JP6274426B2 - Method and apparatus for denitrification of nitrate nitrogen - Google Patents

Method and apparatus for denitrification of nitrate nitrogen Download PDF

Info

Publication number
JP6274426B2
JP6274426B2 JP2014076534A JP2014076534A JP6274426B2 JP 6274426 B2 JP6274426 B2 JP 6274426B2 JP 2014076534 A JP2014076534 A JP 2014076534A JP 2014076534 A JP2014076534 A JP 2014076534A JP 6274426 B2 JP6274426 B2 JP 6274426B2
Authority
JP
Japan
Prior art keywords
sulfur
nitrate nitrogen
packed bed
denitrification
ryukyu limestone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014076534A
Other languages
Japanese (ja)
Other versions
JP2014223612A (en
Inventor
裕史 嘉森
裕史 嘉森
福永 和久
和久 福永
拓治 中野
拓治 中野
孝正 真謝
孝正 真謝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of the Ryukyus
Nippon Steel Engineering Co Ltd
Original Assignee
University of the Ryukyus
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of the Ryukyus, Nippon Steel Engineering Co Ltd filed Critical University of the Ryukyus
Priority to JP2014076534A priority Critical patent/JP6274426B2/en
Publication of JP2014223612A publication Critical patent/JP2014223612A/en
Application granted granted Critical
Publication of JP6274426B2 publication Critical patent/JP6274426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、硫黄脱窒細菌による生物的処理によって排水中の硝酸性窒素を脱窒処理する方法および脱窒処理装置に関するものである。   The present invention relates to a method and a denitrification apparatus for denitrifying nitrate nitrogen in waste water by biological treatment with sulfur denitrifying bacteria.

近年、硝酸性窒素の水質環境基準値である10mg/Lを超える水源が増加しており、排水中の硝酸性窒素の問題が深刻化している。硝酸性窒素は、メトヘモグロビン血症の原因物質であることに加え、流産や癌の原因になるとも言われており、人体に対する健康被害が大きいことが知られている。また、飲料水の多くを地下水に依存している欧米では、この硝酸性窒素汚染による乳幼児の死亡例も多数報告されており、硝酸性窒素汚染は社会問題にまで発展している。   In recent years, the number of water sources exceeding 10 mg / L, which is the water quality environmental standard value of nitrate nitrogen, has increased, and the problem of nitrate nitrogen in wastewater has become serious. In addition to being a causative substance of methemoglobinemia, nitrate nitrogen is also said to cause miscarriage and cancer, and is known to cause significant health damage to the human body. In Europe and the United States, which depend on groundwater for drinking water, many deaths of infants due to this nitrate nitrogen contamination have been reported, and nitrate nitrogen contamination has developed into a social problem.

河川、湖沼、閉鎖水域、閉鎖海域などの富栄養化の原因となる生活排水、産業排水、畜産排水、農業排水、水産養殖排水中の硝酸性窒素分を除去する技術として、独立栄養系硫黄酸化脱窒細菌(以下、「硫黄脱窒細菌」という)を用いた硝酸性窒素除去システムは、従属栄養系脱窒細菌を用いたシステムとは異なり、メタノール添加等の高い維持コストが不要なため、各方面で注目されている。例えば、特許文献1や特許文献2に、硫黄脱窒細菌を用いた硝酸性窒素の脱窒方法の例が開示されている。   Autotrophic sulfur oxidation is a technology that removes nitrate nitrogen in domestic wastewater, industrial wastewater, livestock wastewater, agricultural wastewater, aquaculture wastewater that causes eutrophication in rivers, lakes, closed water areas, closed sea areas, etc. Unlike the system using heterotrophic denitrifying bacteria, nitrate nitrogen removal system using denitrifying bacteria (hereinafter referred to as “sulfur denitrifying bacteria”) does not require high maintenance costs such as methanol addition. It is attracting attention in various directions. For example, Patent Literature 1 and Patent Literature 2 disclose examples of nitrate nitrogen denitrification methods using sulfur denitrifying bacteria.

この種の硝酸性窒素の脱窒方法において、特許文献1や特許文献2に記載されている例では、硝酸性窒素の脱窒に用いられる硫黄およびカルシウム等の混合物(以下、「硫黄混合物」という)が、炭酸カルシウム、マグネシウム、硫黄成分により構成されている。この脱窒方法で排水中に含まれる硝酸性窒素の脱窒を行う場合、前記硫黄混合物に硫黄脱窒細菌を別途接種し、当該硫黄混合物の細孔あるいは表面に硫黄脱窒細菌を担持させた状態で、硝酸性窒素を含有する排水等と接触させることにより、脱窒反応を進行させている。   In this type of nitrate nitrogen denitrification method, in the examples described in Patent Document 1 and Patent Document 2, a mixture of sulfur and calcium used for denitrification of nitrate nitrogen (hereinafter referred to as “sulfur mixture”). ) Is composed of calcium carbonate, magnesium and sulfur components. When performing denitrification of nitrate nitrogen contained in waste water by this denitrification method, the sulfur mixture was separately inoculated with sulfur denitrification bacteria, and sulfur denitrification bacteria were supported on the pores or surfaces of the sulfur mixture. In this state, the denitrification reaction is advanced by contacting with waste water containing nitrate nitrogen.

硫黄脱窒細菌は、排水等に含まれる硝酸性窒素に結合する酸素を、硫黄混合物に含有される硫黄成分の酸化に利用することにより、硝酸性窒素を還元して、窒素ガスとして処理するものである。この硫黄脱窒細菌は、硝酸性窒素を還元し、硫黄を酸化するエネルギーを用いて、活動・増殖を行っているが、この際に炭素、カルシウム、硫黄等の他、カリウム、鉄、ナトリウム、及びリン等の成分が必要である。   Sulfur denitrifying bacteria reduce nitrate nitrogen and treat it as nitrogen gas by using oxygen that binds to nitrate nitrogen contained in waste water etc. for oxidation of sulfur components contained in sulfur mixture It is. This sulfur denitrifying bacterium is active and proliferating using energy that reduces nitrate nitrogen and oxidizes sulfur. In this case, in addition to carbon, calcium, sulfur, etc., potassium, iron, sodium, And components such as phosphorus are required.

通常、上記の硫黄混合物は、無機炭素、カルシウム、硫黄については、含有するように製造されているが、上記の必要な成分のうち、カリウム、鉄、リン等の硫黄脱窒細菌活動に必要な成分が含有されていない排水を処理すると、十分な脱窒効果が得られないことがある。   Usually, the above sulfur mixture is manufactured to contain inorganic carbon, calcium, and sulfur, but among the above necessary components, it is necessary for sulfur denitrifying bacterial activities such as potassium, iron, and phosphorus. If wastewater containing no components is treated, a sufficient denitrification effect may not be obtained.

特開2000−93997号公報Japanese Unexamined Patent Publication No. 2000-93997 特開2001−104993号公報JP 2001-104993 A

上記硫黄化合物を用いて排水等に含有される硝酸性窒素を処理するに当たり、処理する排水中にカリウム、鉄、及びリンが含有されていない場合は、それらの薬剤を別途、硫黄脱窒細菌の微量栄養源として添加し処理する必要がある。しかしそうした場合、処理装置として薬剤添加装置の増設が必要となる上、添加薬剤が増える分だけ脱窒処理のコストが上昇する問題を生じる。   When treating nitrate nitrogen contained in wastewater etc. using the above sulfur compounds, if the wastewater to be treated does not contain potassium, iron, and phosphorus, these chemicals are separately added to the sulfur denitrifying bacteria. It needs to be added and processed as a micronutrient source. However, in such a case, it is necessary to add a chemical addition device as a treatment device, and there arises a problem that the cost of the denitrification treatment is increased by the amount of the additional chemical.

本発明は、上記事情を考慮し、処理する排水中にカリウム、鉄、及びリンが含有されていない場合であっても、別途に微量栄養源としての薬剤を添加することなく、安価に硝酸性窒素の処理が可能となる硝酸性窒素の脱窒処理方法および脱窒処理装置を提供することを目的とする。   In consideration of the above circumstances, the present invention is inexpensive even when potassium, iron, and phosphorus are not contained in the wastewater to be treated, without separately adding a chemical as a micronutrient source. It is an object of the present invention to provide a nitrate nitrogen denitrification method and a denitrification apparatus capable of treating nitrogen.

本発明は、上記課題を解決するために、以下の手段を採用する。
即ち、請求項1の発明の硝酸性窒素の脱窒処理方法は、カルシウムおよび/またはマグネシウムの炭酸塩並びに硫黄を主成分とする粒状あるいは塊状の多孔質混合物と粒状または塊状の琉球石灰岩とを混合してなる充填層に硫黄脱窒細菌を担持させ、前記硫黄脱窒細菌を担持させた充填層に硝酸性窒素を含む排水を通水することで前記排水に含まれる硝酸性窒素を脱窒することを特徴とする。
The present invention employs the following means in order to solve the above problems.
That is, the method of denitrification of nitrate nitrogen according to the first aspect of the present invention comprises mixing a granular or massive porous mixture mainly composed of calcium and / or magnesium carbonate and sulfur with granular or massive Ryukyu limestone. The denitrification bacteria contained in the waste water are denitrified by allowing the denitrification bacteria to be supported on the packed bed and passing the waste water containing nitrate nitrogen through the packed bed supporting the sulfur denitrification bacteria. It is characterized by that.

この場合、琉球石灰岩から微量に溶出するカリウム、鉄、及びリンが硫黄脱窒細菌の微量栄養源として作用する。
ここで、多孔質混合物から溶出した硫黄成分のうち硫黄脱窒細菌によって利用されなかった分が充填層内で、嫌気条件下で滞留することで、硫化水素ガスが生成してしまうことがある。この点、本発明では琉球石灰岩から鉄が微量に溶出し、この鉄が硫黄成分と結合することで、硫化水素ガスの発生を抑制することができる。
また、硫黄脱窒細菌によって利用されなかった硫黄成分が酸化して硫酸イオンが生じ、充填層内でpHが低下し、細菌が生育しにくい環境となってしまうことがある。この点、本発明では、琉球石灰岩からカルシウムが溶出する。そして、このカルシウムが硫酸イオンと結合することで中和され、充填層内でpHの低下を抑制することができ、細菌の生育環境を良好なものとすることができる。
In this case, potassium, iron, and phosphorus eluted in a trace amount from Ryukyu limestone act as trace nutrient sources for sulfur denitrifying bacteria.
Here, among the sulfur components eluted from the porous mixture, the portion not used by the sulfur denitrifying bacteria stays in the packed bed under anaerobic conditions, so that hydrogen sulfide gas may be generated. In this regard, in the present invention, a small amount of iron is eluted from the Ryukyu limestone, and this iron is combined with a sulfur component, so that generation of hydrogen sulfide gas can be suppressed.
Moreover, the sulfur component which was not utilized by the sulfur denitrifying bacteria is oxidized to produce sulfate ions, the pH in the packed bed is lowered, and the environment may be difficult for the bacteria to grow. In this regard, in the present invention, calcium is eluted from Ryukyu limestone. And this calcium is neutralized by couple | bonding with a sulfate ion, the fall of pH can be suppressed in a packed bed, and the growth environment of bacteria can be made favorable.

前記琉球石灰岩は、粒径が5mm〜20mmの範囲に設定され、かつポーラス構造とされていてもよい。
琉球石灰岩の粒径を5mm〜20mmの範囲に設定すると、排水を処理する際に、該琉球石灰岩からカリウム、鉄、及びリンが溶出し易くなる。
なお、琉球石灰岩の粒径が20mmを超えると、当該充填層内を排水が短絡して流れる場合や、琉球石灰岩の重量に対する表面積の割合が小さくなるため、排水を処理する際に、該琉球石灰岩から溶出するカリウム、鉄、及びリンの量が小さくなり、結果的に、硫黄脱窒細菌の栄養源が若干不足気味になる。また、琉球石灰岩の粒径が5mmより小さくなると、排水を処理する際に、該琉球石灰岩からカリウム、鉄、及びリンが溶出し易くなるものの、琉球石灰岩が小さくなりすぎて、硫黄脱窒細菌が繁殖した場合、充填層内で閉塞を起こしてしまう。
また、琉球石灰岩がポーラス構造であると、比表面積が大きくなり、カリウム、鉄、及びリンが溶出し易くなる。さらに、ポーラス構造であることで親水性、吸水性に優れているため表面に存在する細孔に水が十分に入り込み、硫黄脱窒細菌が生息し易くなる。また、琉球石灰岩から溶出する上記の微量栄養源が細孔内にも溶出することで、硫黄脱窒細菌もこの細孔内に入り込み、細孔中に硫黄脱窒細菌が付着し易くなって、水流によって洗い流されにくくなり、長期に渡って良好な排水処理効果が得られる。
The Ryukyu limestone may have a particle size of 5 mm to 20 mm and a porous structure.
When the particle size of the Ryukyu limestone is set in the range of 5 mm to 20 mm, potassium, iron, and phosphorus are easily eluted from the Ryukyu limestone when the waste water is treated.
In addition, when the particle size of Ryukyu limestone exceeds 20 mm, the drainage is short-circuited in the packed bed, or the ratio of the surface area to the weight of the Ryukyu limestone is small. As a result, the amount of potassium, iron, and phosphorus eluted from the water is slightly reduced, and the nutrient source for sulfur denitrifying bacteria is slightly deficient. In addition, when the particle size of Ryukyu limestone is smaller than 5 mm, potassium, iron, and phosphorus are easily eluted from the Ryukyu limestone when the wastewater is treated, but the Ryukyu limestone is too small and sulfur denitrifying bacteria are generated. If it breeds, it will cause clogging in the packed bed.
Moreover, when the Ryukyu limestone has a porous structure, the specific surface area is increased, and potassium, iron, and phosphorus are easily eluted. Furthermore, since the porous structure is excellent in hydrophilicity and water absorption, water sufficiently enters the pores existing on the surface, and sulfur denitrifying bacteria are liable to live. In addition, the above-mentioned trace nutrient source eluting from Ryukyu limestone also elutes in the pores, so that sulfur denitrifying bacteria also enter the pores, and sulfur denitrifying bacteria easily adhere to the pores, It becomes difficult to be washed away by the water flow, and a good drainage treatment effect can be obtained for a long time.

前記充填層では、前記琉球石灰岩が体積比で40%以上、60%未満であってもよい。
このような体積比で琉球石灰岩を混合することで、琉球石灰岩が充填層の骨材として機能し、充填層の強度を確保することができる。
In the packed bed, the Ryukyu limestone may be 40% or more and less than 60% by volume.
By mixing Ryukyu limestone with such a volume ratio, Ryukyu limestone functions as an aggregate of the packed bed, and the strength of the packed bed can be ensured.

また、前記充填層では、前記多孔質混合物と前記琉球石灰岩との混合比が、体積比で6:4とされていてもよい。
このような比率で充填層を構成することで、硫黄脱窒細菌が利用する多孔質混合物からの硫黄成分が十分に供給されつつ、栄養源となる琉球石灰岩から溶出するカリウム、鉄、及びリンが十分に供給される。即ち、硫黄成分及び栄養源が最もバランスよく供給されることになり、排水からの脱窒効果を向上することができる。
Moreover, in the said packed bed, the mixing ratio of the said porous mixture and the said Ryukyu limestone may be 6: 4 by volume ratio.
By configuring the packed bed at such a ratio, while the sulfur component from the porous mixture used by the sulfur denitrifying bacterium is sufficiently supplied, potassium, iron, and phosphorus eluted from the Ryukyu limestone as a nutrient source are reduced. Fully supplied. That is, the sulfur component and the nutrient source are supplied in the most balanced manner, and the denitrification effect from the waste water can be improved.

また、請求項4の発明の硝酸性窒素の脱窒処理装置は、カルシウムおよび/またはマグネシウムの炭酸塩並びに硫黄を主成分とする粒状あるいは塊状の多孔質混合物と粒状または塊状の琉球石灰岩とを混合してなる充填層に硫黄脱窒細菌を担持させた脱窒処理槽と、前記脱窒処理槽内の前記硫黄脱窒細菌を担持させた充填層に硝酸性窒素を含む排水を通水する通水設備と、を具備することを特徴とする。   According to a fourth aspect of the present invention, there is provided a denitrification apparatus for nitrate nitrogen, which comprises mixing a granular or massive porous mixture mainly composed of calcium and / or magnesium carbonate and sulfur with granular or massive Ryukyu limestone. A denitrification treatment tank in which sulfur-denitrifying bacteria are supported in the packed bed, and a flow path for passing drainage containing nitrate nitrogen to the packed bed in which the sulfur-denitrifying bacteria are supported in the denitrification treatment tank. And a water facility.

これにより、請求項1の発明である硝酸性窒素の脱窒処理方法と同様に、琉球石灰岩から微量に溶出するカリウム、鉄、及びリンが硫黄脱窒細菌の微量栄養源として作用する。   Thereby, like the nitrate nitrogen denitrification method according to the first aspect of the invention, potassium, iron, and phosphorus eluted in a trace amount from Ryukyu limestone act as trace nutrient sources for sulfur denitrifying bacteria.

本発明によれば、カリウム、鉄、及びリンが含まれる岩石である石灰岩に着目し、特に沖縄地方にて脱窒処理を行う場合、沖縄地方に広く分布し、安価に手に入る琉球石灰岩を、硫黄混合物(多孔質混合物)と合わせて使用することにより、琉球石灰岩から微量に溶出するカリウム、鉄、及びリンが硫黄脱窒細菌の栄養源として作用し、別途栄養源としての薬剤を添加することなく、安価に硝酸性窒素の処理が可能となる。
さらに、硫黄脱窒細菌が利用しなかった硫黄成分によって生成される硫化水素ガスの発生を抑制することができる。
また、琉球石灰岩は、強固に固化した性状を持っているため、充填層の骨材として、硫黄混合物が充填物の重量によりつぶれないように機能し、充填層を保護する効果を発揮する。
また、琉球石灰岩から溶出したカルシウムによって充填層内でのpHの低下を抑制でき、硫黄脱窒細菌が生育し易い環境とすることが可能となる。このため、硝酸性窒素の処理効果をさらに向上することができる。
また、硫黄成分及び栄養源が最もバランスよく供給されるように、多孔質混合物と琉球石灰岩との混合比を規定することで、硝酸性窒素の処理の効果をさらに向上することができる。
According to the present invention, focusing on limestone, which is a rock containing potassium, iron, and phosphorus, especially when performing denitrification treatment in the Okinawa region, Ryukyu limestone widely distributed in the Okinawa region and available at low cost. When used in combination with a sulfur mixture (porous mixture), potassium, iron, and phosphorus, which are eluted in a trace amount from Ryukyu limestone, act as nutrient sources for sulfur denitrifying bacteria, and additionally add chemicals as nutrient sources Therefore, it is possible to treat nitrate nitrogen at a low cost.
Furthermore, generation | occurrence | production of the hydrogen sulfide gas produced | generated by the sulfur component which the sulfur denitrifying bacterium did not utilize can be suppressed.
Moreover, since Ryukyu limestone has a solidified property, it functions as an aggregate of the packed bed so that the sulfur mixture is not crushed by the weight of the packed bed, and exhibits the effect of protecting the packed bed.
Moreover, the fall of pH in a packed bed can be suppressed with the calcium eluted from Ryukyu limestone, and it becomes possible to set it as the environment where sulfur denitrifying bacteria grow easily. For this reason, the processing effect of nitrate nitrogen can further be improved.
Moreover, the effect of the treatment of nitrate nitrogen can be further improved by defining the mixing ratio of the porous mixture and Ryukyu limestone so that the sulfur component and the nutrient source are supplied in the most balanced manner.

本発明の実施形態の硝酸性窒素の脱窒処理装置の構成図である。It is a block diagram of the denitrification processing apparatus of nitrate nitrogen of embodiment of this invention. 同処理装置の効果を調べるための実験の結果を示す図である。It is a figure which shows the result of the experiment for investigating the effect of the processing apparatus. 同処理装置の効果を調べるための実験の結果を示す図である。It is a figure which shows the result of the experiment for investigating the effect of the processing apparatus. 同処理装置の効果を調べるための実験の結果(原水及び処理水のpHの経時変化)を示す図である。It is a figure which shows the result (change with time of pH of raw | natural water and treated water) of the experiment for investigating the effect of the processing apparatus. 同処理装置の効果を調べるための実験の結果(処理水中のカルシウムの濃度の経時変化)を示す図である。It is a figure which shows the result (temporal change of the density | concentration of the calcium in a treated water) of the experiment for investigating the effect of the processing apparatus. 同処理装置の効果を調べるための実験の結果(硫化水素発生量の経時変化)を示す図である。It is a figure which shows the result (time-dependent change of the amount of hydrogen sulfide generation | occurrence | production) for investigating the effect of the processing apparatus.

以下、本発明の実施形態を図面に基づいて説明する。
図1は実施形態の硝酸性窒素の脱窒処理装置の構成図である。
この脱窒処理装置は、処理すべき硝酸性窒素を含む排水(原水)11を貯留する原水槽1と、脱窒処理槽3と、原水槽1の排水11を脱窒処理槽3の下端から供給して上端から処理槽4に処理水12を排水させる原水ポンプ2を含む通水設備5と、を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a denitrification apparatus for nitrate nitrogen according to an embodiment.
This denitrification treatment apparatus removes raw water tank 1 for storing waste water (raw water) 11 containing nitrate nitrogen to be treated, denitrification treatment tank 3, and waste water 11 of raw water tank 1 from the lower end of denitrification treatment tank 3. And a water flow facility 5 including a raw water pump 2 that supplies and drains the treated water 12 from the upper end to the treatment tank 4.

脱窒処理槽3の内部には、カルシウムおよび/またはマグネシウムの炭酸塩並びに硫黄を主成分とする粒状あるいは塊状の多孔質混合物と、粒状または塊状の琉球石灰岩とを混合してなる充填層10が形成されており、この充填層10に硫黄脱窒細菌を担持させてある。従って、原水ポンプ2から供給された排水は、脱窒処理槽3の下端から上端に流れる間に、硫黄脱窒細菌が担持された充填層10を通過し、この間に硝酸性窒素の脱窒が行われる。   Inside the denitrification treatment tank 3, there is a packed bed 10 formed by mixing a granular or massive porous mixture mainly composed of calcium and / or magnesium carbonate and sulfur and granular or massive Ryukyu limestone. The packed bed 10 is loaded with sulfur denitrifying bacteria. Accordingly, the wastewater supplied from the raw water pump 2 passes through the packed bed 10 on which sulfur denitrifying bacteria are supported while flowing from the lower end to the upper end of the denitrification treatment tank 3, during which nitrate nitrogen is denitrified. Done.

ここで充填層10に用いられる多孔質状の硫黄混合物と琉球石灰岩は、それぞれ同条件の粒状あるいは塊状に砕かれた上でむらなく混合されている。琉球石灰岩の成分を表1に示す。琉球石灰岩は、琉球列島と台湾に発達する第四紀更新世の石灰岩の総称であり、サンゴ礁のはたらきで形成されたものである。琉球石灰岩には、硫黄脱窒細菌の微量栄養源となるカリウム、鉄、及びリンが含まれる。なお、表1では、鉄の成分が表示していないが、実際には鉄の成分が微量含まれる。   Here, the porous sulfur mixture and the Ryukyu limestone used for the packed bed 10 are uniformly mixed after being crushed into a granular shape or a lump shape under the same conditions. Table 1 shows the components of Ryukyu limestone. Ryukyu limestone is a generic name for Quaternary Pleistocene limestone that develops in the Ryukyu Islands and Taiwan, and is formed by the function of coral reefs. Ryukyu limestone contains potassium, iron, and phosphorus, which are micronutrient sources of sulfur denitrifying bacteria. In Table 1, the iron component is not displayed, but in actuality, a small amount of the iron component is included.

Figure 0006274426
Figure 0006274426

脱窒処理槽3を作る手順としては、最初に、硫黄混合物と琉球石灰岩をそれぞれ同条件の粒状あるいは塊状に砕いてむらなく混合して、脱窒処理槽3内に充填する。その後、脱窒処理槽3内に硫黄脱窒細菌を含有する活性汚泥液を入れて、硫黄脱窒細菌を担持した充填層10を形成する。そして、硫黄脱窒細菌の担持が終了した後に排水(原水)11を通水し処理を開始する。排水(原水)11の硝酸性窒素濃度は10mg/L程度であり、この排水11を充填層10を通過する際に2〜10時間程度滞留させる。そうすると、処理水12中の硝酸性窒素の濃度が低下する。   As a procedure for making the denitrification treatment tank 3, first, the sulfur mixture and the Ryukyu limestone are crushed into granular or lump conditions of the same condition and mixed uniformly, and filled in the denitrification treatment tank 3. Thereafter, an activated sludge solution containing sulfur denitrifying bacteria is placed in the denitrification treatment tank 3 to form a packed bed 10 carrying the sulfur denitrifying bacteria. And after carrying | supporting of sulfur denitrifying bacteria is complete | finished, the waste_water | drain (raw water) 11 is poured and a process is started. The concentration of nitrate nitrogen in the waste water (raw water) 11 is about 10 mg / L, and the waste water 11 is retained for about 2 to 10 hours when passing through the packed bed 10. If it does so, the density | concentration of the nitrate nitrogen in the treated water 12 will fall.

本実施形態では、カリウム、鉄、及びリンが含まれる岩石である石灰岩に着目し、特に沖縄地方にて当該処理を行う場合に沖縄地方に広く分布し、安価に手に入る琉球石灰岩を硫黄混合物と合わせて使用している。こうすることにより、琉球石灰岩から微量に溶出するカリウム、鉄、及びリンが硫黄脱窒細菌の栄養源として作用し、別途栄養源としての薬剤を添加することなく、安価に硝酸性窒素の処理が可能となる。   In this embodiment, paying attention to limestone, which is a rock containing potassium, iron, and phosphorus, especially when performing the treatment in the Okinawa region, Ryukyu limestone widely distributed in the Okinawa region and available at low cost is a sulfur mixture. And used together. By doing this, potassium, iron, and phosphorus eluted in a trace amount from Ryukyu limestone act as nutrient sources for sulfur denitrifying bacteria, and nitrate nitrogen can be treated at low cost without adding any additional chemicals as nutrient sources. It becomes possible.

ここで、多孔質混合物から溶出した硫黄成分のうち硫黄脱窒細菌によって利用されなかった分が充填層10内で、嫌気条件下で滞留することで、硫化水素ガスが生成してしまうことがある。
この点、本実施形態では琉球石灰岩から鉄が微量に溶出し、この鉄が硫黄成分と結合することで、硫化水素ガスの発生を抑制することができる。
Here, among the sulfur components eluted from the porous mixture, the portion not used by the sulfur denitrifying bacteria stays in the packed bed 10 under anaerobic conditions, and hydrogen sulfide gas may be generated. .
In this respect, in the present embodiment, a small amount of iron is eluted from the Ryukyu limestone, and this iron is combined with the sulfur component, so that generation of hydrogen sulfide gas can be suppressed.

また、硫黄脱窒細菌によって利用されなかった硫黄成分が酸化して硫酸イオンが生じ、充填層10内が酸性環境となってしまうことがある。
この点、本発明では、琉球石灰岩からカルシウムが溶出する。そして、このカルシウムが硫酸イオンと結合することで中和され、充填層内を中性環境に近づけることができる。従って、充填層内を硫黄脱窒細菌が生育し易い環境とすることが可能となるため、硝酸性窒素の処理の効果をさらに向上することができる。
Moreover, the sulfur component which was not utilized by sulfur denitrifying bacteria may be oxidized to produce sulfate ions, and the inside of the packed bed 10 may become an acidic environment.
In this regard, in the present invention, calcium is eluted from Ryukyu limestone. And this calcium is neutralized by couple | bonding with a sulfate ion, The inside of a packed bed can be brought close to a neutral environment. Therefore, since it becomes possible to make the inside of a packed bed easy to grow sulfur denitrifying bacteria, the effect of the treatment of nitrate nitrogen can be further improved.

また、琉球石灰岩は強固に固化した性状を持っているため、充填層10の骨材として、充填層の重量によって硫黄混合物がつぶれないように機能し、充填層10を保護する効果を発揮する。
このため、琉球石灰岩は、充填層10の40%(体積比)以上とするのが望ましい。さらに、硫黄脱窒細菌の脱窒作用を保つため充填層10の60%(体積比)を超えないようにする。
特に、後述する実験の結果に示すように、充填層10の40%を琉球石灰岩とし、充填層10の60%を多孔質混合物とすること、即ち、多孔質混合物と琉球石灰岩との混合比を体積比で6:4とすることがより好ましい。この場合、硫黄脱窒細菌が利用する多孔質混合物からの硫黄成分が十分に供給されつつ、栄養源となる琉球石灰岩から溶出するカリウム、鉄、及びリンが十分に供給される。即ち、硫黄成分及び栄養源が最もバランスよく供給されることになり、排水11からの脱窒効果を向上することができる。
Further, since Ryukyu limestone has a solidified property, it functions as an aggregate of the packed bed 10 so that the sulfur mixture is not crushed by the weight of the packed bed, and exhibits the effect of protecting the packed bed 10.
For this reason, it is desirable for Ryukyu limestone to be 40% (volume ratio) or more of the packed bed 10. Further, in order to keep the denitrification action of the sulfur denitrifying bacteria, it should not exceed 60% (volume ratio) of the packed bed 10.
In particular, as shown in the results of the experiment described later, 40% of the packed bed 10 is Ryukyu limestone, and 60% of the packed bed 10 is a porous mixture, that is, the mixing ratio of the porous mixture and Ryukyu limestone is More preferably, the volume ratio is 6: 4. In this case, while the sulfur component from the porous mixture used by the sulfur denitrifying bacteria is sufficiently supplied, potassium, iron, and phosphorus eluted from the Ryukyu limestone as a nutrient source are sufficiently supplied. That is, the sulfur component and the nutrient source are supplied in the most balanced manner, and the denitrification effect from the waste water 11 can be improved.

次に、硫黄混合物と琉球石灰岩を混合した充填層を用いて脱窒処理した場合と、硫黄混合物と砕石を混合した充填層を用いて脱窒処理した場合と、の脱窒性能の違いについて調べた実験の内容を述べる。   Next, we investigated the difference in denitrification performance between the case where denitrification treatment was performed using a packed bed mixed with sulfur mixture and Ryukyu limestone, and the case where denitrification treatment was performed using packed bed mixed with sulfur mixture and crushed stone. The contents of the experiment were described.

〔実験1〕
(実験条件)
硫黄混合物としてバチルロック(新日鉄住金エンジニアリング株式会社販売の「商品名」 S40重量%〜50重量%、CaCO350重量%〜60重量%)を使用した。琉球石灰岩として、前記表1の成分のものを使用した。砕石として、比重2.5以上、吸水量3%以下、安定性12%以下、すりへり減量40%以下のものを使用した。カラム(脱窒処理槽)には、バチルロックと充填層支持材(琉球石灰岩または砕石)の混合した充填層が形成されている。バチルロックと充填層支持材はよく混合した後に充填されている。バチルロック及び充填層支持材は、粒径を調整したバチルロック及び充填支持材を700mLずつよく混合した上でカラムに充填した。充填層には、硫黄脱窒細菌が担持されている。カラムの直径は50mm、高さは1000mmであり、充填層の高さは700mmである。
[Experiment 1]
(Experimental conditions)
As a sulfur mixture, Bacillok ("trade name" sold by Nippon Steel & Sumikin Engineering Co., Ltd. S 40 wt% to 50 wt%, CaCO 350 wt% to 60 wt%) was used. As the Ryukyu limestone, those of the components in Table 1 were used. As the crushed stone, one having a specific gravity of 2.5 or more, a water absorption of 3% or less, a stability of 12% or less, and a wear loss of 40% or less was used. In the column (denitrification treatment tank), a packed bed in which batyl rock and packed bed support material (Ryukyu limestone or crushed stone) are mixed is formed. The batyl lock and the packed bed support are filled after being well mixed. The batyllock and packed bed support material were packed in a column after thoroughly mixing 700 mL each of the batyllock and packed support material with adjusted particle size. The packed bed carries sulfur denitrifying bacteria. The column diameter is 50 mm, the height is 1000 mm, and the packed bed height is 700 mm.

具体的には、次のように2種類の充填層を準備した。
条件A:バチルロック700mL(840g)+琉球石灰岩700mL(790g)
条件B:バチルロック700mL(840g)+砕石 700mL(1110g)
Specifically, two types of packed beds were prepared as follows.
Condition A: 700 mL (840 g) of baty rock + 700 mL (790 g) of Ryukyu limestone
Condition B: 700 mL (840 g) of Bacilloc + 700 mL (1110 g) of crushed stone

使用したバチルロック、琉球石灰岩、砕石の粒径、見かけ比重、空隙率、充填率、強度は、表2の通りである。   Table 2 shows the particle size, apparent specific gravity, porosity, filling rate, and strength of the used baty rock, Ryukyu limestone, and crushed stone.

Figure 0006274426
Figure 0006274426

表2に示すように、バチルロックと琉球石灰岩または砕石のカラムへの充填量は同量とした。また、それらは粒径が5mm〜20mmのものを使用した。琉球石灰岩は、それ自体空隙率が60%程度の多くの気孔を含むポーラス構造である。
(実験方法)
原水の硝酸性窒素は、硝酸ナトリウム(NaNO3)により、窒素濃度として15mg/Lに調整した。カラム内の通水速度LV(線速度)は、0.03m/hr〜0.13m/hrとした。
As shown in Table 2, the packing amount of the column of batyl rock and Ryukyu limestone or crushed stone was the same. Further, those having a particle diameter of 5 mm to 20 mm were used. Ryukyu limestone itself has a porous structure including many pores with a porosity of about 60%.
(experimental method)
The nitrate nitrogen of the raw water was adjusted to 15 mg / L as the nitrogen concentration with sodium nitrate (NaNO 3). The water flow rate LV (linear velocity) in the column was 0.03 m / hr to 0.13 m / hr.

実験は、平成24年6月27日〜9月28日までの期間行った。
各カラムの通水速度LVにおける処理水のNO3−N及びNO2−N+NO3−Nの平均値を表3に示す。また、処理水におけるNO3−N濃度の経時変化を図2に、NO2−N+NO3−N濃度の経緯変化を図3に示す。
The experiment was conducted from June 27, 2012 to September 28, 2012.
Table 3 shows the average values of NO3-N and NO2-N + NO3-N of the treated water at the water flow rate LV of each column. Further, FIG. 2 shows the change with time of the NO3-N concentration in the treated water, and FIG. 3 shows the change with time of the NO2-N + NO3-N concentration.

Figure 0006274426
Figure 0006274426

これらのデータは、前記期間中に採取した表4、表5、表6のデータをまとめたものである。   These data summarize the data of Table 4, Table 5, and Table 6 collected during the period.

Figure 0006274426
Figure 0006274426

Figure 0006274426
Figure 0006274426

Figure 0006274426
Figure 0006274426

表1、図2、図3の結果から、「バチルロック+琉球石灰岩」を充填した条件Aと、「バチルロック+砕石」を充填した条件Bにおいて、カラム通水速度LVが0.03m/hr〜0.07m/hrのときは、A、Bとも処理水のNO3−N濃度は0.1mg/L以下であった。   From the results of Table 1, FIG. 2 and FIG. 3, the column water flow rate LV is 0.03 m / hr to 0 in the condition A filled with “Batil rock + Ryukyu limestone” and the condition B filled with “Batil rock + crushed stone”. At 0.07 m / hr, the NO3-N concentration of the treated water for both A and B was 0.1 mg / L or less.

また、カラム通水速度LVが0.09m/hr〜0.13m/hrのときは、A、Bとも処理水のNO3−N濃度が若干上昇する傾向があった。   Further, when the column water flow rate LV was 0.09 m / hr to 0.13 m / hr, the NO3-N concentration of the treated water tended to slightly increase in both A and B.

条件A、BのNO3−N濃度を比較すると、
(1)LV0.09m/hrにおいて、Aが平均値として0.14mg/L低くなっている。
(2)LV0.11m/hrにおいて、Aが平均値として1.15mg/L低くなっている。
(3)LV0.13m/hrにおいて、Aが平均値として1.11mg/L低くなっている。
Comparing the NO3-N concentrations in conditions A and B,
(1) At LV 0.09 m / hr, A is 0.14 mg / L lower as an average value.
(2) At LV 0.11 m / hr, A is 1.15 mg / L lower as an average value.
(3) At LV 0.13 m / hr, A is 1.11 mg / L lower as an average value.

また、処理水のNO3−N濃度が上昇したLVが0.09m/hr〜0.13m/hrの条件において、A、Bとも、NO2−Nが処理水中に検出されている。   Further, NO2-N is detected in the treated water for both A and B under the condition that the LV where the NO3-N concentration of the treated water is increased is 0.09 m / hr to 0.13 m / hr.

LVが0.09m/hr〜0.13m/hrの条件において、NO2−N+NO3−N濃度を比較すると、Aの条件における処理水中のNO2−N+NO3−N濃度は、Bの条件における処理水中のNO2−N+NO3−N濃度に比較し、
(1)LVが0.09m/hrのとき、0.11mg/L低くなり、
(2)LVが0.11m/hrのとき、1.17mg/L低くなり、
(3)LVが0.13m/hrのとき、0.56mg/L低くなっている。
When comparing the concentration of NO2-N + NO3-N under the condition of LV of 0.09 m / hr to 0.13 m / hr, the concentration of NO2-N + NO3-N in the treated water under the condition of A is NO2 in the treated water under the condition of B. -N + NO3-N concentration,
(1) When LV is 0.09 m / hr, it is 0.11 mg / L lower,
(2) When LV is 0.11 m / hr, it is 1.17 mg / L lower,
(3) When LV is 0.13 m / hr, it is 0.56 mg / L lower.

以上の結果より、A(本発明の実施形態の「バチルロック+琉球石灰岩」の充填層)は、B(比較例の「バチルロック+砕石」の充填層)よりNO3−N脱窒性能の効果があるとみなせる。   From the above results, A (packed bed of “Batile Rock + Ryukyu limestone” in the embodiment of the present invention) is more effective in NO3-N denitrification performance than B (packed bed of “Batile Rock + crushed stone” in the comparative example). Can be considered.

ここで、表4から表6に示すデータに加えて、さらに長期間にわたってのデータを基にデータの再整理を行って、条件Aと条件Bとにおける処理水のpHの経時変化を図4及び表7に示した。   Here, in addition to the data shown in Tables 4 to 6, the data was rearranged based on data over a longer period of time, and the changes over time in the pH of the treated water in conditions A and B are shown in FIG. It is shown in Table 7.

Figure 0006274426
図4及び表7に示すように、琉球石灰岩を用いていない条件Bでは、処理水のpHの平均値が7程度であり、琉球石灰岩を用いた条件Aでは、pHの平均値が7.2程度となっている。即ち、条件Aの方がpHの低下を抑制できていることが確認できた。
Figure 0006274426
As shown in FIG. 4 and Table 7, in condition B in which Ryukyu limestone is not used, the average value of the pH of the treated water is about 7, and in condition A using Ryukyu limestone, the average value of pH is 7.2. It is about. That is, it was confirmed that the condition A was able to suppress the decrease in pH.

ここで、図5に示すように、琉球石灰岩を用いた条件Aでは、処理水中のカルシウム濃度が条件Bに比べて高い値で維持されていることが確認できた。このような結果から、溶出したカルシウムが多ければ多いほどpHの低下を抑制できると言える。   Here, as shown in FIG. 5, it was confirmed that, in condition A using Ryukyu limestone, the calcium concentration in the treated water was maintained at a higher value than in condition B. From these results, it can be said that the more the calcium eluted, the more the pH can be suppressed.

処理水中では硫黄脱窒細菌によって利用されなかった硫黄成分が酸化して硫酸イオンが生じるが、琉球石灰岩には多くのカルシウムが含有されており、より多くのカルシウムが処理水中に溶出することになる。よって、このカルシウムと硫酸イオンとが結合することで中和が行われる。この結果、充填層内でpHの低下を抑制することができ、細菌の生育環境を良好なものとしていると考えられる。   Sulfur components not used by sulfur denitrifying bacteria are oxidized in the treated water to produce sulfate ions, but Ryukyu limestone contains a lot of calcium, and more calcium will be eluted in the treated water. . Therefore, neutralization is performed by combining calcium and sulfate ions. As a result, it is considered that the decrease in pH can be suppressed in the packed bed, and the bacterial growth environment is made favorable.

〔実験2〕
ここで、上記の条件A(「バチルロック+琉球石灰岩」の充填層)と条件B(「バチルロック+砕石」の充填層)とで、脱窒処理後の処理水から発生する硫化水素(H2S)の発生量を比較する実験を行った。実験では、脱窒処理後の処理水を密閉容器に所定量採取して十分に撹拌した後に、密閉容器の上部に溜まった気相の硫化水素濃度を検知管によって測定した。
[Experiment 2]
Here, the hydrogen sulfide (H2S) generated from the treated water after the denitrification treatment in the above condition A (packed bed of “Batil Rock + Ryukyu limestone”) and Condition B (packed bed of “Batil Rock + crushed stone”) An experiment was conducted to compare the amount generated. In the experiment, after a predetermined amount of treated water after denitrification treatment was collected in a sealed container and sufficiently stirred, the concentration of hydrogen sulfide in the gas phase accumulated in the upper part of the sealed container was measured with a detector tube.

この結果、図6の破線(条件Aの結果を線形近似したもの)と、図6の実線(条件Bの結果を線形近似したもの)とを比較すると、処理前の原水の水理学的滞留時間(以下、HRTとする)、即ち、脱窒処理の時間が長くなればなるほど、条件Aで処理した後の処理水、即ち、琉球石灰岩を用いて処理した後の処理水の方が、硫化水素濃度が低くなっていることが確認できた。   As a result, when the broken line in FIG. 6 (linear approximation of the result of condition A) and the solid line of FIG. 6 (linear approximation of the result of condition B) are compared, the hydraulic retention time of the raw water before treatment is compared. (Hereinafter, referred to as HRT), that is, the longer the denitrification time, the more the treated water after treatment under the condition A, that is, the treated water treated with Ryukyu limestone is hydrogen sulfide. It was confirmed that the concentration was low.

このような実験結果から、琉球石灰岩を用いることで硫化水素の生成量を抑制できていると言える。これは、琉球石灰岩に含有される鉄等の成分が、バチルロックからの硫黄成分と結合して硫化鉄等が生成されることによって、硫化水素の生成を抑制しているものと考えられるためである。   From these experimental results, it can be said that the amount of hydrogen sulfide produced can be suppressed by using Ryukyu limestone. This is because components such as iron contained in Ryukyu limestone are combined with sulfur components from batyl rocks to generate iron sulfide and the like, thereby suppressing the generation of hydrogen sulfide. .

〔実験3〕
次に、図1に示す脱窒処理装置と同様の試験装置を用いて、硫黄化合物(例えば、上述したバチルロック)と琉球石灰岩との混合比が処理水の水質に及ぼす影響を評価する実験を行った。
(実験条件)
原水には、窒素(N)の濃度が下記の(a)〜(c)の3パターンである硝酸ナトリウム(NaNO3)の人工原水を用いた。
(a)16.70mg/L
(b)21.98mg/L
(c)32.77mg/L
さらに、脱窒処理層には、硫黄化合物と琉球石灰岩との混合比が、体積比で下記の(1)〜(5)の5パターンとなるように、これら硫黄化合物及び琉球石灰岩の充填層を形成した。
(1)3:7
(2)4:6
(3)5:5
(4)6:4
(5)7:3
[Experiment 3]
Next, using a test device similar to the denitrification treatment device shown in FIG. 1, an experiment was conducted to evaluate the influence of the mixing ratio of sulfur compounds (for example, the above-mentioned basil rock) and Ryukyu limestone on the quality of treated water. It was.
(Experimental conditions)
As the raw water, artificial raw water of sodium nitrate (NaNO 3) having a nitrogen (N) concentration of the following three patterns (a) to (c) was used.
(A) 16.70 mg / L
(B) 21.98 mg / L
(C) 32.77 mg / L
Furthermore, in the denitrification treatment layer, a packed layer of these sulfur compounds and Ryukyu limestone is provided so that the mixing ratio of the sulfur compound and Ryukyu limestone becomes the following five patterns (1) to (5) in volume ratio. Formed.
(1) 3: 7
(2) 4: 6
(3) 5: 5
(4) 6: 4
(5) 7: 3

(実験方法)
上記の各条件で脱窒処理層に原水を導入し、HRTが4時間となるように原水を流通させて、処理水のNO2−N、NO3−Nの濃度、及び、Nの除去率を測定した。ここで、Nの除去率とは、((原水のNO3−N濃度)−(処理水のNO2−N+NO3−N濃度))/(原水のNO3−N濃度)×100によって定義される値である。そして実験結果は、表8に示す通りとなった。

Figure 0006274426
(experimental method)
Under the above conditions, raw water is introduced into the denitrification treatment layer, the raw water is circulated so that the HRT is 4 hours, and the concentration of NO2-N and NO3-N and the removal rate of N are measured. did. Here, the removal rate of N is a value defined by ((NO3-N concentration of raw water) − (NO2-N + NO3-N concentration of treated water)) / (NO3-N concentration of raw water) × 100. . The experimental results were as shown in Table 8.
Figure 0006274426

即ち、表8に示すように、(a)〜(c)のいずれの原水を用いた場合でも、全般的に硫黄化合物の混合比が高くなるにつれてNの除去率が高くなる傾向にある。そして、硫黄化合物の混合比が少なくとも半数である場合、即ち、混合比が5:5である場合には、Nの除去率が約90%となり、比較的高い除去率を得ることが可能となる。
さらに、硫黄化合物と琉球石灰岩との混合比が6:4である場合には、最もNの除去率が高くなっていることが確認できた。
That is, as shown in Table 8, even when any of the raw waters (a) to (c) is used, the removal rate of N tends to increase as the mixing ratio of sulfur compounds increases. When the mixing ratio of the sulfur compounds is at least half, that is, when the mixing ratio is 5: 5, the N removal rate is about 90%, and a relatively high removal rate can be obtained. .
Furthermore, when the mixing ratio of the sulfur compound and Ryukyu limestone was 6: 4, it was confirmed that the removal rate of N was the highest.

このような結果から、硫黄化合物と琉球石灰岩との混合比を6:4とすることで、硫黄脱窒細菌が利用する硫黄成分が脱窒処理層内に十分に供給されつつ、栄養源となる琉球石灰岩から溶出するカリウム、鉄、及びリンが十分に供給されていると考えられる。即ち、混合比を6:4の場合には、硫黄成分及び栄養源が最もバランスよく供給されることになり、排水からの脱窒効果を向上することができていると言える。   From these results, the sulfur component used by the sulfur denitrifying bacteria is sufficiently supplied into the denitrification treatment layer and becomes a nutrient source by setting the mixing ratio of the sulfur compound and Ryukyu limestone to 6: 4. It is thought that potassium, iron, and phosphorus eluted from Ryukyu limestone are sufficiently supplied. That is, when the mixing ratio is 6: 4, the sulfur component and the nutrient source are supplied in the most balanced manner, and it can be said that the denitrification effect from the waste water can be improved.

なお、前記実施例では、硫黄混合物としてカルシウムの炭酸塩と硫黄とを主成分とするバチルロックを用いたが、これに限られることなく、マグネシウムの炭酸塩と硫黄とを主成分とするものを用いてもよく、また、カルシウムおよびマグネシウムの炭酸塩と硫黄とを主成分とするものを用いてもよい。   In the above embodiment, the sulfur mixture used was bacillock mainly composed of calcium carbonate and sulfur. However, the present invention is not limited to this, and the one composed mainly of magnesium carbonate and sulfur is used. Alternatively, a material mainly composed of calcium and magnesium carbonate and sulfur may be used.

3 脱窒処理槽 5 通水設備 10 充填層(硫黄混合物+琉球石灰岩+硫黄脱窒細菌) 11 排水(原水) 12 処理水   3 Denitrification treatment tank 5 Water flow equipment 10 Packed bed (sulfur mixture + Ryukyu limestone + sulfur denitrification bacteria) 11 Drainage (raw water) 12 Treated water

Claims (5)

カルシウムおよび/またはマグネシウムの炭酸塩並びに硫黄を主成分とする粒状あるいは塊状の多孔質混合物と粒状または塊状の琉球石灰岩とを混合してなる充填層に硫黄脱窒細菌を担持させ、前記硫黄脱窒細菌を担持させた充填層に硝酸性窒素を含む排水を通水することで前記排水に含まれる硝酸性窒素を脱窒することを特徴とする硝酸性窒素の脱窒処理方法。   A sulfur-denitrifying bacterium is supported on a packed bed formed by mixing a granular or massive porous mixture mainly composed of calcium and / or magnesium carbonate and sulfur and granular or massive Ryukyu limestone, and said sulfur denitrifying A method for denitrifying nitrate nitrogen, comprising denitrifying nitrate nitrogen contained in the waste water by passing waste water containing nitrate nitrogen through a packed bed carrying bacteria. 前記琉球石灰岩は、粒径が5mm〜20mmの範囲に設定され、かつポーラス構造とされていることを特徴とする請求項1に記載の硝酸性窒素の脱窒処理方法。   The denitrification method of nitrate nitrogen according to claim 1, wherein the Ryukyu limestone has a particle size set in a range of 5 mm to 20 mm and has a porous structure. 前記充填層では、前記琉球石灰岩が体積比で40%以上、60%未満である請求項1又は2に記載の硝酸性窒素の脱窒処理方法。   3. The denitrification method for nitrate nitrogen according to claim 1, wherein in the packed bed, the Ryukyu limestone is 40% or more and less than 60% in a volume ratio. 前記充填層では、前記多孔質混合物と前記琉球石灰岩との混合比が、体積比で6:4とされていることを特徴とする請求項3に記載の硝酸性窒素の脱窒処理方法。   4. The denitrification method for nitrate nitrogen according to claim 3, wherein a mixing ratio of the porous mixture and the Ryukyu limestone is 6: 4 in the packed bed. カルシウムおよび/またはマグネシウムの炭酸塩並びに硫黄を主成分とする粒状あるいは塊状の多孔質混合物と粒状または塊状の琉球石灰岩とを混合してなる充填層に硫黄脱窒細菌を担持させた脱窒処理槽と、前記脱窒処理槽内の前記硫黄脱窒細菌を担持させた充填層に硝酸性窒素を含む排水を通水する通水設備と、を具備することを特徴とする硝酸性窒素の脱窒処理装置。   Denitrification treatment tank in which sulfur denitrifying bacteria are supported in a packed bed formed by mixing a granular or massive porous mixture mainly composed of calcium and / or magnesium carbonate and sulfur and granular or massive Ryukyu limestone And denitrification of nitrate nitrogen, wherein the denitrification treatment tank has a water flow facility for passing waste water containing nitrate nitrogen in a packed bed carrying the sulfur denitrifying bacteria. Processing equipment.
JP2014076534A 2013-04-15 2014-04-02 Method and apparatus for denitrification of nitrate nitrogen Active JP6274426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014076534A JP6274426B2 (en) 2013-04-15 2014-04-02 Method and apparatus for denitrification of nitrate nitrogen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013085190 2013-04-15
JP2013085190 2013-04-15
JP2014076534A JP6274426B2 (en) 2013-04-15 2014-04-02 Method and apparatus for denitrification of nitrate nitrogen

Publications (2)

Publication Number Publication Date
JP2014223612A JP2014223612A (en) 2014-12-04
JP6274426B2 true JP6274426B2 (en) 2018-02-07

Family

ID=52122752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076534A Active JP6274426B2 (en) 2013-04-15 2014-04-02 Method and apparatus for denitrification of nitrate nitrogen

Country Status (1)

Country Link
JP (1) JP6274426B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6890960B2 (en) * 2016-12-08 2021-06-18 太平洋セメント株式会社 Denitrification reaction accelerator composition
CN106745718A (en) * 2016-12-14 2017-05-31 云南大学 The drop of effectively removal nitrate nitrogen filters technology and its device under a kind of nitrogen low-carbon (LC) environment high
CN109721154A (en) * 2019-03-06 2019-05-07 苏州方舟环保科技有限公司 A kind of device of sulphur iron coupling technique removal nitrate nitrogen
CN114620832B (en) * 2022-04-15 2023-05-02 合肥工业大学 Sulfur-based autotrophic microorganism denitrification material and preparation and application methods thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328957A (en) * 1976-08-30 1978-03-17 Ohira Tsunejirou Waste water purifying method
JP4195754B2 (en) * 1999-05-06 2008-12-10 寛幸 仲宗根 Bath water purification device
JP4269086B2 (en) * 1999-10-01 2009-05-27 新日鐵化学株式会社 Nitrate nitrogen denitrification composition and method for producing the same
JP2001173074A (en) * 1999-12-16 2001-06-26 Ryugo Yamamori Surface water cleaning apparatus
JP2004113953A (en) * 2002-09-26 2004-04-15 Ikeda Toyoji Organic matter treatment apparatus
JP2004298763A (en) * 2003-03-31 2004-10-28 Nippon Steel Chem Co Ltd Method and apparatus for removing nitrate nitrogen
JP4368857B2 (en) * 2006-01-23 2009-11-18 オーループ株式会社 Wastewater treatment system and toilet device

Also Published As

Publication number Publication date
JP2014223612A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
Batool et al. Removal of toxic metals from wastewater in constructed wetlands as a green technology; catalyst role of substrates and chelators
Kallo Applications of natural zeolites in water and wastewater treatment
Zamparas et al. Restoration of eutrophic freshwater by managing internal nutrient loads. A review
Mthembu et al. Constructed wetlands: A future alternative wastewater treatment technology
CN102815794B (en) Composite bio-energizer used for in-situ ecological remediation of polluted river sediment
JP6274426B2 (en) Method and apparatus for denitrification of nitrate nitrogen
Sengupta et al. Investigation of solid‐phase buffers for sulfur‐oxidizing autotrophic denitrification
KR101009186B1 (en) High efficiency vertical flow constructed wetland using the partial nitrification and anammox process
Kamilya et al. Nutrient pollution and its remediation using constructed wetlands: Insights into removal and recovery mechanisms, modifications and sustainable aspects
Kaleta et al. The use of activated carbons for removing organic matter from groundwater
Salameh et al. Eutrophication processes in arid climates
WO2012040943A1 (en) Method and apparatus for synchronously removing heavy metal and nitrate in drinking water
Kinsley et al. Nitrogen dynamics in a constructed wetland system treating landfill leachate
Cheikh et al. Denitrification of water in packed beds using bacterial biomass immobilized on waste plastics as supports
CN105102379A (en) Biological treatment method and device for organic wastewater
JP2012223733A (en) Method for improving ambient water quality
Lee et al. Effects of FeCl3 addition on the operation of a staged anaerobic fluidized membrane bioreactor (SAF-MBR)
JP2009142783A (en) Method and material for modifying bottom mud in closed water area or tidal flat
CN110734202A (en) river channel black and odorous bottom mud repairing and utilizing method
Edgar et al. Removal of phosphate and nitrate from impacted waters via slag-driven precipitation and microbial transformation
SUZUKI et al. Removal of dissolved organic matter and disinfection by-products formation potential in the upper layer during soil aquifer treatment
Saeedi et al. Denitrification of drinking water using a hybrid heterotrophic/autotrophic/BAC bioreactor
JPH09206800A (en) Treatment of water-area bottom mud
Kumar et al. Upper and lower concentration thresholds for bulk organic substrates in bioremediation of acid mine drainage
Tran et al. Autoclaved aerated concrete grains as alternative absorbent and filter media for phosphorus recovery from municipal wastewater: A case study in Hanoi, Vietnam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171226

R150 Certificate of patent or registration of utility model

Ref document number: 6274426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250