JP4560810B2 - Nitrate ion removal equipment - Google Patents

Nitrate ion removal equipment Download PDF

Info

Publication number
JP4560810B2
JP4560810B2 JP2000360266A JP2000360266A JP4560810B2 JP 4560810 B2 JP4560810 B2 JP 4560810B2 JP 2000360266 A JP2000360266 A JP 2000360266A JP 2000360266 A JP2000360266 A JP 2000360266A JP 4560810 B2 JP4560810 B2 JP 4560810B2
Authority
JP
Japan
Prior art keywords
water
tank
filter medium
treated
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000360266A
Other languages
Japanese (ja)
Other versions
JP2002159993A (en
Inventor
俊明 宮永
知訓 郡司
敦 谷田貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2000360266A priority Critical patent/JP4560810B2/en
Publication of JP2002159993A publication Critical patent/JP2002159993A/en
Application granted granted Critical
Publication of JP4560810B2 publication Critical patent/JP4560810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、農業廃水、工業廃水、家庭廃水等から硝酸イオンを除去するのに好適な独立栄養性硫黄酸化脱窒細菌による脱窒方法を適用する硝酸イオン除去処理装置に関するものである。
【0002】
【従来の技術】
各種廃水中の硝酸イオンに起因する環境汚染を防止するべく、これに対応する種々の処理方法が開発されている。その硝酸イオンを除去処理する方法を例示すると、独立栄養性硫黄酸化脱窒細菌を用いる独立栄養性脱窒法と、従属栄養性脱窒細菌を用いる従属栄養性脱窒法とが挙げられる。このうち、前者は後者と異なり定量的なメタノール添加等の煩雑でコストの嵩む維持が不要なところから各方面で注目されている。
【0003】
特に、硫黄と炭酸カルシウム含有物質との混合組成物(特開平11−285377号,特開2000−93997号)を脱窒基質とする硫黄酸化脱窒細菌を用いる硝酸イオン除去処理方法は、脱窒機能を十分に発揮できると共に、装置としてもメンテナンスの容易さや操作の簡便性および安価に確実な脱窒処理を実現できるという点で優れている。
【0004】
しかしながら、独立栄養性硫黄酸化脱窒細菌を用いる硫黄と炭酸カルシウム含有物質との混合組成物による脱窒では、固体表面における硝酸イオンから窒素ガスへの変換反応に基づいて機能を発揮するため、被処理水の流入量、流動状態、流動速度、水温、粘度、浮遊懸濁物量或いは共存イオン等の外的要因によっては窒素ガスが脱窒基質である固体表面に同時多量に付着し易くなり、また、被処理水中に溶存酸素量の多い場合には硫黄が脱窒とは無関係に酸化されて脱窒効率が低下することがある。
【0005】
その窒素ガスが気泡として脱窒基質の表面に多量に付着した場合には、固体脱窒基質の表面更新機能が低下し、硝酸イオンから窒素ガスへの変換反応が鈍化することによる脱窒効率の低下が見られることがある。
【0006】
従来、脱窒処理装置としては、図1で示すように給水管1並びに排出管2を処理槽3の上部側に設けると共に、水面内の高さを交互に違えて複数枚の整流板4a,4b…を処理槽3の槽内に配置し、廃水Wを整流板4a,4b…で蛇行させて槽内を流動させることにより槽内に沈降する活性汚泥Dを巻き上げて内液を攪拌混合するものが提案されている(特開平11―104689号)。
【0007】
この脱窒処理装置は、従属栄養性脱窒、特に活性汚泥法による脱窒に適し、硫黄含有物質を濾材とした独立栄養性脱窒には被処理水と濾材との接触効率の点から適さない。
【0008】
上述した脱窒処理装置の他に、図1で示すように複数枚の整流板4a,4b…を処理槽3の槽内に備える硫黄含有濾材Sによる濾材床の内部に位置させて取り付け、被処理水Wを濾材床の床内を通過させることにより独立栄養性脱窒に適用し得るものも提案されている。
【0009】
この脱窒処理装置において、上述した硫黄とアルカリ性物質との混合組成物と独立栄養性硫黄酸化脱窒細菌とからなる脱窒方法を用いる場合には、反応効率を高める必要から整流板を可能な限り多く配置しなければならず、また、被処理水が水面で何度も大気と接触することにより溶存酸素量が増加し、脱窒反応以外で硫黄が酸化され、結果的に脱窒効率が低下してしまうことになる。
【0010】
それに加えて、例えば養液栽培排水のように天候や作物の生育ステージにより日々の排水量が一定の範囲をもって大幅に変動すると、別途に大容量の排液貯留容器を配置するか、細かな人的制御か自動制御による対応が必要となる。
【0011】
【発明が解決しようとする課題】
本発明は、被処理水の流入量、流動状態、流動速度、水温、粘度、浮遊懸濁物量或いは共存イオン等の外的要因による影響を抑え、また、脱窒反応以外で硫黄が酸化されるのを防いで脱窒機能を効率よく発揮可能な硝酸イオン除去処理装置を提供することを目的とする。
【0012】
それと共に、日々の排水量が大幅に変動するものでも、この処理速度の高効率化及び安定化に寄与可能な硝酸イオン除去処理装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本願の請求項1に係る発明の硝酸イオン除去処理装置においては、独立栄養性硫黄酸化脱窒細菌による脱窒方法を適用するもので、粒状または塊状の硫黄含有濾材からなる濾材床を槽内に備えると共に、被処理水を槽内に送り込む給水配管系を濾材床より下方の槽下部に配設し、且つ、濾材床より上方の槽内に立ち上がる管上端が開口し処理水の流出穴を管上端寄りの周側面に設けた溢流管を処理水の排出調節用として配管系内に有し、濾材床による処理水を槽外に送り出す排水配管系を濾材床より上方の槽上部に配設し、被処理水を濾材床の下方から上方に向けて流動させる上向流方式の水処理槽として構成されている。
【0014】
本願の請求項2に係る発明の硝酸イオン除去処理装置においては、濾材床の床底と相対し、且つ、該床底の面積内に点在する複数の吐水穴を被処理水の分散給水用として槽内配管に設けた給水配管系を備え付けることにより構成されている。
【0015】
本願の請求項に係る発明の硝酸イオン除去処理装置においては、硫黄とアルカリ性物質との混合組成物からなる濾材床を槽内に備え付け、硫黄とアルカリ性物質との混合組成物の粒子間にある被処理水の酸化還元電位及びまたは槽内の酸化還元電位を0mV〜−300mVに設定することにより構成されている。
【0016】
本願の請求項に係る発明の硝酸イオン除去処理装置においては、濾材床の最上部と被処理水または処理水の水面との間の距離を30mm以上に設定することにより構成されている。
【0017】
【発明の実施の形態】
以下、主に、図の実施の形態に基づいて説明すると、図示の硝酸イオン除去処理装置は、独立栄養性硫黄酸化脱窒細菌を用いる硫黄含有濾材Sによる濾材床10を槽内に備えると共に、被処理水Wを槽内に送り込む給水配管系11を濾材床10より下方の槽下部に配設し、且つ、処理水Wを槽外に送り出す排水配管系12を濾材床10より上方の槽上部に配設することにより、被処理水Wを濾材床10の下方から上方に向けて流動させる上向流方式の水処理槽13として構成されている。
【0018】
その硫黄含有濾材Sには、硫黄とアルカリ性物質との混合組成物を用いるのが最も適している。この濾材Sは、硫黄と炭酸カルシウムを主成分とする物質(アルカリ性物質)とが共存する粒状物または塊状物を独立栄養性硫黄酸化脱窒細菌の脱窒基質とする。その脱窒基質は、硫黄とアルカリ性物質とを混合した後にまたは混合しつつ硫黄を加熱溶融して冷却固化し、この固形物を破砕し或いは造粒することにより得られる(特開平11−285377号)。
【0019】
また、硫黄とアルカリ性物質とを主組成物に、微細孔隙を有する物質を共存させて脱窒基質とできる(特開2000−93997号)。その微細孔隙物質には、珪藻土、珪藻土焼成物、凝灰岩、坑火石、パーライト、真珠岩、有孔隙セラミック、レンガ、ALC、軽石、ポゾラン、シラス、シラスバルーン、膨張頁岩焼成物、アタバルジャイト、セピオライト、クリストバライト、セリライト、酸性白土、イライト等の鉱産物または加工物が用いられ、或いは木炭、ヤシガラ炭、籾殻燻炭、石炭、竹炭、活性炭等の炭化物が用いられる。
【0020】
その脱窒基質の組成物には、例えば各種の岩石粉末や土壌またはロックウール等の第三成分を混合できる。アルカリ性物質としては、炭酸カルシウムを含まない、例えば鉄鋼スラグや軽量気泡コンクリート破砕物のようなものでもよい。独立栄養性硫黄酸化細菌についても特に制限されず、一般自然界に存在する硫黄酸化脱窒菌(Thiobacillus denitrificans)等が用いられる。
【0021】
その硫黄含有濾材Sは、粒状または塊状のもので槽内に沈積させて濾材床10を形成する。但し、硫黄とアルカリ性物質との混合組成物の使用量や使用粒径、槽内における充填厚さ等については特に制限されない。
【0022】
その濾材床10は、硫黄含有濾材Sを槽底に充填沈積するか或いは被処理水の通過可能な有穴二重管(容器)やエキスパンドメタル等による受け底14を槽内に設け、また、必要に応じて槽内水温維持装置(図示せず)を槽底部に設けて硫黄含有濾材Sを受け底14の槽内側に沈積収容することにより備え付けられる。
【0023】
給水配管系11並びに排水配管系12は、水処理槽13の内外に連通する丸管状のパイプ部材を側壁に取り付けることにより配設できる。水処理槽13は、設置効率の関係上、図で示す円筒体形状乃至は特に図示しない直方体形状のもので蓋や扉等で開閉可能な準密閉構造に構成するのが望ましい。但し、脱窒された窒素ガスの放出口は任意に確保されるものとする。水処理槽13の直径や高さ、材質や肉厚等は特に制限されるものではなく、被処理水の種類や量、排出頻度等に応じて自由に設計できる。
【0024】
このように構成する硝酸イオン除去処理装置は、農業廃水、工業廃水、家庭廃水等の排出源と直結させ若しくは貯留槽を介して廃水を導入させるよう設置し、また、排出源,貯留槽と高低差による重力で若しくはポンプによる圧送で廃水を導入するよう設置できる。
【0025】
その廃水、即ち、被処理水Wは槽下部に配設した給水配管系11より槽内に送り込まれ、濾材床10の下部側から槽内を上方に流動する。この流動途上では、独立栄養性硫黄酸化脱窒細菌の存在の下、被処理水Wが硫黄含有濾材Sの固体表面を接触通過することにより、硫黄含有濾材Sの固体表面における硝酸イオンから窒素ガスへの変換反応に基づく脱窒機能を十分に発揮できる。
【0026】
また、被処理水Wを下方から上方へと流す上向流方式を適用し、種々の無機性廃水が濾材床10を通過することにより、硝酸イオンを除去処理するものであるため、被処理水の流入量、流動状態、流動速度、水温、粘度、浮遊懸濁物量あるいは共存イオン等の外的要因による影響を受け難く、窒素ガスが脱窒基質である固体表面に同時大量に付着するのも防げ、新たな溶存酸素の増加も抑制でき、硫黄が脱窒とは無関係に酸化されないところから脱窒効率を向上できる。
【0027】
その処理水Wは、硝酸イオンの除去または低減された濾材床10の排水として濾材床10より上方の槽上部に配設した排水配管系12から槽外に送り出せばよい。これにより、各種廃水中の硝酸イオンに起因する環境汚染の防止に大きく寄与できる。
【0028】
上述した給水配管系11には槽内配管11aを設け、濾材床10の床底と相対し、且つ、床底の面積内に点在する複数の吐水穴11b,11b…を被処理水W の分散給水用として槽内配管11aに設けた配管系を備え付けるとよい。この槽内配管11aでは、被処理水Wを複数の吐水穴11b,11b…より槽内に広く分散させて濾材床10に効率よく供給通過させられる。なお、有穴の受け底14を槽内配管11a並びに吐水穴11b,11b…に代えることにより、槽内配管11a並びに吐水穴11b,11b…省略することもできる。
【0029】
その槽内配管11aは、水処理槽13の槽形状に合わせて、図で示すように中空な円盤状体に形成し、また、中空な四角盤状体(図示せず)に形成するようにできる。その他に、後述する如く各種の形状乃至は構造に形成できる。
【0030】
排水配管系12には、管上端が開口し、処理水Wの流出穴12b,12b…を管上端寄りの周側面で縦方向に複数並べて設けたものを処理水Wの溢流管12aとして排水調整用に濾材床10より上方の槽内に立ち上げたものが備えられている(図1参照)。その溢流管12aは、管下端を閉塞するもので、処理水Wを流出穴12b,12b…から徐々に流出する。これにより、被処理水Wの滞留時間を長く取れて被処理水Wを硫黄含有濾材Sに効果的に作用させられる。なお、被処理水Wの滞留時間の調節は、必要に応じて防水テープ等を流出穴12b,12b…に貼り付ける等で容易に行える。
【0031】
その溢流管12aでは、管上端が開口しているため、水処理槽13の容量を超える被処理水が短時間に導入されても、硝酸イオンが低減された処理水Wを濾材床10の排水として管上端より送り出せ、水位センサや電磁弁、更には人的管理なしで被処理水の導入量変動に対応できる。
【0032】
その溢流管12aについては、排出調節用として流出穴12b,12b…の分布範囲は限定されるが、穴形状、径、数並びに管の直径や設置部位、長さ、材質や肉厚等は制限がなく、被処理水の種類や量、排出頻度等に応じて設計できる。また、この溢流管12aと共に、図3a図3bで示すように水処理槽13の容積を平面横長なものとして大きく確保する如く水処理槽13の構造によっても被処理水の滞留時間や導入量の変動に対応するよう設計できる。
【0033】
上述した実施の形態においては、硫黄とアルカリ性物質との混合組成物でなる硫黄含有濾材を用いるときに、硫黄とアルカリ性物質との混合組成物の粒子間にある被処理水の酸化還元電位及びまたは槽内の酸化還元電位(Eh)を0mV〜−300mV、好ましくは−50mV〜−250mVに設定するとよい。これにより、硫黄脱窒に適した環境が得られる。
【0034】
詳しくは、Ehが−50mVより高い(プラス側)と還元条件が不十分であり、更には0mVよりプラス側になると酸化条件となり、硫黄が硫黄酸化細菌により脱窒以外で無駄に酸化されてしまう。一方、Ehが−300mVを越えて低い(マイナス側)と、特に−500mVより低い場合は強還元雰囲気となり、硫化鉄が硫黄含有濾材Sの表面に沈着する場合がある。
【0035】
その良好なEhの条件を得るため、濾材床10の表面高さと被処理水Wまたは処理水Wの水面高さとの距離を少なくとも30mm以上確保することも必要である。これにより、硫黄脱窒に適した環境が確実に得られる。
【0036】
以上、本発明の主要な実施の形態について説明したが、給水配管系11には、以下に述べる形状乃至は構造の槽内配管11aが設けられる。この変形例としては、円筒体または四角筒体でなる水処理槽13の平面形状に応じて形状は異なるが、その両者の共通型のものが挙げられる。
【0037】
その変形例としては、図4a図4bで示すような根元管11cから複数の分岐管が輪状に延びる輪型、図5a図5bで示すような根元管11cから渦巻状に連続する渦巻型、図6a図6bで示すような根元管11cから複数の枝が延びる分岐型、図7a図7bで示すような枝が根元管の近くから複数延びるフォーク型、図8a図8bで示すような複数の枝が根元管11cより並行に延びる櫛形、図9a図9bで示すような根元管11cから蛇行に連続する蛇行型、図10a図10bで示すような根元管11cから環状に伸びるリング型、図11a図11bで示すような根元管11cから網目状に張り出す網目型が挙げられる。
【0038】
なお、被処理水Wの給水配管系11並びに処理水Wの排水配管系12は1系列の被処理水導入及び処理水排出の装置形状を示したが、例えば各装置形状の縮尺を変えて、2つの装置を並列に並べたもの、対称形状に並べたもの、或いは3つ以上を並べるものでも構成できる。この場合、被処理水Wの給水配管系及び処理水Wの排水配管系は1台の処理装置において複数設けてもよい。
【0039】
本発明の上述した硝酸イオン除去処理装置の有効性を確認するべく、図13で示す装置と共に、次の実験を行った。本発明に係る装置並びに図13で示す装置において、容量の異なる数種の水処理槽を備え、粒径:5〜20mmの硫黄・炭酸カルシウム混合組成物:70kgを装填し、硝酸性窒素:約200mg/Lの被処理水(養液栽培廃水)を水温:20〜30℃、流速:140L/日で通水し、硝酸性窒素除去処理状況の経時変化を検査した。
【0041】
【実施例1】
図3a図3bで示す溢流管を設置した装置において、容量:500Lの直方体処理槽を備え、被処理水を流速50〜600L/日の範囲で通水し、硝酸性窒素除去処理状況の経時変化を確認したところ、脱窒処理開始後14日以降、流速:600L/日の場合においても、処理水の硝酸性窒素濃度は平均5mg/L程度まで低減された。
【0042】
【比較例1】
13の溢流管を設置しない装置において、容量:500Lの直方体処理槽を備え、粒径5〜20mmの硫黄・炭酸カルシウム混合組成物300Kgを充填し、被処理水を流速:50〜600L/日の範囲で通水し、硝酸性窒素除去処理状況の経時変化を確認したところ、脱窒処理開始後14日以降、流速450L/日以上の場合において処理水の硝酸性窒素濃度は平均約50mg/Lであった。これは、通水が450L/日以上の場合に、処理水排出口から未処理水も同時に流出し、被処理水の装置内における滞留時間が短かったことによる。なお、流速:300L/日以下では、処理水の硝酸性窒素濃度は5mg/L以下に程度まで低減された。
【0043】
また、本発明に係る装置並びに図13で示す装置において、容量:100Lの水処理槽を備え、粒径:5〜20mmの硫黄・炭酸カルシウム混合組成物:50kgを装填し、濾材床の最上部から被処理水はたは処理水の水面間距離を変え、硝酸性窒素及び亜硝酸性窒素の合量として約14mg/Lの被処理水(単独浄化槽処理水=し尿処理水、塩素消毒済み水)を水温:12〜16℃、流速:250〜300L/日で通水し、硝酸性窒素及び亜硝酸性窒素の除去処理状況の経時変化を確認した。
【0044】
【実施例2】
図1図2に係る装置において、濾材床の最上部から処理水の水面間距離を400mmとした円筒体処理槽を備えて通水したところ、脱窒処理水中に残存する硝酸性窒素及び亜硝酸性窒素濃度は合量で0〜0.4mg/Lであった。また、副産生成された硫酸イオン量は被処理水中の約33〜40mg/Lに対し、処理水中でも67〜96mg/Lに留まった。このときの硫黄・炭酸カルシウム混合組成物粒子間の被処理水酸化還元電位は、平均で約−180mVであった。なお、副産生成された硫酸イオンは、硫黄・炭酸カルシウム混合組成物により瞬時に中和されるので問題はない。
【0045】
【比較例2】
13で示す装置において、濾材床の最上部から被処理水及び処理水の水面間距離を0〜20mmとした直方体処理槽を備えて通水したところ、脱窒処理水中に残存する硝酸性窒素及び亜硝酸性窒素濃度は合量で約5〜10mg/L残存していた。また、副産生成された硫酸イオン量は被処理水中の約33〜40mg/Lに対し、処理水中では60〜87mg/Lであった。このときの硫黄・炭酸カルシウム混合組成物粒子間の被処理水酸化還元電位は、平均で約+20mVであった。なお、副産生成された硫酸イオンは硫黄・炭酸カルシウム混合組成物により瞬時に中和されるので問題はないが、複数の水面から供給される溶存酸素が脱窒効率の低下を招いていた。
【0046】
【発明の効果】
以上の如く、本願の請求項1に係る発明の硝酸イオン除去処理装置に依れば、独立栄養性硫黄酸化脱窒細菌による脱窒方法を適用するもので、粒状または塊状の硫黄含有濾材による濾材床を槽内に、被処理水を濾材床の下方から上方に向けて流動させる上向流方式の水処理槽として構成することにより、硫黄含有濾材の固体表面における硝酸イオンから窒素ガスへの変換反応に基づく脱窒機能を十分に発揮でき、また、被処理水の流入量、流動状態、流動速度、水温、粘度、浮遊懸濁物量或いは共存イオン等の外的要因による影響を受け難く、窒素ガスが脱窒基質である固体表面に同時多量に付着するのも防げ、新たな溶存酸素の増加も抑制できて、硫黄が脱窒とは無関係に酸化されないことから脱窒効率を向上できる。
【0047】
それに加えて濾材床より上方の槽内に立ち上がる管上端が開口し、処理水の流出穴を管上端寄りの周側面に設けた溢流管を処理水の排出調節用として有する排水配管系を備え付けることにより、被処理水の滞留時間を合理的に調節でき、被処理水を硫黄含有濾材に効果的に作用させられると共に、多量の被処理水が短時間に導入されても管上端の開口部より無理なく排出できる。
【0048】
本願の請求項2に係る発明の硝酸イオン除去処理装置に依れば、濾材床の床底と相対し、且つ、該床底の面積内に点在する複数の吐水穴を被処理水の分散給水用として槽内配管に設けた給水配管系を備え付けることにより、被処理水を複数の吐水孔より槽内に広く分散させて濾材床に効率よく供給通過させられる。
【0049】
本発明の請求項に係る発明の硝酸イオン除去処理装置に依れば、硫黄とアルカリ性物質との混合組成物でなる濾材床を槽内に備え付け、硫黄とアルカリ性物質との混合組成物の粒子間にある被処理水の酸化還元電位及びまたは槽内の酸化還元電位を0mV〜−300mVに設定することにより、硫黄が硫黄酸化細菌により無駄に消費されるのを防ぐことができ、また、強還元雰囲気となるのも防げて濾材表面への硫化鉄等の沈着も防止できるため、硫黄脱窒に適した環境が得られる。
【0050】
本願の請求項4に係る発明の硝酸イオン除去処理装置に依れば、濾材床の最上部と被処理水または処理水の水面との間の距離を30mm以上に設定することにより、硫黄脱窒に適した環境が確実に得られる。
【図面の簡単な説明】
【図】 本発明の好適な実施例で円筒体処理槽を備える硝酸イオン除去処理装置を示す説明図である。
【図】 図1の硝酸イオン除去処理を横断面で示す説明図である。
【図3a】 本発明の好適な実施例で四角筒体処理槽を備える硝酸イオン除去処理装置を示す説明図である。
【図3b】 図3aの硝酸イオン除去処理を横断面で示す説明図である。
【図4a】 本発明に係る硝酸イオン除去処理装置の給水配管系に設けられる円筒体処理槽用の輪型槽内配管を示す説明図である。
【図4b】 本発明に係る硝酸イオン除去処理装置の給水配管系に設けられる四角筒体処理槽用の輪型槽内配管を示す説明図である。
【図5a】 本発明に係る硝酸イオン除去処理装置の給水配管系に設けられる円筒体処理槽用の渦巻型槽内配管を示す説明図である。
【図5b】 本発明に係る硝酸イオン除去処理装置の給水配管系に設けられる四角筒体処理槽用の渦巻型槽内配管を示す説明図である。
【図6a】 本発明に係る硝酸イオン除去処理装置の給水配管系に設けられる円筒体処理槽用の分岐型槽内配管を示す説明図である。
【図6b】 本発明に係る硝酸イオン除去処理装置の給水配管系に設けられる四角筒体処理槽用の分岐型槽内配管を示す説明図である。
【図7a】 本発明に係る硝酸イオン除去処理装置の給水配管系に設けられる円筒体処理槽用のフォーク型槽内配管を示す説明図である。
【図7b】 本発明に係る硝酸イオン除去処理装置の給水配管系に設けられる四角筒体処理槽用のフォーク型槽内配管を示す説明図である。
【図8a】 本発明に係る硝酸イオン除去処理装置の給水配管系に設けられる円筒体処理槽用の櫛型槽内配管を示す説明図である。
【図8b】 本発明に係る硝酸イオン除去処理装置の給水配管系に設けられる四角筒体処理槽用の櫛型槽内配管を示す説明図である。
【図9a】 本発明に係る硝酸イオン除去処理装置の給水配管系に設けられる円筒体処理槽用の蛇行型槽内配管を示す説明図である。
【図9b】 本発明に係る硝酸イオン除去処理装置の給水配管系に設けられる四角筒体処理槽用の蛇行型槽内配管を示す説明図である。
【図10a】 本発明に係る硝酸イオン除去処理装置の給水配管系に設けられる円筒体処理槽用のリング型槽内配管を示す説明図である。
【図10b】 本発明に係る硝酸イオン除去処理装置の給水配管系に設けられる四角筒体処理槽用のリング型槽内配管を示す説明図である。
【図11a】 本発明に係る硝酸イオン除去処理装置の給水配管系に設けられる円筒体処理槽用の網目型槽内配管を示す説明図である。
【図11b】 本発明に係る硝酸イオン除去処理装置の給水配管系に設けられる四角筒体処理槽用の網目型槽内配管を示す説明図である。
【図12】 従来例に係る脱窒処理装置を示す説明図である。
【図13】 従来の別例に係る脱窒処理装置を示す説明図である。
【符号の説明】
被処理水
処理水
S 硫黄含有濾材
10 濾材床
11 給水配管系
11a 給水配管系の槽内配管
11b 槽内配管の吐水穴
12 排水配管系
12a 排水配管系の溢流管
12b 溢流管の排水穴
13 水処理槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nitrate ion removal treatment apparatus to which a denitrification method using an autotrophic sulfur oxidative denitrification bacterium suitable for removing nitrate ions from agricultural wastewater, industrial wastewater, domestic wastewater or the like is applied.
[0002]
[Prior art]
In order to prevent environmental pollution caused by nitrate ions in various wastewaters, various treatment methods corresponding to this have been developed. Examples of the method for removing the nitrate ions include an autotrophic denitrification method using an autotrophic sulfur oxidative denitrification bacterium and a heterotrophic denitrification method using a heterotrophic denitrification bacterium. Among these, unlike the latter, the former is attracting attention in various directions because it does not require complicated maintenance such as quantitative addition of methanol and the cost.
[0003]
In particular, a method for removing nitrate ions using a sulfur oxidizing denitrifying bacterium using a mixed composition of sulfur and a calcium carbonate-containing substance (Japanese Patent Laid-Open No. 11-285377, Japanese Patent Laid-Open No. 2000-93997) as a denitrifying substrate is The system is excellent in that it can fully perform its functions, and the apparatus can be easily maintained, simplified in operation, and can realize a reliable denitrification process at low cost.
[0004]
However, denitrification with a mixed composition of sulfur and calcium carbonate containing substances using autotrophic sulfur oxidative denitrifying bacteria exhibits a function based on the conversion reaction from nitrate ions to nitrogen gas on the solid surface, Depending on external factors such as the inflow amount, flow state, flow rate, water temperature, viscosity, suspended suspension amount or coexisting ions of the treated water, nitrogen gas tends to adhere to the solid surface which is the denitrification substrate at the same time. When the amount of dissolved oxygen in the water to be treated is large, sulfur is oxidized regardless of denitrification, and the denitrification efficiency may be lowered.
[0005]
When a large amount of the nitrogen gas adheres to the surface of the denitrification substrate as bubbles, the surface renewal function of the solid denitrification substrate decreases, and the denitrification efficiency is reduced by slowing the conversion reaction from nitrate ions to nitrogen gas. A decrease may be seen.
[0006]
Conventionally, as a denitrification device, it is provided on the upper side of the water supply pipe 1 and the exhaust pipe 2 processing tank 3 as shown in Figure 1 2, a plurality of rectifying plates 4a and Chigae the height of the water surface alternately , 4b ... are disposed in the tank of the treatment tank 3, and the waste water W is meandered by the rectifying plates 4a, 4b ... There has been proposed (Japanese Patent Laid-Open No. 11-104689).
[0007]
This denitrification equipment is suitable for heterotrophic denitrification, especially denitrification by the activated sludge method, and is suitable for autotrophic denitrification using a sulfur-containing material as a filter medium from the viewpoint of contact efficiency between the water to be treated and the filter medium. Absent.
[0008]
Other denitrification apparatus described above, attached to a plurality of rectifying plates 4a, 4b ... are positioned inside the filter material bed by sulfur-containing filter medium S provided in a bath of the processing tank 3 as shown in Figure 1 3, The thing which can be applied to autotrophic denitrification by letting the to-be-processed water W pass through the inside of a filter-medium bed is also proposed.
[0009]
In this denitrification apparatus, when a denitrification method comprising the above-mentioned mixed composition of sulfur and alkaline substance and autotrophic sulfur oxidative denitrifying bacteria is used, a rectifying plate is possible because it is necessary to increase the reaction efficiency. It is necessary to arrange as many as possible, and the amount of dissolved oxygen increases when the water to be treated comes into contact with the air many times on the surface of the water. As a result, sulfur is oxidized outside of the denitrification reaction, resulting in denitrification efficiency. It will fall.
[0010]
In addition, if the amount of daily drainage fluctuates within a certain range depending on the weather and the growth stage of crops, such as hydroponic drainage, a large-capacity drainage storage container may be placed separately or a small human Control or automatic control is required.
[0011]
[Problems to be solved by the invention]
The present invention suppresses the influence of external factors such as the inflow amount, flow state, flow rate, water temperature, viscosity, suspended suspension amount or coexisting ions of the water to be treated, and sulfur is oxidized other than in the denitrification reaction. It is an object of the present invention to provide a nitrate ion removal treatment apparatus that can effectively prevent denitrification and exhibit a denitrification function efficiently.
[0012]
At the same time, it is an object of the present invention to provide a nitrate ion removal treatment apparatus that can contribute to high efficiency and stabilization of the treatment speed even when the amount of daily wastewater varies greatly.
[0013]
[Means for Solving the Problems]
In the nitrate ion removal treatment apparatus of the invention according to claim 1 of the present application, a denitrification method using an autotrophic sulfur oxidative denitrification bacterium is applied, and a filter medium bed made of granular or massive sulfur-containing filter medium is placed in the tank. In addition, a water supply piping system that feeds the water to be treated into the tank is disposed in the lower part of the tank below the filter medium bed , and the upper end of the pipe that rises in the tank above the filter medium bed opens, and an outflow hole for treated water is formed. An overflow pipe provided on the peripheral side near the upper end of the pipe is provided in the piping system for controlling the discharge of treated water, and a drain piping system for sending treated water from the filter medium bed to the outside of the tank is arranged above the tank above the filter medium bed. It is configured as a water treatment tank of an upward flow type in which water to be treated flows from the lower side of the filter medium bed toward the upper side.
[0014]
In the nitrate ion removal treatment apparatus of the invention according to claim 2 of the present application, a plurality of water discharge holes that are opposed to the floor bottom of the filter medium bed and are scattered within the area of the floor bottom are used for dispersion water supply of the treated water. It is comprised by providing the water supply piping system provided in the piping in a tank as.
[0015]
In the nitrate ion removal processing apparatus of the invention according to claim 3 of the present application, a filter medium bed composed of a mixed composition of sulfur and an alkaline substance is provided in the tank, and is located between particles of the mixed composition of sulfur and an alkaline substance. This is configured by setting the oxidation-reduction potential of the water to be treated and / or the oxidation-reduction potential in the tank to 0 mV to -300 mV.
[0016]
In the nitrate ion removal processing apparatus of the invention according to claim 4 of the present application, the distance between the uppermost part of the filter medium bed and the water surface of the water to be treated or treated water is set to 30 mm or more.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, mainly explaining based on the embodiment of FIG. 1 , the illustrated nitrate ion removing apparatus includes a filter medium bed 10 with a sulfur-containing filter medium S using autotrophic sulfur oxidative denitrifying bacteria in a tank. The feed water piping system 11 for feeding the treated water W 1 into the tank is disposed at the lower part of the tank below the filter medium bed 10, and the drain pipe system 12 for sending the treated water W 2 to the outside of the tank is above the filter medium bed 10. by disposing the tank top, and is configured as a water treatment tank 13 of the upflow mode to flow upward to the water to be treated W 1 from the lower side of the filter medium bed 10.
[0018]
For the sulfur-containing filter medium S, it is most suitable to use a mixed composition of sulfur and an alkaline substance. This filter medium S uses a granular material or a massive material in which sulfur and a substance mainly composed of calcium carbonate (alkaline substance) coexist as a denitrifying substrate of autotrophic sulfur oxidative denitrifying bacteria. The denitrification substrate is obtained by heating and melting sulfur to solidify by cooling after mixing sulfur and an alkaline substance or by crushing or granulating the solid (Japanese Patent Laid-Open No. 11-285377). ).
[0019]
Further, sulfur and an alkaline substance can be used as a denitrification substrate by coexisting a substance having fine pores in a main composition (Japanese Patent Laid-Open No. 2000-93997). The fine pore materials include diatomaceous earth, diatomaceous earth burned material, tuff, olivine, perlite, pearlite, porous ceramic, brick, ALC, pumice, pozzolana, shirasu, shirasu balloon, expanded shale fired product, attabargite, sepiolite, cristobalite. Mineral products or processed products such as sericite, acid clay, illite, etc., or charcoal such as charcoal, coconut husk charcoal, rice husk charcoal, coal, bamboo charcoal, activated carbon, etc. are used.
[0020]
The composition of the denitrification substrate can be mixed with a third component such as various rock powders, soil, or rock wool. As an alkaline substance, things which do not contain calcium carbonate, such as steel slag and lightweight cellular concrete crushed material, may be used. The autotrophic sulfur-oxidizing bacteria are not particularly limited, and sulfur-oxidizing denitrifying bacteria that exist in general nature (Thiobacillus denitrificans) and the like are used.
[0021]
The sulfur-containing filter medium S is granular or massive and is deposited in a tank to form the filter medium bed 10. However, there are no particular restrictions on the amount and particle size of the mixed composition of sulfur and alkaline substance, the filling thickness in the tank, and the like.
[0022]
The filter medium bed 10 is provided with a receiving bottom 14 in the tank by filling and depositing the sulfur-containing filter medium S in the tank bottom, or a perforated double pipe (container) or an expanded metal that can pass the water to be treated. If necessary, an in-tank water temperature maintaining device (not shown) is provided at the bottom of the tank, and the sulfur-containing filter medium S is received and deposited inside the bottom 14 of the tank.
[0023]
The water supply piping system 11 and the drainage piping system 12 can be disposed by attaching a round tubular pipe member communicating with the inside and outside of the water treatment tank 13 to the side wall. In view of installation efficiency, the water treatment tank 13 is desirably configured in a cylindrical shape shown in FIG. 2 or a rectangular parallelepiped shape not particularly shown, and a semi-sealed structure that can be opened and closed with a lid, a door, or the like. However, the denitrified nitrogen gas outlet is arbitrarily secured. The diameter, height, material and thickness of the water treatment tank 13 are not particularly limited, and can be freely designed according to the type and amount of water to be treated, the discharge frequency, and the like.
[0024]
The nitrate ion removal treatment device configured in this way is installed so that it is directly connected to a drainage source such as agricultural wastewater, industrial wastewater, or household wastewater, or introduced through a storage tank. It can be installed to introduce wastewater by gravity due to difference or pumping by pump.
[0025]
The waste water, that is, the water to be treated W 1 is fed into the tank from the water supply piping system 11 disposed at the lower part of the tank, and flows upward in the tank from the lower side of the filter medium bed 10. In the course of this flow, in the presence of autotrophic sulfur oxidative denitrifying bacteria, the treated water W 1 passes through the solid surface of the sulfur-containing filter medium S, so that nitrate ions on the solid surface of the sulfur-containing filter medium S are converted into nitrogen. The denitrification function based on the conversion reaction to gas can be sufficiently exerted.
[0026]
Furthermore, since by applying an upward flow type to flow upward to the water to be treated W 1 from below, various inorganic wastewater passes through the filter medium bed 10 is to remove process nitrate ions, to be treated It is not easily affected by external factors such as water inflow, flow state, flow rate, water temperature, viscosity, suspended suspension amount or coexisting ions, and nitrogen gas adheres to the solid surface as a denitrification substrate at the same time. Therefore, the increase of new dissolved oxygen can be suppressed, and the denitrification efficiency can be improved because sulfur is not oxidized regardless of the denitrification.
[0027]
The process water W 2 may be Okuridase from waste water pipe system 12 which is disposed above the tank above the filter medium bed 10 as waste removal or reduction filter media bed 10 of nitrate outside the tank. This can greatly contribute to prevention of environmental pollution caused by nitrate ions in various wastewaters.
[0028]
The above-described water supply piping system 11 is provided with an in-tank piping 11a, and a plurality of water discharge holes 11b, 11b... That are opposed to the floor bottom of the filter medium floor 10 and are scattered within the floor bottom area are treated water W 1. It is good to equip the piping system provided in the piping 11a in the tank for the distributed water supply. In the tank the pipe 11a, the water to be treated W 1 a plurality of water discharge holes 11b, are 11b ... widely dispersed in from the tank is efficiently supplied pass filter medium bed 10. It is also possible to omit the in-tank piping 11a and the water discharge holes 11b, 11b... By replacing the perforated receiving bottom 14 with the in-tank piping 11a and the water discharge holes 11b, 11b.
[0029]
The in-tank pipe 11a is formed into a hollow disk-like body as shown in FIG. 2 according to the tank shape of the water treatment tank 13, and is formed into a hollow square disk-like body (not shown). Can be. In addition, various shapes or structures can be formed as described later.
[0030]
Drainage to the pipe system 12, the tube upper end is open, processed water W 2 of outlet holes 12b, 12b ... tube upper end side of the peripheral side surface arranging a plurality longitudinally of treated water W 2 which is provided with overflow pipe 12a As shown in FIG. 1, a water tank is provided in the tank above the filter medium bed 10 for adjusting the drainage. Its downcomers 12a is intended for closing the tube lower end, gradually flows out treated water W 2 outlet holes 12b, from 12b .... Thus, it is effectively act-treatment water W 1 0.00 long residence time of the water to be treated W 1 in the sulfur-containing filter medium S. Incidentally, regulation of the residence time of the water to be treated W 1 is outlet hole 12b of the waterproof tape or the like, if necessary, easily the like pasted 12b ....
[0031]
In the downcomers 12a, because the tube and the upper end is opened, also the water to be treated exceed the capacity of the water treatment tank 13 is introduced in a short time, the filter medium bed 10 treated water W 2 which nitrate ions are reduced The waste water can be sent out from the upper end of the pipe, and can respond to fluctuations in the amount of treated water without water level sensors, solenoid valves, or human management.
[0032]
As for the overflow pipe 12a, the distribution range of the outflow holes 12b, 12b... Is limited for discharge adjustment, but the hole shape, diameter, number, diameter, installation site, length, material, thickness, etc. of the pipe are There is no restriction, and it can be designed according to the type and amount of water to be treated, the discharge frequency, etc. Further, together with the overflow pipe 12a, the retention time and introduction of the water to be treated are also obtained depending on the structure of the water treatment tank 13 so as to ensure a large volume of the water treatment tank 13 as a horizontally long plane as shown in FIGS . 3a and 3b. Can be designed to handle volume fluctuations.
[0033]
In the above-described embodiment, when a sulfur-containing filter medium comprising a mixed composition of sulfur and an alkaline substance is used, the oxidation-reduction potential of water to be treated between the particles of the mixed composition of sulfur and an alkaline substance and / or The oxidation-reduction potential (Eh) in the tank may be set to 0 mV to -300 mV, preferably -50 mV to -250 mV. Thereby, the environment suitable for sulfur denitrification is obtained.
[0034]
Specifically, when Eh is higher than −50 mV (plus side), the reduction condition is insufficient, and when Eh is more than 0 mV, the oxidation condition is reached, and sulfur is oxidized by sulfur-oxidizing bacteria other than denitrification. . On the other hand, when Eh is lower than −300 mV (minus side), particularly lower than −500 mV, a strong reducing atmosphere is formed, and iron sulfide may be deposited on the surface of the sulfur-containing filter medium S.
[0035]
In order to obtain the good Eh condition, it is also necessary to secure a distance of at least 30 mm between the surface height of the filter medium bed 10 and the water surface height of the treated water W 1 or the treated water W 2 . Thereby, the environment suitable for sulfur denitrification is obtained reliably.
[0036]
As mentioned above, although main embodiment of this invention was described, the water supply piping system 11 is provided with the tank piping 11a of the shape thru | or structure described below. As a modified example, although the shape differs depending on the planar shape of the water treatment tank 13 formed of a cylindrical body or a rectangular tubular body, a common type of both of them may be mentioned.
[0037]
As a modification thereof, a ring shape in which a plurality of branch pipes extend in a ring shape from the root tube 11c as shown in FIGS . 4a and 4b , or a spiral shape that continues in a spiral shape from the root tube 11c as shown in FIGS . 5a and 5b. 6a and 6b , a branch type in which a plurality of branches extend from the root tube 11c, and a fork type in which a plurality of branches as shown in FIGS . 7a and 7b extend from near the root tube, shown in FIGS . 8a and 8b. Such a plurality of branches extending in parallel from the root tube 11c, a meandering type continuous from the root tube 11c as shown in FIGS . 9a and 9b , and annular from the root tube 11c as shown in FIGS . 10a and 10b Examples include a ring type that extends, and a net type that protrudes in a net shape from the root tube 11c as shown in FIGS . 11a and 11b .
[0038]
In addition, the waste water pipe system 12 of the water supply pipeline 11 and the process water W 2 of the water to be treated W 1 showed a treated water introduced and the treated water discharge of the apparatus form of a series, for example, the scale of each device configuration change Thus, two devices arranged in parallel, symmetrically arranged, or three or more devices can be arranged. In this case, the waste water pipe system of the feed water pipe system and treated water W 2 of the for-treatment water W 1 may be provided plural in one processing unit.
[0039]
In order to check the validity of the above-mentioned nitrate ion removal apparatus of the invention, with the device shown in Figure 13, it was carried out the following experiment. The apparatus according to the present invention and the apparatus shown in FIG. 13 are equipped with several types of water treatment tanks having different capacities, charged with 70 kg of a sulfur / calcium carbonate mixed composition having a particle size of 5 to 20 mm, and nitrate nitrogen: about 200 mg / L of water to be treated (hydroponic culture wastewater) was passed at a water temperature of 20 to 30 ° C. and a flow rate of 140 L / day, and the time-dependent change of the nitrate nitrogen removal treatment status was examined.
[0041]
[Example 1]
In the apparatus having the overflow pipe shown in FIG . 3a and FIG. 3b, a cuboid treatment tank with a capacity of 500L is provided, and the water to be treated is passed at a flow rate of 50 to 600L / day, so When the change with time was confirmed, the nitrate nitrogen concentration of the treated water was reduced to an average of about 5 mg / L even after 14 days after the start of the denitrification treatment, even when the flow rate was 600 L / day.
[0042]
[Comparative Example 1]
In the apparatus having no overflow pipe shown in FIG. 13 , a cuboid treatment tank with a capacity of 500 L is provided, 300 kg of a sulfur / calcium carbonate mixed composition having a particle size of 5 to 20 mm is filled, and the water to be treated is supplied at a flow rate of 50 to 600 L / Water was passed in a range of days, and the time-dependent change in the nitrate nitrogen removal treatment status was confirmed. After 14 days from the start of the denitrification treatment, the average concentration of nitrate nitrogen in the treated water was about 50 mg when the flow rate was 450 L / day or more. / L. This is because when the water flow rate is 450 L / day or more, untreated water also flows out from the treated water discharge port at the same time, and the residence time in the apparatus to be treated is short. At a flow rate of 300 L / day or less, the nitrate nitrogen concentration of the treated water was reduced to about 5 mg / L or less.
[0043]
Further, in the apparatus according to the present invention and the apparatus shown in FIG. 13, a water treatment tank having a capacity of 100 L, a particle size: 5-20 mm sulfur / calcium carbonate mixed composition: 50 kg is loaded, and the uppermost part of the filter medium bed The water to be treated or the distance between the water surfaces of the treated water is changed, and the total amount of nitrate nitrogen and nitrite nitrogen is about 14 mg / L of treated water (single septic tank treated water = sewage treated water, chlorinated water) ) Was passed at a water temperature of 12 to 16 ° C. and a flow rate of 250 to 300 L / day, and the change with time of removal of nitrate nitrogen and nitrite nitrogen was confirmed.
[0044]
[Example 2]
In the apparatus according to FIGS . 1 and 2, when water was passed from the top of the filter medium bed with a cylindrical treatment tank having a water surface distance of 400 mm, nitrate nitrogen and nitrous acid remaining in the denitrification treated water were passed. The total concentration of nitrate nitrogen was 0 to 0.4 mg / L. In addition, the amount of sulfate ions produced as a by-product remained at 67-96 mg / L in the treated water, compared to about 33-40 mg / L in the treated water. The treated hydroxide reduction potential between the sulfur / calcium carbonate mixed composition particles at this time was about -180 mV on average. The sulfate ion produced as a by-product is instantly neutralized by the sulfur / calcium carbonate mixed composition, so there is no problem.
[0045]
[Comparative Example 2]
In the apparatus shown in FIG. 13, nitrate nitrogen remaining in the denitrification treated water is passed from the uppermost part of the filter medium bed with a rectangular parallelepiped treatment tank having a water surface distance of 0 to 20 mm. In addition, the total amount of nitrite nitrogen remained about 5 to 10 mg / L. Further, the amount of sulfate ions produced as a by-product was about 33 to 40 mg / L in the water to be treated, and 60 to 87 mg / L in the treated water. The treated hydroxide reduction potential between the sulfur and calcium carbonate mixed composition particles at this time was about +20 mV on average. The sulfate ions produced as a by-product are instantly neutralized by the sulfur / calcium carbonate mixed composition, so there is no problem, but dissolved oxygen supplied from a plurality of water surfaces has caused a decrease in denitrification efficiency.
[0046]
【The invention's effect】
As described above, according to the nitrate ion removal processing apparatus of the invention according to claim 1 of the present application, the denitrification method using autotrophic sulfur oxidative denitrification bacteria is applied. By converting the nitrate ion to nitrogen gas on the solid surface of the sulfur-containing filter medium by configuring the floor as a water treatment tank of the upward flow method in which the water to be treated flows from the bottom to the top of the filter medium bed Denitrification function based on the reaction can be fully exerted, and it is not easily affected by external factors such as the inflow amount, flow state, flow rate, water temperature, viscosity, suspended suspension amount or coexisting ions of water to be treated. It is possible to prevent the gas from adhering to the solid surface as a denitrification substrate in a large amount at the same time, and to suppress the increase of new dissolved oxygen. Since sulfur is not oxidized regardless of denitrification, the denitrification efficiency can be improved.
[0047]
In addition , a drainage piping system having an overflow pipe with an outflow hole provided on the peripheral side near the upper end of the pipe, which is open at the upper end of the pipe in the tank above the filter medium bed , for controlling the discharge of the treated water. By installing it, the residence time of the treated water can be adjusted rationally, allowing the treated water to effectively act on the sulfur-containing filter medium, and even if a large amount of treated water is introduced in a short time, the opening at the upper end of the pipe It can be discharged without difficulty from the department.
[0048]
According to the nitrate ion removal processing apparatus of the invention according to claim 2 of the present application, a plurality of water discharge holes which are opposed to the floor bottom of the filter medium bed and are scattered within the floor bottom area are dispersed in the water to be treated. By providing the water supply piping system provided in the tank piping for water supply, the water to be treated is dispersed widely in the tank through the plurality of water discharge holes, and can be efficiently supplied to the filter medium bed.
[0049]
According to the nitrate ion removal treatment apparatus of the invention of claim 3 of the present invention, a filter medium bed comprising a mixed composition of sulfur and an alkaline substance is provided in the tank, and particles of the mixed composition of sulfur and an alkaline substance are provided. By setting the oxidation-reduction potential of the water to be treated and / or the oxidation-reduction potential in the tank to 0 mV to -300 mV, it is possible to prevent wasteful consumption of sulfur by sulfur-oxidizing bacteria. An environment suitable for sulfur denitrification can be obtained because a reducing atmosphere can be prevented and deposition of iron sulfide or the like on the surface of the filter medium can be prevented.
[0050]
According to the nitrate ion removing treatment apparatus of the invention according to claim 4 of the present application, by setting the distance between the uppermost part of the filter medium bed and the water surface of the treated water or treated water to 30 mm or more, sulfur denitrification The environment suitable for is surely obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a nitrate ion removal treatment apparatus having a cylindrical body treatment tank in a preferred embodiment of the present invention.
FIG. 2 is an explanatory view showing the nitrate ion removal process of FIG. 1 in cross section.
FIG. 3a is an explanatory view showing a nitrate ion removal treatment apparatus including a square tube treatment tank in a preferred embodiment of the present invention.
FIG. 3b is an explanatory view showing the nitrate ion removing process of FIG. 3a in a cross section.
FIG. 4a is an explanatory view showing a ring-shaped tank internal pipe for a cylindrical body processing tank provided in a water supply piping system of a nitrate ion removal processing apparatus according to the present invention.
FIG. 4b is an explanatory view showing a pipe in a ring-shaped tank for a square tube processing tank provided in a water supply piping system of a nitrate ion removal processing apparatus according to the present invention.
FIG. 5a is an explanatory diagram showing a spiral tank internal pipe for a cylindrical body processing tank provided in a water supply piping system of a nitrate ion removal processing apparatus according to the present invention.
FIG. 5b is an explanatory diagram showing a spiral tank internal pipe for a square tube processing tank provided in a water supply piping system of a nitrate ion removal processing apparatus according to the present invention.
FIG. 6A is an explanatory view showing a branching tank internal pipe for a cylindrical body processing tank provided in a water supply piping system of a nitrate ion removal processing apparatus according to the present invention.
FIG. 6b is an explanatory diagram showing a branch-type tank piping for a square tube processing tank provided in a water supply piping system of a nitrate ion removal processing apparatus according to the present invention.
FIG. 7a is an explanatory diagram showing a fork-type tank internal pipe for a cylindrical body processing tank provided in a water supply piping system of a nitrate ion removal processing apparatus according to the present invention.
FIG. 7b is an explanatory view showing a fork-type tank internal pipe for a rectangular tube processing tank provided in a water supply piping system of a nitrate ion removal processing apparatus according to the present invention.
FIG. 8a is an explanatory view showing a pipe in a comb tank for a cylindrical body treatment tank provided in a water supply piping system of a nitrate ion removal treatment apparatus according to the present invention.
FIG. 8b is an explanatory diagram showing a comb-type tank internal pipe for a square tube processing tank provided in a water supply pipe system of the nitrate ion removing apparatus according to the present invention.
FIG. 9a is an explanatory view showing meandering tank piping for a cylindrical body processing tank provided in a water supply piping system of a nitrate ion removal processing apparatus according to the present invention.
FIG. 9b is an explanatory view showing a meandering-type tank piping for a rectangular tube processing tank provided in a water supply piping system of a nitrate ion removal processing apparatus according to the present invention.
FIG. 10a is an explanatory diagram showing a ring-type tank piping for a cylindrical body processing tank provided in a water supply piping system of a nitrate ion removal processing apparatus according to the present invention.
FIG. 10b is an explanatory view showing a ring-type tank piping for a rectangular tube processing tank provided in a water supply piping system of a nitrate ion removal processing apparatus according to the present invention.
FIG. 11a is an explanatory diagram showing a mesh-type tank piping for a cylindrical body processing tank provided in a water supply piping system of a nitrate ion removal processing apparatus according to the present invention.
FIG. 11b is an explanatory diagram showing a mesh-type tank piping for a square tube processing tank provided in a water supply piping system of a nitrate ion removal processing apparatus according to the present invention.
FIG. 12 is an explanatory view showing a denitrification apparatus according to a conventional example.
FIG. 13 is an explanatory view showing a conventional denitrification apparatus according to another example.
[Explanation of symbols]
W 1 Treated water W 2 Treated water S Sulfur-containing filter medium 10 Filter medium floor 11 Water supply piping system 11a Water supply piping system tank piping 11b Water discharging hole of tank piping 12 Drain piping system 12a Drain piping system overflow pipe 12b Overflow Pipe drain hole 13 Water treatment tank

Claims (4)

独立栄養性硫黄酸化脱窒細菌による脱窒方法を適用する硝酸イオン除去処理装置であって、粒状または塊状の硫黄含有濾材からなる濾材床を槽内に備えると共に、被処理水を槽内に送り込む給水配管系を濾材床より下方の槽下部に配設し、且つ、濾材床より上方の槽内に立ち上がる管上端が開口し処理水の流出穴を管上端寄りの周側面に設けた溢流管を処理水の排出調節用として配管系内に有し、濾材床による処理水を槽外に送り出す排水配管系を濾材床より上方の槽上部に配設し、被処理水を濾材床の下方から上方に向けて流動させる上向流方式の水処理槽として構成してなることを特徴とする硝酸イオン除去装置。A nitrate ion removal treatment apparatus to which a denitrification method using autotrophic sulfur oxidative denitrification bacteria is applied, and a filter medium bed made of granular or massive sulfur-containing filter medium is provided in the tank, and water to be treated is fed into the tank. Overflow with the water supply piping system installed in the lower part of the tank below the filter medium bed, the upper end of the pipe rising in the tank above the filter medium bed is open, and the outflow hole for treated water is provided on the peripheral side near the upper end of the pipe There is a pipe in the piping system for controlling the discharge of treated water, and a drain piping system for sending treated water from the filter medium bed to the outside of the tank is installed in the upper part of the tank above the filter medium bed, and the treated water is placed below the filter medium bed. A nitrate ion removing apparatus, characterized in that it is configured as an upward-flow type water treatment tank that flows upward from the top. 濾材床の床底と相対し、且つ、該床底の面積内に点在する複数の吐水穴を被処理水の分散給水用として槽内配管に設けた給水配管系を備え付けてなることを特徴とする請求項1に記載の硝酸イオン除去処理装置。  A water supply piping system provided with a plurality of water discharge holes, which are opposed to the floor of the filter media floor and scattered within the area of the floor, is provided in the piping in the tank for the distributed water supply of the water to be treated. The nitrate ion removal processing apparatus according to claim 1. 硫黄とアルカリ性物質との混合組成物からなる濾材床を槽内に備え付け、硫黄とアルカリ性物質との混合組成物の粒子間にある被処理水の酸化還元電位及びまたは槽内の酸化還元電位を0mV〜−300mVに設定してなることを特徴とする請求項1または2に記載の硝酸イオン除去処理装置。A filter medium bed comprising a mixed composition of sulfur and an alkaline substance is provided in the tank, and the redox potential of the water to be treated between the particles of the mixed composition of sulfur and the alkaline substance and / or the redox potential in the tank is 0 mV. The nitrate ion removing apparatus according to claim 1 or 2 , wherein the apparatus is set to -300 mV. 濾材床の最上部と被処理水または処理水の水面との間の距離を30mm以上に設定してなることを特徴とする請求項に記載の硝酸イオン除去処理装置。The nitrate ion removal treatment apparatus according to claim 3 , wherein the distance between the uppermost part of the filter medium bed and the surface of the treated water or the treated water is set to 30 mm or more.
JP2000360266A 2000-11-27 2000-11-27 Nitrate ion removal equipment Expired - Fee Related JP4560810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000360266A JP4560810B2 (en) 2000-11-27 2000-11-27 Nitrate ion removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000360266A JP4560810B2 (en) 2000-11-27 2000-11-27 Nitrate ion removal equipment

Publications (2)

Publication Number Publication Date
JP2002159993A JP2002159993A (en) 2002-06-04
JP4560810B2 true JP4560810B2 (en) 2010-10-13

Family

ID=18831893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000360266A Expired - Fee Related JP4560810B2 (en) 2000-11-27 2000-11-27 Nitrate ion removal equipment

Country Status (1)

Country Link
JP (1) JP4560810B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149204A (en) * 2021-04-26 2021-07-23 北京涞澈科技发展有限公司 Infiltration bed reaction device for sulfur autotrophic denitrification biological denitrification

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649887B2 (en) * 2004-06-22 2011-03-16 株式会社大林組 Water purification promotion material, highly functional water purification material, and water purification method using them
JP4756260B2 (en) * 2004-11-10 2011-08-24 独立行政法人農業・食品産業技術総合研究機構 Method for treating inorganic nitrogen / phosphorus water with suspension
JP2008049251A (en) * 2006-08-24 2008-03-06 Institute Of National Colleges Of Technology Japan Apparatus for removing nitrogen
KR100857887B1 (en) 2008-05-15 2008-09-18 주식회사 대진환경산업 Wastewater treatment apparatus of denitrification and wastewater treatment method thereof
KR101184168B1 (en) 2010-04-05 2012-09-18 대림산업 주식회사 Sulfur Autotrophic Denitrification Tower Apparatus for Nitrogen Gas Emission
JP2012024650A (en) * 2010-07-20 2012-02-09 National Agriculture & Food Research Organization Simultaneous removal system of organic matter, nitrogen, and phosphorus in wastewater using pearlite filling ventilation tank
JP6434265B2 (en) * 2014-09-24 2018-12-05 株式会社神戸製鋼所 Contaminated water treatment adsorption tower and contaminated water treatment method
CN105293695A (en) * 2015-12-04 2016-02-03 天津邦盛净化设备工程有限公司 Hybrid reactor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182393A (en) * 1992-12-18 1994-07-05 Kurita Water Ind Ltd Fluidized bed type denitrification treating device
JPH0768293A (en) * 1993-09-03 1995-03-14 Kurita Water Ind Ltd Biologically nitrogen-removing apparatus
JPH07290088A (en) * 1994-04-26 1995-11-07 Mitsubishi Kakoki Kaisha Ltd Method for biologically denitrifying organic waste water
JPH11285377A (en) * 1998-04-02 1999-10-19 Hiroshi Masujima Composition provided with microbial activity, and its production
JPH11299481A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp Breeding of bacterium oxidizing sulfur and removal of nitrogen from waste water with the bacterium oxidizing sulfur
WO2000018694A1 (en) * 1998-09-25 2000-04-06 Nitchitsu Co, Ltd. Denitrifying composition for removing nitrate nitrogen and process for producing the same
JP2000117291A (en) * 1998-10-14 2000-04-25 Tokki Kk Treatment of waste water and waste water treating device
JP2001096294A (en) * 1999-10-01 2001-04-10 Nishihara Environ Sanit Res Corp Device for removing nitrogen oxide

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4202774A (en) * 1978-05-24 1980-05-13 Dorr-Oliver Incorporated Flow distributor for fluid bed biological reactor
US4412003A (en) * 1981-07-30 1983-10-25 Dorr-Oliver Inc. Integral flow circulator for fluid bed reactor
JPS62277196A (en) * 1986-05-23 1987-12-02 Sanki Eng Co Ltd Microorganism reactor of fluidized bed type
JPH0323282Y2 (en) * 1987-02-19 1991-05-21
JP3180174B2 (en) * 1994-06-23 2001-06-25 新日本製鐵株式会社 Biological denitration method for exhaust gas containing nitrogen oxides
JPH08155491A (en) * 1994-12-05 1996-06-18 Kurita Water Ind Ltd Biological denitrification apparatus
JPH10263594A (en) * 1997-03-25 1998-10-06 Meiwa Kogyo Kk Removing method and device of nitrate ion in waste water
JP3477161B2 (en) * 2000-10-13 2003-12-10 独立行政法人農業・生物系特定産業技術研究機構 Wastewater treatment method and apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182393A (en) * 1992-12-18 1994-07-05 Kurita Water Ind Ltd Fluidized bed type denitrification treating device
JPH0768293A (en) * 1993-09-03 1995-03-14 Kurita Water Ind Ltd Biologically nitrogen-removing apparatus
JPH07290088A (en) * 1994-04-26 1995-11-07 Mitsubishi Kakoki Kaisha Ltd Method for biologically denitrifying organic waste water
JPH11285377A (en) * 1998-04-02 1999-10-19 Hiroshi Masujima Composition provided with microbial activity, and its production
JPH11299481A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp Breeding of bacterium oxidizing sulfur and removal of nitrogen from waste water with the bacterium oxidizing sulfur
WO2000018694A1 (en) * 1998-09-25 2000-04-06 Nitchitsu Co, Ltd. Denitrifying composition for removing nitrate nitrogen and process for producing the same
JP2000117291A (en) * 1998-10-14 2000-04-25 Tokki Kk Treatment of waste water and waste water treating device
JP2001096294A (en) * 1999-10-01 2001-04-10 Nishihara Environ Sanit Res Corp Device for removing nitrogen oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149204A (en) * 2021-04-26 2021-07-23 北京涞澈科技发展有限公司 Infiltration bed reaction device for sulfur autotrophic denitrification biological denitrification

Also Published As

Publication number Publication date
JP2002159993A (en) 2002-06-04

Similar Documents

Publication Publication Date Title
US20180230033A1 (en) Rapid startup of facilities and removal of organics and nutrients from wastewater
IL205672A (en) Wastewater treatment process and plant comprising controlling the dissolved oxygen concentration
KR100883436B1 (en) Non-point pollution source treatment apparatus using biological media and treatment method thereof
JP4560810B2 (en) Nitrate ion removal equipment
US5681471A (en) Biological denitrification of water
KR20030079168A (en) Water purification device using a microorganism media
JP2024026729A (en) Water treatment device
KR101889687B1 (en) Waste water purifing apparatus for water closet
JPH0669555B2 (en) Wastewater activated sludge treatment method
KR102112723B1 (en) Movable soil type advanced purification circulation reuse apparatus
CN109502928B (en) Rain and sewage mixed water and black and odorous water body treatment system
JPH11299481A (en) Breeding of bacterium oxidizing sulfur and removal of nitrogen from waste water with the bacterium oxidizing sulfur
US6331249B1 (en) Apparatus and method for wastewater nutrient recovery
KR100762376B1 (en) Eco-friendly sewage treatment system
Esen et al. Algae removal by sand filtration and reuse of filter material
JP2019181465A (en) Sewage treatment apparatus
JP4180303B2 (en) Removal method of nitrate nitrogen in waste water
CN115611433A (en) Ecological filter tank for preventing and treating river pollution and method for preventing and treating river pollution
JP2006272117A (en) Water cleaning system
AU639642B2 (en) Domestic waste water treatment and apparatus therefor
KR20000032509A (en) Method for purifying wastewater using aeration
WO2004031084A1 (en) Method of removing nitrate nitrogen and device used for the method
JP7378370B2 (en) Water treatment method and water treatment equipment
PL185504B1 (en) Small biological treatment plant
KR200279808Y1 (en) Water purification device using a microorganism media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees