JP5172058B2 - Continuous denitrification of groundwater contaminated with nitrate nitrogen - Google Patents

Continuous denitrification of groundwater contaminated with nitrate nitrogen Download PDF

Info

Publication number
JP5172058B2
JP5172058B2 JP2001340044A JP2001340044A JP5172058B2 JP 5172058 B2 JP5172058 B2 JP 5172058B2 JP 2001340044 A JP2001340044 A JP 2001340044A JP 2001340044 A JP2001340044 A JP 2001340044A JP 5172058 B2 JP5172058 B2 JP 5172058B2
Authority
JP
Japan
Prior art keywords
tower
denitrification
activation
packed
denitrifying bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001340044A
Other languages
Japanese (ja)
Other versions
JP2003170191A (en
Inventor
泰雄 幡手
恵宣 河野
芳三 上村
昌弘 吉田
千秋 畑中
勝一 横山
Original Assignee
泰雄 幡手
恵宣 河野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰雄 幡手, 恵宣 河野 filed Critical 泰雄 幡手
Priority to JP2001340044A priority Critical patent/JP5172058B2/en
Publication of JP2003170191A publication Critical patent/JP2003170191A/en
Application granted granted Critical
Publication of JP5172058B2 publication Critical patent/JP5172058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
本発明は、微生物担体マイクロカプセルを利用した生物学的脱窒処理により、硝酸性窒素で汚染された地下水等を連続的に浄化する方法に関する。
【0002】
【従来の技術】
近年、畜産(糞尿)や化学肥料が原因と考えられる硝酸性窒素による地下水汚染が深刻になっている。飲料水中に硝酸性窒素が多く含まれることによってメトヘモグロビン血症や発癌性が報告されており、飲料水には10mg/l 以下の硝酸性窒素含有量が規定されている。
【0003】
地下水等の硝酸性窒素を除去する物理化学的処理方法として、イオン交換樹脂法、RO(逆浸透膜)法、ED(電気透析)法などが提案されているが、いずれの方法も水中の硝酸性窒素を分離する方法であり、再生排水中や濃縮排水中に高濃度の硝酸性窒素を含有するため、その処理が問題となる場合が多い。
【0004】
さらに、分離回収した硝酸性窒素の他に、イオン交換樹脂法では再生剤として使用する塩化ナトリウムの排出が、海に面していない内陸部では問題となる。一方、生物学的処理法は,水中の硝酸性窒素を窒素ガス化することにより除去するという特長を有している。この場合、普通脱窒槽と硝化槽を組み合わせた、排水処理装置が使用されている(特許公開2001−259689)。
【0005】
生物学的処理法には、脱窒細菌を利用した従属栄養性脱窒法と独立栄養性脱窒法がある。従属栄養細菌は、嫌気性条件下において、有機炭素源を栄養源として摂取し、“硝酸呼吸”を行うときに硝酸性窒素を還元し、窒素ガスとして放出する。有機炭素源をある程度含有する排水に対しては、特別の操作を施す事により、嫌気性雰囲気下、BOD値を増やすことなく生物学的処理により硝酸性窒素の除去が実施されている(特許出願2000−32754)。しかしながら、地下水には一般的にはほとんど有機炭素源は含まれておらず、このような方法での硝酸性窒素の除去は困難である。
【0006】
また、嫌気性雰囲気下での硝酸性窒素除去のため、あらかじめ有機炭素源を投入することは、水自体にとってはCOD(化学的酸素要求量)やTOC(全有機炭素)の増加となり、著しく水質を悪化させる原因となり、地下水の浄化は不可能になる。
【0007】
この問題を解決するため、有機炭素源が存在しない場合でも脱窒能力を発現する独立栄養細菌を使用し、水素ガスをバイオリアクターに吹き込むことにより浄水処理を実施した例がある(特許公開2001−170683)。この場合、炭酸ガスを吹き込むことで有機炭素を供給し、菌の活性化を行っているが、水素ガスのみの供給に比較して硝酸性窒素除去速度が小さくなるのは避けられない。
【0008】
【発明が解決しようとする課題】
硝酸性窒素で汚染された地下水から効率良く硝酸性窒素を除去するためには、水素ガスを流入させ独立栄養脱窒菌を内包する化学的、機械的強度の大きい多孔質外殻膜を有する単核マイクロカプセルを使うことが必要である。
【0009】
また、安定的操作と効率向上のためには独立栄養脱窒菌の活性化は、脱窒とは別個に活性化塔で実施すべきである。
【0010】
本発明の目的は、硝酸性窒素に汚染された地下水を上述の方法等を採用することにより、連続運転が可能な方法を提供することにある。
【0011】
【発明が解決するための手段】
微生物の包括固定担体として、海藻類由来多糖体のカルシウムゲル等を用いた場合に上述の長期使用によるゲル崩壊が生じる。
【0012】
この崩壊は脆弱なゲル構造と細菌に侵食され易い多糖体由来高分子材料に起因していると考えられるので、脱窒細菌を内包させた多孔質合成高分子で外殻膜を形成した単核マイクロカプセルを、上述の多糖体カルシウムゲルのかわりに使用しこの問題を解決した。
【0013】
この様に、長期の寿命が保証された、脱窒細菌内包マイクロカプセルを使用することにより、次に述べるような流動層型もしくは充填塔型装置を使用して、長期安定連続操作を実現することができる。
【0014】
すなわち、流動層型装置を使用する本発明の請求項1に係る連続脱窒方法は、独立栄養脱窒細菌を内包する多孔質殻単核マイクロカプセルを含むスラリーを収容した流動層型の脱窒塔及び活性化塔を具備し、脱窒塔内に下方から硝酸性窒素で汚染された地下水等の被処理水と水素ガスとを連続的に導入することにより、被処理水中の硝酸性窒素を前記独立栄養脱窒細菌による生物学的脱窒処理によって除去し、浄化水及び発生する窒素ガスを該脱窒塔の上部から連続的に導出する一方、活性化塔内に下方から前記独立栄養脱窒細菌に対する培養液と空気を導入することにより、前記マイクロカプセルに内包された独立栄養脱窒細菌を活性化させ、この活性化した独立栄養脱窒細菌を内包する前記マイクロカプセルの一部を脱窒塔内へ送り込むと共に、該脱窒塔内の前記マイクロカプセルの一部を活性化塔内へ返送することを特徴としている。図1に、このような連続脱窒方法を適用する流動層型装置の一例を示す。
【0015】
硝酸性窒素で汚染された地下水は、流動層でマイクロカプセルに固定化された脱窒細菌によって脱窒され、5mg/l以下の全窒素含有量の浄化水となり通常の浄化処理工程へと送られる。層内の地下水の平均滞留時間は10〜40分間である。
【0016】
一方、微生物内包マイクロカプセル粒子は脱窒塔内をほぼ完全混合に近い挙動で流動化しており、一部がスラリーとして活性化塔に送られる。
【0017】
活性化塔には地下水流量の100〜500分の1が送液される。スラリー液の活性化塔での平均滞留時間は8〜20時間であるが、この間にマイクロカプセル中の微生物は活性化される。活性化塔と脱窒塔は口過分離、洗浄、送液を段階的に行う口過送液流動層装置で結ばれている。
【0018】
口過送液流動層は下部にメッシュを持ち5個の弁が下記のように自動的に作動する装置である。まず、活性化塔から液を取り入れ(V1を開き、次に閉じる)、口過して、口液を活性化塔に戻す(V2を開き、次に閉じる)。メッシュ上の微生物内包マイクロカプセルは洗浄、排水(V3を開き、閉じ、V4を開き閉じる)を繰り返すことで洗浄される。最後に洗浄水を流入させ(V3を開き、閉じる)、マイクロカプセルスラリーを脱窒塔に送液(V5を開き、閉じる)させる。
【0019】
極少量の培養液は活性化塔にたえず送られており、活性化が必要な培養液濃度を保っている。
【0020】
流動層型装置を使用する本発明の請求項2に係る連続脱窒方法は、各々独立栄養脱窒細菌を内包する多孔質殻単核マイクロカプセルを装填した複数の充填塔が並設され、これら充填塔の一部を活性化塔として、塔内に前記独立栄養脱窒細菌に対する培養液と空気を導入して該独立栄養脱窒細菌を活性化させる一方、他の充填塔を脱窒塔として、塔内に硝酸性窒素で汚染された被処理水と水素ガスとを連続的に導入することにより、被処理水中の硝酸性窒素を前記独立栄養脱窒細菌による生物学的脱窒処理によって除去すると共に、浄化水及び発生する窒素ガスを塔外へ連続的に導出し、活性化塔として稼働していた充填塔での活性化終了に伴い、脱窒塔として稼働していた隣接の充填塔内への被処理水及び水素ガスの供給を停止して水抜きを行い、この水抜き後の充填塔内へ前記活性化終了後の充填塔内の培養液を前記液移送手段によって移送し、この培養液を収容した充填塔内に空気を導入して次の活性化塔として稼働させると共に、前記活性化終了後の充填塔内に前記被処理水及び水素ガスを連続的に導入して脱窒塔として稼働させる形で、活性化塔と脱窒塔の切換えを順次繰り返すことを特徴としている。図2に、このような連続脱窒方法を適用する充填塔型装置の一例を示す。
【0021】
充填塔型への地下水の滞留時間は5〜30分間であり、流動層型より速い流速が可能である。
【0022】
この場合、複数個好ましくは20個程度の脱窒塔を運転する必要がある。各脱窒塔は連続約400時間の運転は可能であるが、その後は脱窒細菌の活性化が必要となるからである。活性化塔での処理時間(液抜き、培養液の注入、培養活性化、培養液の取り出し、次の塔へ供給まで)は8〜20時間と見積れる。
【0023】
20塔のうち、1塔は活性化塔として機能させるが、他の19塔は常に運転されているということになる。
【0024】
脱窒塔から活性化塔への切換えはバブル操作で自動的に実施できる。すなわち、水素や地下水供給弁を閉じ、塔中の液抜きを行い(液抜きの弁の開、閉)、次に培養液を注入してマイクロカプセル内脱窒細菌を培養活性化する(培養液の供給弁を開、次に閉、空気弁を開)。
【0025】
活性化終了後(空気弁を閉)、培養液を抜き取り次の塔へ供給する(培養液抜き取り弁開、次に閉)。
【0026】
再び、水素と地下水供給弁を開き、脱窒を開始する。
【0027】
これを順次自動的に行うことにより連続的な脱窒素プラントの運転が可能となる。この場合、汚染地下水の脱窒に関する装置能力は19/20となる。実際上は微生物の活性の持続に余裕が認められるので20塔のうち、数個はメンテナンスも可能となるためにプラント自体は年間を通しての連続運転が達成される。
【0028】
【発明の実施の形態】
硝酸性窒素で汚染された地下水の浄化処理は独立栄養脱窒細菌を内包したマイクロカプセル粒子群を装入した流動層型脱窒システム(図1)あるいは充填層型脱窒システム(図2)を採用することにより、省力化されかつ安定的連続運転の下、達成される。
【0029】
【実施例】
以下に、本発明の特徴をさらに明らかにするため実施例を示すが、本発明はそれらの実施例によって制限されるものではない。
【0030】
【実施例1】
図3に実験装置の概要を示すParacoccus denitrificans IFO1331の200gwet cakeをベースにして、これを内包する単核ポリスチレンマイクロカプセル(粒子径100〜300μm)350gを調整し、脱窒塔に挿入した。脱窒塔に20mg/l硝酸性窒素濃度を持つ原水また活性化塔に表1に組成を示す培養液を満たすことで実験を開始した。
【0031】
20mg/l硝酸性窒素濃度を持つ原水を20ml/minの速度で供給した。また、脱窒塔から活性化塔への送液は10ml/minの速度で6秒間送液し、その後5分間送液を休止する方法で平均0.2ml/minを実現した。
【0032】
実験装置図中央の口過送液塔は、手動により約6時間間隔で作動させた。まず、バルブV1を開き、活性化塔からのスラリー液70mlを口過送液塔に流入させた。(バブルV1を閉める)。
【0033】
次に、バブルV2(三方コック)を動かし、ポンプを作動させて口液を活性化塔にもどした。(次にV2バブルを閉めた)。洗浄水を上部から流してマイクロカプセル粒子を洗浄し、V2バブルを動かして口液を排水した。充分に洗浄後、V2バルブを閉めた。
【0034】
再び、洗浄水を入れてV3バルブを開き、脱窒細菌内包マイクロカプセルを脱窒塔にもどした。以上の操作を6時間ごとに繰り返した。培養液の減少分は3日ごとに補充した。
【0035】
【結果】
図4に3ヶ月間余りにわたる流出口における硝酸性窒素と亜硝酸性窒素の濃度の測定結果を示す。図に示すように長期にわたって安定的な連続運転が可能なことが実証された。
【表1】
培地の組成を示す。
【表1】

Figure 0005172058

【図面の簡単な説明】
【図1】流動層型脱窒システムの概略図を示す。
【図2】充填塔型脱窒システムの概略図を示す。
【図3】脱窒プロセス実験に使用する装置図を示す。
【図4】硝酸性窒素と亜硝酸性窒素の濃度測定結果の一例を示す。[0001]
The present invention relates to a method for continuously purifying groundwater and the like contaminated with nitrate nitrogen by biological denitrification treatment using microbial carrier microcapsules .
[0002]
[Prior art]
In recent years, groundwater contamination by nitrate nitrogen, which is thought to be caused by livestock (feces and urine) and chemical fertilizers, has become serious. It has been reported that methemoglobinemia and carcinogenicity are caused by the presence of a large amount of nitrate nitrogen in drinking water, and the content of nitrate nitrogen of 10 mg / l or less is defined in drinking water.
[0003]
Ion exchange resin method, RO (reverse osmosis membrane) method, ED (electrodialysis) method, etc. have been proposed as physicochemical treatment methods to remove nitrate nitrogen from groundwater etc. This is a method for separating nitrogen, which contains a high concentration of nitrate nitrogen in reclaimed wastewater or concentrated wastewater, and its treatment often becomes a problem.
[0004]
Further, in addition to the separated nitrate nitrogen, the discharge of sodium chloride used as a regenerant in the ion exchange resin method becomes a problem in the inland area that does not face the sea. On the other hand, the biological treatment method has a feature of removing nitrate nitrogen in water by converting it into nitrogen gas. In this case, a wastewater treatment apparatus that combines a normal denitrification tank and a nitrification tank is used (Patent Publication 2001-259689).
[0005]
Biological treatment methods include heterotrophic denitrification using denitrifying bacteria and autotrophic denitrification. Heterotrophic bacteria take organic carbon sources as nutrients under anaerobic conditions, reduce nitrate nitrogen and release it as nitrogen gas when performing “nitrate respiration”. For wastewater containing organic carbon sources to some extent, nitrate nitrogen is removed by biological treatment without increasing the BOD value in anaerobic atmosphere by applying a special operation (patent application) 2000-32754). However, groundwater generally contains almost no organic carbon source, and it is difficult to remove nitrate nitrogen by such a method.
[0006]
In addition, in order to remove nitrate nitrogen in an anaerobic atmosphere, the introduction of an organic carbon source in advance results in an increase in COD (chemical oxygen demand) and TOC (total organic carbon) for water itself, and the water quality is extremely high. It becomes impossible to purify groundwater.
[0007]
In order to solve this problem, there is an example in which water-purifying treatment is performed by blowing hydrogen gas into a bioreactor using autotrophic bacteria that express denitrification ability even in the absence of an organic carbon source (Patent Publication 2001- 170683). In this case, organic carbon is supplied by blowing carbon dioxide gas to activate the bacteria. However, it is inevitable that the nitrate nitrogen removal rate is reduced as compared with supplying hydrogen gas alone.
[0008]
[Problems to be solved by the invention]
In order to efficiently remove nitrate nitrogen from groundwater contaminated with nitrate nitrogen, a mononuclear having a porous outer shell membrane with high chemical and mechanical strength that encloses autotrophic denitrifying bacteria by introducing hydrogen gas It is necessary to use microcapsules.
[0009]
For stable operation and efficiency improvement, activation of autotrophic denitrifying bacteria should be carried out in an activation tower separately from denitrification.
[0010]
An object of the present invention is to provide a method capable of continuous operation by adopting the above-described method for groundwater contaminated with nitrate nitrogen.
[0011]
[Means for Solving the Invention]
When a seaweed-derived polysaccharide calcium gel or the like is used as a microbial entrapping immobilization carrier, the above-described long-term gel collapse occurs.
[0012]
Since this collapse is thought to be caused by a fragile gel structure and a polymer material derived from polysaccharides that are easily eroded by bacteria, a mononuclear structure in which a shell membrane is formed with a porous synthetic polymer encapsulating denitrifying bacteria Microcapsules were used in place of the polysaccharide calcium gel described above to solve this problem.
[0013]
In this way, long-term stable continuous operation can be realized by using a fluidized bed type or packed tower type device as described below by using microcapsules containing denitrifying bacteria with a long lifespan guaranteed. Can do.
[0014]
That is, the continuous denitrification method according to claim 1 of the present invention using a fluidized bed type apparatus is a fluidized bed type denitrification containing a slurry containing porous shell mononuclear microcapsules containing autotrophic denitrifying bacteria. A tower and an activation tower are provided, and by introducing the treated water such as groundwater and hydrogen gas contaminated with nitrate nitrogen from below into the denitrification tower, the nitrate nitrogen in the treated water is reduced. It is removed by biological denitrification treatment with the autotrophic denitrifying bacteria, and purified water and the generated nitrogen gas are continuously led out from the upper part of the denitrifying tower, while the autotrophic denitrification is entered into the activation tower from below. By introducing a culture solution and air for the nitrifying bacteria, the autotrophic denitrifying bacteria contained in the microcapsules are activated, and a part of the microcapsules enclosing the activated autotrophic denitrifying bacteria is removed. Send into the nitro tower Both are characterized by returning a portion of the microcapsules in the dehydration窒塔to activate the column. FIG. 1 shows an example of a fluidized bed apparatus to which such a continuous denitrification method is applied.
[0015]
Groundwater contaminated with nitrate nitrogen is denitrified by denitrifying bacteria immobilized in microcapsules in a fluidized bed, and becomes purified water with a total nitrogen content of 5 mg / l or less, and is sent to a normal purification process. . The average residence time of groundwater in the formation is 10 to 40 minutes.
[0016]
On the other hand, the microcapsule particles encapsulating microorganisms are fluidized in the denitrification tower with a behavior close to complete mixing, and a part thereof is sent to the activation tower as a slurry.
[0017]
One to 100 to 500 times of the groundwater flow rate is sent to the activation tower. The average residence time of the slurry liquid in the activation tower is 8 to 20 hours, during which the microorganisms in the microcapsules are activated. The activation tower and the denitrification tower are connected by a super-fluid feeding fluidized bed apparatus that performs super-separation, washing and feeding in stages.
[0018]
The mouth superfluid fluidized bed is a device having a mesh at the bottom and automatically operating five valves as follows. First, the liquid is taken from the activation tower (V1 is opened and then closed) and passed through to return the liquid to the activation tower (V2 is opened and then closed). The microcapsules containing microorganisms on the mesh are washed by repeating washing and drainage (V3 is opened and closed, and V4 is opened and closed). Finally, washing water is introduced (V3 is opened and closed), and the microcapsule slurry is sent to the denitrification tower (V5 is opened and closed).
[0019]
A very small amount of the culture solution is constantly sent to the activation tower, and the concentration of the culture solution that needs to be activated is maintained.
[0020]
In the continuous denitrification method according to claim 2 of the present invention using a fluidized bed type apparatus, a plurality of packed towers loaded with porous shell mononuclear microcapsules each enclosing an autotrophic denitrifying bacterium are provided side by side. A part of the packed tower is used as an activation tower, and a culture solution and air for the autotrophic denitrifying bacteria are introduced into the tower to activate the autotrophic denitrifying bacteria, while the other packed tower is used as a denitrifying tower. By continuously introducing treated water contaminated with nitrate nitrogen and hydrogen gas into the tower, nitrate nitrogen in the treated water is removed by biological denitrification treatment using the autotrophic denitrifying bacteria. At the same time, the purified water and the generated nitrogen gas are continuously led out of the tower, and the adjacent packed tower that has been operating as a denitrification tower with the completion of the activation in the packed tower that has been operating as the activation tower. Stop the supply of water to be treated and hydrogen gas to drain water The culture liquid in the packed tower after completion of the activation is transferred into the packed tower after draining by the liquid transfer means, and air is introduced into the packed tower containing the culture liquid for the next activity. In addition to operating as a conversion tower, the activated water and the denitrification tower are switched in such a manner that the water to be treated and hydrogen gas are continuously introduced into the packed tower after completion of the activation to operate as a denitrification tower. It is characterized by repeating sequentially. FIG. 2 shows an example of a packed tower type apparatus to which such a continuous denitrification method is applied.
[0021]
The residence time of groundwater in the packed tower type is 5 to 30 minutes, and a faster flow rate than the fluidized bed type is possible.
[0022]
In this case, it is necessary to operate a plurality of denitrification towers, preferably about 20. This is because each denitrification tower can be operated for about 400 hours continuously, but after that, denitrification bacteria must be activated. The processing time in the activation tower (from draining, injecting culture fluid, activating the culture, taking out the culture fluid, and supplying to the next tower) is estimated to be 8 to 20 hours.
[0023]
Of the 20 towers, one will function as an activation tower, while the other 19 will always be in operation.
[0024]
Switching from the denitrification tower to the activation tower can be carried out automatically by bubble operation. That is, the hydrogen or groundwater supply valve is closed, the liquid in the tower is drained (the drain valve is opened and closed), and then the culture solution is injected to activate the denitrifying bacteria in the microcapsule (culture solution) Open the supply valve, then close it and open the air valve).
[0025]
After the activation is completed (air valve is closed), the culture solution is extracted and supplied to the next tower (the culture solution extraction valve is opened and then closed).
[0026]
Again, open the hydrogen and groundwater supply valves and start denitrification.
[0027]
By performing this automatically in sequence, continuous denitrification plant operation becomes possible. In this case, the equipment capacity for denitrification of contaminated groundwater is 19/20. In practice, there is a margin in sustaining the activity of the microorganisms, so that some of the 20 towers can be maintained, so that the plant itself can be operated continuously throughout the year.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
For purification of groundwater contaminated with nitrate nitrogen, fluidized bed type denitrification system (Fig. 1) or packed bed type denitrification system (Fig. 2) with microcapsule particles encapsulating autotrophic denitrifying bacteria is used. By adopting, it is achieved under labor saving and stable continuous operation.
[0029]
【Example】
Examples are shown below to further clarify the features of the present invention, but the present invention is not limited to these examples.
[0030]
[Example 1]
Based on 200 gwet cake of Paracoccus denitrificans IFO1331, whose outline of the experimental apparatus is shown in FIG. The experiment was started by filling the denitrification tower with raw water having a concentration of 20 mg / l nitrate nitrogen or filling the activation tower with the culture solution shown in Table 1.
[0031]
Raw water having a concentration of 20 mg / l nitrate nitrogen was supplied at a rate of 20 ml / min. In addition, the liquid feeding from the denitrification tower to the activation tower was carried out at a rate of 10 ml / min for 6 seconds, and then the liquid feeding was paused for 5 minutes to achieve an average of 0.2 ml / min.
[0032]
The mouth-feeding liquid tower in the center of the experimental apparatus was manually operated at intervals of about 6 hours. First, the valve V1 was opened, and 70 ml of the slurry liquid from the activation tower was allowed to flow into the super liquid feed tower. (Close bubble V1).
[0033]
Next, bubble V2 (three-way cock) was moved, the pump was operated, and the mouth liquor was returned to the activation tower. (Then closed the V2 bubble). Washing water was poured from above to wash the microcapsule particles, and the mouth liquor was drained by moving the V2 bubble. After sufficient washing, the V2 valve was closed.
[0034]
Again, washing water was added, the V3 valve was opened, and the microcapsules containing denitrifying bacteria were returned to the denitrifying tower. The above operation was repeated every 6 hours. The decreased amount of the culture solution was replenished every 3 days.
[0035]
【result】
FIG. 4 shows the measurement results of the concentrations of nitrate nitrogen and nitrite nitrogen at the outlet for over 3 months. As shown in the figure, it has been demonstrated that stable continuous operation is possible over a long period of time.
[Table 1]
The composition of the medium is shown.
[Table 1]
Figure 0005172058

[Brief description of the drawings]
FIG. 1 shows a schematic diagram of a fluidized bed denitrification system.
FIG. 2 shows a schematic view of a packed tower denitrification system.
FIG. 3 shows an apparatus diagram used for a denitrification process experiment.
FIG. 4 shows an example of concentration measurement results of nitrate nitrogen and nitrite nitrogen.

Claims (2)

独立栄養脱窒細菌を内包する多孔質殻単核マイクロカプセルを含むスラリーを収容した流動層型の脱窒塔及び活性化塔を具備し、
脱窒塔内に下方から硝酸性窒素で汚染された地下水等の被処理水と水素ガスとを連続的に導入することにより、被処理水中の硝酸性窒素を前記独立栄養脱窒細菌による生物学的脱窒処理によって除去し、浄化水及び発生する窒素ガスを該脱窒塔の上部から連続的に導出する一方、
活性化塔内に下方から前記独立栄養脱窒細菌に対する培養液と空気を導入することにより、前記マイクロカプセルに内包された独立栄養脱窒細菌を活性化させ、この活性化した独立栄養脱窒細菌を内包する前記マイクロカプセルの一部を脱窒塔内へ送り込むと共に、該脱窒塔内の前記マイクロカプセルの一部を活性化塔内へ返送することを特徴とする、硝酸性窒素で汚染された地下水等の連続脱窒方法。
Comprising a fluidized bed type denitrification tower and an activation tower containing a slurry containing a porous shell mononuclear microcapsule containing autotrophic denitrifying bacteria,
Biological treatment of nitrate nitrogen in the treated water by the autotrophic denitrifying bacteria by continuously introducing treated water such as groundwater contaminated with nitrate nitrogen and hydrogen gas into the denitrification tower from below. While removing the purified water and the generated nitrogen gas continuously from the top of the denitrification tower,
By introducing a culture solution and air for the autotrophic denitrifying bacteria from below into the activation tower, the autotrophic denitrifying bacteria contained in the microcapsules are activated, and this activated autotrophic denitrifying bacteria A part of the microcapsules enclosing the catalyst is fed into the denitrification tower, and a part of the microcapsules in the denitrification tower is returned to the activation tower. Continuous denitrification method for groundwater .
各々独立栄養脱窒細菌を内包する多孔質殻単核マイクロカプセルを装填した複数の充填塔が並設され、
これら充填塔の一部を活性化塔として、塔内に前記独立栄養脱窒細菌に対する培養液と空気を導入して該独立栄養脱窒細菌を活性化させる一方、
他の充填塔を脱窒塔として、塔内に硝酸性窒素で汚染された被処理水と水素ガスとを連続的に導入することにより、被処理水中の硝酸性窒素を前記独立栄養脱窒細菌による生物学的脱窒処理によって除去すると共に、浄化水及び発生する窒素ガスを塔外へ連続的に導出し
活性化塔として稼働していた充填塔での活性化終了に伴い、脱窒塔として稼働していた隣接の充填塔内への被処理水及び水素ガスの供給を停止して水抜きを行い、この水抜き後の充填塔内へ前記活性化終了後の充填塔内の培養液を移送し、この培養液を収容した充填塔内に空気を導入して次の活性化塔として稼働させると共に、前記活性化終了後の充填塔内に前記被処理水及び水素ガスを連続的に導入して脱窒塔として稼働させる形で、活性化塔と脱窒塔の切換えを順次繰り返すことを特徴とする、硝酸性窒素で汚染された地下水等の連続脱窒方法。
A plurality of packed towers loaded with porous shell mononuclear microcapsules each enclosing an autotrophic denitrifying bacterium are provided side by side,
While part of these packed towers are used as activation towers, a culture solution and air for the autotrophic denitrifying bacteria are introduced into the tower to activate the autotrophic denitrifying bacteria,
By using another packed tower as a denitrification tower and continuously introducing the treated water contaminated with nitrate nitrogen and hydrogen gas into the tower, the nitrate nitrogen in the treated water is removed from the autotrophic denitrifying bacteria. In addition to the removal by biological denitrification treatment with, purified water and generated nitrogen gas are continuously led out of the tower ,
With the completion of activation in the packed tower that was operating as an activation tower, the supply of water to be treated and hydrogen gas into the adjacent packed tower that was operating as a denitrification tower was stopped, and water was drained. The culture solution in the packed column after the completion of the activation is transferred into the packed column after draining, and air is introduced into the packed column containing the culture solution to operate as the next activation column. The activated water and the denitrification tower are sequentially switched in such a manner that the water to be treated and hydrogen gas are continuously introduced into the packed tower after the completion of the activation to operate as a denitrification tower. Continuous denitrification of groundwater contaminated with nitrate nitrogen.
JP2001340044A 2001-09-30 2001-09-30 Continuous denitrification of groundwater contaminated with nitrate nitrogen Expired - Fee Related JP5172058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001340044A JP5172058B2 (en) 2001-09-30 2001-09-30 Continuous denitrification of groundwater contaminated with nitrate nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001340044A JP5172058B2 (en) 2001-09-30 2001-09-30 Continuous denitrification of groundwater contaminated with nitrate nitrogen

Publications (2)

Publication Number Publication Date
JP2003170191A JP2003170191A (en) 2003-06-17
JP5172058B2 true JP5172058B2 (en) 2013-03-27

Family

ID=19154306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001340044A Expired - Fee Related JP5172058B2 (en) 2001-09-30 2001-09-30 Continuous denitrification of groundwater contaminated with nitrate nitrogen

Country Status (1)

Country Link
JP (1) JP5172058B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021221192A1 (en) * 2020-02-12 2022-09-01 Clean Teq Pty Ltd A process and a plant

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645798A (en) * 1979-09-25 1981-04-25 Ebara Infilco Co Ltd Biological denitrification of waste water
JP2901323B2 (en) * 1990-08-10 1999-06-07 オルガノ株式会社 Biological nitrogen removal method
JPH05220492A (en) * 1992-02-12 1993-08-31 Kubota Corp Carrier for immobilizing microorganism and its production
JPH06154786A (en) * 1992-11-17 1994-06-03 Japan Organo Co Ltd Device for removing nitrogen in oxidized state in water
JP3804074B2 (en) * 1994-10-20 2006-08-02 正利 松村 Liquid flow type biochemical reaction apparatus and groundwater or drainage purification system using the apparatus
JPH10290996A (en) * 1997-02-20 1998-11-04 Hitachi Plant Eng & Constr Co Ltd Denitrification apparatus for water

Also Published As

Publication number Publication date
JP2003170191A (en) 2003-06-17

Similar Documents

Publication Publication Date Title
JP5150993B2 (en) Denitrification method and apparatus
US4159945A (en) Method for denitrification of treated sewage
CN105217785A (en) Multimedium baffled biological aerated filter and application thereof
WO1998050311A1 (en) Liquid waste treatment bioreactor process and apparatus
CN110526504B (en) System and method for treating regenerated waste liquid of targeted denitrification and dephosphorization resin
JP3391057B2 (en) Biological nitrogen removal equipment
KR100497810B1 (en) System of circulated sequencing batch Reactor with media containing zeolite for organic matters, nitrogen and phosphorus removal in sewage and waste waters
KR100432437B1 (en) Method and Apparatus for Treating N-containing Wastewater Using Granular Zeolites
JP2609192B2 (en) Biological dephosphorization nitrification denitrification treatment method of organic wastewater
CN210150897U (en) Reclaimed water recycling device
JP5172058B2 (en) Continuous denitrification of groundwater contaminated with nitrate nitrogen
JP4512576B2 (en) Wastewater treatment by aerobic microorganisms
KR100336484B1 (en) A Soil Clothing-Style Contact Oxidation Apparatus with Recycle of Nitrified Liquid and Contact Oxidation Method of Using the Same
JPH10263594A (en) Removing method and device of nitrate ion in waste water
JP3607088B2 (en) Method and system for continuous simultaneous removal of nitrogen and suspended solids from wastewater
JP4838872B2 (en) Water treatment apparatus and water treatment method
KR100583904B1 (en) High intergated Biological Nutrient Removal System
JP3629727B2 (en) Organic wastewater treatment method and apparatus
JPH03232590A (en) Treatment of sewage
JP3222015B2 (en) Biological water treatment method for wastewater containing ammonia nitrogen
JPS6331592A (en) Method for making ultrapure water
KR100474106B1 (en) Method for wastewater and night soil treatment utilizing microbial actuator and its apparatus
KR100403288B1 (en) A treatment method of wastewater with low concentration of ammonia by the type of non-aeration nitrification
JP2673488B2 (en) Method and apparatus for treating organic wastewater
JP3222014B2 (en) Biological water treatment method for wastewater containing ammonia nitrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees