached cells is pulled out of the tank through the pipe 13. Although there is no particular limitation on the floating filter medium, expanded polystyrene, expanded polyethylene, expanded polypropylene and the like can be used. As described above in detail, according to the biological nitrogen removing apparatus of the present invention, nitrification and denitrification can be performed in one reaction tank, so that the equipment can be reduced in size. , Simplification, and cost reduction. The backwash only needs to be performed in the nitrification section, and the backwash of denitrification is unnecessary.
The load on the denitrification unit can be increased. This makes it possible to easily and efficiently treat wastewater at low cost.

【図面の簡単な説明】 【図1】本発明の生物学的窒素除去装置の一実施例を示
す系統図である。 【符号の説明】 1 反応槽 2 生物濾過層(硝化部) 3 汚泥粒 4 濾過層(脱窒部) 7 処理水槽 11 散気管
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram showing one embodiment of a biological nitrogen removing device of the present invention. [Description of Signs] 1 Reaction tank 2 Biological filtration layer (nitrification section) 3 Sludge particles 4 Filtration layer (denitrification section) 7 Treatment water tank 11 Aeration tube

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−187396(JP,A) 特開 平1−194995(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 3/34 101 C02F 3/02 - 3/10 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-187396 (JP, A) JP-A-1-194995 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 3/34 101 C02F 3/02-3/10

Claims (1)

(57)【特許請求の範囲】 【請求項1】 槽内の上部に硝化部が、下部に脱窒部が
形成された反応槽と、原水を該反応槽の下部から導入し
て上向流通水し、処理水を該反応槽上部から排出する手
段と、該処理水の一部を反応槽下部に戻す循環手段とを
備える生物学的窒素除去装置において、 前記硝化部には、硝化細菌を付着させた浮上性濾材より
なる担体が充填された生物濾過層を形成し、 前記脱窒部には脱窒細菌が自己造粒作用により粒状化し
た汚泥粒の濾過層を形成し 前記生物濾過層と該汚泥粒の濾過層との間の部分に逆洗
排水排出配管を設け たことを特徴とする生物学的窒素除
去装置。
(57) [Claims] 1. A nitrification unit is provided at the upper part of the tank and a denitrification part is provided at the lower part.
The formed reaction tank and raw water are introduced from the lower part of the reaction tank.
To discharge the treated water from the upper part of the reaction tank.
And a circulation means for returning a part of the treated water to the lower part of the reaction tank.
In the biological nitrogen removal device provided, Nitrifying bacteria were attached to the nitrification sectionFrom buoyant filter media
BecomeForming a biological filtration layer filled with a carrier, In the denitrification section, denitrification bacteria are granulated by self-granulation.
Formed a filtration layer of sludge granules, Backwashing between the biological filtration layer and the filtration layer of the sludge granules
Provide drainage discharge pipe Biological nitrogen removal
Leaving device.
JP21968093A 1993-09-03 1993-09-03 Biological nitrogen removal equipment Expired - Fee Related JP3391057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21968093A JP3391057B2 (en) 1993-09-03 1993-09-03 Biological nitrogen removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21968093A JP3391057B2 (en) 1993-09-03 1993-09-03 Biological nitrogen removal equipment

Publications (2)

Publication Number Publication Date
JPH0768293A JPH0768293A (en) 1995-03-14
JP3391057B2 true JP3391057B2 (en) 2003-03-31

Family

ID=16739295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21968093A Expired - Fee Related JP3391057B2 (en) 1993-09-03 1993-09-03 Biological nitrogen removal equipment

Country Status (1)

Country Link
JP (1) JP3391057B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19509367A1 (en) * 1995-03-15 1996-09-19 Linde Ag Process for solid-liquid separation and / or emulsion splitting
NL1005345C2 (en) * 1997-02-21 1998-08-24 Univ Delft Tech Method for obtaining granular growth of a microorganism in a reactor.
JP4581211B2 (en) * 2000-10-05 2010-11-17 栗田工業株式会社 Biological denitrification equipment
JP4560810B2 (en) * 2000-11-27 2010-10-13 株式会社ニッチツ Nitrate ion removal equipment
JP4641116B2 (en) * 2001-03-30 2011-03-02 住友重機械エンバイロメント株式会社 Biological denitrification equipment
JP4655570B2 (en) * 2004-09-28 2011-03-23 栗田工業株式会社 Wastewater treatment equipment containing organic nitrogen compounds
CN102489033A (en) * 2011-11-18 2012-06-13 大连得达科技发展有限公司 Denitrification upward flowing type biofilter
JP2020025952A (en) * 2018-08-17 2020-02-20 田村 善胤 Water purification treatment apparatus
JP7063770B2 (en) * 2018-08-21 2022-05-09 積水化学工業株式会社 Wastewater treatment equipment
CN115991540B (en) * 2023-03-23 2023-06-02 中侨启迪(山东)新材料科技有限公司 Autotrophic denitrification sewage treatment equipment

Also Published As

Publication number Publication date
JPH0768293A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
JP3350353B2 (en) Wastewater treatment method and wastewater treatment device
JP2002346593A (en) Method and apparatus for denitrification
JP3391057B2 (en) Biological nitrogen removal equipment
JPH11285696A (en) Device and method for sewage treatment
JP2609192B2 (en) Biological dephosphorization nitrification denitrification treatment method of organic wastewater
JPH07313992A (en) Treatment of sewage
JPH0461993A (en) Method and apparatus for biological nitration and denitrification of organic polluted water
JPH07313990A (en) Treatment of sewage
KR100438022B1 (en) Method for waste water treatment using float media
JP3973069B2 (en) Organic wastewater treatment method and apparatus
JP2004097926A (en) Water treatment method and water treatment equipment
JPH03232590A (en) Treatment of sewage
JPH07185589A (en) Waste water treatment method for removal of nitrogen and device therefor
JP3496789B2 (en) Organic wastewater treatment method and treatment device
JP3407342B2 (en) Biological denitrification / phosphorus removal equipment
JP3222014B2 (en) Biological water treatment method for wastewater containing ammonia nitrogen
JP2609181B2 (en) Biological nitrification denitrification method and apparatus for organic wastewater
JP2565429B2 (en) Method and apparatus for biological nitrification denitrification of organic wastewater
JP3919455B2 (en) Advanced denitrification method for waste water
JP5172058B2 (en) Continuous denitrification of groundwater contaminated with nitrate nitrogen
JP2525711B2 (en) Advanced purification equipment for organic wastewater
JPH0929278A (en) Method for treating waste water and device therefor
JPH07313991A (en) Treatment of sewage
JPH0223239B2 (en)
JP2601391B2 (en) Biological nitrification denitrification equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees