JP4649887B2 - Water purification promotion material, highly functional water purification material, and water purification method using them - Google Patents

Water purification promotion material, highly functional water purification material, and water purification method using them Download PDF

Info

Publication number
JP4649887B2
JP4649887B2 JP2004183563A JP2004183563A JP4649887B2 JP 4649887 B2 JP4649887 B2 JP 4649887B2 JP 2004183563 A JP2004183563 A JP 2004183563A JP 2004183563 A JP2004183563 A JP 2004183563A JP 4649887 B2 JP4649887 B2 JP 4649887B2
Authority
JP
Japan
Prior art keywords
water purification
sulfur
rock
highly functional
purification material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004183563A
Other languages
Japanese (ja)
Other versions
JP2006007000A (en
Inventor
英夫 杉本
久美子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2004183563A priority Critical patent/JP4649887B2/en
Publication of JP2006007000A publication Critical patent/JP2006007000A/en
Application granted granted Critical
Publication of JP4649887B2 publication Critical patent/JP4649887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、硝酸態窒素を含んだ水を浄化する際に適用される水質浄化促進材及び高機能水質浄化材並びにそれらを用いた水質浄化方法に関する。   The present invention relates to a water purification promotion material and a highly functional water purification material applied when purifying water containing nitrate nitrogen, and a water quality purification method using them.

最近、地下水や水道水に含まれる有害汚染物質として硝酸態窒素が問題となっている。かかる問題は、湖沼、河川等の閉鎖性水域において窒素やリンによる水質の富栄養化が進行し、その結果、硝酸態窒素という形で地下水に流入することが原因であると考えられている。   Recently, nitrate nitrogen has become a problem as a harmful pollutant contained in groundwater and tap water. Such problems are thought to be caused by the eutrophication of water quality by nitrogen and phosphorus in closed water areas such as lakes and rivers, and as a result, flowing into groundwater in the form of nitrate nitrogen.

硝酸態窒素は、農薬、除草剤、肥料、糞尿などに含まれる窒素成分が微生物により分解を受けた結果生じてくる物質であるが、この硝酸性窒素が体内に入ると、還元されて亜硝酸性窒素に変化し、発ガン性物質であるニトロソアミンという物質を生成したり、血液中のヘモグロビンの機能を低下させて酸素欠乏を引き起こしてチアノーゼ症状に陥る、いわゆるメトヘモグロビン血症を引き起こしたりすることが指摘されている。   Nitrate nitrogen is a substance produced as a result of decomposition of nitrogen components in agricultural chemicals, herbicides, fertilizers, manure, etc. by microorganisms, but when nitrate nitrogen enters the body, it is reduced and nitrous acid is added. It changes to natural nitrogen and produces a substance called nitrosamine, which is a carcinogen, or causes so-called methemoglobinemia, which decreases the function of hemoglobin in the blood and causes oxygen deficiency, resulting in cyanosis. Has been pointed out.

そのため、浄水場はもとより、飲料水の水源となる河川、湖沼、地下水等に含まれる硝酸態窒素をあらかじめ健康被害を生じない濃度以下となるように除去しなければならない。   Therefore, nitrate nitrogen contained in rivers, lakes, groundwater, etc., which is the source of drinking water, as well as water purification plants, must be removed in advance so that the concentration does not cause health damage.

特開2000−232876号公報Japanese Unexamined Patent Publication No. 2000-232728 特開平10−113693号公報Japanese Patent Laid-Open No. 10-113693 特開平10−286590号公報JP-A-10-286590

水に含まれる硝酸態窒素を除去する方法として、該硝酸態窒素をプラントで還元して窒素ガスに変える試みがなされており、既に実用化されているものもある。   As a method of removing nitrate nitrogen contained in water, attempts have been made to reduce the nitrate nitrogen to nitrogen gas by a plant, and some have already been put into practical use.

ここで、プラントで実用化されている手法としては、スリースラッジ法、デュアルスラッジ法、シングルスラッジ法などがあるが、いずれも、中間工程において硝酸態窒素を還元させるために水素供与体(通常、メタノール)が別途必要となる、あるいはpHを中和するアルカリ剤の添加が必要となるという問題や、その結果として反応過程が複雑になるという問題を生じており、大量の汚染水を効率よくかつ低コストに処理するには未だ改善の余地があった。   Here, as a method put into practical use in the plant, there are a sludge sludge method, a dual sludge method, a single sludge method, etc., all of which are hydrogen donors (usually, for reducing nitrate nitrogen in an intermediate step). Methanol) is required separately, or the addition of an alkaline agent that neutralizes the pH is required, and as a result, the reaction process becomes complicated. There was still room for improvement in processing at low cost.

本発明は、上述した事情を考慮してなされたもので、水に含まれる硝酸態窒素を低コストでかつ効率よく除去可能な反応促進材及びそれらを利用した水質浄化方法並びに高機能水質浄化材を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and is a reaction accelerator capable of efficiently removing nitrate nitrogen contained in water at low cost, a water purification method using them, and a highly functional water purification material. The purpose is to provide.

上記目的を達成するため、本発明に係る水質浄化促進材は請求項1に記載したように、単体である硫黄を酸化可能な硫黄酸化細菌が生息し、火山地帯に分布する強酸性の岩石又はその粉砕物によって作製されたものである。 In order to achieve the above object, the water purification promoter according to the present invention has a strong acid rock or rock distributed in a volcanic area, inhabited by sulfur-oxidizing bacteria that can oxidize sulfur as a simple substance. It is produced by the pulverized product.

また、本発明に係る水質浄化促進材は、前記岩石又はその粉砕物を多孔質構造の岩石又はその粉砕物としたものである。   Moreover, the water purification | cleaning promotion material which concerns on this invention makes the said rock or its ground material the rock of a porous structure, or its ground material.

また、本発明に係る高機能水質浄化材は請求項に記載したように、体である硫黄を酸化可能な硫黄酸化細菌が生息し、火山地帯に分布する強酸性の岩石又はその粉砕物によって作製された水質浄化促進材と、単体である硫黄を石灰系水硬性材料で固化させてなる水質浄化材とで構成したものである。 Also, high-performance water purification material according to the present invention as described in claim 3, the sulfur is a single body oxidizable sulfur oxidizing bacteria inhabit, strongly acidic rock or the ground product distributed in volcanic And a water purification material prepared by solidifying sulfur as a simple substance with a lime-based hydraulic material.

また、本発明に係る高機能水質浄化材は、前記岩石又はその粉砕物を多孔質構造の岩石又はその粉砕物としたものである。   Moreover, the highly functional water purification material which concerns on this invention uses the rock or its ground material as the rock of a porous structure, or its ground material.

また、本発明に係る高機能水質浄化材は、前記石灰系水硬性材料をアルカリ性排泥としたものである。   Moreover, the highly functional water purification material which concerns on this invention uses the said lime type hydraulic material as alkaline waste mud.

また、本発明に係る水質浄化方法は請求項に記載したように、硝酸態窒素を含む汚染水に請求項に記載の高機能水質浄化材を添加することにより、前記硫黄を電子供与体として作用させ前記硝酸態窒素を窒素ガスに還元するものである。 In addition, the water purification method according to the present invention, as described in claim 6 , adds the highly functional water purification material according to claim 3 to contaminated water containing nitrate nitrogen, whereby the sulfur is converted into an electron donor. The nitrate nitrogen is reduced to nitrogen gas.

請求項1に係る水質浄化促進材は、単体である硫黄を酸化することができる硫黄酸化細菌が生息し、火山地帯に分布する強酸性の岩石又はその粉砕物によって作製されている。 The water purification promoting material according to claim 1 is made of a strongly acidic rock or a pulverized product thereof inhabited by sulfur-oxidizing bacteria capable of oxidizing sulfur as a simple substance and distributed in a volcanic area .

このようにすると、硫黄酸化細菌は、生息環境が変わらずに活動しやすい状況下におかれることとなり、かかる状況で単体である硫黄が供給された場合、硫黄酸化細菌は速やかに硫黄を酸化するとともに、該硫黄が電子供与体となって硝酸態窒素を還元し窒素ガスへと無害化する。   In this way, the sulfur-oxidizing bacteria are placed in a situation where they can easily act without changing the habitat, and when sulfur as a simple substance is supplied in such a situation, the sulfur-oxidizing bacteria quickly oxidize sulfur. At the same time, the sulfur serves as an electron donor to reduce nitrate nitrogen and render it harmless to nitrogen gas.

単体である硫黄は、元素硫黄とも呼ばれるが、物質の定義に元素という文言を用いることは適切でないため、本明細書では単体硫黄又は単体である硫黄とよぶ。また、特記なき限り、本明細書での硫黄は、単体の硫黄を意味するものとする。   Although elemental sulfur is also referred to as elemental sulfur, it is not appropriate to use the term element in the definition of a substance. Therefore, in this specification, elemental sulfur or elemental sulfur is referred to. Unless otherwise specified, sulfur in the present specification means single sulfur.

硫黄酸化細菌は、いくつかの種類があるが、単体である硫黄を酸化することができるもの(以下、本明細書ではこれを単体硫黄酸化細菌とよび、硫黄化合物を酸化することはできるが単体硫黄を分解する能力に劣る一般的な硫黄酸化細菌と区別する。但し、単体硫黄酸化細菌は、単体硫黄のみを酸化する細菌を意味するものではなく、少なくとも単体硫黄を酸化することができる細菌を意味するものとする)は限られた場所にしか存在せず、肥料を過剰に投与したことによって硝酸態窒素が多量に存在している水田や畑にはほとんど存在しない。   There are several types of sulfur-oxidizing bacteria, but those that can oxidize sulfur, which is a simple substance (hereinafter referred to as simple sulfur-oxidizing bacteria in this specification, which can oxidize sulfur compounds, Distinguish from general sulfur-oxidizing bacteria that are inferior in their ability to decompose sulfur, but simple sulfur-oxidizing bacteria do not mean bacteria that only oxidize simple sulfur, but at least bacteria that can oxidize simple sulfur. Is meant only in limited places, and is rarely found in paddy fields and fields where nitrate nitrogen is present in large quantities due to excessive administration of fertilizer.

ここで、火山地帯に分布する強酸性の岩石又はその粉砕物には、前述の単体硫黄酸化細菌が多量に存在することが本出願人の実験で判明した。 Here, it has been proved by the applicant's experiment that the strongly acidic rock distributed in the volcanic area or the pulverized product thereof contains a large amount of the above-mentioned simple sulfur-oxidizing bacteria.

すなわち、火山地帯で噴出される火山ガスには硫黄が含まれており、これが硫黄華として凝固析出していることはよく知られているところであるが、本出願人は、それとは別に火山地帯に分布する強酸性の岩に単体硫黄酸化細菌が多量に含まれていることを実験で確認した。   In other words, it is well known that the volcanic gas ejected in the volcanic area contains sulfur, which is solidified and precipitated as sulfur flower. Experiments confirmed that a large amount of simple sulfur-oxidizing bacteria were contained in the distributed strong acid rocks.

本出願人は、これらの実験で得られた知見から、上述した硫黄の析出物が周囲の岩石(主として火山岩)に付着堆積し、岩石内の単体硫黄酸化細菌が硫黄を酸化することによるエネルギーと空気中の二酸化炭素から得た炭素によって増殖し、その結果、硫黄酸化で生じた硫酸で岩石が強酸性になっているのではないかと推定し、かかる推定の下、火山地帯に分布する強酸性の岩石又はその粉砕物を採取し、数多くの実験を繰り返し行ったところ、推定通り、多量の単体硫黄酸化細菌が含まれていることがあらたな知見として得られたものである。   Based on the knowledge obtained in these experiments, the present applicant has found that the above-described sulfur deposits adhere to and deposit on the surrounding rocks (mainly volcanic rocks), and the energy of the single sulfur-oxidizing bacteria in the rocks oxidizes sulfur. It is assumed that the rocks are strongly acidic due to the sulfuric acid produced by sulfur oxidation, and that the rocks are strongly acidic due to the carbon dioxide obtained from carbon dioxide in the air. As a result, it was obtained as a new finding that a large amount of simple sulfur-oxidizing bacteria were contained as estimated.

したがって、火山地帯に分布する強酸性の岩石又はその粉砕物を採取すると、その中には単体硫黄酸化細菌が生息しており、かつ強酸性の岩石又はその粉砕物を単体硫黄酸化細菌の担体としてそのまま利用しているので、菌体にとって環境が変化しないため、単体硫黄が供給されれば、速やかに該単体硫黄を酸化し、単体硫黄が電子供与体となって硝酸態窒素を還元することが可能となる。 Therefore, when strongly acidic rocks or pulverized materials distributed in the volcanic area are collected , simple sulfur-oxidizing bacteria inhabit them, and strong acidic rocks or pulverized materials are used as a carrier for simple sulfur-oxidizing bacteria. Since it is used as it is, the environment does not change for the bacterial cells, so if simple sulfur is supplied, the simple sulfur can be oxidized quickly, and the simple sulfur can become an electron donor to reduce nitrate nitrogen. It becomes possible.

また、上述した岩石又はその粉砕物を特に多孔質構造の岩石又はその粉砕物とすれば、単体硫黄酸化細菌がその多孔質間隙に入り込み、多量に生息し得る状況となるため、結果として硝酸態窒素の分解効率を向上させることができる。   Further, if the above-mentioned rock or pulverized product thereof is a rock having a porous structure or pulverized product thereof in particular, simple sulfur-oxidizing bacteria can enter the porous gap and inhabit a large amount, and as a result, the nitrate state The decomposition efficiency of nitrogen can be improved.

単体硫黄酸化細菌としては、例えばThiobacillus thiooxidans がある。 The elemental sulfur oxidizing bacteria, for example, there is Thiobacillus thiooxida n s.

請求項記載の高機能水質浄化材は、単体である硫黄を酸化可能な硫黄酸化細菌が生息し、火山地帯に分布する強酸性の岩石又はその粉砕物によって作製された水質浄化促進材と、単体である硫黄を石灰系水硬性材料で固化させてなる水質浄化材とで構成してあり、該高機能水質浄化材を用いた請求項記載の水質浄化方法においては、硝酸態窒素を含む汚染水にかかる高機能水質浄化材を添加する。 The highly functional water purification material according to claim 3 is a water purification purification material produced by a strongly acidic rock or a pulverized product thereof inhabited by sulfur-oxidizing bacteria capable of oxidizing sulfur as a simple substance, The water purification method according to claim 6 , wherein the sulfur is solidified with a water purification material obtained by solidifying sulfur with a lime-based hydraulic material, and the highly functional water purification material includes nitrate nitrogen. Add highly functional water purification material for contaminated water.

このようにすると、単体硫黄酸化細菌は、生息環境が変わらないため、請求項1で説明したと同様、水質浄化材から単体硫黄が供給されることによって速やかに硫黄を酸化し、該硫黄が電子供与体となって硝酸態窒素を還元し窒素ガスへと無害化する。   In this case, since the habitat environment of the elemental sulfur-oxidizing bacteria does not change, the elemental sulfur is rapidly oxidized by supplying elemental sulfur from the water purification material as described in claim 1, and the sulfur is converted into an electron. It becomes a donor and reduces nitrate nitrogen to make it harmless to nitrogen gas.

ここで、火山地帯に分布する強酸性の岩石又はその粉砕物を採取すると、その中には単体硫黄酸化細菌が生息しており、かつ該単体硫黄酸化細菌と強酸性の岩石又はその粉砕物とを分離せずとも担体として利用しているので、菌体にとって環境が変化しないため、水質浄化材から供給された単体硫黄を速やかに酸化し、該単体硫黄が電子供与体となって硝酸態窒素を還元することが可能となる。 Here, when a strongly acidic rock distributed in a volcanic area or a pulverized product thereof is collected, a simple sulfur-oxidizing bacterium lives in the rock, and the simple sulfur-oxidizing bacterium and a strongly acidic rock or a pulverized product thereof. Since it is used as a carrier without being separated, the environment does not change for the cells, so the single sulfur supplied from the water purification material is quickly oxidized, and the single sulfur becomes an electron donor and nitrate nitrogen. Can be reduced.

また、上述した岩石又はその粉砕物を特に多孔質構造の岩石又はその粉砕物とすれば、単体硫黄酸化細菌がその多孔質間隙に入り込み、多量に生息し得る状況となるため、結果として硝酸態窒素の分解効率を向上させることができる。   Further, if the above-mentioned rock or pulverized product thereof is a rock having a porous structure or pulverized product thereof in particular, simple sulfur-oxidizing bacteria can enter the porous gap and inhabit a large amount, and as a result, the nitrate state The decomposition efficiency of nitrogen can be improved.

一方、硫黄は自ら酸化されることにより硫酸となるが、該硫酸は、石灰系水硬性材料のアルカリ成分によって中和される。例えば、石灰系水硬性材料中の炭酸カルシウムや水酸化カルシウムと中和することにより、硫酸は中性の石膏となる。   On the other hand, sulfur is oxidized by itself to become sulfuric acid, which is neutralized by the alkaline component of the lime-based hydraulic material. For example, the sulfuric acid becomes neutral gypsum by neutralizing with calcium carbonate or calcium hydroxide in the lime-based hydraulic material.

石灰系水硬性材料にはセメントや石灰の水溶液が含まれるが、該石灰系水硬性材料をアルカリ性排泥としたならば、従来、産業廃棄物として処分せざるを得なかったアルカリ性排泥を、硝酸態窒素を無害化する原材料として有効利用することができるという顕著な作用効果も奏する。   The lime-based hydraulic material contains an aqueous solution of cement and lime, but if the lime-based hydraulic material is made into alkaline sludge, conventionally, the alkaline sludge that had to be disposed as industrial waste, There is also a remarkable effect that it can be effectively used as a raw material for detoxifying nitrate nitrogen.

ちなみに、土木建築業界においては、地中連続壁工法などの泥水工法でアルカリ性排泥が大量に発生し、その廃棄処分が大きな社会的問題となっている。   By the way, in the civil engineering and construction industry, a large amount of alkaline waste mud is generated by mud construction methods such as the underground continuous wall construction method, and its disposal has become a big social problem.

請求項に係る本願発明は、かかる問題や石油精製等での脱硫工程で硫黄が余剰しつつある社会状況をも踏まえつつ、本出願人が鋭意研究を重ねた結果、得られた知見であり、産業上きわめて有意義な発明であることは言うまでもない。 The present invention according to claim 5 is a knowledge obtained as a result of repeated researches conducted by the present applicant while taking into account such a problem and the social situation in which sulfur is surplus in the desulfurization process in petroleum refining and the like. Needless to say, this is a very significant invention in the industry.

アルカリ性排泥は、主として地中連続壁工法、泥水シールドなどの泥水工法で生じた排泥が対象となるが、運送の便宜のため、固化させる目的で石灰系水硬性材料が添加された排泥であってアルカリ性を呈しているものであれば、上述した泥水工法で生じた排泥に限定されるものではない。   Alkaline wastewater is mainly for wastewater generated by the underground wall method and the muddy water method such as the muddy water shield, but for the convenience of transportation, the wastewater added with lime-based hydraulic material for the purpose of solidification. However, as long as it exhibits alkalinity, it is not limited to the waste mud generated by the mud construction method described above.

以下、本発明に係る水質浄化促進材及び高機能水質浄化材並びにそれらを用いた水質浄化方法の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a water purification purification material, a highly functional water purification material, and a water purification method using them according to the present invention will be described with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.

図1は、本実施形態に係る水質浄化促進材及び高機能水質浄化材を用いた水質浄化方法の実施手順を示したフローチャートである。   FIG. 1 is a flowchart showing an implementation procedure of a water purification method using the water purification promoting material and the high-performance water purification material according to the present embodiment.

同図でわかるように、本実施形態に係る水質浄化方法においては、まず、単体硫黄を酸化可能な硫黄酸化細菌(単体硫黄酸化細菌)と該単体硫黄酸化細菌の担体とからなる本実施形態に係る水質浄化促進材を製造する(ステップ101)。 As it can be seen in the figure, in the water purification method according to the present embodiment, or not a present embodiment consisting of a single body sulfur oxidizable sulfur-oxidizing bacteria (elemental sulfur-oxidizing bacteria) and a carrier of the single body sulfur oxidizing bacteria A water purification promoting material according to the embodiment is manufactured (step 101).

製造にあたっては、単体硫黄酸化細菌が生息する岩石又はその粉砕物、具体的には火山地帯に分布する強酸性の岩石又はその粉砕物を採取すればよい。   In production, rocks or their pulverized materials inhabited by simple sulfur-oxidizing bacteria, specifically, strongly acidic rocks distributed in volcanic areas or pulverized materials thereof may be collected.

このようにすれば、火山地帯に分布する強酸性の岩石又はその粉砕物に多量の単体硫黄酸化細菌が含まれているので、単体硫黄が供給されたとき、単体硫黄酸化細菌がすみやかに単体硫黄を酸化する。 In this way, since a large amount of elemental sulfur-oxidizing bacteria are contained in the strongly acidic rocks or pulverized products distributed in the volcanic area, when elemental sulfur is supplied, the elemental sulfur-oxidizing bacteria quickly become elemental sulfur. you oxidize.

単体硫黄酸化細菌としては、例えばThiobacillus thiooxidans がある。 The elemental sulfur oxidizing bacteria, for example, there is Thiobacillus thiooxida n s.

一方、単体硫黄を石灰系水硬性材料であるアルカリ性排泥で固化させてなる本実施形態に係る水質浄化材を製造する(ステップ102)。   On the other hand, a water purification material according to the present embodiment is produced by solidifying solid sulfur with alkaline waste mud, which is a lime-based hydraulic material (step 102).

原材料であるアルカリ性排泥は、地中連続壁工事で発生した排泥を用いるのがよい。地中連続壁工事においては、地盤掘削を行う際、掘削された孔壁の崩落を防止すべく、掘削孔内に安定液として泥水を入れながら掘削を行うが、掘削終了後は、水中コンクリートを打設しながら安定液を置換回収する。   The alkaline waste mud that is the raw material should use the waste mud generated by underground continuous wall construction. In continuous underground wall construction, when excavating the ground, in order to prevent the excavated hole wall from collapsing, excavation is carried out while putting muddy water as a stabilizing liquid in the excavation hole. Replace and collect the stable solution while placing.

この使用済安定液が排泥となるが、水中コンクリートと置換回収されたものであるため、排泥中にはセメントが混入しており、それゆえ、かかる排泥は、アルカリ性排泥となっている。   Although this spent stable liquid becomes waste mud, it is replaced and recovered with underwater concrete, so cement is mixed in the waste mud, and therefore, such waste mud becomes alkaline waste mud. Yes.

単体硫黄は、石油精製の脱硫工程で生じた副産物である硫黄を利用すればよい。   As the simple sulfur, sulfur that is a by-product generated in the desulfurization process of petroleum refining may be used.

単体硫黄をアルカリ性排泥で固化させるにあたっては、アルカリ性排泥をそのまま放置して固化させ、又はセメントや石灰を追加投入して固化させて排泥固化体とし、該排泥固化体と単体硫黄とを混合する。   When solidifying the single sulfur with alkaline waste mud, the alkaline waste mud is left to solidify as it is, or cement and lime are additionally added to solidify it to obtain a solid waste, and the waste mud solid and the single sulfur are solidified. Mix.

排泥固化体と単体硫黄との混合比は、重量比で例えば50〜90:50〜10とする。   The mixing ratio of the sludge solidified body and elemental sulfur is, for example, 50 to 90:50 to 10 by weight.

なお、アルカリ性排泥に単体硫黄を添加し、次いで、そのまま放置して固化させ、又はセメントや石灰を追加投入して固化させるようにかまわない。   It should be noted that elemental sulfur may be added to the alkaline waste mud and then left as it is to solidify, or cement or lime may be additionally added to solidify.

製造された水質浄化材は、利用の形態等に応じて、適宜、大きさ(粒径)を調整しておくことが望ましい。かかる粒度調整は、排泥固化体の段階で行うことも可能であり、クラッシャー等で排泥固化体を適当な大きさに破砕しながら硫黄を混合するようにすれば、粒度調整工程と混合工程を一工程で済ませることができる。   It is desirable to adjust the size (particle size) of the produced water purification material as appropriate according to the form of use. Such particle size adjustment can also be performed at the stage of waste mud solidified, and if the sulfur is mixed while crushing the waste mud solidified to an appropriate size with a crusher or the like, the particle size adjusting step and the mixing step Can be done in one step.

次に、上述した水質浄化促進材及び水質浄化材からなる高機能水質浄化材を硝酸態窒素を含む汚染水に添加する(ステップ103)。   Next, the high-performance water purification material comprising the above-described water purification promoter and water purification material is added to the contaminated water containing nitrate nitrogen (step 103).

このようにすると、単体硫黄酸化細菌は、生息環境が変わらないため、水質浄化材から単体硫黄が供給されることによって、速やかに単体硫黄を酸化し、該単体硫黄が電子供与体となって硝酸態窒素を還元し窒素ガスへと無害化する。   By doing so, since the habitat environment does not change for the elemental sulfur-oxidizing bacteria, the elemental sulfur is quickly oxidized by supplying elemental sulfur from the water purification material, and the elemental sulfur becomes an electron donor to form nitrate. Reduces nitrogen and renders it harmless to nitrogen gas.

製造された高機能水質浄化材を用いて硝酸態窒素が含まれた汚染水を浄化するにあたっては、さまざまな利用形態が可能である。   Various forms of use are possible in purifying contaminated water containing nitrate nitrogen using the produced high-performance water purification material.

例えば、排水口を有する処理槽に高機能水質浄化材をあらかじめ充填しておき、該処理槽に上述した汚染水を投入し、嫌気環境下で静置する。   For example, a high-performance water purification material is filled in a treatment tank having a drain outlet in advance, and the above-described contaminated water is introduced into the treatment tank and left in an anaerobic environment.

このようにすれば、静置中、単体硫黄酸化細菌は単体硫黄を酸化するとともに、酸化の際、硫黄が電子供与体となって硝酸態窒素を脱窒し、窒素ガスに還元する。   In this way, during the standing, the elemental sulfur-oxidizing bacteria oxidize elemental sulfur, and at the time of oxidation, sulfur becomes an electron donor to denitrify nitrate nitrogen and reduce it to nitrogen gas.

処理槽内の硝酸態窒素の濃度を監視しながら、一定濃度以下、例えば人体の健康に無害となる濃度以下になったならば、元の汚染水は、硝酸態窒素が脱窒されたと判断できるので、これを処理水として排水口から排水する。   While monitoring the concentration of nitrate nitrogen in the treatment tank, the original contaminated water can be judged to have been denitrified if it is below a certain concentration, for example, a concentration that is harmless to human health. Therefore, this is drained from the drain outlet as treated water.

なお、硫黄の酸化反応に伴い、硫酸が生じるが、かかる硫酸はアルカリ性排泥に含まれる水酸化カルシウムや炭酸カルシウムによって中和され、石膏として処理槽内に沈殿するので、処理水をpH処理せずにそのまま河川等に放流することができる。   Sulfuric acid is produced with the oxidation reaction of sulfur, but this sulfuric acid is neutralized by calcium hydroxide and calcium carbonate contained in the alkaline waste mud, and settles in the treatment tank as gypsum. It can be discharged directly into rivers and so on.

また、硝酸態窒素で汚染された地下水が溢れ出ている排水溝や湖沼あるいは湿地等に上述した高機能水質浄化材を投入するようにしてもよい。   Further, the above-described high-performance water purification material may be introduced into a drainage ditch, a lake or a wetland where groundwater contaminated with nitrate nitrogen overflows.

以上説明したように、本実施形態に係る高機能水質浄化材及びそれを用いた水質浄化方法によれば、火山地帯に分布する強酸性の岩石又はその粉砕物の中に単体硫黄酸化細菌が多量に生息しており、かつ強酸性の岩石又はその粉砕物が単体硫黄酸化細菌の担体となるので、菌体にとって環境が変化せず、水質浄化材から供給された単体硫黄を速やかに酸化し、該単体硫黄が電子供与体となって硝酸態窒素を還元することが可能となる。   As described above, according to the highly functional water purification material and the water purification method using the same according to the present embodiment, a large amount of simple sulfur-oxidizing bacteria are present in the strongly acidic rock distributed in the volcanic area or the pulverized product thereof. Inhabited in the area, and the strongly acidic rocks or pulverized products thereof are carriers for the single sulfur-oxidizing bacteria, so the environment does not change for the cells, and the single sulfur supplied from the water purification material is quickly oxidized, The simple sulfur becomes an electron donor, and nitrate nitrogen can be reduced.

一方、硫黄は自ら酸化されることにより硫酸となるが、該硫酸は、アルカリ性排泥中のアルカリ成分によって中和される。例えば、アルカリ性排泥中の炭酸カルシウムや水酸化カルシウムと中和することにより、硫酸は中性の石膏となる。   On the other hand, although sulfur is oxidized by itself to become sulfuric acid, the sulfuric acid is neutralized by the alkaline component in the alkaline sludge. For example, sulfuric acid becomes neutral gypsum by neutralizing with calcium carbonate or calcium hydroxide in alkaline waste mud.

また、従来、産業廃棄物として処分せざるを得なかったアルカリ性排泥を、硝酸態窒素を無害化する原材料として有効利用することができるという顕著な作用効果も奏する。   In addition, alkaline drainage that has been conventionally disposed as industrial waste can be effectively used as a raw material for detoxifying nitrate nitrogen.

さらに、アルカリ性排泥はリンの吸着能が高いため、本実施形態に係る高機能水質浄化材は、硝酸態窒素の浄化作用のみならず、リンを吸着除去する作用効果も有する。   Furthermore, since alkaline waste mud has a high phosphorus adsorption capacity, the highly functional water purification material according to the present embodiment has not only the action of nitrate nitrogen purification but also the action of adsorbing and removing phosphorus.

また、本実施形態に係る高機能水質浄化材及びそれを用いた水質浄化方法によれば、従来、産業廃棄物として処分せざるを得なかったアルカリ性排泥を、硝酸態窒素を無害化する原材料として有効利用することができるという顕著な作用効果を奏する。   Moreover, according to the highly functional water purification material and the water purification method using the same according to the present embodiment, the raw material for detoxifying nitrate nitrogen from alkaline waste mud that has been conventionally disposed as industrial waste. As a result, it has a remarkable effect that it can be used effectively.

また、本実施形態に係る高機能水質浄化材及びそれを用いた水質浄化方法によれば、石油精製等での脱硫工程で余剰しがちな硫黄を有効活用することもできる。   In addition, according to the highly functional water purification material and the water purification method using the same according to the present embodiment, it is possible to effectively utilize sulfur that tends to be surplus in the desulfurization step in petroleum refining or the like.

本実施形態では、高機能水質浄化材を用いて硝酸態窒素で汚染された水の浄化を行うようにしたが、本発明に係る水質浄化促進材は、文字通り、硝酸態窒素の還元を促進する作用を持つものであり、必ずしも本実施形態に係る水質浄化材と併用する必要はなく、化合物である硫黄を石灰系水硬性材料で固化させてなる水質浄化材と併用するようにしてもかまわない。   In this embodiment, water contaminated with nitrate nitrogen is purified using a highly functional water purification material. However, the water purification material according to the present invention literally promotes the reduction of nitrate nitrogen. It does not necessarily need to be used together with the water purification material according to the present embodiment, and may be used together with a water purification material obtained by solidifying sulfur, which is a compound, with a lime-based hydraulic material. .

また、本実施形態では特に言及しなかったが、火山地帯に分布する強酸性の岩石又はその粉砕物を、特に多孔質構造の岩石又はその粉砕物とすれば、単体硫黄酸化細菌がその多孔質間隙に入り込み、多量に生息し得る状況となるため、結果として硝酸態窒素の分解効率を向上させることができる。   Although not particularly mentioned in the present embodiment, if a strongly acidic rock distributed in a volcanic area or a pulverized product thereof is a porous rock or a pulverized product thereof, a simple sulfur-oxidizing bacterium is a porous material. Since it enters into the gap and can live in a large amount, it can improve the decomposition efficiency of nitrate nitrogen as a result.

多孔質構造の岩石又はその粉砕物は、火山地帯に分布する強酸性の岩石又はその粉砕物のうち、熱水変性を受けているものに多く見られるので、それを目安に採取するようにすればよい。   Porous rocks or pulverized materials are often found in strongly acidic rocks or pulverized materials distributed in volcanic areas that have been hydrothermally denatured. That's fine.

図2は、本発明に係る高機能水質浄化材の作用効果を確認した実験結果であり、横軸に供試体、縦軸に硝酸態窒素の濃度をとって示してある。   FIG. 2 shows the results of experiments confirming the effects of the highly functional water purification material according to the present invention. The horizontal axis represents the specimen and the vertical axis represents the concentration of nitrate nitrogen.

ここで、標準溶液(コントロール)は、100ppmKNO 液とした。 Here, the standard solution (control), was 100ppmK NO 3 dissolved solution.

供試体1は、単体硫黄を石灰系水硬性材料で固化させてなる水質浄化材を標準溶液に添加したもの、供試体2は、上述した水質浄化材と硫化鉄を含んだ強酸性の泥岩(非火山地帯で採取)とを混合してなる混合物を標準溶液に添加したもの、供試体3は、上述した水質浄化材と水質浄化促進材とを2:1の質量比で混合してなる高機能水質浄化材を標準溶液に添加したものであり、水質浄化促進材は、火山地帯に分布する強酸性の岩石の粉砕物(pHは約2)とした。   Specimen 1 is obtained by adding a water purification material obtained by solidifying single sulfur with a lime-based hydraulic material to a standard solution. Specimen 2 is a strongly acidic mudstone containing the above-described water purification material and iron sulfide ( Sample 3 is a mixture of the above-described water purification material and water purification promotion material mixed at a mass ratio of 2: 1. A functional water purification material was added to the standard solution, and the water purification material was a pulverized product of strongly acidic rock distributed in the volcanic area (pH is about 2).

また、単体硫黄は粒径が5mm以下の石油精製硫黄、石灰系水硬性材料は、貧配合モルタル(水セメント比が1、砂セメント比が5。いずれも質量比)とベントナイト泥水(水500ml、ベントナイト50g)とを体積比で1対1となるように混合させたベントナイトモルタルとした。次いで、上述した単体硫黄と石灰系水硬性材料をミキサーで混合し、3日間養生して固化させた後、5mm〜20mmに粉砕することで水質浄化材を製造した。   In addition, simple sulfur is petroleum refined sulfur having a particle size of 5 mm or less, lime-based hydraulic material is poor blended mortar (water cement ratio is 1, sand cement ratio is 5, both are mass ratio) and bentonite mud (500 ml of water, Bentonite mortar was prepared by mixing 50 g of bentonite with a volume ratio of 1: 1. Next, the above-mentioned simple sulfur and lime-based hydraulic material were mixed with a mixer, cured for 3 days, solidified, and then ground to 5 mm to 20 mm to produce a water purification material.

図2のグラフから、81日経過後には、水質浄化材のみを標準溶液に添加したケース(供試体1)で硝酸態窒素濃度が88mg/L、水質浄化材と強酸性の泥岩とを標準溶液に添加したケース(供試体2)で硝酸態窒素濃度が86mg/Lまでしかそれぞれ低下しなかったのに対し、水質浄化材と水質浄化促進材とからなる高機能水質浄化材を標準溶液に添加したケース(供試体3)では、硝酸態窒素濃度が67mg/Lまで低下していることがわかる。   From the graph of FIG. 2, after 81 days, in the case where only the water purification material was added to the standard solution (Specimen 1), the nitrate nitrogen concentration was 88 mg / L, and the water purification material and strongly acidic mudstone were standard solution. In the case where the nitrate nitrogen concentration was only reduced to 86 mg / L in the case (sample 2) added to the sample, a highly functional water purification material consisting of a water purification material and a water purification promotion material was added to the standard solution. In the case (Specimen 3), it can be seen that the nitrate nitrogen concentration has dropped to 67 mg / L.

これらの実験結果から、本実施形態に係る高機能水質浄化材によって硝酸態窒素が効率よく還元されていることがわかる。   From these experimental results, it can be seen that nitrate nitrogen is efficiently reduced by the highly functional water purification material according to the present embodiment.

本実施形態に係る高機能水質浄化材を用いた水質浄化方法のフローチャート。The flowchart of the water purification method using the highly functional water purification material which concerns on this embodiment. 本実施形態に係る高機能水質浄化材の作用効果を示したグラフ。The graph which showed the effect of the highly functional water quality purification material which concerns on this embodiment.

Claims (6)

単体である硫黄を酸化可能な硫黄酸化細菌が生息し、火山地帯に分布する強酸性の岩石又はその粉砕物によって作製されたことを特徴とする水質浄化促進材。 A water purification promoting material, characterized by being made of strong acid rocks or pulverized products thereof distributed in volcanic areas, inhabited by sulfur-oxidizing bacteria capable of oxidizing single sulfur. 前記岩石又はその粉砕物を多孔質構造の岩石又はその粉砕物とした請求項記載の水質浄化促進材。 The rock or rock or water purification promoting material according to claim 1, wherein the its pulverized porous structure the pulverized product. 単体である硫黄を酸化可能な硫黄酸化細菌が生息し、火山地帯に分布する強酸性の岩石又はその粉砕物によって作製された水質浄化促進材と、単体である硫黄を石灰系水硬性材料で固化させてなる水質浄化材とで構成したことを特徴とする高機能水質浄化材。 Sulfur-oxidizing bacteria that can oxidize sulfur as a simple substance inhabit , water purification promoters made from strongly acidic rocks or pulverized products distributed in volcanic areas, and solid sulfur as a lime-based hydraulic material A high-performance water purification material characterized by comprising a water purification material. 前記岩石又はその粉砕物を多孔質構造の岩石又はその粉砕物とした請求項記載の高機能水質浄化材。 The highly functional water purification material according to claim 3, wherein the rock or pulverized product thereof is a rock having a porous structure or a pulverized product thereof. 前記石灰系水硬性材料をアルカリ性排泥とした請求項3または4に記載の高機能水質浄化材。 The highly functional water purification material according to claim 3 or 4, wherein the lime-based hydraulic material is alkaline waste mud. 硝酸態窒素を含む汚染水に請求項に記載の高機能水質浄化材を添加することにより、前記硫黄を電子供与体として作用させ前記硝酸態窒素を窒素ガスに還元することを特徴とする水質浄化方法。 A water quality characterized in that by adding the highly functional water purification material according to claim 3 to contaminated water containing nitrate nitrogen, the sulfur acts as an electron donor and the nitrate nitrogen is reduced to nitrogen gas. Purification method.
JP2004183563A 2004-06-22 2004-06-22 Water purification promotion material, highly functional water purification material, and water purification method using them Expired - Fee Related JP4649887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004183563A JP4649887B2 (en) 2004-06-22 2004-06-22 Water purification promotion material, highly functional water purification material, and water purification method using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004183563A JP4649887B2 (en) 2004-06-22 2004-06-22 Water purification promotion material, highly functional water purification material, and water purification method using them

Publications (2)

Publication Number Publication Date
JP2006007000A JP2006007000A (en) 2006-01-12
JP4649887B2 true JP4649887B2 (en) 2011-03-16

Family

ID=35774821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004183563A Expired - Fee Related JP4649887B2 (en) 2004-06-22 2004-06-22 Water purification promotion material, highly functional water purification material, and water purification method using them

Country Status (1)

Country Link
JP (1) JP4649887B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076794A1 (en) * 2008-12-31 2010-07-08 Technion Research & Development Foundation Ltd. Method of denitrifying brine and systems capable of same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175299U (en) * 1985-04-19 1986-10-31
JPS62106822A (en) * 1985-11-01 1987-05-18 Cosmo Shokuhin Kk Desulfurizing method utilizing sulfur oxidizing
JPS63101000A (en) * 1986-10-16 1988-05-06 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water containing substance difficult to be decomposed by organism
JPH08323390A (en) * 1995-05-30 1996-12-10 Nippon Steel Corp Treatment of waste water containing reductive sulfur compound with microorganism
JP2000093997A (en) * 1998-09-25 2000-04-04 Nitchitsu Co Ltd Nitrate nitrogen denitrifying substrate
JP2001047086A (en) * 1999-08-10 2001-02-20 Nippon Steel Chem Co Ltd Activation material for denitrifying nitrate nitrogen
JP2002119278A (en) * 2000-10-18 2002-04-23 Tsukishima Kikai Co Ltd Method for denitrogenation, denitrifying sulfur oxidation bacterium immobilized carrier and method for producing denitrifying sulfur oxidation bacterium immobilized carrier
JP2002159993A (en) * 2000-11-27 2002-06-04 Nitchitsu Co Ltd Nitric acid removal treatment equipment
JP2002239593A (en) * 2001-02-20 2002-08-27 Nippon Steel Chem Co Ltd Apparatus for removing nitrate nitrogen in wastewater and method using the same
JP2004167471A (en) * 2002-11-05 2004-06-17 Nippon Steel Chem Co Ltd Water treatment material, nitrate nitrogen treating material, and its production method
JP2004344765A (en) * 2003-05-22 2004-12-09 Ohbayashi Corp Water purifying material and its manufacturing method
JP2005000758A (en) * 2003-06-10 2005-01-06 Ohbayashi Corp Water cleaning structure and method for constructing the same
JP2005007247A (en) * 2003-06-17 2005-01-13 Ohbayashi Corp Water purifying underground dam and construction method therefor
JP2005007234A (en) * 2003-06-17 2005-01-13 Ohbayashi Corp Water purification measure

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175299U (en) * 1985-04-19 1986-10-31
JPS62106822A (en) * 1985-11-01 1987-05-18 Cosmo Shokuhin Kk Desulfurizing method utilizing sulfur oxidizing
JPS63101000A (en) * 1986-10-16 1988-05-06 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water containing substance difficult to be decomposed by organism
JPH08323390A (en) * 1995-05-30 1996-12-10 Nippon Steel Corp Treatment of waste water containing reductive sulfur compound with microorganism
JP2000093997A (en) * 1998-09-25 2000-04-04 Nitchitsu Co Ltd Nitrate nitrogen denitrifying substrate
JP2001047086A (en) * 1999-08-10 2001-02-20 Nippon Steel Chem Co Ltd Activation material for denitrifying nitrate nitrogen
JP2002119278A (en) * 2000-10-18 2002-04-23 Tsukishima Kikai Co Ltd Method for denitrogenation, denitrifying sulfur oxidation bacterium immobilized carrier and method for producing denitrifying sulfur oxidation bacterium immobilized carrier
JP2002159993A (en) * 2000-11-27 2002-06-04 Nitchitsu Co Ltd Nitric acid removal treatment equipment
JP2002239593A (en) * 2001-02-20 2002-08-27 Nippon Steel Chem Co Ltd Apparatus for removing nitrate nitrogen in wastewater and method using the same
JP2004167471A (en) * 2002-11-05 2004-06-17 Nippon Steel Chem Co Ltd Water treatment material, nitrate nitrogen treating material, and its production method
JP2004344765A (en) * 2003-05-22 2004-12-09 Ohbayashi Corp Water purifying material and its manufacturing method
JP2005000758A (en) * 2003-06-10 2005-01-06 Ohbayashi Corp Water cleaning structure and method for constructing the same
JP2005007247A (en) * 2003-06-17 2005-01-13 Ohbayashi Corp Water purifying underground dam and construction method therefor
JP2005007234A (en) * 2003-06-17 2005-01-13 Ohbayashi Corp Water purification measure

Also Published As

Publication number Publication date
JP2006007000A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
Lu et al. Application of calcium peroxide in water and soil treatment: a review
JP2716494B2 (en) Contaminant treatment method
Klapper et al. Geogenically acidified mining lakes—living conditions and possibilities of restoration
JP3820180B2 (en) Purification method for contaminated soil
WO2015118048A1 (en) Reduction of the amount of sulphur compounds in a sulphur compounds contaminated wastewater stream using a granular sludge treatment system
ZA200801824B (en) Porous media for autotrophic denitrification using sulfur
CN107417058B (en) A kind of river embankment bed mud is modified the method and its application of preparation ecology filler
US20230050281A1 (en) Method for treating waters, sediments and/or sludges
JP6274426B2 (en) Method and apparatus for denitrification of nitrate nitrogen
JP4554833B2 (en) Apparatus and method for removing nitrate nitrogen in waste water
JP5155619B2 (en) Soil and groundwater purification promoter and purification method
JP2015134343A (en) In-situ chemical fixation of metal contaminant
JP4608851B2 (en) Construction method of water purification structure
JP2009142783A (en) Method and material for modifying bottom mud in closed water area or tidal flat
JP4649887B2 (en) Water purification promotion material, highly functional water purification material, and water purification method using them
Kasmuri et al. Using zeolite in the ion exchange treatment to remove ammonia-nitrogen, manganese and cadmium
JPH10277541A (en) Zeolite type water purifying agent
JP2004344765A (en) Water purifying material and its manufacturing method
JP2004261738A (en) Purification method for underground water polluted by cyanogen
JP2005095758A (en) Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus
JP4517593B2 (en) Water purification jar
JP4140031B2 (en) Water purification subsurface dam and its construction method
JP2000197899A (en) Agent and method for purification treatment of lake, marsh, and the like
JP5244321B2 (en) Permeability purification wall and purification method of contaminated groundwater
JP2006281065A (en) Sludge modifying agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Ref document number: 4649887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees