JPS62106822A - Desulfurizing method utilizing sulfur oxidizing - Google Patents

Desulfurizing method utilizing sulfur oxidizing

Info

Publication number
JPS62106822A
JPS62106822A JP60244046A JP24404685A JPS62106822A JP S62106822 A JPS62106822 A JP S62106822A JP 60244046 A JP60244046 A JP 60244046A JP 24404685 A JP24404685 A JP 24404685A JP S62106822 A JPS62106822 A JP S62106822A
Authority
JP
Japan
Prior art keywords
sulfur
bacteria
oxidizing bacteria
column
immobilizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60244046A
Other languages
Japanese (ja)
Other versions
JPH0156813B2 (en
Inventor
Akie Tsuruizumi
鶴泉 彰恵
Haruo Miyasaka
宮坂 春生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Foods Corp
Original Assignee
Cosmo Foods Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Foods Corp filed Critical Cosmo Foods Corp
Priority to JP60244046A priority Critical patent/JPS62106822A/en
Publication of JPS62106822A publication Critical patent/JPS62106822A/en
Publication of JPH0156813B2 publication Critical patent/JPH0156813B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Treating Waste Gases (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To remove a sulfor compound by the metabolic action of sulfur- oxidizing bacteria, by contacting growth-immobilizing particles for sulfur- oxidizing bacteria with a gaseous or liquid phase containing an org. or inorg. sulfur compound. CONSTITUTION:A liquid medium is inoculated with a strain of sulfur-oxidizing bacteria grown on an agar medium and said sulfur-oxidizing bacteria are multi plied under aeration to prepare a bacteria-immobilizing bath. A dried silica gel is added to an aqueous solution of gamma-aminoporopyltriethoxysilane (gamma-APES) and the resulting suspension is heated, cooled and subsequently washed and dried to drain a carrier wherein the -OH group of the silica gel is bonded to the Si-part of gamma-APES through a covalent bond and this carrier is immersed in the bacteria-immobilizing bath to immobilize bacteria. A column 3 is packed with the obtained growth-immobilizing particles for sulfur-oxidizing bacteria in a multiplication possible form and gas containing CH3SH, SO2 etc. is passed through said column 3 to perform desulfurization. When a liquid such as an amino acid solution containing a sulfur compound is desulfurized, the liquid is passed through the column 3 while aeration is performed.

Description

【発明の詳細な説明】 本発明はイオウ酸化菌のイオウ資化能を利用して有機ま
たは無機のイオウ化合物を含有する気相または液相から
イオウ化合物を除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing sulfur compounds from a gas or liquid phase containing organic or inorganic sulfur compounds by utilizing the sulfur assimilation ability of sulfur oxidizing bacteria.

イオウ酸化菌は土壌、海泥、酸を取り扱う鉱山水、下水
汚泥およびイオウ泉またはイオウ鉱床など硫化水素が生
成され、或いはイオウが沈積される環境下でその生存が
認められている。イオウ酸化菌は還元状態にあるイオウ
化合物、例えば元素イオウ、硫化物、チオ硫酸埴、多チ
オン酸塩、亜硫酸塩などを酸化することによってエネル
ギを得て炭酸同化を営み、化学合成的無機栄養で増殖す
る細菌である。
Sulfur-oxidizing bacteria are known to survive in environments where hydrogen sulfide is produced or sulfur is deposited, such as soil, sea mud, mine water that handles acids, sewage sludge, sulfur springs, or sulfur deposits. Sulfur-oxidizing bacteria obtain energy by oxidizing sulfur compounds in a reduced state, such as elemental sulfur, sulfides, thiosulfates, polythionates, and sulfites, and carry out carbon dioxide assimilation, producing chemosynthetic inorganic nutrients. It is a bacterium that proliferates.

一方、イオウまたはイオウ化合物は人間の生活上、欠く
ことのできない重要な物質であって、種々の形で一般生
活環境中に存在する。例えば、医薬、農薬の合成原料、
食品の芳香成分(ねぎ類の香味、肉類の香味、洋辛子、
わさび、大根おろし等の辛味成分)等の重要な要素とな
っている。しかし、その反面、医薬、農薬その他工業薬
品などの合成の際に副成して環境を汚染し、特に大気汚
染の主成分である亜硫酸ガスは法律上、排出ガス規制を
受け、或いは硫化水素、メルカプタン類を含む排水、排
出ガスは悪臭に関する法律の規制下にある。また、食品
の風味を害するイオウ成分などもあり、人間の生活上有
害もしくは不要のイオウ化合物も少くない。これらの物
質は徽還の存在でも不快臭を与え、衛生上重大な障害と
なり、製造される食品の味覚に影響を及ぼす。
On the other hand, sulfur or sulfur compounds are indispensable and important substances in human life, and exist in various forms in the general living environment. For example, synthetic raw materials for pharmaceuticals and agricultural chemicals,
Aromatic components of foods (flavor of green onions, flavor of meat, mustard,
It is an important element in the spiciness of wasabi, grated radish, etc.). However, on the other hand, sulfur dioxide gas, which is produced as a by-product during the synthesis of pharmaceuticals, agricultural chemicals, and other industrial chemicals, pollutes the environment. In particular, sulfur dioxide gas, which is the main component of air pollution, is subject to emissions regulations by law, or hydrogen sulfide, Wastewater and exhaust gas containing mercaptans are regulated by the Offensive Odor Law. In addition, there are sulfur components that harm the flavor of foods, and there are many sulfur compounds that are harmful or unnecessary for human life. Even in the presence of contaminants, these substances give off unpleasant odors, pose a serious hygienic problem, and affect the taste of the foods produced.

イオウ酸化菌がイオウ化合物の酸化能力を有することは
古くから知られており、また、菌自体の分類、代謝機構
の解明などについては多数の学術的研究がなされている
。このイオウ酸化菌を使用して有害なイオウ化合物を除
去し、脱臭を行なうという着想もあながち無いとはいえ
ない。しかし、これを具体化して産業上利用できる態様
で実施した事実、或いはこれを記載した文献は皆無であ
る。
It has been known for a long time that sulfur-oxidizing bacteria have the ability to oxidize sulfur compounds, and numerous academic studies have been conducted to classify the bacteria themselves and elucidate their metabolic mechanisms. It is not uncommon to think of using these sulfur-oxidizing bacteria to remove harmful sulfur compounds and deodorize. However, there is no fact that this has been implemented in a manner that can be used industrially, or there are no documents that describe this.

本発明者等は上記着想に基づきイオウ酸化菌の特性を充
分に発揮しうるイオウ酸化菌の増殖固定化粒子の製造な
らびにその効果について研究の結果、極めてすぐれた成
果を修め得ることを見出した0 したがって、本発明はイオウO化菌を増殖しうる形で固
定化して形成させたイオウ酸化菌の増殖固定化粒子と、
有機または無機のイオウ化合物を含有する気相または液
相とを接触させることから成る気i1Jまたは液相の脱
硫化方法である。
Based on the above idea, the present inventors have conducted research on the production of sulfur-oxidizing bacteria growth-immobilized particles that can fully exhibit the characteristics of sulfur-oxidizing bacteria and their effects, and have found that extremely excellent results can be achieved. Therefore, the present invention provides growth-immobilized particles of sulfur-oxidizing bacteria formed by immobilizing sulfur-oxidizing bacteria in a form that allows them to grow;
A gas or liquid phase desulfurization process comprising contacting a gas or liquid phase containing an organic or inorganic sulfur compound.

微生物を何らかの目的で固定化する研究は数多く発表さ
れており、所謂、酵素触媒の製造として1、#先または
酵素を含む細菌を担体上に固定し、その触媒作用によっ
て目的物質の生産に寄与させる研究が企業的に開発され
ている。例えば、グルツースイソメラーゼまたはこれを
含有する菌体を適当な担体上に結合させ、ブドウ糖から
異性化糖を生産させることができる。固定化には担体結
合法、ゲル包括法またはこれらの複合法が知られている
Many studies have been published on the immobilization of microorganisms for some purpose, and in the production of so-called enzyme catalysts, 1. Bacteria containing bacteria or enzymes are immobilized on a carrier and their catalytic action contributes to the production of the target substance. Research is developed corporately. For example, high fructose sugar can be produced from glucose by binding gluten isomerase or a bacterial cell containing it to a suitable carrier. For immobilization, a carrier binding method, a gel entrapment method, or a combination thereof is known.

本発明で使用するイオウ酸化菌の固定化に当たっては、
上記酵素触媒が酵素の触媒作用を利用するのと異なり、
イオウ酸化菌の資化作用によってイオウ化合物の摂取と
それの酸化が行なわれるものであるから、固定化された
菌体が常に増殖するような条件で行なわれる必要がある
。この点で本発明におけるイオウ酸化菌の増殖固定化は
酵素触媒の固定化と本質的に相異する。
In immobilizing the sulfur-oxidizing bacteria used in the present invention,
Unlike the enzyme catalysts mentioned above, which utilize the catalytic action of enzymes,
Since sulfur compounds are ingested and oxidized by the assimilation action of sulfur-oxidizing bacteria, it is necessary to carry out the process under conditions that allow the immobilized bacteria to constantly proliferate. In this respect, the immobilization of sulfur-oxidizing bacteria in the present invention is essentially different from the immobilization of enzyme catalysts.

従って、本発明はイオウ酸化菌の固定に当たり菌が常に
増殖するような条件を確立し、生成する菌の増殖固定化
粒子が接触する気相または液相中で物理的に安定であり
、かつ包含されている微量の無機または有機のイオウ化
合物を実質的に全て除去(摂取)する効果を確認するこ
とによって始めてその目的が達成されるのである。
Therefore, the present invention establishes conditions under which the bacteria constantly proliferate when immobilizing sulfur-oxidizing bacteria. This objective can only be achieved by confirming the effectiveness of removing (ingesting) virtually all trace amounts of inorganic or organic sulfur compounds.

以下に本発明者等の実験経過と共に本発明を具体的に説
明する。
The present invention will be specifically explained below along with the progress of experiments conducted by the present inventors.

〔I〕使用したイオウ酸化菌 イオウ酸化菌は、Th1obacillus thio
novellus (以下、T、T−ノベラスと称する
)およびTh1obacillusthiooxida
nsa (T、T−オキシダンスと称する)の2種であ
る。
[I] The sulfur oxidizing bacteria used was Thobacillus thio
novellus (hereinafter referred to as T, T-novellus) and Th1obacillus thiooxida
nsa (referred to as T, T-oxidans).

T、T−ノペラスは好気性で独立栄養的であり、短稈帆
4〜10 X O,4〜4.0μmの球状または長円球
状の細胞をもち、最適生育温度は30CX最適生育TI
I(は7.0〜9.0で、生育範囲はpH5,0〜9.
2である。
T, T-nopelas is aerobic and autotrophic, with short culm sails of 4 to 10 × O, 4 to 4.0 μm spherical or oblong spherical cells, and the optimal growth temperature is 30CX optimal growth TI
I( is 7.0 to 9.0, and the growth range is pH 5.0 to 9.0.
It is 2.

T、T−オキシダンスも好気性で独立栄饗的であり、短
稈0.4〜1.0 am % k適生育温度28〜30
c1生育範囲10〜37C1最適生育pH2,0〜3.
5で、生育範囲はpH0,5〜6.0である。
T, T-oxydans is also aerobic and autotrophic, short culm 0.4-1.0 am % k suitable growth temperature 28-30
c1 growth range 10-37C1 optimum growth pH 2.0-3.
5, and the growth range is pH 0.5 to 6.0.

〔■〕菌株の寒天培地培養 1、 T、T−ノベラスの培養 菌株を下記成分の培地に接種1〜.30C±2.0Cで
培養を行ない、1.5〜2ケ月毎に継代移植を行なって
保存する。
[■] Culture of the bacterial strain on agar medium 1. Inoculating the cultured strain of T, T-Novelas on a medium with the following components 1-. Culture is carried out at 30C±2.0C, and subculture is carried out every 1.5 to 2 months for preservation.

培地成分 (r)          +4) ベプ トン    5.0     アスパラギン酸2
.0肉汁エキス 3.0    寒 天   15.。
Medium component (r) +4) Beptone 5.0 Aspartic acid 2
.. 0 Meat juice extract 3.0 Agar 15. .

NaC15,0蒸留水   1,000pH6,0〜7
.0に調整 2、 T、T−オキシダンスの寒天培地培養菌株を下記
成分の培地に接種し、3o″C±2.O7?で静置培養
を行ない、3〜4週間毎に継代移植を行なって保存する
NaC 15.0 Distilled water 1,000 pH 6.0-7
.. Adjust to 0.2, T, T-oxydans agar culture culture strain was inoculated into a medium with the following components, statically cultured at 3°C ± 2.07°C, and subcultured every 3 to 4 weeks. Do and save.

培地成分 (r)            (P)(NH4)2S
O42,ONazSz03”5H10s、。
Medium component (r) (P) (NH4)2S
O42, ONazSz03"5H10s,.

KNOs     3.0   Na2MoO4・2H
zOO,0003KHIPO43−0酵母! キ7. 
 0 、 IMgCLs ’ 61Hto  O−5イ
オウ粉末  1.0CaCtz” 2%0   0.2
5    2elA7c/+   0.01FeSαg
”7Hzo   0.01    寒  天     
15.0蒸留水   1,000 pI(4,0〜4.6に調整 〔■〕菌株の液体培地培養 T、T−ノベラス、T、T−オキシダンスのそれぞれの
最適寒天培地(前述)より寒天成分のみを除去した液体
培地に[il)項の寒天培地で増殖させたそれぞれの菌
株を接種し、湿度30C±2.OCに保ってエアレーシ
ョンを行なって菌を増殖させる。
KNOs 3.0 Na2MoO4・2H
zOO,0003KHIPO43-0 yeast! Ki7.
0, IMgCLs' 61Hto O-5 sulfur powder 1.0CaCtz" 2%0 0.2
5 2elA7c/+ 0.01FeSαg
”7Hz 0.01 cold weather
15.0 Distilled water 1,000 pI (adjusted to 4.0 to 4.6 [■] Culture of bacterial strains in liquid medium Agar from the optimal agar medium (described above) for each of T, T-Novelas, T, and T-Oxydans Each strain grown on the agar medium in section [il] was inoculated into a liquid medium from which only the components had been removed, and the humidity was kept at 30C±2. Keep it under OC and perform aeration to allow bacteria to grow.

これらの操作には使用する器具の滅菌は勿論、エアレー
ションのための空気も滅菌綿カラムを通すなどして外部
からの雑菌の混入を極力防止する必要がある。
In these operations, it is necessary not only to sterilize the instruments used, but also to prevent the contamination of bacteria from the outside as much as possible by passing the air for aeration through a sterile cotton column.

液体培地中の菌濃度は経時的に増加し、約4日乃至5日
で、両者とも2〜4X10’個/ゴ程度の飽和状態に達
する。このように培茸液中に菌が飽和的に増殖した状態
を菌固定浴と称し、固定化のための菌源として使用する
The concentration of bacteria in the liquid medium increases over time, and in about 4 to 5 days, both reach a saturated state of about 2 to 4 x 10' cells/go. This state in which bacteria grow saturated in the mushroom culture solution is called a bacteria fixation bath, and is used as a source of bacteria for immobilization.

〔■〕固定化増殖法の検討 本発明で述べるイオウ酸化菌の固定化増殖法は、担体粒
子を前記菌固定浴に浸漬し、担体上に高う度の菌の吸着
(集積)を行なったのち、イオウ化合物を含有する被検
液、被検ガスを菌固定化増殖粒子を充填した層中を流通
させる。被検液の場合はそれにエアレーションをし酸素
を補給して好気状態を保ちながら液中のイオウ化合物の
消化を促進する。菌が退化した場合は流通液、流通ガス
を培養液に代えることによって再び菌の増殖を行なうこ
とができ、かかる反覆操作により菌の活性化が保全され
る。
[■] Investigation of immobilization growth method The immobilization growth method for sulfur-oxidizing bacteria described in the present invention involves immersing carrier particles in the bacteria fixation bath and adsorbing (accumulating) bacteria on the carrier at a high degree. Thereafter, a test liquid containing a sulfur compound and a test gas are passed through a layer filled with bacteria-immobilized growth particles. In the case of a test liquid, it is aerated and oxygen is supplied to maintain an aerobic state while promoting the digestion of sulfur compounds in the liquid. If the bacteria have degenerated, the bacteria can be grown again by replacing the circulating fluid and gas with a culture solution, and the activation of the bacteria can be maintained by repeating this operation.

菌の固定化には共有結合法と包括結合法の二つの方法に
ついて検討した。何れの固定化法も酵素の固定法として
文献などに報告されている方法であるが、特に微生物の
固定については殆んど見二?けられない。したがって、
本発明では酵素の固定法を微生物に適合するよう変形し
た。
We investigated two methods for immobilizing bacteria: covalent bonding and comprehensive bonding. All of these immobilization methods have been reported in the literature as methods for immobilizing enzymes, but little is known about the immobilization of microorganisms. I can't kick it. therefore,
In the present invention, the enzyme immobilization method was modified to be compatible with microorganisms.

(1)共有結合法による固定化 この方法は表面に多数の5t−OH基を含むシリカゲル
にr−アミノプロピルトリエトキシシラン(γ−APE
S )を結合させ、これにイオウ酸化菌のアミ7基をリ
ガンドさせて菌を固定する方法である◇ 使用したシリカゲル担体は、表面積550〜600ぜ/
り、孔容積0.4〜0.6ゴ/2、平均細孔径10〜6
0Aである。このシリカゲルを平均粒径1〜1.5聾と
し、これを1.3〜1.5気圧、水蒸気湯度115〜1
20 Cのオートクレーブ中で約1〜1.5時間加熱処
理をして表面に多数の一〇H基を形成させる。処理を終
えたシリカゲルは50〜60cで低温乾燥する。
(1) Immobilization by covalent bonding This method uses r-aminopropyltriethoxysilane (γ-APE) on silica gel containing many 5t-OH groups on the surface.
This is a method of immobilizing bacteria by binding sulfur-oxidizing bacteria with S) and making the amine 7 group of sulfur-oxidizing bacteria a ligand.◇ The silica gel carrier used has a surface area of 550 to 600
, pore volume 0.4-0.6/2, average pore diameter 10-6
It is 0A. This silica gel has an average particle size of 1 to 1.5, and is heated at a temperature of 1.3 to 1.5 atm and a water vapor temperature of 115 to 1.
Heat treatment is performed in an autoclave at 20 C for about 1 to 1.5 hours to form a large number of 10H groups on the surface. The treated silica gel is dried at a low temperature of 50-60c.

一方、r−APESを水で2倍に希釈し、塩酸を加えて
pH3〜4に調整した後、この溶液に前記乾燥シリカゲ
ルを添加し、還流冷却器を備えた容器中で8011:’
、2時間加熱する。冷却後充分水洗し、50〜60tl
l’で乾燥すると、シリカゲルの一〇H基がγ〜APE
Sの81部分に共有結合した担体が得られる。この担体
を〔■〕で調製した菌固定浴に添加して、温度30±2
.Ocに保ちながらエアレーションを約4日間継続する
と、γ−APESの末端アミ7基とイオウ酸化菌の蛋白
質とがりガントして担体に対する菌の固定化が行なわれ
る。
On the other hand, r-APES was diluted twice with water, and after adjusting the pH to 3 to 4 by adding hydrochloric acid, the dry silica gel was added to this solution, and 8011:' was added to the solution in a container equipped with a reflux condenser.
, heat for 2 hours. After cooling, wash thoroughly with water, 50 to 60 tl.
When dried at l', the 10H group of silica gel becomes γ~APE
A carrier covalently bound to the 81 moiety of S is obtained. This carrier was added to the bacteria fixation bath prepared in [■], and the temperature was 30±2.
.. When aeration is continued for about 4 days while maintaining the temperature at Oc, the terminal 7 groups of γ-APES and the protein of the sulfur-oxidizing bacteria form a gantt, and the bacteria are immobilized on the carrier.

T、T−ノベラスおよびT、T−オキシダンスの何れの
場合も多量に担体に固定化され、その表面は肉眼で識別
し得る胛体で覆われる。
In both cases of T, T-novelas and T, T-oxidans, a large amount is immobilized on a carrier, and the surface thereof is covered with parasites that can be discerned with the naked eye.

(2)包括結合法による固定化 アルギン酸カルシウムおよびアルミニウムによる包括結
合を行なった。(I[[)の方法で得られたT。
(2) Inclusive binding using immobilized calcium alginate and aluminum was carried out using the inclusive binding method. (T obtained by the method of I[[).

T−ノベラスまたはT、T−オキシダンスの菌固定浴(
多量の菌を含有する)を用いて1,5%アルギン酸ナト
リウム溶液を調製し、よく攪拌し、脱気泡のため約2時
間、温度5〜6Cで放置してJ混合ヘーストを生成させ
る。このペーストを16%塩化カルシウム溶液(5〜S
r)中に滴下し、2時間放置すると、アルギン酸カルシ
ウム包括固定化の球形ゲル粒が沈降する。このゲル粒を
アルミニウム混合液[A7z(SO2)s 2 f 、
グルコースIL?。
T-novelas or T, T-oxydans bacteria fixation bath (
Prepare a 1.5% sodium alginate solution (containing a large amount of bacteria), stir well, and leave at a temperature of 5-6C for about 2 hours to degas to produce J mixed heaste. This paste was added to a 16% calcium chloride solution (5~S
r) and left for 2 hours to precipitate spherical gel particles entrapping and immobilizing calcium alginate. The gel particles were mixed with an aluminum mixture [A7z(SO2)s 2 f,
Glucose IL? .

Mg5O+ 0.2 ?およびK)11PO40,Q2
 tに水4007!を加え溶解させて調製する。温度5
〜6C〕中に移し換えてイオン交換させると、アルミニ
ウム包括固定化粒が得られる。この粒子はイオン交換(
Ca2−1−→AZ3+ )によって強い立体構造に変
化するためその硬度は更に大となる。この立体構造の空
隙は菌に増殖の場を与える。このゲル粒をT、T−ノペ
ラスおよびT、T−オキシダンスについてCIII”)
で14’Aした菌固定浴に添加してエアレーションを行
なうと、ゲル粒内部および表面の閑は増殖して肉眼で観
察し得る胛体がゲル面を覆って菌が死滅することなく包
括結合されていることを示す。
Mg5O+ 0.2? and K) 11PO40,Q2
Water 4007 to T! Prepare by adding and dissolving. temperature 5
~6C] and subjected to ion exchange to obtain aluminum entrapping and immobilized grains. This particle is ion-exchanged (
Ca2-1-→AZ3+) changes it into a strong three-dimensional structure, which further increases its hardness. The voids in this three-dimensional structure provide a place for bacteria to grow. This gel grain was used for T, T-nopelas and T, T-oxydans.
When it is added to a bacteria fixation bath heated at 14'A and aerated, the cells inside and on the surface of the gel particles proliferate, and the gel surface is covered with spores that can be observed with the naked eye, and the bacteria are comprehensively bound without being killed. Indicates that

菌の固定化には、以上の操作による共有結合法および包
括結合法は何れもイオウ酸化菌の増殖固定化方法として
適当であることが判った。具体的には[)の(1)およ
び(2)で得られた菌固定粒子を、第1図に示す装置を
用いて固定化、増殖の仕上げを行なうのが便利である。
For the immobilization of bacteria, it has been found that both the covalent bonding method and the entrapping bonding method using the above-mentioned operations are suitable for the growth and immobilization of sulfur-oxidizing bacteria. Specifically, it is convenient to immobilize and propagate the bacteria-immobilized particles obtained in (1) and (2) of [) using the apparatus shown in FIG.

図において、1は直径2.40のガラス製の固定菌充填
カラムであり、その頂部および底部に直径3fiのガラ
ス球の層2(それぞれ厚み約3信)を配置し、中間に約
15crITの高さで菌の固定層3が充填されている。
In the figure, 1 is a glass column filled with fixed bacteria with a diameter of 2.40 mm, a layer 2 of glass spheres with a diameter of 3 fi (each about 3 layers thick) is arranged at the top and bottom, and a height of about 15 cr IT is placed in the middle. A fixed layer 3 of bacteria is filled.

三角フラスコ4中には[II[)に示した菌の菌固定浴
(菌源)を入れ、滅菌空気を入口糸6.7を経て液中に
導入する。菌固定浴液はポンプ作用でカラム底部から菌
固定Kjを通過して循環する。導入した空気は出口8か
ら排出される。
A bacteria immobilization bath (bacteria source) containing the bacteria shown in [II[) is placed in the Erlenmeyer flask 4, and sterile air is introduced into the liquid through the inlet thread 6.7. The bacteria fixation bath solution is circulated from the bottom of the column through the bacteria fixation Kj by a pump action. The introduced air is discharged from the outlet 8.

例えば、T、T−ノペラスを包括結合法によV)固定化
増殖させる際には、三角フラスコに前述のT。
For example, when T, T-nopelas is immobilized and propagated by the inclusive binding method, the above-mentioned T is placed in an Erlenmeyer flask.

T−ノベラス用菌固定浴(菌源)液200rntを入れ
、カラム内には前記方法で菌を固定してg:+製した包
括固定化ゲル粒子を高さ15crnに充填し、三角フラ
スコ内の浴中に清浄空気を通じなからカラム内に菌源浴
を送り込み長時間循環させる。
Add 200rnt of bacteria fixation bath (bacteria source) solution for T-Novelas, and fill the column with entrapping immobilization gel particles prepared by immobilizing bacteria using the method described above to a height of 15crn. While passing clean air into the bath, the bacterial source bath is fed into the column and circulated for a long time.

この処理によって担体上のT、T−ノペラスは更に増殖
し、30時間位までは時間と共に直線的に増殖を示すが
、その後は次第に媛慢となり、4日間、約96時間後に
は実質的な増殖は見られないようである。後記実施例に
示すように、このlXj N化時間が30.40.90
時間の固定化粒子によるメチルメルカプタンガスの流通
法による試験では、30時間で30チ、40時間で75
チ、90時間で100%の除去ができることが見出され
ている。この時点で粒径2〜3gの担体上に固定された
T、T−ノベラス菌は重量で20〜25チに相当する。
Through this treatment, the T and T-nopelas on the carrier further proliferate, showing linear proliferation over time until about 30 hours, but after that, it gradually becomes sluggish, and substantial proliferation occurs after 4 days and about 96 hours. seems not to be seen. As shown in the examples below, this lXj N-ization time was 30.40.90
In a test using a methyl mercaptan gas flow method using immobilized particles over a period of time, 30 cm in 30 hours and 75 cm in 40 hours.
It has been found that 100% removal can be achieved in 90 hours. At this point, the T, T-novellas bacteria immobilized on the carrier with a particle size of 2 to 3 g corresponds to 20 to 25 inches in weight.

粒子は黄白色の胛体で覆われている。T、T−オキシダ
ンスの場合もこの操作で全く同様の姑果が得られる。
The particles are covered with yellowish-white particles. In the case of T,T-oxidans, exactly the same effect can be obtained by this operation.

共有結合法によるイオウ酸化菌の固定化増殖も第1図の
装置を用いて同様に実施できる。菌体としてT、T−オ
キシダンスを用い、三角フラスコ内に(I[[”]で示
した菌固定浴(菌源)2001n/を入れ、一方、カラ
ムには前記[F/) (1)で得られた菌固定のシリカ
ゲル粒子(粒径1〜1−5wa、比重2.3)を15c
n1高さに充填し、三角フラスコ内の菌固定浴に清浄空
気を通じなからカラムに菌固定浴液を循環させる。この
処理により、カラム内の担体表面には菌が更に増殖して
、4日間、約96時間後には、包括結合法によるT、T
−ノベラスの場合ト同様に担体表面に菌の増殖被覆が形
成される。T。
Immobilized growth of sulfur-oxidizing bacteria by a covalent bonding method can also be carried out in the same manner using the apparatus shown in FIG. Using T,T-oxidans as the bacterial cells, a bacterial fixation bath (bacterial source) 2001n/ indicated by (I[['']) was placed in an Erlenmeyer flask, while the above [F/] (1) The bacteria-fixed silica gel particles (particle size 1-1-5 wa, specific gravity 2.3) obtained in
Fill the column to a height of n1, and circulate the bacteria fixation bath solution through the column while passing clean air through the bacteria fixation bath in the Erlenmeyer flask. Through this treatment, bacteria further proliferate on the surface of the carrier in the column, and after 4 days or about 96 hours, T and T
- In the case of novelas, a bacterial growth coating is formed on the surface of the carrier. T.

T−ノベラスについてこの操作を行なえば、全く同機な
結果が得られる。以上の実験で、T、T−ノベラスある
いはT、T−オキシダンスの大ユの菌の固定化が包括結
合法、共有結合法の両方法で可能であることを確認した
If this operation is performed on the T-Novelas, results that are exactly the same will be obtained. In the above experiments, it was confirmed that the immobilization of T, T-novelas or T, T-oxidans in Oyu bacteria is possible by both the inclusive binding method and the covalent binding method.

このようにして、担体表面にイオウ酸化菌を固定化増列
1させた固定菌の固定層を含むカラムは調製したカラム
の容量に応じて、そのまま気相または液相中に含まれて
いるイオウ化合物の酸化、脱硫に使用することができる
In this way, a column containing an immobilized layer of fixed bacteria with sulfur-oxidizing bacteria immobilized and multiplied on the surface of the carrier can directly absorb sulfur contained in the gas phase or liquid phase, depending on the capacity of the prepared column. Can be used for oxidation and desulfurization of compounds.

液体試料中のイオウ化合物を酸化除去する際には、第1
図の装置のカラム1中のイオウ酸化菌の固定層を蒸留水
で洗浄し、水滴を除去するため2時間放置する。三角フ
ラスコ4中の培養液に代えて当該液体試料を入れ、試料
溶液に清浄空気を導入しながらポンプで一定時間液の循
環を行なう。
When oxidizing and removing sulfur compounds in a liquid sample, the first
The fixed layer of sulfur-oxidizing bacteria in column 1 of the apparatus shown in the figure is washed with distilled water and left for 2 hours to remove water droplets. The liquid sample is placed in place of the culture solution in the Erlenmeyer flask 4, and the liquid is circulated for a certain period of time using a pump while introducing clean air into the sample solution.

液のpHは7以下に保つのが好ましい。イオウ化合物の
酸化程度は試料溶液を経時的にサンプリングしてイオウ
濃度を測定することによって知ることができる。アミノ
酸溶液のように妨害イオンを含む場合には電極法による
S2−イオンの測定法を用いる。
It is preferable to keep the pH of the liquid at 7 or less. The degree of oxidation of the sulfur compound can be determined by sampling the sample solution over time and measuring the sulfur concentration. When containing interfering ions such as an amino acid solution, a method for measuring S2- ions using an electrode method is used.

気体試料中のイオウ化合物の酸化除去は、同様にして第
1図に示すイオウ酸化菌の固定化増匂′1カラムを用い
気体試料を層中に通過させる。処理した試料のイオウ化
合物の測定にはガスクロマトグラフ法を用いる。第2図
はガス試料の実験に使用した装置の略図であって、9は
イオウ化合物のボンベ、10は空気ボンベ、11は混合
器である。
In order to remove sulfur compounds from a gas sample by oxidation, the gas sample is similarly passed through the column using the sulfur-oxidizing bacteria immobilized odor amplification '1 column shown in FIG. Gas chromatography is used to measure sulfur compounds in treated samples. FIG. 2 is a schematic diagram of the apparatus used in the gas sample experiment, in which 9 is a sulfur compound cylinder, 10 is an air cylinder, and 11 is a mixer.

使用後、カラム内の固定層が著しく汚染されたときのみ
蒸留水で洗浄し、約3時間放置して水滴を除去した後、
使用されているイオウ竣化菌に対応する培養液を循環さ
せれば、菌は増殖されて次の操作に対して準備される。
After use, wash with distilled water only when the fixed bed in the column is significantly contaminated, and leave it for about 3 hours to remove water droplets.
By circulating the culture medium corresponding to the sulfur-forming bacteria used, the bacteria are grown and prepared for the next operation.

試料が比較的多量であり、処理時間が長期に及ぶときは
処理を中断して培養液による増殖を行なうことができる
。かくして調製したカラムの菌の固定化増殖層は実質上
、半永久的に使用することができる。
When the sample is relatively large and the processing time is long, the processing can be interrupted and growth can be performed using a culture solution. The immobilized growth layer of bacteria in the column thus prepared can be used substantially semi-permanently.

以下、本発明によって春される効果を実施例によって具
体的に説明する。
Hereinafter, the effects achieved by the present invention will be specifically explained using examples.

実施例I T、T−ノペラス菌およびT、T−オキシダンス菌の固
定層カラムを第2図に示す実験装置を用いて各種イオウ
化合物を含む気体試料の酸化実験を行なった。
Example I Oxidation experiments of gaseous samples containing various sulfur compounds were carried out using the experimental apparatus shown in FIG. 2, including a fixed bed column of T, T-nopelas bacteria and T, T-oxydans bacteria.

(1)試料ガス (イ)メチルメルカプタンガス: Cll3 SHm 
度6.5 pP’(空気で希釈) (ロ)二酸化イオウガス:802濃度6.5 ppm 
(空気で希釈) (ハ)硫化水素ガスaH1s  濃度6.5 pprn
 (空気で希釈) 濃度測定はガスクルマドグラフィを使用する。
(1) Sample gas (a) Methyl mercaptan gas: Cll3 SHm
(diluted with air) (b) Sulfur dioxide gas: 802 concentration 6.5 ppm
(diluted with air) (c) Hydrogen sulfide gas aH1s concentration 6.5 pprn
(Dilute with air) Use gas chromatography to measure concentration.

(2)試料ガスの増殖固定化粒子層の通ガス条件温度(
室温)10〜12r1人ロガス濃度6.5ppm 、試
料ガス流速40−7分とし、試料の通ガス時間は60時
間で、10時間毎に出口ガス濃度を測定して記録する。
(2) Gas flow condition temperature of sample gas proliferation immobilized particle layer (
Room temperature) 10-12r The gas concentration per person was 6.5 ppm, the sample gas flow rate was 40-7 minutes, the sample gas passage time was 60 hours, and the outlet gas concentration was measured and recorded every 10 hours.

(3)実験に用いた固定化粒子 A : T、T −/ ヘラスの包括結合法によるもの
B:T、’l’−/lツー/へ有結合法によるものC:
 T、T−オキシダンスの包括結合法によるものD :
 T、T−オキシダンスの共有結合法によるもの実験l 試料ガスに上記(イ)のメチルメルカプタンガスを用い
、上記条件で酸化実験を行なった。但し、各1 菌の固
定化増殖粒子がそれらの増殖固定化処理の時間によって
粒子内および表面上に形成される菌体の集り飽和程度を
異にし、それによって効果に差異を生じさせることを予
備実験で認めたので、カラムに充填する固定化粒子を、
処理時間30時間、40時間および90時間の3種に区
分して脱硫試験を行なった。
(3) Immobilized particles used in the experiment A: T, T −/by Hellas inclusive bonding method B: T, 'l'-/l2/to bound bond method C:
D by inclusive combination method of T, T-oxidans:
Experiment 1 using the covalent bonding method of T,T-oxidans An oxidation experiment was conducted under the above conditions using the methyl mercaptan gas described in (a) above as the sample gas. However, it should be noted that the degree of saturation of the bacterial cells formed inside and on the surface of the immobilized and proliferated particles of each type of bacteria differs depending on the time of the proliferating and immobilizing treatment, which may cause differences in effectiveness. As confirmed in the experiment, the immobilized particles packed in the column are
The desulfurization test was conducted with three treatment times: 30 hours, 40 hours, and 90 hours.

結果は次表の通りである。The results are shown in the table below.

通ガス時間60時間中、開始時期から中止時期を通じて
出口濃度は全く同一であり濃度の変動は見られなかった
。この結果から、(A) 、 (B) 、 (C)およ
び(D)の菌種および固定化方法による偏差は殆んど見
られない。また、何れの場合も、30時それぞれの脱硫
性能は約30%、75%および100チとなっており、
90時間以上循環処理すれば固定化は何れの方法によっ
ても飽和状態の増殖を示し、メチルメルカプタン含有ガ
スは100%脱硫されることが判明した。
During the 60-hour gas flow period, the outlet concentration was exactly the same from the start time to the stop time, and no change in concentration was observed. From this result, almost no deviations due to the bacterial species and immobilization method in (A), (B), (C), and (D) are observed. In addition, in both cases, the desulfurization performance at 30 hours is approximately 30%, 75%, and 100 hours, respectively.
It was found that if the circulation treatment was carried out for 90 hours or more, immobilization showed saturated growth regardless of the method, and 100% of the methyl mercaptan-containing gas was desulfurized.

実験2 この実験では全て96時間循環処理した増殖固定層を使
用したほか、実験1と同じ条件で、(ロ)二酸化イオウ
ガスおよび(ハ)硫化水素ガスの酸化実験を行なった。
Experiment 2 In this experiment, in addition to using a propagation fixed bed that had been circulated for 96 hours, oxidation experiments of (b) sulfur dioxide gas and (c) hydrogen sulfide gas were conducted under the same conditions as in Experiment 1.

この実験においてもメチルメルカプタンガスの場合と同
じく、通ガス時間60時間中、終始出口濃度は常に0で
あり、100%酸化が行なわれる口とが判った。また、
菌種および固定化方法による偏差も殆んど見られなかっ
た。
In this experiment, as in the case of methyl mercaptan gas, the outlet concentration was always 0 throughout the 60 hour gas passage time, indicating that 100% oxidation occurred. Also,
Almost no deviations due to bacterial species or immobilization methods were observed.

通ガス条件として温度10〜12c(室温)で実施した
が、菌が活性となる25〜30rで通ガスすれば更に良
好な結果が期待できる。
Although the gas flow was conducted at a temperature of 10 to 12C (room temperature), even better results can be expected if the gas flow is performed at a temperature of 25 to 30R, at which the bacteria become active.

実施例2 第1図に示す実験装置を用いてアミノ酸溶液の種のアミ
ノ酸が合計で19チ1食塩20チを含むp■15.2の
水溶液であって、イオン電極法によって測定した52−
mは15.6ppmである。この溶液をフラスコ中に2
00−入れ、温度30C1試料通液速度40−/分でカ
ラムの固定化層を循環して通液させた。経時的に液の8
2−濃度を測定した結果、次表の結果を得た。表中のA
、B、CおよびDの表示は、実施例1と同じである。
Example 2 Using the experimental apparatus shown in Figure 1, an aqueous solution of p15.2 containing a total of 19 g of seed amino acids and 20 g of salt was measured using the ion electrode method.
m is 15.6 ppm. Pour this solution into a flask.
The fixed layer of the column was circulated and passed through the immobilized layer at a temperature of 30C and a sample flow rate of 40-/min. 8 of liquid over time
2- As a result of measuring the concentration, the results shown in the following table were obtained. A in the table
, B, C and D are the same as in Example 1.

(単位 ppm ) 」二表の結果から、S” 15.6 ppmのイオウ分
を含むアミノ酸水溶液は固定化増殖粒子AおよびCでは
約3時間、BおよびDでは2.5時間で完全に脱硫され
ることが判った。第3図はこの結果をグラフで示したも
のである。
(Unit: ppm) From the results in the two tables, it can be seen that an amino acid aqueous solution containing 15.6 ppm of sulfur was completely desulfurized in approximately 3 hours for immobilized growth particles A and C, and in 2.5 hours for particles B and D. Figure 3 shows this result in a graph.

本発明に使用するイオウ酸化菌の固定化増列1粒子は比
重が約2.3であり、物理的強度を有するものであるか
ら、上記実施例では固定化粒子のL’;]定床を利用す
る方法について述べたが、周知の流動床技術によって流
動反応器中でイオウ化合物を含むガス相あるいは液相を
処理しうろことは当朶者に容易に理解される。
One particle of immobilized and expanded array of sulfur-oxidizing bacteria used in the present invention has a specific gravity of about 2.3 and has physical strength. Having described the method utilized, one skilled in the art will readily understand that gas or liquid phases containing sulfur compounds may be treated in a fluidized reactor by well-known fluidized bed techniques.

一般に、気相あるいは液相から微量のイオウ分を除去す
ることは困難とされており、本発明により常温でガスま
たは液体のp)Iが7以下で容易に操作できることは極
めて有利な方法であるといえる。
Generally, it is considered difficult to remove trace amounts of sulfur from the gas or liquid phase, and the present invention is extremely advantageous in that it can be easily operated when the p)I of the gas or liquid is 7 or less at room temperature. It can be said.

しかも、イオウは菌の代謝に利用されるので、その効果
は半永久的に期待できる。特に大気汚染によるSO2の
除去、イオウ系悪臭の解消、更に工業的にはアミ7歳の
ような食品、医薬品の製造に際して悩まされるイオウの
除去の問題は本発明により好適に解決できる。
Moreover, since sulfur is used for bacterial metabolism, its effects can be expected to last semi-permanently. In particular, the present invention can suitably solve the problems of removing SO2 caused by air pollution, eliminating sulfur-based malodors, and industrially removing sulfur, which is a problem in the production of foods and medicines such as Ami 7-year-old.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による液相処理、第2図は気相処理に使
用される実験装置の概略図である。第3図は本発明によ
るアミノ酸液の処理実験結果を通液時間とアミノ酸液中
のS2−濃度の変化で示したグラフである。 特許出願人:コスモ食品株式会社 代 理 人:弁理士 平 山 −車 間  :弁理士 海 津 保 三 手続主甫正書印 発) 昭和61年6月18日
FIG. 1 is a schematic diagram of an experimental apparatus used for liquid phase treatment according to the present invention, and FIG. 2 is a schematic diagram of an experimental apparatus used for gas phase treatment. FIG. 3 is a graph showing the results of an experiment on processing an amino acid solution according to the present invention as a function of passage time and changes in S2 concentration in the amino acid solution. Patent applicant: Cosmo Foods Co., Ltd. Agent: Patent attorney Hirayama - Car distance: Patent attorney Kaizu Tamotsu (Author's seal issued by the third proceeding chief) June 18, 1986

Claims (1)

【特許請求の範囲】[Claims] イオウ酸化菌を増殖しうる形で固定化して形成したイオ
ウ酸化菌の増殖固定化粒子と、有機または無機のイオウ
化合物を含有する気相または液相とを接触させることか
ら成る気相または液相の脱硫化方法。
A gas phase or liquid phase consisting of contacting sulfur oxidizing bacteria growth-immobilized particles formed by immobilizing sulfur oxidizing bacteria in a form capable of growth and a gas phase or liquid phase containing an organic or inorganic sulfur compound. desulfurization method.
JP60244046A 1985-11-01 1985-11-01 Desulfurizing method utilizing sulfur oxidizing Granted JPS62106822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60244046A JPS62106822A (en) 1985-11-01 1985-11-01 Desulfurizing method utilizing sulfur oxidizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60244046A JPS62106822A (en) 1985-11-01 1985-11-01 Desulfurizing method utilizing sulfur oxidizing

Publications (2)

Publication Number Publication Date
JPS62106822A true JPS62106822A (en) 1987-05-18
JPH0156813B2 JPH0156813B2 (en) 1989-12-01

Family

ID=17112915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60244046A Granted JPS62106822A (en) 1985-11-01 1985-11-01 Desulfurizing method utilizing sulfur oxidizing

Country Status (1)

Country Link
JP (1) JPS62106822A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101000A (en) * 1986-10-16 1988-05-06 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water containing substance difficult to be decomposed by organism
JPS63221899A (en) * 1987-03-09 1988-09-14 Agency Of Ind Science & Technol Oxidative decomposing method of methyl mercaptan by microorganism
JPH05146795A (en) * 1991-12-02 1993-06-15 Nippon Steel Corp Biological treatment of hydrogen sulfide-containing waste water
JPH0615294A (en) * 1992-07-02 1994-01-25 Nippon Steel Corp Immobilized carrier suitable for sulfur-oxidizing bacteria, immobilization of sulfur-oxidizing bacteria in immobilized carrier, culturing and propagating method for sulfur oxidizing bacteria in fixed bed type bioreactor and biological treatment of waste water containing reducing sulfur compound
JP2006007000A (en) * 2004-06-22 2006-01-12 Ohbayashi Corp Water purification promoting material and high functional water purification material, and water purification method using them
CN104722165A (en) * 2015-03-03 2015-06-24 内蒙古阜丰生物科技有限公司 Environmental-protection process for purifying tail gas in production of amino acid
CN104722199A (en) * 2015-03-02 2015-06-24 内蒙古阜丰生物科技有限公司 Smoke-removing and dust-removing method of amino-acid production process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170181A (en) * 1981-04-09 1982-10-20 Nishihara Environ Sanit Res Corp Biological deodorizer
JPS6025530A (en) * 1983-07-22 1985-02-08 Kiden Syst Eng:Kk Deodorizing apparatus
JPS6054790A (en) * 1983-09-05 1985-03-29 Hitachi Plant Eng & Constr Co Ltd Water treating apparatus
JPS6055952A (en) * 1983-09-03 1985-04-01 大門 大太 Deodorant
JPS6090096A (en) * 1983-10-21 1985-05-21 Kirin Brewery Co Ltd Preparation of deoxidized water
JPS60202794A (en) * 1984-03-26 1985-10-14 Solar Kk Immobilized fungus body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170181A (en) * 1981-04-09 1982-10-20 Nishihara Environ Sanit Res Corp Biological deodorizer
JPS6025530A (en) * 1983-07-22 1985-02-08 Kiden Syst Eng:Kk Deodorizing apparatus
JPS6055952A (en) * 1983-09-03 1985-04-01 大門 大太 Deodorant
JPS6054790A (en) * 1983-09-05 1985-03-29 Hitachi Plant Eng & Constr Co Ltd Water treating apparatus
JPS6090096A (en) * 1983-10-21 1985-05-21 Kirin Brewery Co Ltd Preparation of deoxidized water
JPS60202794A (en) * 1984-03-26 1985-10-14 Solar Kk Immobilized fungus body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101000A (en) * 1986-10-16 1988-05-06 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water containing substance difficult to be decomposed by organism
JPH0455756B2 (en) * 1986-10-16 1992-09-04 Hitachi Plant Eng & Constr Co
JPS63221899A (en) * 1987-03-09 1988-09-14 Agency Of Ind Science & Technol Oxidative decomposing method of methyl mercaptan by microorganism
JPH0311838B2 (en) * 1987-03-09 1991-02-18 Kogyo Gijutsuin
JPH05146795A (en) * 1991-12-02 1993-06-15 Nippon Steel Corp Biological treatment of hydrogen sulfide-containing waste water
JPH0615294A (en) * 1992-07-02 1994-01-25 Nippon Steel Corp Immobilized carrier suitable for sulfur-oxidizing bacteria, immobilization of sulfur-oxidizing bacteria in immobilized carrier, culturing and propagating method for sulfur oxidizing bacteria in fixed bed type bioreactor and biological treatment of waste water containing reducing sulfur compound
JP2006007000A (en) * 2004-06-22 2006-01-12 Ohbayashi Corp Water purification promoting material and high functional water purification material, and water purification method using them
JP4649887B2 (en) * 2004-06-22 2011-03-16 株式会社大林組 Water purification promotion material, highly functional water purification material, and water purification method using them
CN104722199A (en) * 2015-03-02 2015-06-24 内蒙古阜丰生物科技有限公司 Smoke-removing and dust-removing method of amino-acid production process
CN104722165A (en) * 2015-03-03 2015-06-24 内蒙古阜丰生物科技有限公司 Environmental-protection process for purifying tail gas in production of amino acid
CN104722165B (en) * 2015-03-03 2016-02-24 内蒙古阜丰生物科技有限公司 A kind of environment-protective process purifying amino acids production tail gas

Also Published As

Publication number Publication date
JPH0156813B2 (en) 1989-12-01

Similar Documents

Publication Publication Date Title
Kapahi et al. Mycoremediation potential of Pleurotus species for heavy metals: a review
Mallick Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review
CN102863085B (en) Waste water treatment
ES2712163T3 (en) Composition, support, wastewater treatment system, wastewater treatment method, deodorization method and discontinuous wastewater treatment method
CN104152375B (en) One strain deamination deodorization bacterial strain QDN01 and the application in biological deodorizing thereof
CN110724683A (en) Carbon-based microbial composite bacteria powder, microbial inoculum and preparation method and application thereof
JPS62106822A (en) Desulfurizing method utilizing sulfur oxidizing
CN107099483B (en) Composite biological agent and application thereof in treatment of mercury-containing wastewater
CN108913623A (en) A kind of preparation method of sulphur autotrophic denitrification bacteria immobilized particle
CN110964713A (en) Preparation method of immobilized microorganism particles for removing ammonia nitrogen from black and odorous water
CN102060371A (en) Composite material for processing sewage
JPS6336898A (en) Immobilized bacteria capable of oxidizing nh4+ contained in sewage to nitrous acid and treatment using same
CN103074273A (en) Thiobacillus ferrooxidans preparation method
RU2433089C1 (en) Method of cleaning water surface from oil contamination
JP6769615B2 (en) Nitrate nitrogen removal method and nitrate nitrogen remover
CN107674846B (en) Rhodopseudomonas palustris RP1 and application thereof
JP4953513B2 (en) Garbage disposal agent and high temperature garbage disposal method
CN110951658A (en) Pseudomonas and application thereof
JPH07275696A (en) Production and regeneration of biological activated carbon and membrane removing method of bacteria
JPS6131085A (en) Preparation of immobilized microbial cell
CN116555069B (en) Alkana diesel oil bacterium with salt-tolerant aerobic denitrification characteristic
KR101479679B1 (en) Novel Acidithiobacillus thiooxidans SOB5VT1, apparatus and method for removing bad smells using the same
RU2754927C1 (en) Method for immobilizing microorganisms on montmorillonite clays
RU2693780C2 (en) Biocomposite material for purification of waste water from phosphates
RU2255052C2 (en) Method of treating aqueous medium to remove oil pollution and biological preparation for treating water medium against oil pollution