JPH0929278A - Method for treating waste water and device therefor - Google Patents

Method for treating waste water and device therefor

Info

Publication number
JPH0929278A
JPH0929278A JP20403595A JP20403595A JPH0929278A JP H0929278 A JPH0929278 A JP H0929278A JP 20403595 A JP20403595 A JP 20403595A JP 20403595 A JP20403595 A JP 20403595A JP H0929278 A JPH0929278 A JP H0929278A
Authority
JP
Japan
Prior art keywords
tank
treatment
carrier
wastewater
nitrifying bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20403595A
Other languages
Japanese (ja)
Inventor
Yoshinori Yushina
嘉則 油科
Hisashi Nomura
久志 野村
Yasuo Imamura
泰夫 今村
Takashi Kimura
隆志 木村
Kimiharu Kataoka
公治 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP20403595A priority Critical patent/JPH0929278A/en
Publication of JPH0929278A publication Critical patent/JPH0929278A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a method and device to effect a nitrification treatment of waste water containing nitrogen under pressure. SOLUTION: In a method wherein waste water containing ammonia whose organic matters have been subjected to an aerobic biological treatment and pressurized gas containing oxygen is introduced into a closed treatment tank filled with carriers on which nitrifying bacteria are immobilized to effect a nitrification treatment under pressure, the nitrification treatmant is carried out in the tank under pressure of 1-15kg/cm<2> G, and exhaust gas from the treatment tank is heat-exchanged with a gas supplied by a compressor and thereafter the exhaust gas is reutilized in the aerobic biological treatment of organic matters in the waste water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、工場排水,家庭雑
排水,駅舎排水,集合住宅排水等の窒素含有排水の処理
方法及びその装置に関し、さらに詳しくは、窒素含有排
水を加圧下で好気性処理し、硝化を行う排水の処理方法
及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for treating nitrogen-containing wastewater such as factory wastewater, domestic wastewater, station building wastewater, housing wastewater, and the like. TECHNICAL FIELD The present invention relates to a wastewater treatment method and apparatus for treating and nitrifying.

【0002】[0002]

【従来の技術】近年、海域,河川,湖沼等への窒素,リ
ン含有排水の流入増加により、いわゆる富栄養化現象が
顕著になり、これら領域に藻類等の繁殖及び死滅による
有機物の増加に伴い、水中の溶存酸素が極めて低くなる
現象が多く見られるようになっている。このため、海
域,河川,湖沼等に魚貝類の死滅、また巨視的には微生
物相の変化等の問題が生じ、生態系に大きな影響を与え
ている。窒素含有排水は、かかる富栄養化現象に対する
重大な要因をなしていると考えられており、排水中の窒
素除去は極めて重要な課題である。
2. Description of the Related Art In recent years, the so-called eutrophication phenomenon has become prominent due to an increase in inflow of wastewater containing nitrogen and phosphorus into sea areas, rivers, lakes, and the like. In addition, a phenomenon in which dissolved oxygen in water is extremely low has been frequently observed. For this reason, problems such as the death of fish and shellfish in sea areas, rivers, lakes and marshes, and changes in microflora macroscopically occur, which have a great effect on ecosystems. Nitrogen-containing wastewater is believed to be a significant factor in such eutrophication phenomena, and removing nitrogen from wastewater is a very important task.

【0003】有機物と窒素を含有する排水を、一般に行
われている好気性生物法により処理すると、有機物は炭
酸ガスや水に変換されて無害化し、窒素化合物は脱アミ
ノ化反応によりアンモニアとなる。有機物濃度の低くな
った状態で、さらに好気性処理を施すと、アンモニアは
硝化菌の働きにより亜硝酸、硝酸へと酸化される。この
段階でアンモニアの毒性がなくなり無害化されるが、さ
らに嫌気性雰囲気下にはおいて脱窒菌の働きにより亜硝
酸、硝酸が窒素ガスに変換される。この還元反応では、
水素供与体が必要となり、該水素供与体としてメタノー
ルや酢酸の他、排水中の有機物等を使用するのが一般的
である。
When a wastewater containing organic matter and nitrogen is treated by a general aerobic biological method, the organic matter is converted into carbon dioxide and water to make it harmless, and the nitrogen compound is converted into ammonia by a deamination reaction. When aerobic treatment is further performed in a state where the concentration of organic substances is low, ammonia is oxidized into nitrite and nitric acid by the action of nitrifying bacteria. At this stage, the toxicity of ammonia disappears and it is rendered harmless, but it is further placed in an anaerobic atmosphere to convert nitrous acid and nitric acid into nitrogen gas by the action of denitrifying bacteria. In this reduction reaction,
A hydrogen donor is required, and in addition to methanol and acetic acid, it is common to use organic substances in wastewater as the hydrogen donor.

【0004】[0004]

【発明が解決しようとする課題】アンモニアを好気性酸
化する場合に、亜硝酸に転換する微生物としては主にニ
トロソモナス属細菌があり、亜硝酸をさらに硝酸に転換
する微生物は主にニトロバクター属細菌であることが知
られている。これらの硝化菌は、有機物の酸化菌と比較
すると、増殖速度が遅い。そのため、活性汚泥法のよう
に余剰汚泥の引き抜きを有機物の酸化菌の増殖基準に応
じて行っていると、増殖速度の遅い硝化菌の蓄積は困難
になる。従って、有機物除去後の硝化を効果的に行うた
めには、硝化菌を付着させた担体を使用して硝化反応を
行う場合が多い。その理由は、担体上に付着、増殖した
菌体は流出することなく担体上に固定してからである。
そのため、比較的硝化反応が進行し易くなる。
[Problems to be Solved by the Invention] In the case of aerobic oxidation of ammonia, there are mainly Nitrosomonas bacteria as microorganisms that convert to nitrite, and microorganisms that further convert nitrite to nitric acid are mainly Nitrobacter. It is known to be a bacterium. These nitrifying bacteria have a slower growth rate than the oxidizing bacteria of organic substances. Therefore, when the excess sludge is drawn out according to the growth standard of the oxidizing bacteria of the organic substance as in the activated sludge method, it becomes difficult to accumulate nitrifying bacteria having a slow growth rate. Therefore, in order to effectively carry out nitrification after removal of organic matter, the nitrification reaction is often carried out using a carrier to which nitrifying bacteria are attached. The reason is that the bacterial cells adhered and grown on the carrier are fixed on the carrier without flowing out.
Therefore, the nitrification reaction relatively easily proceeds.

【0005】しかしながら、前述の如く、元々硝化菌は
増殖速度が遅いため、担体上の硝化菌層は通常の場合、
非常に薄く、硝化速度も有機物除去速度の1/4〜1/
5程度である場合が多い。このような理由から、含有窒
素濃度が高い排水の場合などは、硝化槽の容積は相当大
きくなり、時には有機物酸化用の曝気槽と同程度の大き
さになる場合もある。そのため、硝化槽は大型化する必
要があり、装置設計上並びに経済上の課題となってい
る。これに対し、硝化後の嫌気性雰囲気下における脱窒
槽は、脱窒菌の増殖速度が有機物酸化細菌の場合とあま
り変わらないため、脱窒槽の容積は極めて大きくなるこ
とはない。
However, as described above, since the nitrifying bacteria originally have a slow growth rate, the nitrifying bacteria layer on the carrier is usually
Very thin, nitrification rate is 1/4 to 1 / of organic removal rate
It is often around 5. For this reason, in the case of waste water having a high concentration of nitrogen, the volume of the nitrification tank is considerably large, and sometimes it is as large as the aeration tank for oxidizing organic substances. Therefore, the nitrification tank needs to be upsized, which is an issue in terms of device design and economics. On the other hand, in the denitrification tank in an anaerobic atmosphere after nitrification, the growth rate of the denitrifying bacteria is not so different from that of the organic substance-oxidizing bacteria, and therefore the volume of the denitrifying tank does not become extremely large.

【0006】[0006]

【課題を解決するための手段】本発明は、硝化菌を固定
化した担体を充填した密閉型処理槽内に、排水の有機物
を好気性生物処理した後のアンモニア含有排水と加圧し
た酸素含有ガスを導入し、加圧下で硝化処理を行う方法
において、槽内の圧力を1〜15Kg/cm2Gとして
硝化処理を行い、処理槽からの排出ガスを、圧縮器で供
給されたガスと熱交換を行った後に再び排水中の有機物
の好気性生物処理に利用することを特徴とする排水処理
方法並びに排水供給口と処理水排出口を有し、硝化菌を
固定化した担体を充填する密閉型処理槽であって、該処
理槽の下部に酸素含有ガス供給口と連通する散気管を設
置し、槽の上部に液位調整手段、圧力調整手段及びガス
排出口を設け、処理水排出口の直前にスクリーンを設置
し、槽の下部にスラリー排出口を設けると共に、圧縮器
で供給された酸素含有ガスを熱交換器を経由して散気管
へ導くための導管並びに槽上部より排出されるガスを該
熱交換器を経由して系外へ取り出すための導管を備えた
ことを特徴とする排水処理装置に関する。
Means for Solving the Problems The present invention is directed to an ammonia-containing wastewater and a pressurized oxygen-containing wastewater after aerobically treating organic matter in a wastewater in a closed treatment tank filled with a carrier on which nitrifying bacteria are immobilized. In the method of introducing gas and performing nitrification treatment under pressure, nitrification treatment is performed at a pressure in the tank of 1 to 15 Kg / cm 2 G, and the exhaust gas from the treatment tank is treated with the gas supplied by the compressor and heat. After exchanging, it is used again for aerobic biological treatment of organic matter in wastewater, a wastewater treatment method characterized by having a wastewater supply port and a treated water discharge port, and a seal for filling a carrier on which nitrifying bacteria are immobilized. A mold treatment tank, in which a diffuser pipe communicating with an oxygen-containing gas supply port is installed in the lower part of the treatment tank, and a liquid level adjusting means, a pressure adjusting means and a gas outlet are provided in the upper part of the tank, and a treated water outlet is provided. Install a screen immediately before the A discharge port, and a conduit for guiding the oxygen-containing gas supplied from the compressor to the diffuser pipe via the heat exchanger, and the gas discharged from the upper part of the tank via the heat exchanger to the outside of the system. The present invention relates to a wastewater treatment device, which is provided with a conduit for taking out to

【0007】本発明によれば、硝化菌を3次元立体中に
高濃度に集積できるゲル包括固定化担体または合成樹脂
製不織布のように細かい糸が3次元空間をつくり出して
いる担体を使用する。包括固定化担体は、予め硝化菌を
担体の合成樹脂ゲル中に混入させており、不織布担体で
は、硝化菌を不織布の糸表面上に付着させ、固定化して
徐々に増殖させる。これらの担体を充填した処理槽に加
圧下にて酸素含有ガスを供給し、溶存酸素濃度を高める
ことにより、硝化菌層の内部まで酸素を到達させ、硝化
菌の増殖速度を高めることが可能となり、増殖に伴い硝
化速度が速くなる。さらに、硝化処理槽より排出される
酸素含有ガスは、その圧力を利用するため、通常該処理
槽の直前に接続する有機物酸化装置の曝気用に再使用す
ることが可能である。
According to the present invention, a carrier in which fine threads create a three-dimensional space, such as a gel entrapping immobilization carrier capable of accumulating nitrifying bacteria in a three-dimensional solid body at a high concentration or a synthetic resin non-woven fabric is used. In the entrapping immobilization carrier, nitrifying bacteria are mixed in advance in the synthetic resin gel of the carrier. In the non-woven fabric carrier, the nitrifying bacteria are attached to the yarn surface of the non-woven fabric to be immobilized and gradually grown. By supplying an oxygen-containing gas under pressure to a treatment tank filled with these carriers and increasing the dissolved oxygen concentration, oxygen can reach the inside of the nitrifying bacteria layer and increase the growth rate of nitrifying bacteria. , The nitrification rate increases with proliferation. Further, since the oxygen-containing gas discharged from the nitrification treatment tank utilizes its pressure, it can be reused for aeration of the organic substance oxidation device which is usually connected immediately before the treatment tank.

【0008】[0008]

【発明の実施の形態】本発明による加圧硝化槽は、排水
の供給口及び処理水排出口を有し、上端部にガス排気口
及び下端部にスラリー排出口を備えている。担体は、3
次元の立体空間を有するもの、例えばゲル包括法により
予め硝化菌をゲルに混入せしめて固化したものを担体と
したり、合成樹脂不織布を担体として使用する。これら
の担体は、固定床としても、流動床としても使用でき
る。担体充填物の下方、加圧硝化槽底部には、酸素含有
ガスを供給する散気管を配置し、散気管と圧縮機の吐出
口が接続されている。この圧縮酸素含有ガスにより、担
体中の硝化菌に酸素を与えて硝化反応を行わせる。この
際、硝化菌は3次元の立体空間中、またはゲル中に存在
するため、気泡による菌体の剥離現象はほとんど見当た
らない。特に、固定床においては担体間の衝突や接触も
なく、剥離現象はさらに少なくなる。
BEST MODE FOR CARRYING OUT THE INVENTION The pressurized nitrification tank according to the present invention has a drainage supply port and a treated water discharge port, and a gas discharge port at the upper end and a slurry discharge port at the lower end. 3 carriers
A material having a three-dimensional space, for example, a material obtained by previously mixing gel with nitrifying bacteria by a gel encapsulation method and solidifying, or a synthetic resin nonwoven fabric is used as a carrier. These carriers can be used both as a fixed bed and as a fluidized bed. An air diffuser for supplying an oxygen-containing gas is arranged below the carrier packing and at the bottom of the pressurized nitrification tank, and the air diffuser is connected to the discharge port of the compressor. This compressed oxygen-containing gas gives oxygen to nitrifying bacteria in the carrier to cause nitrification reaction. At this time, since the nitrifying bacteria are present in the three-dimensional space or in the gel, the detachment phenomenon of the bacterial cells due to air bubbles is hardly found. In particular, in a fixed bed, there is no collision or contact between the carriers, and the peeling phenomenon is further reduced.

【0009】加圧時の硝化槽の圧力は、1〜15Kg/
cm2 G、好ましくは2〜10Kg/cm2 Gとし、溶
存酸素濃度は10mg/リットル以上、通常は10〜4
0mg/リットルとする。この圧力により、酸素含有ガ
スの気泡は、圧力値に応じて小さくなり、気泡による担
体からの硝化菌剥離現象はほとんど見られなくなる。ま
た、溶存酸素濃度を10mg/リットル以上に保つこと
により、3次元の立体空間中に付着、固定している菌層
への酸素の拡散が高まり、内部に存在する硝化菌にまで
有効に酸素を供給することができ、硝化反応の効率を高
めることができる。
The pressure in the nitrification tank at the time of pressurization is 1 to 15 kg /
cm 2 G, preferably 2 to 10 kg / cm 2 G, and the dissolved oxygen concentration is 10 mg / liter or more, usually 10 to 4
Set to 0 mg / liter. Due to this pressure, the bubbles of the oxygen-containing gas become smaller according to the pressure value, and the phenomenon of nitrifying bacteria peeling from the carrier due to the bubbles is hardly seen. In addition, by maintaining the dissolved oxygen concentration at 10 mg / liter or more, the diffusion of oxygen into the bacterial layer adhered and fixed in the three-dimensional space is enhanced, and the nitrifying bacteria present inside are effectively supplied with oxygen. Can be supplied and the efficiency of the nitrification reaction can be increased.

【0010】一方、加圧下に硝化反応を行う処理槽より
排出される酸素含有ガスは、酸素含有率としては流入時
よりも幾分低下しているが、十分に再使用することが可
能であり、これを有機物酸化用の曝気ガスとして利用で
きる。通常の有機物酸化用の曝気槽は常圧にて運転され
ているため、本発明の加圧型処理槽より排出される酸素
含有ガスは付加的動力なしに供給することができる。一
方、この加圧排出ガスを有機物酸化用の曝気ガスとして
供給する際、常圧への急激な減圧によるガスの温度低下
を防止するため、圧縮機の吐出側の酸素含有ガスが高温
であることを利用し、両ガスの熱交換を行う。このた
め、本発明の装置は、図示したように、熱交換器を備え
ている。
On the other hand, the oxygen-containing gas discharged from the treatment tank for performing the nitrification reaction under pressure has a slightly lower oxygen content than that at the time of inflow, but it can be reused sufficiently. , Which can be used as an aeration gas for oxidizing organic substances. Since an ordinary aeration tank for oxidizing organic matter is operated at normal pressure, the oxygen-containing gas discharged from the pressure-type processing tank of the present invention can be supplied without additional power. On the other hand, when supplying this pressurized exhaust gas as an aeration gas for organic matter oxidation, the temperature of the oxygen-containing gas on the discharge side of the compressor must be high in order to prevent the temperature of the gas from decreasing due to sudden pressure reduction to normal pressure. Is used to exchange heat between both gases. For this reason, the device of the invention comprises a heat exchanger, as shown.

【0011】本発明により処理する排水は、通常の工場
排水,家庭雑排水,駅舎排水,集合住宅排水等の窒素含
有排水であれば、特に制限されることはない。また、本
発明に用いる担体は、3次元立体空間を有するものであ
ればよく、具体的には、ゲル包括固定化担体と合成樹脂
製不織布等を挙げることができる。ゲル包括固定化担体
は、前もって硝化菌をゲル内に取り入れ、固定化したも
のであり、通常は円筒状,球状等として槽内に充填す
る。ここで用いるゲルとしては、ポリビニルアルコール
(PVA),ポリエチレングリコール(PEG),ポリ
アクリルアミド等を使用することができるが、これらに
限定されない。この担体は、当初から硝化菌が存在する
ため、硝化処理のスタートアップと同時に硝化反応が行
われる。次に、合成樹脂製不織布は、合成樹脂の細繊維
が絡み合い、繊維の接着点が接着固定され、内部に各繊
維により構成される連続した3次元空間を形成している
ものを使用することができる。合成樹脂として、ポリプ
ロピレン,ポリエチレン等の素材を使用すると、比重が
水より小さくなり、担体は水中にて浮上するが、ポリ塩
化ビニル,ポリ塩化ビニリデン等の素材を使用すると、
比重が水より大きいため、担体は水中にて沈降する。こ
の他、ナイロン,アクリル樹脂,ポリビニルアルコール
等の樹脂も使用することができる。実際に使用する担体
は、シート状のものを一定間隔にして1つのモジュール
を作り上げたり、立方体に切断したり、円筒状や中空円
筒状に加工したりする。この担体の場合は、硝化菌を不
織布の糸表面上に付着、固定化して用い、徐々に増殖さ
せる。これらの担体は、固定床としても、流動床として
も使用できる。
The wastewater treated according to the present invention is not particularly limited as long as it is nitrogen-containing wastewater such as ordinary factory wastewater, domestic wastewater, station building wastewater, and collective housing wastewater. Further, the carrier used in the present invention may be one having a three-dimensional space, and specific examples thereof include a gel entrapping immobilization carrier and a synthetic resin non-woven fabric. The gel entrapping immobilization carrier is obtained by incorporating nitrifying bacteria into a gel and immobilizing it in advance, and is usually filled in a tank in a cylindrical shape, a spherical shape, or the like. As the gel used here, polyvinyl alcohol (PVA), polyethylene glycol (PEG), polyacrylamide and the like can be used, but the gel is not limited thereto. Since nitrifying bacteria are present in the carrier from the beginning, the nitrification reaction is carried out at the same time as the start-up of nitrification treatment. Next, as the synthetic resin non-woven fabric, it is possible to use one in which fine fibers of the synthetic resin are entangled with each other and the bonding points of the fibers are adhered and fixed to form a continuous three-dimensional space constituted by the respective fibers inside. it can. When a material such as polypropylene or polyethylene is used as the synthetic resin, the specific gravity becomes smaller than that of water, and the carrier floats in water. However, when a material such as polyvinyl chloride or polyvinylidene chloride is used,
Since the specific gravity is larger than that of water, the carrier precipitates in water. In addition to these, resins such as nylon, acrylic resin, and polyvinyl alcohol can also be used. As a carrier to be actually used, a sheet-shaped carrier is made at regular intervals to form one module, cut into a cube, or processed into a cylindrical shape or a hollow cylindrical shape. In the case of this carrier, nitrifying bacteria are used by adhering and fixing on the surface of the yarn of the non-woven fabric and gradually growing. These carriers can be used both as a fixed bed and as a fluidized bed.

【0012】図1は、本発明の処理装置の1例を示した
ものである。以下に図1を参照して本発明を説明する。
上記した担体1を充填する処理槽2は、密閉式で排水の
浄化処理操作中に上部空間11が形成され、槽上部の圧
力調整弁13により一定の加圧状態を保持するように構
成されていればよく、その形状,容積等は特に制限され
ない。通常は、排水を供給するポンプ19を通して排水
供給口3及び槽内で処理された処理水の排出口4を有
し、処理水の排出口の直前には担体が流出しないように
スクリーン5が設置される。スクリーンの目開き間隔
は、使用する担体より短いものが使用される。通常、担
体は数ミリメートルから数10ミリメートルの径,長さ
のものを使用するため、この長さより短い間隔とすれば
よい。
FIG. 1 shows an example of the processing apparatus of the present invention. The present invention will be described below with reference to FIG.
The treatment tank 2 filled with the above-mentioned carrier 1 is of a closed type and is configured such that an upper space 11 is formed during a wastewater purification treatment operation, and a constant pressure state is maintained by a pressure control valve 13 at the upper portion of the tank. The shape, volume, etc. are not particularly limited. Usually, it has a drainage supply port 3 and a treated water discharge port 4 treated in the tank through a pump 19 for supplying drainage, and a screen 5 is installed immediately before the treated water discharge port so that the carrier does not flow out. To be done. The screen spacing used is shorter than the carrier used. Usually, a carrier having a diameter and length of several millimeters to several tens of millimeters is used, and therefore the spacing may be shorter than this length.

【0013】槽下部には、沈澱物を引き出すためのスラ
リー排出口6と槽内に酸素を供給する散気管7が配備さ
れている。酸素を含有するガス(通常は空気)は圧縮器
15を通り、導管16を経て熱交換器17に導入され、
熱交換後に散気管7より気泡として槽内に供給される。
散気管の形状,数,配置形式等は、各条件に合わせて適
宜選択することができ、特に制限されない。処理水の取
り出しは、槽内に設置された液位調整手段(レベルセン
サー)8が作動し、液面の高低により圧力調整のための
トランスミッター9を通して処理水排出口4に接続した
自動調整弁10が応答して開閉することにより行われ
る。一方、槽内を上昇した気泡は、槽内上部の空間11
に集まり、所定圧力に調整する手段、すなわちトランス
ミッター12によりガス自動調整弁13の開閉が行わ
れ、ガス排出口14を通し、導管を経て熱交換器17に
入る。
At the bottom of the tank, there are provided a slurry discharge port 6 for drawing out the precipitate and an air diffuser 7 for supplying oxygen into the tank. A gas containing oxygen (usually air) passes through the compressor 15 and is introduced into the heat exchanger 17 via the conduit 16,
After heat exchange, the air is supplied from the diffuser pipe 7 as air bubbles into the tank.
The shape, number, arrangement form, etc. of the air diffusers can be appropriately selected according to each condition and are not particularly limited. To take out the treated water, the liquid level adjusting means (level sensor) 8 installed in the tank is activated, and the automatic adjusting valve 10 connected to the treated water discharge port 4 through the transmitter 9 for pressure adjustment depending on the height of the liquid surface. In response to opening and closing. On the other hand, the air bubbles that have risen in the tank are the space 11 above the tank.
The automatic gas adjusting valve 13 is opened and closed by means for adjusting to a predetermined pressure, that is, the transmitter 12, through the gas outlet 14, and enters the heat exchanger 17 through the conduit.

【0014】槽内の加圧は、処理対象である排水の種
類,窒素濃度等により異なるが、通常は1〜15kg/
cm2 Gの範囲に保持する。この範囲の加圧状態で、溶
存酸素濃度を10mg/リットル(L)以上、好ましく
は15mg/L以上、上限は約100mg/Lに保持す
る。溶存酸素濃度を15mg/リットルに保つことによ
り、常圧におけるアンモニアの硝化速度の約2倍の硝化
速度を得ることができる。しかし、溶存酸素濃度が10
mg/L未満の場合は、硝化速度の増加は少なく、加圧
による経済性に見合う効果が得られない。一方、溶存酸
素濃度を約100mg/Lに保つと、常圧におけるアン
モニアの硝化速度の約5倍の硝化速度を得ることができ
るが、これ以上の溶存酸素濃度を作りだすためには15
kg/cm2 G以上の加圧が必要であり、そのために多
段コンプレッサーが必要となるなど、経済性の面から好
ましくない。
The pressure in the tank varies depending on the type of waste water to be treated, the nitrogen concentration, etc., but is usually 1 to 15 kg /
Keep in the range of cm 2 G. In the pressurized state within this range, the dissolved oxygen concentration is maintained at 10 mg / liter (L) or more, preferably 15 mg / L or more, and the upper limit is maintained at about 100 mg / L. By maintaining the dissolved oxygen concentration at 15 mg / liter, it is possible to obtain a nitrification rate that is about twice the nitrification rate of ammonia at normal pressure. However, the dissolved oxygen concentration is 10
When the amount is less than mg / L, the nitrification rate does not increase so much that the effect due to the pressurization is not obtained. On the other hand, if the dissolved oxygen concentration is maintained at about 100 mg / L, a nitrification rate that is about 5 times the nitrification rate of ammonia at normal pressure can be obtained, but in order to create a dissolved oxygen concentration higher than this, 15
Pressurization of at least kg / cm 2 G is required, which necessitates a multistage compressor, which is not preferable from the economical viewpoint.

【0015】ガス排出口14より排出される酸素含有ガ
スは、酸素含有率が流入時よりも少し低下しているが、
本発明ではこれを再利用する。すなわち、本発明による
硝化反応を行う前に、通常は活性汚泥法や生物接触酸化
法等により、排水中の有機物処理が行われているが、こ
の処理に必要とされる空気の一部あるいは全部を上記ガ
ス排出口14より排出される酸素含有ガスで賄う。この
場合、通常の有機物酸化用の曝気槽は常圧にて運転され
ているため、ガス排出口より排出される加圧状態の酸素
含有ガスをそのまま供給すると、常圧に戻る時にガスの
温度低下を招くことを、本発明者らは観察した。一方、
本発明の装置では、圧縮器15の吐出側で酸素含有ガス
は昇温される。例えば、5kg/cm2 Gの圧力で供給
された空気は、吐出口の温度が約200℃になる。そこ
で、吐出側の空気と低温になった排ガスとを熱交換し、
排ガス温度を数℃〜40℃程度に昇温する。こうして昇
温された排ガスを導管18を経て有機物酸化用の曝気ガ
スとして利用する。これにより、従来の曝気用に使用さ
れていたブロワーの動力が軽減されることになり、経済
性が増すことになる。
The oxygen-containing gas discharged from the gas discharge port 14 has an oxygen content rate slightly lower than that at the time of inflow,
The present invention reuses this. That is, before performing the nitrification reaction according to the present invention, the organic matter in the wastewater is usually treated by the activated sludge method or the biological contact oxidation method, but a part or all of the air required for this treatment is used. Is covered with the oxygen-containing gas discharged from the gas discharge port 14. In this case, the normal aeration tank for organic substance oxidation is operated at normal pressure, so if the pressurized oxygen-containing gas discharged from the gas outlet is supplied as it is, the temperature of the gas will drop when returning to normal pressure. The present inventors have observed that on the other hand,
In the device of the present invention, the oxygen-containing gas is heated on the discharge side of the compressor 15. For example, air supplied at a pressure of 5 kg / cm 2 G has a discharge port temperature of about 200 ° C. Therefore, heat exchange is performed between the discharge side air and the low temperature exhaust gas,
The exhaust gas temperature is raised to about several degrees Celsius to 40 degrees Celsius. The exhaust gas thus heated is used as an aeration gas for oxidizing the organic matter through the conduit 18. As a result, the power of the blower used for the conventional aeration is reduced, and the economical efficiency is increased.

【0016】[0016]

【実施例】次に、本発明を実施例により詳しく説明す
る。 実施例1 下記組成の人工排水を使用し、下記した本発明の装置お
よび運転条件で排水処理を行なった。排水処理の結果を
第1表に示した。 1.装置 処理槽容積 200L(580mmφ×760mmH) 処理槽有効容積 158L(580mmφ×600mmH) 担体充填量 32L 担体充填率 20% 担体の種類 PVAゲル中へ硝化菌を混入した包括固定化担体 担体の比重 1.03 担体の形状 立方体、6×6×6mm
Next, the present invention will be described in detail with reference to examples. Example 1 An artificial wastewater having the following composition was used to perform wastewater treatment under the apparatus and operating conditions of the present invention described below. The results of wastewater treatment are shown in Table 1. 1. Equipment Treatment tank volume 200 L (580 mmφ × 760 mmH) Treatment tank effective volume 158 L (580 mmφ × 600 mmH) Carrier filling amount 32 L Carrier filling rate 20% Carrier type Entrapping immobilization carrier mixed with nitrifying bacteria in PVA gel Specific gravity of carrier 1. 03 Carrier shape Cube, 6x6x6mm

【0017】2.人工排水の成分 下記の如く、アンモニア性窒素を200mgN/L含
み、その他に微生物の生育に必要な成分を加えた。 NH4 HCO3 1130mg/L(200mgN/L) KH2 PO4 44mg/L MgSO4 ・5H2 O 40mg/L CaCl2 ・2H2 O 5mg/L
2. Components of artificial drainage As described below, ammonia nitrogen was contained at 200 mgN / L, and other components necessary for the growth of microorganisms were added. NH 4 HCO 3 1130 mg / L (200 mg N / L) KH 2 PO 4 44 mg / L MgSO 4 .5H 2 O 40 mg / L CaCl 2 .2H 2 O 5 mg / L

【0018】3.運転条件 圧力を常圧と5kg/cm2 Gの加圧として、各々の溶
存酸素濃度を1〜5mg/L及び約30mg/Lとした
場合の連続運転実験を行った。処理水質の目標を、アン
モニア性窒素濃度10mgN/L以下、硝化率95%以
上とし、この目標が達成可能な窒素負荷を、排水(原
水)供給量を変えて連続的に求めた。なお、温度は常温
(20℃)とし、槽内の流動は完全混合とした。
3. Operating conditions A continuous operation experiment was performed when the pressure was normal pressure and a pressure of 5 kg / cm 2 G and the dissolved oxygen concentrations were 1 to 5 mg / L and about 30 mg / L, respectively. The target of treated water quality was ammonia nitrogen concentration of 10 mgN / L or less and nitrification rate of 95% or more, and the nitrogen load that could achieve this target was continuously obtained by changing the amount of wastewater (raw water) supply. The temperature was room temperature (20 ° C.), and the flow in the tank was completely mixed.

【0019】4.結果 運転結果を第1表に示した。表から明らかなように、常
圧運転では、窒素負荷0.3KgN/m3 ・日、原水供
給量10L/時、滞留時間15.8時間で、処理水中の
アンモニア性窒素は10mgN/L以下になった。一
方、5kg/cm2 Gの加圧運転では、窒素負荷1.0
KgN/m3 ・日、原水供給量33L/時、滞留時間
5.3時間で、処理水中のアンモニア性窒素は10mg
N/L以下になった。このことから、常圧運転時の溶存
酸素濃度1〜5mg/Lを、加圧運転では約30mg/
Lとすることにより、同じ処理水質(アンモニア性窒素
除去率95%以上)を達成するのに、常圧運転と比較し
て窒素負荷は3.3倍に増加することが確認された。
4. Results The operation results are shown in Table 1. As is clear from the table, in normal pressure operation, the nitrogen load was 0.3 KgN / m 3 · day, the raw water supply was 10 L / hour, the residence time was 15.8 hours, and the ammonia nitrogen in the treated water was 10 mgN / L or less. became. On the other hand, in the pressure operation of 5 kg / cm 2 G, the nitrogen load is 1.0
KgN / m 3 · day, raw water supply rate 33 L / hour, residence time 5.3 hours, ammoniacal nitrogen in treated water is 10 mg
It became less than N / L. From this, the dissolved oxygen concentration of 1 to 5 mg / L at normal pressure operation is about 30 mg / L at pressurization operation.
It was confirmed that by setting L, the nitrogen load increased 3.3 times as compared with the normal pressure operation in order to achieve the same treated water quality (ammonia nitrogen removal rate of 95% or more).

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】本発明により、密閉型処理槽内に硝化菌
を固定化した担体を充填し、窒素含有排水を加圧下で好
気性処理し、効率よく硝化を行う排水の処理方法及びそ
の装置が提供される。
EFFECTS OF THE INVENTION According to the present invention, a method and an apparatus for treating wastewater, in which a carrier in which nitrifying bacteria are immobilized is filled in a closed treatment tank, and nitrogen-containing wastewater is aerobically treated under pressure to efficiently perform nitrification. Will be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に用いる排水処理装置の1例を示す説
明図である。
FIG. 1 is an explanatory diagram showing an example of a wastewater treatment device used in the present invention.

【符号の説明】[Explanation of symbols]

1 担体 2 密閉型処理槽 3 排水供給管 4 処理水排出口 5 スクリーン 6 スラリー排出口 7 散気管 8 レベルセンサー 9 トランスミッター 10 自動調節弁 11 上部空間 12 トランスミッター 13 ガス自動調節弁 14 ガス排出口 15 圧縮器 16 導管 17 熱交換器 18 導管 19 ポンプ 20 導管 1 Carrier 2 Sealed Treatment Tank 3 Drainage Supply Pipe 4 Treated Water Discharge Port 5 Screen 6 Slurry Discharge Port 7 Diffuser 8 Level Sensor 9 Transmitter 10 Automatic Control Valve 11 Upper Space 12 Transmitter 13 Gas Automatic Control Valve 14 Gas Discharge Port 15 Compression Vessel 16 conduit 17 heat exchanger 18 conduit 19 pump 20 conduit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今村 泰夫 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 木村 隆志 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 片岡 公治 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuo Imamura 2-12-1, Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Kako Construction Co., Ltd. (72) Takashi Kimura Two, Tsurumi-chuo, Tsurumi-ku, Yokohama Chome 12-1 Chiyoda Kako Construction Co., Ltd. (72) Inventor Koji Kataoka 2-12-1 Tsurumi Chuo, Tsurumi-ku, Yokohama-shi Kanagawa Chiyoda Kako Construction Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 硝化菌を固定化した担体を充填した密閉
型処理槽内に、排水の有機物を好気性生物処理した後の
アンモニア含有排水と加圧した酸素含有ガスを導入し、
加圧下で硝化処理を行う方法において、槽内の圧力を1
〜15Kg/cm2 Gとして硝化処理を行い、処理槽か
らの排出ガスを、圧縮器で供給されたガスと熱交換を行
った後に再び排水中の有機物の好気性生物処理に利用す
ることを特徴とする排水処理方法。
1. An ammonia-containing wastewater after the aerobic biological treatment of organic matter in the wastewater and a pressurized oxygen-containing gas are introduced into a closed-type treatment tank filled with a carrier on which nitrifying bacteria are immobilized.
In the method of performing nitrification treatment under pressure, the pressure in the tank should be 1
Characterized by nitrification treatment at ~ 15 Kg / cm 2 G, the exhaust gas from the treatment tank is heat-exchanged with the gas supplied by the compressor, and then used again for aerobic biological treatment of organic matter in wastewater. Wastewater treatment method.
【請求項2】 担体が、硝化菌を合成樹脂ゲルに包括固
定化した担体あるいは硝化菌を付着、固定化させる合成
樹脂製不織布である請求項1記載の方法。
2. The method according to claim 1, wherein the carrier is a carrier in which nitrifying bacteria are entrapped and immobilized in a synthetic resin gel or a synthetic resin non-woven fabric to which the nitrifying bacteria are attached and immobilized.
【請求項3】 排水供給口と処理水排出口を有し、硝化
菌を固定化した担体を充填する密閉型処理槽であって、
該処理槽の下部に酸素含有ガス供給口と連通する散気管
を設置し、槽の上部に液位調整手段、圧力調整手段及び
ガス排出口を設け、処理水排出口の直前にスクリーンを
設置し、槽の下部にスラリー排出口を設けると共に、圧
縮器で供給された酸素含有ガスを熱交換器を経由して散
気管へ導くための導管並びに槽上部より排出されるガス
を該熱交換器を経由して系外へ取り出すための導管を備
えたことを特徴とする排水処理装置。
3. A closed type treatment tank having a waste water supply port and a treated water discharge port, which is filled with a carrier on which nitrifying bacteria are immobilized.
An air diffuser communicating with the oxygen-containing gas supply port is installed in the lower part of the treatment tank, a liquid level adjusting means, a pressure adjusting means and a gas outlet are provided in the upper part of the tank, and a screen is installed immediately before the treated water outlet. , A slurry outlet is provided at the bottom of the tank, and a conduit for guiding the oxygen-containing gas supplied by the compressor to the diffuser pipe via the heat exchanger and the gas discharged from the upper portion of the tank are connected to the heat exchanger. A wastewater treatment equipment, which is equipped with a conduit for taking it out of the system via the wastewater treatment equipment.
【請求項4】 担体が、硝化菌を合成樹脂ゲルに包括固
定化した担体あるいは硝化菌を付着、固定化させる合成
樹脂製不織布である請求項3記載の排水処理装置。
4. The wastewater treatment apparatus according to claim 3, wherein the carrier is a carrier in which nitrifying bacteria are entrapped and immobilized in a synthetic resin gel or a synthetic resin nonwoven fabric to which the nitrifying bacteria are attached and immobilized.
JP20403595A 1995-07-19 1995-07-19 Method for treating waste water and device therefor Withdrawn JPH0929278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20403595A JPH0929278A (en) 1995-07-19 1995-07-19 Method for treating waste water and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20403595A JPH0929278A (en) 1995-07-19 1995-07-19 Method for treating waste water and device therefor

Publications (1)

Publication Number Publication Date
JPH0929278A true JPH0929278A (en) 1997-02-04

Family

ID=16483680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20403595A Withdrawn JPH0929278A (en) 1995-07-19 1995-07-19 Method for treating waste water and device therefor

Country Status (1)

Country Link
JP (1) JPH0929278A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004089880A (en) * 2002-08-30 2004-03-25 Tokico Ltd Water purification apparatus
JP2008264710A (en) * 2007-04-23 2008-11-06 Ihi Corp High-pressure fluidized bed aerobic wastewater treatment equipment
JP2012024650A (en) * 2010-07-20 2012-02-09 National Agriculture & Food Research Organization Simultaneous removal system of organic matter, nitrogen, and phosphorus in wastewater using pearlite filling ventilation tank
KR101240539B1 (en) * 2010-10-07 2013-03-11 권중천 Wastewater Treatment Plant capable of temperature controll of aeration tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004089880A (en) * 2002-08-30 2004-03-25 Tokico Ltd Water purification apparatus
JP2008264710A (en) * 2007-04-23 2008-11-06 Ihi Corp High-pressure fluidized bed aerobic wastewater treatment equipment
JP2012024650A (en) * 2010-07-20 2012-02-09 National Agriculture & Food Research Organization Simultaneous removal system of organic matter, nitrogen, and phosphorus in wastewater using pearlite filling ventilation tank
KR101240539B1 (en) * 2010-10-07 2013-03-11 권중천 Wastewater Treatment Plant capable of temperature controll of aeration tank

Similar Documents

Publication Publication Date Title
KR100441208B1 (en) Batch style waste water treatment apparatus using biological filtering process and waste water treatment method using the same
JP5150993B2 (en) Denitrification method and apparatus
JP2000005795A (en) Water treatment device having denitrogen performance
JPH02214597A (en) Device for nitrifying sewage
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP2003033796A (en) Biological denitration method
JP3391057B2 (en) Biological nitrogen removal equipment
JP2019181378A (en) Nitrogen treatment method
JP3303665B2 (en) Nitrification / denitrification method and apparatus
JP2609192B2 (en) Biological dephosphorization nitrification denitrification treatment method of organic wastewater
JPH0929278A (en) Method for treating waste water and device therefor
JP3278841B2 (en) Nitrification and denitrification of wastewater
JP4042718B2 (en) Anaerobic ammonia oxidation method and apparatus
JP2003024988A (en) Biological denitrification method
JP4143748B2 (en) Integrated biological nitrification / denitrification system
JPH1034185A (en) Drainage treatment method
JPH07222994A (en) Organic waste water treatment method
KR20050046393A (en) Wastewater treatment plant and method thereof
KR100465851B1 (en) Removal measure of Circulated Sequencing Batch Reactor with media containing zeolite for organic matters, nitrogen and phosphorus removal in sewage and waste waters
JP2003033787A (en) Method for nitrifying drainage
JPH07185589A (en) Waste water treatment method for removal of nitrogen and device therefor
KR100403288B1 (en) A treatment method of wastewater with low concentration of ammonia by the type of non-aeration nitrification
JP2001070984A (en) Method for removing nitrogen from waste water
JP4390959B2 (en) Wastewater treatment equipment
JP3819457B2 (en) Biological denitrification of wastewater

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001