JP2003033787A - Method for nitrifying drainage - Google Patents

Method for nitrifying drainage

Info

Publication number
JP2003033787A
JP2003033787A JP2001226187A JP2001226187A JP2003033787A JP 2003033787 A JP2003033787 A JP 2003033787A JP 2001226187 A JP2001226187 A JP 2001226187A JP 2001226187 A JP2001226187 A JP 2001226187A JP 2003033787 A JP2003033787 A JP 2003033787A
Authority
JP
Japan
Prior art keywords
nitrification
chamber
nitrification tank
concentration
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001226187A
Other languages
Japanese (ja)
Inventor
Goel Rajiv
ゴエル ラジブ
Hidenari Yasui
英斉 安井
Takaaki Tokutomi
孝明 徳富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001226187A priority Critical patent/JP2003033787A/en
Publication of JP2003033787A publication Critical patent/JP2003033787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for nitrifying drainage capable of nitrification treatment to efficiently convert ammoniacal nitrogen to nitrites without converting hardly any amount of it to nitrates. SOLUTION: An ammoniacal nitrogen-containing raw water is introduced into a first chamber 1 of a nitration tank 10 having four nitration chambers 1, 2, 3 and 4 and passes each of the chambers 1, 2, 3 and 4 in this order. The air-dispersion amount (aerated amount) from an air-dispersion tube is regulated by a controller 11 and an air-flow adjustment valve 12. The first chamber 1 is the highest in the aerated amount followed by the chambers 2, 3 and 4 in this order. A stirrer 13 is installed in the chambers 2, 3 and 4, respectively where the aerated amount is low. The effluent, nitrified liquid from the last chamber 4 of the nitrification tank 10 is isolated by a solid-liquid separator 15 from solid components, and the liquid thus separated is taken out as treated water. A part of the solid components, thus separated is taken out as excess dirt and mud, and the remaining components are returned to the first chamber 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアンモニア性窒素を
含む原水を生物学的に硝化処理する方法に関する。
TECHNICAL FIELD The present invention relates to a method for biologically nitrifying raw water containing ammoniacal nitrogen.

【0002】[0002]

【従来の技術】アンモニア性窒素を含む原水を生物学的
に硝化脱窒処理するプロセスにおいては、アンモニア酸
化細菌は活性汚泥又は生物膜の形で保持されている。ア
ンモニアは亜硝酸に酸化され、さらに硝酸に酸化され
る。硝化槽内は、亜硝酸化及び硝酸化の双方に好適な条
件に保たれる。硝酸は脱窒菌により窒素ガスに還元され
て除去される。
In the process of biologically nitrifying and denitrifying raw water containing ammoniacal nitrogen, ammonia-oxidizing bacteria are retained in the form of activated sludge or biofilm. Ammonia is oxidized to nitrous acid and further to nitric acid. The inside of the nitrification tank is kept under conditions suitable for both nitrite and nitration. Nitric acid is reduced to nitrogen gas by denitrifying bacteria and removed.

【0003】この硝化脱窒プロセスにおいては、亜硝酸
化プロセスを効率良く行うことが重要である。従来、亜
硝酸化プロセスとしては次のような方法が提案されてい
る。1. 亜硝酸性窒素又は硝酸性窒素やアンモニア性
窒素の硝化細菌への比較的高い毒性を利用した方法 (An
thoniesenら。1976年)。この方法は、硝化細菌の活
性を低下させる領域を設ける方法として実用化されてい
る (Suthersen 及び Ganczarczyk。1986年)。2.
高温での亜硝酸化細菌と硝化細菌との増殖速度の差を
利用した方法(SHARONプロセス)。
In this nitrifying and denitrifying process, it is important to efficiently carry out the nitrite forming process. Heretofore, the following methods have been proposed as the nitrite conversion process. 1. A method utilizing the relatively high toxicity of nitrite nitrogen or nitrate nitrogen or ammonia nitrogen to nitrifying bacteria (An
thoniesen et al. 1976). This method has been put to practical use as a method for providing a region that reduces the activity of nitrifying bacteria (Suthersen and Ganczarczyk, 1986). 2.
A method that utilizes the difference in the growth rate of nitrite bacteria and nitrifying bacteria at high temperatures (SHARON process).

【0004】亜硝酸化反応を優先的に進行させるために
槽内溶存酸素(DO)濃度を低くする方法も提案されて
いるが(Hanaki。1990年)、低DOとすると亜硝酸
化反応の反応速度自体が小さくなるので、この方法は実
用的ではない。
Although a method of lowering the dissolved oxygen (DO) concentration in the tank has been proposed in order to preferentially promote the nitrite reaction (Hanaki, 1990), when the DO is low, the reaction of the nitrite reaction occurs. This method is not practical because the speed itself is small.

【0005】[0005]

【発明が解決しようとする課題】本発明は、アンモニア
性窒素を含む原水を硝化処理する方法において、この硝
化形態を効率良く亜硝酸型にすることができる方法を提
供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for nitrifying raw water containing ammoniacal nitrogen, which can efficiently convert this nitrification form into a nitrite type.

【0006】[0006]

【課題を解決するための手段】本発明の排水の硝化方法
は、アンモニア性窒素を含む原水を硝化槽に供給してア
ンモニア酸化細菌の存在下に曝気して硝化処理する方法
において、硝化槽内の溶存酸素濃度に時間的濃度勾配又
は場所的濃度勾配を設けることにより硝化を亜硝酸型に
制御することを特徴とする。
The method for nitrifying wastewater according to the present invention is a method of supplying raw water containing ammoniacal nitrogen to a nitrification tank and aerating in the presence of ammonia-oxidizing bacteria to perform nitrification treatment. The nitric acid is controlled to a nitrite type by providing a temporal concentration gradient or a local concentration gradient to the dissolved oxygen concentration of.

【0007】硝化槽内の溶存酸素濃度に時間的濃度勾配
を設けるとは、同一の硝化槽内において、硝化槽内の溶
存酸素濃度を経時的に変化させることをいう。例えば、
硝化槽内の溶存酸素濃度を経時的に増減させる態様がこ
れに該当する。
Providing a temporal concentration gradient to the dissolved oxygen concentration in the nitrification tank means changing the dissolved oxygen concentration in the nitrification tank with time in the same nitrification tank. For example,
This corresponds to a mode in which the dissolved oxygen concentration in the nitrification tank is increased or decreased over time.

【0008】本発明においては、アンモニア酸化細菌が
DO濃度勾配下におかれた硝化槽内に原水が導入され
る。
In the present invention, raw water is introduced into a nitrification tank in which ammonia oxidizing bacteria are placed under a DO concentration gradient.

【0009】本発明の一態様にあっては、硝化槽から流
出した汚泥は固液分離されて該硝化槽に返送される。D
Oの濃度勾配をつけるために、汚泥は高DO濃度下に所
定時間保持される。この高DO濃度下での処理により、
原水中のアンモニア性窒素は高効率にて主として亜硝酸
に酸化される。汚泥を高DO濃度下に保持する時間は、
トータルのHRTの50%以下とすることが好ましい。
In one aspect of the present invention, the sludge flowing out of the nitrification tank is solid-liquid separated and returned to the nitrification tank. D
The sludge is kept under a high DO concentration for a predetermined time in order to provide a concentration gradient of O 2. By processing under this high DO concentration,
Ammoniacal nitrogen in raw water is mainly oxidized to nitrous acid with high efficiency. The time to keep sludge under high DO concentration is
It is preferably 50% or less of the total HRT.

【0010】この高DO濃度下での処理の後、汚泥は低
DO濃度下に保持され、アンモニア性窒素の酸化速度を
著しく低くする。これにより、槽内は、亜硝酸化細菌に
比べて低DO下での活性が高い硝酸化細菌の活動を阻害
する低DO条件となる。
After the treatment at the high DO concentration, the sludge is kept at the low DO concentration, which significantly reduces the oxidation rate of ammonia nitrogen. As a result, the inside of the tank has a low DO condition that inhibits the activity of the nitrifying bacterium, which has a high activity under the low DO as compared with the nitrite bacterium.

【0011】亜硝酸化細菌と硝酸化細菌とを含む汚泥が
低DO条件下に保持された後に高DO濃度下に戻された
場合、硝酸化細菌は亜硝酸化細菌に比べて活性化するの
に要する時間が長いものとなり、この結果、硝化形態は
亜硝酸型となる。このようにして、硝化槽内のDOに時
間的な濃度勾配をつけることにより、アンモニア性窒素
を硝酸化させることなく効率良く亜硝酸化させることが
できる。
When sludge containing nitrites and nitrites is kept under low DO conditions and then returned to a high DO concentration, the nitrites are activated more than the nitrites. As a result, the nitrification form becomes a nitrite type. In this way, by giving a temporal concentration gradient to the DO in the nitrification tank, it is possible to efficiently nitrite the ammoniacal nitrogen without nitrifying it.

【0012】硝化槽内のDO濃度に場所的濃度勾配を設
けるとは、硝化槽内において溶存酸素濃度の異なる領域
を形成することをいう。例えば、硝化槽内を複数(好ま
しくは4以上)の小室に区画し、各室のDO濃度を異な
らせる態様がこれに含まれる。
Providing a local concentration gradient for the DO concentration in the nitrification tank means forming regions having different dissolved oxygen concentrations in the nitrification tank. For example, this includes a mode in which the inside of the nitrification tank is divided into a plurality of (preferably 4 or more) small chambers and the DO concentration of each chamber is made different.

【0013】本発明においては、硝化槽内の溶存酸素濃
度の最大値が6mg/L、最小値が0mg/Lとなるよ
うに濃度勾配を設けることが好ましい。また、溶存酸素
濃度が0〜0.5mg/Lとなる時間は、硝化槽の原水
滞留時間の25〜50%であることが好ましい。
In the present invention, it is preferable to provide a concentration gradient so that the maximum value of the dissolved oxygen concentration in the nitrification tank is 6 mg / L and the minimum value thereof is 0 mg / L. Further, the time for which the dissolved oxygen concentration is 0 to 0.5 mg / L is preferably 25 to 50% of the raw water retention time in the nitrification tank.

【0014】アンモニア酸化細菌は、浮遊汚泥又は生物
膜の形で硝化槽に保持されていることが好ましいが、自
己造粒されて保持されていてもよい。
The ammonia-oxidizing bacteria are preferably retained in the nitrification tank in the form of suspended sludge or a biofilm, but they may be retained after being self-granulated.

【0015】本発明の一態様では、原水を硝化槽へ連続
通水する。
In one embodiment of the present invention, raw water is continuously passed through the nitrification tank.

【0016】本発明の別態様では、原水を硝化槽に回分
投入し、硝化槽内のDO濃度に時間的濃度勾配を設けて
曝気を行い、曝気を停めて固液分離を行い、上澄水を排
出する。
In another embodiment of the present invention, raw water is batch-charged into a nitrification tank, aeration is carried out by providing a temporal concentration gradient to the DO concentration in the nitrification tank, aeration is stopped and solid-liquid separation is carried out, and supernatant water is obtained. Discharge.

【0017】[0017]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1,2はそれぞれ実施の形態に係る排水
の硝化方法の一例を示すフローチャートである。図1,
2のいずれにおいても、曝気槽内の曝気空気量を調節す
ることにより槽内DO濃度に勾配付けしている。本発明
では、図示の如く少なくとも4個の硝化室を有した多室
型硝化槽を用いるのが好ましい。
FIGS. 1 and 2 are flow charts showing an example of a nitrification method for waste water according to each embodiment. Figure 1,
In both cases, the DO concentration in the tank is graded by adjusting the amount of aerated air in the tank. In the present invention, it is preferable to use a multi-chamber nitrification tank having at least four nitrification chambers as shown in the figure.

【0019】図1の方法においては、アンモニア性窒素
を含む原水は4個の硝化室1,2,3,4を有した硝化
槽10の第1室1に導入され、各室1,2,3,4を順
次に通過する。各室1〜4の下部には各々散気管が設け
られており、各散気管からの散気量(曝気空気量)がコ
ントローラ11及び空気流量調節バルブ12によって調
節される。曝気量は第1室1が最も多く、第2,3,4
室の順に少なくなっている。なお、曝気量の少ない第
2,3,4室には撹拌機13が設けられている。
In the method of FIG. 1, raw water containing ammoniacal nitrogen is introduced into a first chamber 1 of a nitrification tank 10 having four nitrification chambers 1, 2, 3, 4 and each of the chambers 1, 2, Pass 3 and 4 in sequence. Air diffusers are provided below the chambers 1 to 4, respectively, and the amount of air diffused from each diffuser (aeration air amount) is adjusted by the controller 11 and the air flow rate adjusting valve 12. The amount of aeration is highest in the 1st chamber 1, 2nd, 3rd, 4th
The order of the rooms is decreasing. An agitator 13 is provided in the second, third, and fourth chambers where the aeration amount is small.

【0020】硝化槽10の最終の第4室4から流出した
硝化液は固液分離器15によって固液分離され、分離さ
れた液は処理水として取り出される。分離された固形分
の一部は余剰汚泥として取り出され、残部は第1室1に
返送される。
The nitrification liquid flowing out from the final fourth chamber 4 of the nitrification tank 10 is solid-liquid separated by the solid-liquid separator 15, and the separated liquid is taken out as treated water. Part of the separated solid content is taken out as excess sludge, and the rest is returned to the first chamber 1.

【0021】なお、固液分離器15としては沈降式、膜
分離式など各種のものを用いることができる。
As the solid-liquid separator 15, various types such as a sedimentation type and a membrane separation type can be used.

【0022】図2の方法においては、原水は硝化槽10
の第2室2に導入され、該第2室2から第3室3及び第
4室4の順に流れ、この第4室から取り出されて固液分
離器15に送られ、固液分離される。図1の場合と同じ
く、分離された液は処理水として取り出される。分離さ
れた固形分の一部は余剰汚泥として取り出され、残部は
第1室1に返送される。
In the method of FIG. 2, the raw water is the nitrification tank 10.
Is introduced into the second chamber 2 and flows from the second chamber 2 to the third chamber 3 and the fourth chamber 4 in this order, and is taken out from the fourth chamber and sent to the solid-liquid separator 15 for solid-liquid separation. . As in the case of FIG. 1, the separated liquid is taken out as treated water. Part of the separated solid content is taken out as excess sludge, and the rest is returned to the first chamber 1.

【0023】曝気量は第2室2が最も多く、第3室3、
第4室4及び第1室1の順に少なくなっている。
The second chamber 2 has the largest aeration amount, and the third chamber 3,
The fourth chamber 4 and the first chamber 1 are decreasing in order.

【0024】固液分離器15から第1室1に戻ってきた
汚泥は、第4室4よりも低DO条件下に保持される。
The sludge returned from the solid-liquid separator 15 to the first chamber 1 is kept under a condition of lower DO than the fourth chamber 4.

【0025】図1,2のいずれの方法においても、固液
分離器15から余剰汚泥を排出させることなく長いSR
Tの条件下で原水を処理するように運転することも可能
であるが、硝化速度を制御することにより余剰汚泥が固
液分離器15から引き抜かれる運転条件とすることも可
能である。
In any of the methods shown in FIGS. 1 and 2, a long SR can be performed without discharging excess sludge from the solid-liquid separator 15.
It is possible to operate so as to treat the raw water under the condition of T, but it is also possible to set an operating condition in which the excess sludge is extracted from the solid-liquid separator 15 by controlling the nitrification rate.

【0026】図1,2は活性汚泥を浮遊状態とする浮遊
方式であるため、固液分離器15を用いているが、本発
明では微生物を固定する担体を用いた生物膜法などを採
用することも可能であり、また、汚泥を自己造粒した造
粒汚泥を用いることも可能である。これらの場合には、
固液分離器15は省略されてもよい。
1 and 2 use a solid-liquid separator 15 because it is a floating system in which activated sludge is in a floating state, but in the present invention, a biofilm method or the like using a carrier for fixing microorganisms is adopted. It is also possible to use granulated sludge obtained by self-granulating sludge. In these cases,
The solid-liquid separator 15 may be omitted.

【0027】担体を用いる生物膜法の場合、担体として
は比重0.8〜1.5、連続気泡の孔径5〜5000μ
m、好ましくは10〜1000μm、空隙率10〜90
%、好ましくは30〜90%、比表面積500〜100
00m/m、粒径1〜20mmのものが好ましい。
In the case of the biofilm method using a carrier, the carrier has a specific gravity of 0.8 to 1.5 and an open cell pore diameter of 5 to 5000 μm.
m, preferably 10 to 1000 μm, porosity 10 to 90
%, Preferably 30 to 90%, specific surface area 500 to 100
It is preferable that the particle size is 00 m 2 / m 3 and the particle size is 1 to 20 mm.

【0028】担体の材質として好ましいものは、ポリプ
ロピレン、ポリウレタン、セルロース、ポリエステル、
ポリビニルアルコール、PVF、ポリエチレングリコー
ル系樹脂、アクリル系樹脂、アクリルアミド系樹脂、オ
レフィン系樹脂、スチレン系樹脂、多糖類、ポリエーテ
ル等の有機高分子化合物からなる、内部に網目構造を有
するプラスチック担体、スポンジ担体、繊維状担体、不
織布、ゲル担体、そのほかに多孔性無機高分子化合物、
活性炭などが挙げられる。
Preferred materials for the carrier are polypropylene, polyurethane, cellulose, polyester,
A plastic carrier or sponge made of polyvinyl alcohol, PVF, polyethylene glycol-based resin, acrylic resin, acrylamide-based resin, olefin-based resin, styrene-based resin, polysaccharide, polyether, or other organic polymer compound having an internal mesh structure. Carriers, fibrous carriers, non-woven fabrics, gel carriers, other porous inorganic polymer compounds,
Activated carbon etc. are mentioned.

【0029】粒状担体は、球形、立方体、不定形、筒状
など任意の形状のものが使用できる。
The granular carrier may have any shape such as a sphere, a cube, an indeterminate shape, and a tubular shape.

【0030】[0030]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.

【0031】実施例1 図3に示すプロセスによって原水を硝化処理した。図3
のプロセスは、図1とほぼ同一であるが、硝化槽10の
第1室1内を前部1aと後部1bとの2部に区画してい
る。原水及び返送汚泥は該前部1aに導入され該前部1
aから水が後部1bにオーバーフローする。前部1aは
曝気されず、後部1bのみが曝気される。
Example 1 Raw water was nitrified by the process shown in FIG. Figure 3
The process is similar to that of FIG. 1, but the inside of the first chamber 1 of the nitrification tank 10 is divided into two parts, a front part 1a and a rear part 1b. Raw water and returned sludge are introduced into the front part 1a
Water overflows from a into the rear part 1b. The front part 1a is not aerated and only the rear part 1b is aerated.

【0032】なお、第2,3,4室には窒素ガスにより
DOをパージするための窒素パージ用散気管が設けられ
ている。第1室1には窒素パージは施されない。
A nitrogen purging diffuser for purging DO with nitrogen gas is provided in the second, third and fourth chambers. The first chamber 1 is not purged with nitrogen.

【0033】各室1,2,3,4の容量は2.5L(リ
ットル)である。第1室1の前部1aの容量は0.5L
で後部1bの容量は2.0Lである。
The volume of each chamber 1, 2, 3, 4 is 2.5 L (liter). The volume of the front part 1a of the first chamber 1 is 0.5L
The capacity of the rear portion 1b is 2.0 L.

【0034】空気及び窒素ガス流量を制御することによ
り各室のDO濃度を制御した。また、第1室1内のpH
が約7.6となるように炭酸ナトリウムを添加した。
The DO concentration in each chamber was controlled by controlling the air and nitrogen gas flow rates. In addition, the pH in the first chamber 1
Sodium carbonate was added so that the ratio was about 7.6.

【0035】NHCl2000mg/L、KHPO
10mg/Lの合成排水を第1室1に供給した。この
供給量は、平均すると20L/dayであるが、第1室
1内のアンモニア性窒素濃度が500〜600mg/L
となるように調整した。3ヶ月間にわたり、各室のDO
濃度が表1の通りとなるように運転したところ、処理水
中のアンモニア性窒素、亜硝酸性窒素及び硝酸性窒素濃
度は表1に示す通りであった。
NH 4 Cl 2000 mg / L, KH 2 PO
4 10 mg / L of synthetic waste water was supplied to the first chamber 1. This supply amount is 20 L / day on average, but the ammonia nitrogen concentration in the first chamber 1 is 500 to 600 mg / L.
Was adjusted so that DO in each room for 3 months
When operated so that the concentration was as shown in Table 1, the concentrations of ammoniacal nitrogen, nitrite nitrogen and nitrate nitrogen in the treated water were as shown in Table 1.

【0036】比較例1 実施例1において、各室1〜4のDO濃度をすべて表1
に示す通り同濃度となるようにしたこと以外は実施例1
と同様にして同一の合成排水の処理を3ヶ月間行ったと
ころ、処理水の水質は表1に示す通りであった。
Comparative Example 1 In Example 1, all the DO concentrations in the chambers 1 to 4 are shown in Table 1.
Example 1 except that the same concentration was used as shown in FIG.
When the same synthetic wastewater was treated for 3 months in the same manner as above, the water quality of the treated water was as shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】上記実施例及び比較例からも明らかなと
おり、本発明によるとアンモニア性窒素を殆ど硝酸化す
ることなく効率良く亜硝酸化させるように硝化処理する
ことができる。
As is clear from the above Examples and Comparative Examples, according to the present invention, nitrification treatment can be carried out so that ammoniacal nitrogen can be efficiently nitrided with almost no nitrification.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の排水の硝化方法の実施の形態を示すフ
ローチャートである。
FIG. 1 is a flowchart showing an embodiment of a wastewater nitrification method of the present invention.

【図2】本発明の排水の硝化方法の他の実施の形態を示
すフローチャートである。
FIG. 2 is a flowchart showing another embodiment of the wastewater nitrification method of the present invention.

【図3】実施例のフローチャートである。FIG. 3 is a flowchart of an example.

【符号の説明】[Explanation of symbols]

1 第1室 2 第2室 3 第3室 4 第4室 10 硝化槽 11 コントローラ 15 固液分離器 1st room 2 second room 3rd room 4th room 10 Nitrification tank 11 Controller 15 Solid-liquid separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳富 孝明 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 Fターム(参考) 4D040 BB22 BB42 BB65 BB91    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takaaki Tokutomi             Kurita, 3-4-3 Nishi-Shinjuku, Shinjuku-ku, Tokyo             Industry Co., Ltd. F-term (reference) 4D040 BB22 BB42 BB65 BB91

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アンモニア性窒素を含む原水を硝化槽に
供給してアンモニア酸化細菌の存在下に曝気して硝化処
理する方法において、 硝化槽内の溶存酸素濃度に時間的濃度勾配又は場所的濃
度勾配を設けることにより硝化を亜硝酸型に制御するこ
とを特徴とする排水の硝化方法。
1. A method of supplying raw water containing ammoniacal nitrogen to a nitrification tank and aerating in the presence of ammonia-oxidizing bacteria to perform nitrification treatment, wherein the dissolved oxygen concentration in the nitrification tank has a temporal concentration gradient or a local concentration. A nitrification method for wastewater, characterized by controlling nitrification to a nitrite type by providing a gradient.
【請求項2】 溶存酸素濃度の最大値が6mg/L、最
小値が0mg/Lとなるように濃度勾配を設ける請求項
1記載の排水の硝化方法。
2. The nitrification method for wastewater according to claim 1, wherein a concentration gradient is provided such that the maximum dissolved oxygen concentration is 6 mg / L and the minimum dissolved oxygen concentration is 0 mg / L.
【請求項3】 溶存酸素濃度が0〜0.5mg/Lとな
る時間が、硝化槽の原水滞留時間の25〜50%となる
ように、硝化槽内の溶存酸素濃度に時間的濃度勾配又は
場所的濃度勾配を設けることを特徴とする請求項1又は
2に記載の排水の硝化方法。
3. The dissolved oxygen concentration in the nitrification tank has a temporal concentration gradient or a so that the time for which the dissolved oxygen concentration is 0 to 0.5 mg / L is 25 to 50% of the raw water retention time in the nitrification tank. The nitrification method for wastewater according to claim 1 or 2, wherein a local concentration gradient is provided.
【請求項4】 アンモニア酸化細菌は浮遊汚泥又は生物
膜の形で硝化槽に保持されていることを特徴とする請求
項1ないし3のいずれか1項に記載の排水の硝化方法。
4. The method for nitrifying wastewater according to claim 1, wherein the ammonia-oxidizing bacteria are held in the nitrification tank in the form of suspended sludge or a biofilm.
【請求項5】 原水を硝化槽へ連続通水することを特徴
とする請求項1ないし4のいずれか1項に記載の排水の
硝化方法。
5. The method for nitrifying wastewater according to claim 1, wherein raw water is continuously passed through the nitrification tank.
【請求項6】 原水を硝化槽に回分投入し、硝化槽内の
溶存酸素濃度に時間的濃度勾配を設けて曝気を行い、曝
気を停めて固液分離を行い、上澄水を排出する工程を繰
り返す請求項1ないし4のいずれか1項に記載の排水の
硝化方法。
6. A process of batch-feeding raw water into a nitrification tank, performing aeration by providing a temporal concentration gradient to the dissolved oxygen concentration in the nitrification tank, stopping aeration and performing solid-liquid separation, and discharging the supernatant water. The nitrification method for wastewater according to any one of claims 1 to 4, which is repeated.
JP2001226187A 2001-07-26 2001-07-26 Method for nitrifying drainage Pending JP2003033787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001226187A JP2003033787A (en) 2001-07-26 2001-07-26 Method for nitrifying drainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001226187A JP2003033787A (en) 2001-07-26 2001-07-26 Method for nitrifying drainage

Publications (1)

Publication Number Publication Date
JP2003033787A true JP2003033787A (en) 2003-02-04

Family

ID=19059047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001226187A Pending JP2003033787A (en) 2001-07-26 2001-07-26 Method for nitrifying drainage

Country Status (1)

Country Link
JP (1) JP2003033787A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131452A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2005131451A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2008012425A (en) * 2006-07-05 2008-01-24 Nippon Steel Corp Method and apparatus for removing phosphorus and nitrogen from sewage
JP2012110807A (en) * 2010-11-22 2012-06-14 Metawater Co Ltd Sewage treatment system
JP2015016410A (en) * 2013-07-10 2015-01-29 メタウォーター株式会社 Wastewater treatment method and apparatus, and control method, control device, and program
CN109485153A (en) * 2018-12-19 2019-03-19 清华-伯克利深圳学院筹备办公室 A kind of biofilm reactor and method of wastewater efficient denitrogenation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131452A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2005131451A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2008012425A (en) * 2006-07-05 2008-01-24 Nippon Steel Corp Method and apparatus for removing phosphorus and nitrogen from sewage
JP2012110807A (en) * 2010-11-22 2012-06-14 Metawater Co Ltd Sewage treatment system
JP2015016410A (en) * 2013-07-10 2015-01-29 メタウォーター株式会社 Wastewater treatment method and apparatus, and control method, control device, and program
CN109485153A (en) * 2018-12-19 2019-03-19 清华-伯克利深圳学院筹备办公室 A kind of biofilm reactor and method of wastewater efficient denitrogenation

Similar Documents

Publication Publication Date Title
Semmens et al. COD and nitrogen removal by biofilms growing on gas permeable membranes
JP4284700B2 (en) Nitrogen removal method and apparatus
JP5126690B2 (en) Wastewater treatment method
WO2005095289A1 (en) Method for treating ammonia-containing wastewater
JPS633680B2 (en)
JP2000005795A (en) Water treatment device having denitrogen performance
Premarathna et al. Enhancement of organic matter and total nitrogen removal in a membrane aerated biofilm reactor using PVA-Gel bio-carriers
JP4671178B2 (en) Nitrogen removal method and apparatus
JP2003154394A (en) Biological denitrification method and apparatus
US7166220B2 (en) Systems and methods for organic wastewater treatment
WO2019198388A1 (en) Nitrogen treatment method
CN110217888A (en) A kind of the nitrosation-anaerobic ammoxidation processing unit and method of municipal sewage
JP2565431B2 (en) Method and apparatus for treating organic wastewater
JP2003033787A (en) Method for nitrifying drainage
KR101186606B1 (en) Advanced treatment apparatus to removing nitrogen and phosphorus from wastewater
JP2003024987A (en) Nitrification method for ammonia nitrogen-containing water
JP2609192B2 (en) Biological dephosphorization nitrification denitrification treatment method of organic wastewater
JP4838872B2 (en) Water treatment apparatus and water treatment method
JP5126691B2 (en) Wastewater treatment method
JPH07185589A (en) Waste water treatment method for removal of nitrogen and device therefor
CN219429820U (en) Combined equipment for sewage treatment
KR20030033645A (en) Wastewater treatment with biological porous media
JP2673488B2 (en) Method and apparatus for treating organic wastewater
KR102720910B1 (en) Multi stage biological aerated filtering system for water treatment and water treatment method using the same
JPH0929278A (en) Method for treating waste water and device therefor