JP2005007234A - Water purification measure - Google Patents

Water purification measure Download PDF

Info

Publication number
JP2005007234A
JP2005007234A JP2003171957A JP2003171957A JP2005007234A JP 2005007234 A JP2005007234 A JP 2005007234A JP 2003171957 A JP2003171957 A JP 2003171957A JP 2003171957 A JP2003171957 A JP 2003171957A JP 2005007234 A JP2005007234 A JP 2005007234A
Authority
JP
Japan
Prior art keywords
water
sulfur
water purification
purification
nitrate nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003171957A
Other languages
Japanese (ja)
Other versions
JP4517593B2 (en
Inventor
Hideo Sugimoto
英夫 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2003171957A priority Critical patent/JP4517593B2/en
Publication of JP2005007234A publication Critical patent/JP2005007234A/en
Application granted granted Critical
Publication of JP4517593B2 publication Critical patent/JP4517593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently remove nitrate nitrogen contained in ground water at a low cost. <P>SOLUTION: The subject purification measure 1 for a water source has a hollow space 2 at the inside by forming a water purification material so as to be a hollow cylindrical shape with a bottom. The purification measure 1 for the water source is produced with a water purification material having denitrification action and water permeability. Specifically, it can be produced by a method wherein lime, sulfur, and sulfur oxidizing bacteria are mixed, or a sludge solidified body in which cement-containing alkaline sludge is solidified by the solidification action of the cement, sulfur and sulfur oxidizing bacteria are mixed, or alkaline sludge containing cement being a hydraulic material, sulfur and sulfur oxidizing bacterial are mixed before the solidification of the alkaline sludge. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、主として硝酸態窒素で汚染された地下水を浄化する水質浄化枡に関する。
【0002】
【従来の技術】
最近、地下水に含まれる有害汚染物質として硝酸態窒素が問題となっている。かかる問題は、湖沼、河川等の閉鎖性水域において窒素やリンによる水質の富栄養化が進行し、その結果、硝酸態窒素という形で地下水に流入することが原因であると考えられている。
【0003】
硝酸態窒素は、農薬、除草剤、肥料、糞尿などに含まれる窒素成分が微生物により分解を受けた結果生じてくる物質であるが、この硝酸性窒素が体内に入ると、還元されて亜硝酸性窒素に変化し、発ガン性物質であるニトロソアミンという物質を生成したり、血液中のヘモグロビンの機能を低下させて酸素欠乏を引き起こしてチアノーゼ症状に陥る、いわゆるメトヘモグロビン血症を引き起こしたりすることが指摘されている。
【0004】
そのため、地下水に含まれる硝酸態窒素をあらかじめ健康被害を生じない濃度以下となるように除去しなければならない。
【0005】
【特許文献1】
特開2000−232876号公報
【0006】
【特許文献2】
特開平10−113693号公報
【0007】
【特許文献3】
特開平10−286590号公報
【0008】
【発明が解決しようとする課題】
水に含まれる硝酸態窒素を除去する方法として、該硝酸態窒素をプラントで還元して窒素ガスに変える試みがなされており、既に実用化されているものもある。
【0009】
ここで、プラントで実用化されている手法としては、スリースラッジ法、デュアルスラッジ法、シングルスラッジ法などがあるが、いずれも、中間工程において硝酸態窒素を還元させるために水素供与体(通常、メタノール)が別途必要となる、あるいはpHを中和するアルカリ剤の添加が必要となるという問題や、その結果として反応過程が複雑になるという問題を生じており、大量の汚染水を効率よくかつ低コストに処理するには未だ改善の余地があった。
【0010】
また、硝酸態窒素で汚染された地下水を浄化することに加えて、そもそもそのような事態が生じるのを未然に防止する技術の開発も待たれていた。
【0011】
本発明は、上述した事情を考慮してなされたもので、地下水に含まれる硝酸態窒素を低コストでかつ効率よく除去可能な水質浄化枡を提供することを目的とする。
【0012】
また、本発明は、農薬、除草剤、肥料、糞尿などから生じた硝酸態窒素が地盤内に浸透して地下水に流入するのを防止可能な水質浄化枡を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る水質浄化枡は請求項1に記載したように、脱窒作用を有しかつ透水性を有する水質浄化材を内部に中空空間が形成されるように構成してなるものである。
【0014】
また、本発明に係る水質浄化枡は、前記水質浄化材の中空内面との間に導水スペースが形成されるように前記中空空間に不透水管を配置して該不透水管内に濾過材を充填するとともに、該濾過材の下方を前記導水スペースに連通させたものである。
【0015】
また、本発明に係る水質浄化枡は請求項3に記載したように、脱窒作用を有しかつ透水性及び通気性を有する水質浄化材を中実に形成するとともに該水質浄化材に揚水管又は排水管を貫入したものである。
【0016】
また、本発明に係る水質浄化枡は、前記水質浄化材を、石灰と、硫黄及び硫黄酸化細菌とを混合して構成したものである。
【0017】
また、本発明に係る水質浄化枡は、前記水質浄化材を、水硬性材料を含むアルカリ性排泥と、硫黄及び硫黄酸化細菌とを、前記アルカリ性排泥の固化前に混合して構成したものである。
【0018】
また、本発明に係る水質浄化枡は、前記水質浄化材を、水硬性材料を含むアルカリ性排泥が該水硬性材料の固化作用によって固化した排泥固化体と、硫黄及び硫黄酸化細菌とを混合して構成したものである。
【0019】
本発明に係る水質浄化枡においては、脱窒作用を有しかつ透水性を有する水質浄化材を内部に中空空間が形成されるように構成してあり、又は脱窒作用を有しかつ透水性及び通気性を有する水質浄化材を中実に形成するとともに該水質浄化材に揚水管又は排水管を貫入してある。
【0020】
このようにすると、水質浄化材の脱窒作用によって水中の硝酸態窒素は、窒素ガスに還元される。
【0021】
例えば、請求項4乃至請求項6に係る発明においては、水質浄化材に硫黄及び硫黄酸化細菌を含んでおり、かかる水質浄化材と硝酸態窒素を含む水とが接触すると、水質浄化材中の硫黄が硫黄酸化細菌の酵素活性によって酸化されるとともに、その酸化反応に伴って、該硫黄が電子供与体となり、水中の硝酸態窒素を窒素ガスに還元する。
【0022】
ここで、硫黄は自ら酸化されることにより硫酸となるが、石灰やアルカリ性排泥中のアルカリ成分によって中和される。例えば、石灰やアルカリ性排泥中の炭酸カルシウムや水酸化カルシウムと中和することにより、硫酸は中性の石膏となる。そのため、硫酸によってpHが小さくなり、硫黄酸化細菌の酵素活性が低下するのを防止することができることはもちろん、アルカリ性排泥の場合は特に、従来、産業廃棄物として処分せざるを得なかったものが、本発明によれば、硝酸態窒素を無害化する原材料として有効利用することができるという顕著な作用効果を奏する。
【0023】
硝酸態窒素汚染の問題は、微生物分野では本願出願の時点で既に知られているところであるとともに、かかる硝酸態窒素を脱窒させる方法として硫黄と硫黄酸化細菌とを使用できる可能性や石灰石で硫酸を中和させることができることも知られている。
【0024】
一方、土木建築業界においては、地中連続壁工法などの泥水工法でアルカリ性排泥が大量に発生し、その廃棄処分が大きな社会的問題となっているとともに、硝酸態窒素で汚染された地下水を水源とする際、経済的に実現性の高い浄化技術の開発が待たれていた。加えて、硝酸態窒素で汚染された汚染水が地盤に浸透して地下水に流入するのを未然に防止する浄化技術の開発も待たれていた。
【0025】
本出願人は、かかる問題や、ガソリン精製等での脱硫工程で硫黄が余剰しつつある社会状況をも踏まえつつ、上述した微生物分野における公知技術を土木建築業界で活かすことはできないかという点に着眼し、さまざまな研究開発を行った結果、上述した新規な知見を得たものであり、その知見は産業上きわめて有意義な知見であることを念のため付言しておく。
【0026】
水質浄化材が透水性、又は透水性及び通気性を備えるようにするには、例えばひび割れを生じるように成分調整する方法や、発泡剤等を添加することで多孔質体とする方法が考えられる。
【0027】
水質浄化材を内部に中空空間が形成されるように構成するとは、例えば有底円筒状に構成する、有底角筒状に構成する場合を含み、水質浄化材を中実に形成するとは、例えば中実円筒状に構成する、中実角筒状に構成する場合を含む。
【0028】
水質浄化材を中実に形成するとともに該水質浄化材に揚水管又は排水管を貫入する構成においては、該揚水管又は排水管内を水質浄化材の内部透水空間に連通させるとともに、貫入箇所においては、揚水管や排水管に多数の孔を設けておくのが望ましい。内部透水空間とは、主として微細なクラックや空隙を意味する。
【0029】
ここで、請求項1記載の水質浄化枡を使用するには、該水質浄化枡の頂部開口が大気に連通するように地表面近傍に埋設する。
【0030】
この場合、水質浄化枡は、水源用浄化枡と地下浸透用浄化枡の二通りの使用が可能である。
【0031】
すなわち、周囲の地下水が硝酸態窒素で汚染されている環境でその地下水を水源として利用したい場合には、水源用浄化枡の中空空間の水を揚水する。
【0032】
水源用浄化枡内の水は、周囲の地下水が水源用浄化枡を構成する水質浄化材内を透水してきたものであるが、水源用浄化枡内の水は、かかる透水工程で上述した脱窒作用が生じ、地下水に含まれている硝酸態窒素は還元されて窒素ガスとなり、かかる窒素ガスは、水源用浄化枡の頂部開口を介して大気へと放出される。そして、揚水された水は、硝酸態窒素が除去された水として利用することが可能となる。
【0033】
ちなみに、周囲の地下水が硝酸態窒素で汚染されている環境には、地下ダムによって地下水が貯留されその地下水が汚染されている環境も含む。
【0034】
一方、生活雑排水、農薬、除草剤、肥料、糞尿などから生じた硝酸態窒素を含む汚染水を地下浸透させたい場合には、かかる汚染水を地下浸透用浄化枡の中空空間に投入する。
【0035】
このようにすると、地下浸透用浄化枡内の汚染水は、該地下浸透用浄化枡を構成する水質浄化材を透水して周辺地盤へと流出することとなるが、かかる透水工程で上述した脱窒作用が生じ、汚染水に含まれている硝酸態窒素は還元されて窒素ガスとなり、かかる窒素ガスは、土壌空隙を介して大気へと放出される。そして、流出した水は、硝酸態窒素が除去された水としてやがては地下水に合流する。
【0036】
かかる請求項1の水質浄化枡において、前記水質浄化材の中空内面との間に導水スペースが形成されるように前記中空空間に不透水管を配置して該不透水管内に濾過材を充填するとともに、該濾過材の下方を前記導水スペースに連通させた場合、水源用浄化枡として利用する際、脱窒作用によって硝酸態窒素が除去された処理水は、導水スペースを流れ、不透水管内に充填された濾過材の下方にいったん集水される。
【0037】
そのため、硝酸態窒素が除去された処理水は、揚水の際、下方から上方へと濾過材を通過することとなり、硝酸態窒素のみならず、上水として必要な浄化を行うことも可能となる。
【0038】
請求項3記載の水質浄化枡を使用するには、該水質浄化枡を構成する水質浄化材の内部通気空間が大気に連通するように地表面近傍に埋設する。内部通気空間とは、内部透水空間と同様、主として微細なクラックや空隙を意味し、内部透水空間と兼ねてもよい。
【0039】
この場合、水質浄化枡は、請求項1と同様、水源用浄化枡と地下浸透用浄化枡の二通りの使用が可能である。
【0040】
すなわち、周囲の地下水が硝酸態窒素で汚染されている環境でその地下水を水源として利用したい場合には、水源用浄化枡の内部透水空間の水を揚水管を介して揚水する。
【0041】
このようにすれば、請求項1に係る発明と同様、透水工程で上述した脱窒作用が生じ、地下水に含まれている硝酸態窒素は還元されて窒素ガスとなり、かかる窒素ガスは、水質浄化材の内部通気空間を介して大気へと放出される。そして、揚水された水は、硝酸態窒素が除去された水として利用することが可能となる。
【0042】
一方、生活雑排水、農薬、除草剤、肥料、糞尿などから生じた硝酸態窒素を含む汚染水を地下浸透させたい場合には、汚染水を排水管を介して水質浄化材内の内部透水空間に送り込む。
【0043】
このようにすると、請求項1に係る発明と同様、透水工程で脱窒作用が生じ、汚染水に含まれている硝酸態窒素は還元されて窒素ガスとなり、かかる窒素ガスは、水質浄化材の内部通気空間を介して大気へと放出される。そして、流出した水は、硝酸態窒素が除去された水として周辺地盤に流出し、やがては地下水に合流する。
【0044】
水質浄化材は、脱窒作用を有しかつ透水性を有するものであり、又は脱窒作用を有しかつ透水性及び通気性を有する水質浄化材れば、どのようなものでもよいが、上述したように硫黄及び硫黄酸化細菌を含む構成がよい。
【0045】
例えば、石灰と、硫黄及び硫黄酸化細菌とを混合して構成する、水硬性材料を含むアルカリ性排泥が該水硬性材料の固化作用によって固化した排泥固化体と、硫黄及び硫黄酸化細菌とを混合して構成する、水硬性材料を含むアルカリ性排泥と、硫黄及び硫黄酸化細菌とを、前記アルカリ性排泥の固化前に混合して構成するなどの態様が考えられる。なお、硫黄の酸化反応を触媒する硫黄酸化細菌の酵素活性に必要な酵素活性物質、例えば炭素源あるいは有機物については、必要に応じて適宜添加すればよい。例えば、炭、木材、サトウキビの絞りかす、廃材などが考えられる。
【0046】
水硬性材料にはセメントや石灰が含まれる。
【0047】
水硬性材料を含むアルカリ性排泥は、主として地中連続壁工法、泥水シールドなどの泥水工法で生じた排泥が対象となるが、運送の便宜のため、固化させる目的で水硬性材料が添加された排泥であってアルカリ性を呈しているものであれば、上述した泥水工法で生じた排泥に限定されるものではない。また、水硬性材料の固化作用は、セメントによる水和反応を主として意味する。
【0048】
なお、水硬性材料を含むアルカリ性排泥と、硫黄及び硫黄酸化細菌とを、アルカリ性排泥の固化前に混合して水質浄化材を構成する場合、硫黄の酸化反応を硫黄酸化細菌が触媒するには、微生物活性が高くなるまで待たねばならず、それには日数を要するため、アルカリ性排泥に添加したとしても、硫黄の酸化反応が始まるまでには、アルカリ性排泥が固化する。したがって、水質浄化構造を構築する際に硫黄が酸化されてしまう懸念はほとんどない。
【0049】
【発明の実施の形態】
以下、本発明に係る水質浄化枡の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0050】
(第1実施形態)
【0051】
図1は、本実施形態に係る水質浄化枡を示した断面図である。同図に示すように、本実施形態に係る水質浄化枡としての水源用浄化枡1は、水質浄化材を内部に中空空間が形成されるように構成してある。
【0052】
水源用浄化枡1は同図に示すように、有底中空円筒状となるように水質浄化材を形成することにより、内部に中空空間2を有する構成としてある。
【0053】
水源用浄化枡1は、脱窒作用を有しかつ透水性を有する水質浄化材で製造すればよいが、具体的には以下の3つの方法で製造することができる。
【0054】
(i)石灰と、硫黄及び硫黄酸化細菌とを混合することで水源用浄化枡1を構成する。
【0055】
この場合、有底円筒状に形成できる型枠を予め製作し、その中に上述した石灰、硫黄及び硫黄酸化細菌を水とともに混合投入し、固化させればよい。固化の際には、意図的にひび割れを生じさせたり、発泡剤を添加して多孔質に形成するなど公知の技術を適宜採用することで透水性を確保する。
【0056】
(ii)セメントを含むアルカリ性排泥が該セメントの固化作用によって固化した排泥固化体と、硫黄及び硫黄酸化細菌とを混合することで水源用浄化枡1を構成する。
【0057】
この場合、有底円筒状に形成できる型枠を予め製作し、その中に上述した排泥固化体と、硫黄及び硫黄酸化細菌とを投入するとともにそれらを固化させるための固化剤、例えばセメントミルクを追加投入して固化させればよい。固化の際には、意図的にひび割れを生じさせたり、発泡剤を添加して多孔質に形成するなど公知の技術を適宜採用することで透水性を確保する。
【0058】
(iii)水硬性材料であるセメントを含むアルカリ性排泥と、硫黄及び硫黄酸化細菌とを、アルカリ性排泥の固化前に混合することで水源用浄化枡1を構成する。
【0059】
この場合、有底円筒状に形成できる型枠を予め製作し、その中に上述したアルカリ性排泥と、硫黄及び硫黄酸化細菌とを混合投入し、固化させればよい。固化の際には、意図的にひび割れを生じさせたり、発泡剤を添加して多孔質に形成するなど公知の技術を適宜採用することで透水性を確保する。
【0060】
上述した(i),(ii),(iii)の各製造方法においては、硫黄の酸化反応を触媒する硫黄酸化細菌の酵素活性に必要な酵素活性物質、例えば炭素源あるいは有機物を必要に応じて適宜添加すればよい。例えば、炭、木材、サトウキビの絞りかす、廃材などが考えられる。
【0061】
なお、硫黄の酸化反応を硫黄酸化細菌が触媒するには、微生物活性が高くなるまで時間を要するため、石灰やアルカリ性排泥に硫黄及び硫黄酸化細菌を混合して固化させる場合、石灰やセメントの水和反応で水が消費されることとも相まって、水源用浄化枡1が完成するまでの間、微生物活性が高くなって硫黄が酸化されてしまう懸念はほとんどない。
【0062】
ちなみに、設置後は、水源用浄化枡1を構成する水質浄化材の内部透水空間に地下水が透水してくるので、かかる内部透水空間内で硫黄酸化細菌が硫黄を酸化するとともにそのときに硫黄が電子供与体として地下水に含まれる硝酸態窒素を還元し、窒素ガスに変える。また、硫黄の酸化で生じた硫酸は、石灰やセメントに起因するアルカリ成分で中和されるため、硫黄酸化細菌の酵素活性も低下しない。
【0063】
また、アルカリ性排泥を用いる(ii),(iii)の製造方法の場合、アルカリ性排泥と硫黄との混合比は、重量比で例えば50〜90:50〜10とすればよい。
【0064】
原材料であるアルカリ性排泥は、地中連続壁工事で発生した排泥を用いるのがよい。地中連続壁工事においては、地盤掘削を行う際、掘削された孔壁の崩落を防止すべく、掘削孔内に安定液として泥水を入れながら掘削を行うが、掘削終了後は、水中コンクリートを打設しながら安定液を置換回収する。
【0065】
この使用済安定液が排泥となるが、水中コンクリートと置換回収されたものであるため、排泥中にはセメントが混入しており、それゆえ、かかる排泥は、アルカリ性排泥となっている。
【0066】
このように製造された水源用浄化枡1を、周囲の地下水が硝酸態窒素で汚染されている環境でその地下水を水源として利用したい場合に使用するには、図1に示すように水源用浄化枡1の頂部開口3が大気に連通するように地盤4の地表面近傍に埋設するとともに、揚水管5を中空空間2に配置する。
【0067】
水源用浄化枡1の埋設深さは、該水源用浄化枡の中空空間2の水を揚水することで該中空空間の水位を周囲の地下水位よりも低くできる深さとする。
【0068】
ここで、地下水位が低いために水源用浄化枡1の埋設深さが深くなり、そのために揚程が大きくなるようであれば、水源用浄化枡1の底部に揚水ポンプを設置し、該揚水ポンプに揚水管5を接続して地上に揚水するようにすればよい。
【0069】
このように設置された水源用浄化枡1においては、周囲の地下水が水源用浄化枡1を構成する水質浄化材を透水して中空空間2に流入することとなるが、かかる透水の際、水質浄化材の脱窒作用によって地下水中の硝酸態窒素は、窒素ガスに還元される。
【0070】
すなわち、水源用浄化枡1を構成する水質浄化材と硝酸態窒素を含む地下水とが接触すると、水質浄化材中の硫黄が硫黄酸化細菌の酵素活性によって酸化されるとともに、その酸化反応に伴って、該硫黄が電子供与体となり、地下水に含まれている硝酸態窒素は還元されて窒素ガスとなり、かかる窒素ガスは、水源用浄化枡1の頂部開口を介して大気へと放出される。そして、揚水された水は、硝酸態窒素が除去された水として利用することが可能となる。
【0071】
ここで、上述したように、硫黄酸化で生じた硫酸は、石灰やアルカリ性排泥中のアルカリ成分によって中和され、硫酸は中性の石膏となる。そのため、硫酸によってpHが小さくなり、硫黄酸化細菌の酵素活性が低下するのを防止することができる。
【0072】
以上説明したように、本実施形態に係る水源用浄化枡1によれば、水質浄化材と硝酸態窒素を含む地下水とが接触すると、水質浄化材中の硫黄が硫黄酸化細菌の酵素活性によって酸化されるとともに、その酸化反応に伴って、該硫黄が電子供与体となり、地下水中の硝酸態窒素を窒素ガスに還元する。
【0073】
そのため、地下水に含まれる硝酸態窒素を低コストでかつ効率よく除去することができるとともに、水源用浄化枡1の中空空間2に流入した水は、硝酸態窒素が除去された処理水となるため、これを地上に揚水することにより、水源として有効利用することが可能となる。
【0074】
一方、硫黄は自ら酸化されることにより硫酸となるが、アルカリ性排泥中のアルカリ成分によって中和されるため、硫酸によってpHが小さくなり、硫黄酸化細菌の酵素活性が低下するのを防止することができる。
【0075】
なお、アルカリ性排泥はリンの吸着能が高いため、本実施形態に係る水源用浄化枡1を構成する水質浄化材は、硝酸態窒素の浄化作用のみならず、リンを吸着除去する作用効果も有する。
【0076】
また、本実施形態に係る水源用浄化枡1によれば、従来、産業廃棄物として処分せざるを得なかったアルカリ性排泥を、硝酸態窒素を無害化する原材料として有効利用することができるという顕著な作用効果を奏する。
【0077】
また、本実施形態に係る水質浄化枡1によれば、ガソリン精製等での脱硫工程で余剰しがちな硫黄を有効活用することもできる。
【0078】
本実施形態では特に言及しなかったが、硝酸態窒素の汚染濃度が高い場合、揚水した水をすぐに利用せず、それに代えて、地盤に浸透させては水源用尾浄化枡1を介して揚水するという手順を繰り返すことにより、高濃度の地下水汚染区域を確実に浄化することが可能となる。
【0079】
ちなみに、その場合の揚水エネルギーを、風力発電等の自然エネルギーから変換された電気エネルギーでまかなうようにすると、エネルギーの面で自給自足が可能な環境修復システムの構築が可能となる。
【0080】
(第2実施形態)
【0081】
第1実施形態では、内部に中空空間が形成されるように水質浄化材を構成して水源用浄化枡1としたが、かかる構成に代えて、脱窒作用を有しかつ透水性及び通気性を有する水質浄化材を中実に形成した構成としてもよい。
【0082】
図2は、かかる実施形態を第2実施形態として示したものである。同図でわかるように、本実施形態に係る水質浄化枡としての水源用浄化枡1aは、水質浄化材を中実に形成するとともに該水質浄化材に揚水管11を貫入してある。
【0083】
水源用浄化枡1aは、脱窒作用を有しかつ透水性及び通気性を有する水質浄化材で製造すればよいが、具体的には第1実施形態とほぼ同様、以下の3つの方法で製造することができる。
【0084】
(i′)石灰と、硫黄及び硫黄酸化細菌とを混合することで水源用浄化枡1aを構成する。
【0085】
この場合、中実円筒状に形成できる型枠を予め製作し、その中に予め揚水管11を配置し、次いで、上述した石灰、硫黄及び硫黄酸化細菌を水とともに混合投入し、固化させればよい。
【0086】
このようにすれば、揚水管11は、水質浄化材の内部透水空間に連通することとなり、該水質浄化材に透水してきた水を揚水することが可能となる。
【0087】
水質浄化材に貫入される揚水管11には、多数の透水孔12を設けておくのが望ましい。
【0088】
固化の際には、意図的にひび割れを生じさせたり、発泡剤を添加して多孔質に形成するなど公知の技術を適宜採用することで透水性及び通気性を確保する。
【0089】
(ii′)セメントを含むアルカリ性排泥が該セメントの固化作用によって固化した排泥固化体と、硫黄及び硫黄酸化細菌とを混合することで水源用浄化枡1aを構成する。
【0090】
この場合、中実円筒状に形成できる型枠を予め製作し、その中に予め揚水管11を配置し、次いで、上述した排泥固化体と、硫黄及び硫黄酸化細菌とを投入するとともにそれらを固化させるための固化剤、例えばセメントミルクを追加投入して固化させればよい。固化の際には、意図的にひび割れを生じさせたり、発泡剤を添加して多孔質に形成するなど公知の技術を適宜採用することで透水性及び通気性を確保する。
【0091】
(iii′)水硬性材料であるセメントを含むアルカリ性排泥と、硫黄及び硫黄酸化細菌とを、アルカリ性排泥の固化前に混合することで水源用浄化枡1aを構成する。
【0092】
この場合、中実円筒状に形成できる型枠を予め製作し、その中に予め揚水管11を配置し、次いで、上述したアルカリ性排泥と、硫黄及び硫黄酸化細菌とを混合投入し、固化させればよい。固化の際には、意図的にひび割れを生じさせたり、発泡剤を添加して多孔質に形成するなど公知の技術を適宜採用することで透水性及び通気性を確保する。
【0093】
このように製造された水源用浄化枡1aを、周囲の地下水が硝酸態窒素で汚染されている環境でその地下水を水源として利用したい場合に使用するには、図2に示すように水源用浄化枡1aを構成する水質浄化材の内部通気空間が大気に連通するように地盤4の地表面近傍に埋設する。
【0094】
水源用浄化枡1aの埋設深さは、該水源用浄化枡を構成する水質浄化材の内部透水空間を介して透水してきた水を揚水することで該内部透水空間の水位を周囲の地下水位よりも低くできる深さとする。
【0095】
このように設置された水源用浄化枡1aにおいては、周囲の地下水が該浄化枡を構成する水質浄化材を透水してその内部透水空間に流入することとなるが、かかる透水の際、水質浄化材の脱窒作用によって地下水中の硝酸態窒素は、窒素ガスに還元される。
【0096】
すなわち、水源用浄化枡1aを構成する水質浄化材と硝酸態窒素を含む地下水とが接触すると、水質浄化材中の硫黄が硫黄酸化細菌の酵素活性によって酸化されるとともに、その酸化反応に伴って、該硫黄が電子供与体となり、地下水に含まれている硝酸態窒素は還元されて窒素ガスとなり、かかる窒素ガスは、水源用浄化枡1aを構成する水質浄化材の内部通気空間を介して大気へと放出される。そして、揚水された水は、硝酸態窒素が除去された水として利用することが可能となる。
【0097】
内部透水空間と内部通気空間とは、水質浄化材内のひび割れ部や空隙部がこれらを兼用することとなる。
【0098】
微生物活性やアルカリ性排泥に関する記載をはじめ、本実施形態で特段記載しなかった構成、作用及び効果については、第1実施形態と同様であるので、ここではその説明を省略する。
【0099】
(第3実施形態)
【0100】
第1実施形態では、内部に中空空間2が形成されるように水質浄化材を構成して水源用浄化枡1としたが、かかる構成に代えて、図3に示すように中空空間2に濾過材24を配置するようにしてもよい。
【0101】
図3は、かかる実施形態を第3実施形態として示したものである。同図でわかるように、本実施形態に係る水質浄化枡としての水源用浄化枡1bは、第1実施形態と同様、有底中空円筒状となるように水質浄化材を形成することにより、内部に中空空間2を有する構成としてあるが、本実施形態では、中空内面21との間に導水スペース22が形成されるように中空空間2に不透水管23を配置して該不透水管内に濾過材24を充填するとともに、該濾過材の下方を導水スペース22に連通させてある。
【0102】
ここで、濾過材24は、例えば炭化物層、砂層、炭化物層、礫層の順に不透水管23内に積層して構成することが可能であり、その最上層である礫層に揚水管25の下端を貫入してある。
【0103】
水源用浄化枡1bは、第1実施形態と同様に製造すればよいので、ここではその説明を省略する。また、その設置方法(地下水位との相対深さ関係)についても第1実施形態と同様であるので、ここではその説明を省略する。
【0104】
このように設置された水源用浄化枡1bにおいては、周囲の地下水が水源用浄化枡1の水質浄化材を透水してくることとなるが、かかる透水工程で第1実施形態に記載した脱窒作用が生じ、地下水に含まれている硝酸態窒素は還元されて窒素ガスとなる。ちなみに、導水スペース22を大気に連通させておけば、かかる窒素ガスは、該導水スペースを介して大気中にスムーズに放出される。
【0105】
一方、脱窒作用によって硝酸態窒素が除去された処理水は、導水スペース22を流下し、不透水管23内に充填された濾過材24の下方にいったん集水される。
【0106】
そのため、硝酸態窒素が除去された処理水は、揚水の際、下方から上方へと濾過材24を確実に通過することとなり、硝酸態窒素のみならず、上水として必要な浄化を行うことも可能となる。
【0107】
その他の作用効果については、第1実施形態ですでに述べたので、ここではその説明を省略する。
【0108】
(第4実施形態)
【0109】
図4は、本実施形態に係る水質浄化枡を示した断面図である。同図に示すように、本実施形態に係る水質浄化枡としての地下浸透用浄化枡41は、水質浄化材を内部に中空空間が形成されるように構成してある。
【0110】
地下浸透用浄化枡41は同図に示すように、有底中空円筒状となるように水質浄化材を形成することにより、内部に中空空間42を有する構成としてある。
【0111】
地下浸透用浄化枡41は、脱窒作用を有しかつ透水性を有する水質浄化材で製造すればよいが、具体的には第1実施形態で述べた(i),(ii),(iii)の3つの方法で製造することができる。なお、詳細については、重複記載となるため、ここではその説明を省略する。
【0112】
このように製造された地下浸透用浄化枡41を用いて、生活雑排水、農薬、除草剤、肥料、糞尿などから生じた硝酸態窒素を含む汚染水を地下浸透させたい場合には、図4に示すように地下浸透用浄化枡41の頂部開口43が大気に連通するように地盤4の地表面近傍に埋設するとともに、排水管45を中空空間42に配置する。
【0113】
このように設置された地下浸透用浄化枡41においては、該地下浸透用浄化枡内の汚染水が水質浄化材を透水して周辺地盤へと流出することとなるが、かかる透水工程で上述した脱窒作用が生じ、汚染水に含まれている硝酸態窒素は還元されて窒素ガスとなる。
【0114】
すなわち、地下浸透用浄化枡41を構成する水質浄化材と硝酸態窒素を含む汚染水とが接触すると、水質浄化材中の硫黄が硫黄酸化細菌の酵素活性によって酸化されるとともに、その酸化反応に伴って、該硫黄が電子供与体となり、汚染水に含まれている硝酸態窒素は還元されて窒素ガスとなり、かかる窒素ガスは、土壌空隙を介して大気へと放出される。そして、流出した水は、硝酸態窒素が除去された水としてやがては地下水に合流する。
【0115】
ここで、上述したように、硫黄酸化で生じた硫酸は、石灰やアルカリ性排泥中のアルカリ成分によって中和され、硫酸は中性の石膏となる。そのため、硫酸によってpHが小さくなり、硫黄酸化細菌の酵素活性が低下するのを防止することができる。
【0116】
以上説明したように、本実施形態に係る地下浸透用浄化枡41によれば、水質浄化材と硝酸態窒素を含む汚染水とが接触すると、水質浄化材中の硫黄が硫黄酸化細菌の酵素活性によって酸化されるとともに、その酸化反応に伴って、該硫黄が電子供与体となり、汚染水中の硝酸態窒素を窒素ガスに還元する。
【0117】
そのため、汚染水に含まれる硝酸態窒素を低コストでかつ効率よく除去することができるとともに、地下浸透用浄化枡41の中空空間42から流出した水は、硝酸態窒素が除去された処理水となるため、地下水に合流しても該地下水を汚染するおそれもない。
【0118】
一方、硫黄は自ら酸化されることにより硫酸となるが、アルカリ性排泥中のアルカリ成分によって中和されるため、硫酸によってpHが小さくなり、硫黄酸化細菌の酵素活性が低下するのを防止することができる。
【0119】
なお、アルカリ性排泥はリンの吸着能が高いため、本実施形態に係る地下浸透用浄化枡41を構成する水質浄化材は、硝酸態窒素の浄化作用のみならず、リンを吸着除去する作用効果も有する。
【0120】
また、本実施形態に係る地下浸透用浄化枡41によれば、従来、産業廃棄物として処分せざるを得なかったアルカリ性排泥を、硝酸態窒素を無害化する原材料として有効利用することができるという顕著な作用効果を奏する。
【0121】
また、本実施形態に係る水質浄化枡41によれば、ガソリン精製等での脱硫工程で余剰しがちな硫黄を有効活用することもできる。
【0122】
(第5実施形態)
【0123】
第4実施形態では、内部に中空空間が形成されるように水質浄化材を構成して地下浸透用浄化枡41としたが、かかる構成に代えて、脱窒作用を有しかつ透水性及び通気性を有する水質浄化材を中実に形成した構成としてもよい。
【0124】
図5は、かかる実施形態を第5実施形態として示したものである。同図でわかるように、本実施形態に係る水質浄化枡としての地下浸透用浄化枡41aは、水質浄化材を中実に形成するとともに該水質浄化材に排水管51を貫入してある。
【0125】
地下浸透用浄化枡41aは、脱窒作用を有しかつ透水性及び通気性を有する水質浄化材で製造すればよいが、具体的には第4実施形態とほぼ同様、以下の3つの方法で製造することができる。
【0126】
(i′)石灰と、硫黄及び硫黄酸化細菌とを混合することで地下浸透用浄化枡41aを構成する。
【0127】
この場合、中実円筒状に形成できる型枠を予め製作し、その中に予め排水管51を配置し、次いで、上述した石灰、硫黄及び硫黄酸化細菌を水とともに混合投入し、固化させればよい。
【0128】
このようにすれば、排水管51は、水質浄化材の内部透水空間に連通することとなり、排水管51を介して流入してきた汚染水を水質浄化材に透水させた上、周辺地盤へと流出させることが可能となる。
【0129】
水質浄化材に貫入される排水管51には、多数の透水孔12を設けておくのが望ましい。
【0130】
固化の際には、意図的にひび割れを生じさせたり、発泡剤を添加して多孔質に形成するなど公知の技術を適宜採用することで透水性及び通気性を確保する。
【0131】
(ii′)セメントを含むアルカリ性排泥が該セメントの固化作用によって固化した排泥固化体と、硫黄及び硫黄酸化細菌とを混合することで地下浸透用浄化枡41aを構成する。
【0132】
この場合、中実円筒状に形成できる型枠を予め製作し、その中に予め排水管51を配置し、次いで、上述した排泥固化体と、硫黄及び硫黄酸化細菌とを投入するとともにそれらを固化させるための固化剤、例えばセメントミルクを追加投入して固化させればよい。固化の際には、意図的にひび割れを生じさせたり、発泡剤を添加して多孔質に形成するなど公知の技術を適宜採用することで透水性及び通気性を確保する。
【0133】
(iii′)水硬性材料であるセメントを含むアルカリ性排泥と、硫黄及び硫黄酸化細菌とを、アルカリ性排泥の固化前に混合することで地下浸透用浄化枡41aを構成する。
【0134】
この場合、中実円筒状に形成できる型枠を予め製作し、その中に予め排水管51を配置し、次いで、上述したアルカリ性排泥と、硫黄及び硫黄酸化細菌とを混合投入し、固化させればよい。固化の際には、意図的にひび割れを生じさせたり、発泡剤を添加して多孔質に形成するなど公知の技術を適宜採用することで透水性及び通気性を確保する。
【0135】
このように製造された地下浸透用浄化枡41aを用いて、生活雑排水、農薬、除草剤、肥料、糞尿などから生じた硝酸態窒素を含む汚染水を地下浸透させたい場合には、図5に示すように地下浸透用浄化枡41aを構成する水質浄化材の内部通気空間が大気に連通するように地盤4の地表面近傍に埋設する。
【0136】
地下浸透用浄化枡41aの埋設深さは、排水管51を介して流入する汚染水の内部透水空間の水位を周囲の地下水位よりも高くできる深さとする。
【0137】
このように設置された地下浸透用浄化枡41aにおいては、汚染水が該浄化枡を構成する水質浄化材を透水して外部の周辺地盤へと流出することとなるが、かかる透水の際、水質浄化材の脱窒作用によって汚染水中の硝酸態窒素は、窒素ガスに還元される。
【0138】
すなわち、地下浸透用浄化枡41aを構成する水質浄化材と硝酸態窒素を含む汚染水とが接触すると、水質浄化材中の硫黄が硫黄酸化細菌の酵素活性によって酸化されるとともに、その酸化反応に伴って、該硫黄が電子供与体となり、汚染水に含まれている硝酸態窒素は還元されて窒素ガスとなり、かかる窒素ガスは、地下浸透用浄化枡41aを構成する水質浄化材の内部通気空間を介して大気へと放出される。そして、周辺地盤へと流出された水は、硝酸態窒素が除去された水として地下水に合流することとなる。
【0139】
内部透水空間と内部通気空間とは、水質浄化材内のひび割れ部や空隙部がこれらを兼用することとなる。
【0140】
微生物活性やアルカリ性排泥に関する記載をはじめ、本実施形態で特段記載しなかった構成、作用及び効果については、第4実施形態と同様であるので、ここではその説明を省略する。
【0141】
【発明の効果】
以上述べたように、本発明に係る水質浄化枡によれば、水質浄化材と硝酸態窒素を含む地下水や汚染水とが接触すると、水質浄化材中の硫黄が硫黄酸化細菌の酵素活性によって酸化されるとともに、その酸化反応に伴って、該硫黄が電子供与体となり、地下水や汚染水中の硝酸態窒素を窒素ガスに還元し、該地下水や汚染水を浄化することができる。
【0142】
【図面の簡単な説明】
【図1】第1実施形態に係る水質浄化枡の図であり、(a)は鉛直断面図、(b)はA−A線方向に沿う水平断面図。
【図2】第2実施形態に係る水質浄化枡の図であり、(a)は鉛直断面図、(b)はB−B線方向に沿う水平断面図。
【図3】第3実施形態に係る水質浄化枡の図であり、(a)は鉛直断面図、(b)はC−C線方向に沿う水平断面図。
【図4】第4実施形態に係る水質浄化枡の図であり、(a)は鉛直断面図、(b)はD−D線方向に沿う水平断面図。
【図5】第5実施形態に係る水質浄化枡の図であり、(a)は鉛直断面図、(b)はE−E線方向に沿う水平断面図。
【符号の説明】
1,1a,1b 水源用浄化枡(水質浄化枡)
2,42 中空空間
4 地盤
5,11,25 揚水管
22 導水スペース
23 不透水管
24 濾過材
41,41a 地下浸透用浄化枡(水質浄化枡)
45,51 排水管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water purification jar that purifies groundwater contaminated mainly with nitrate nitrogen.
[0002]
[Prior art]
Recently, nitrate nitrogen has become a problem as a harmful pollutant contained in groundwater. Such problems are thought to be caused by the eutrophication of water quality by nitrogen and phosphorus in closed water areas such as lakes and rivers, and as a result, flowing into groundwater in the form of nitrate nitrogen.
[0003]
Nitrate nitrogen is a substance produced as a result of decomposition of nitrogen components in agricultural chemicals, herbicides, fertilizers, manure, etc. by microorganisms, but when nitrate nitrogen enters the body, it is reduced and nitrous acid is added. It changes to natural nitrogen and produces a substance called nitrosamine, which is a carcinogen, or causes so-called methemoglobinemia, which decreases the function of hemoglobin in the blood and causes oxygen deficiency, resulting in cyanosis. Has been pointed out.
[0004]
Therefore, nitrate nitrogen contained in groundwater must be removed in advance so that the concentration is less than the concentration that does not cause health damage.
[0005]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2000-232728
[0006]
[Patent Document 2]
Japanese Patent Laid-Open No. 10-113693
[0007]
[Patent Document 3]
JP-A-10-286590
[0008]
[Problems to be solved by the invention]
As a method of removing nitrate nitrogen contained in water, attempts have been made to reduce the nitrate nitrogen to nitrogen gas by a plant, and some have already been put into practical use.
[0009]
Here, as a method put into practical use in the plant, there are a sludge sludge method, a dual sludge method, a single sludge method, etc., all of which are hydrogen donors (usually, for reducing nitrate nitrogen in an intermediate step). Methanol) is required separately, or the addition of an alkaline agent that neutralizes the pH is required, and as a result, the reaction process becomes complicated. There was still room for improvement in processing at low cost.
[0010]
In addition to purifying groundwater contaminated with nitrate nitrogen, the development of technology to prevent such a situation from occurring in the first place has also been awaited.
[0011]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a water purification jar that can efficiently remove nitrate nitrogen contained in groundwater at low cost.
[0012]
Another object of the present invention is to provide a water purification jar capable of preventing nitrate nitrogen produced from agricultural chemicals, herbicides, fertilizers, manure, etc. from penetrating into the ground and flowing into groundwater.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a water purification jar according to the present invention is configured such that a hollow space is formed inside a water purification material having denitrification and water permeability as described in claim 1. It is made.
[0014]
Further, the water purification tank according to the present invention is arranged such that a water-permeable space is formed between the water purification material and a hollow inner surface of the water purification material, and the water-impermeable tube is filled with a filtering material in the water-impermeable tube. In addition, the lower part of the filter medium is communicated with the water guiding space.
[0015]
Further, as described in claim 3, the water purification paddle according to the present invention forms a solid water purification material having a denitrification action and water permeability and breathability, and a water pipe or A drain pipe is inserted.
[0016]
Moreover, the water purification pad according to the present invention is configured by mixing the water purification material with lime, sulfur and sulfur-oxidizing bacteria.
[0017]
Further, the water purification pad according to the present invention is configured by mixing the water purification material with alkaline waste mud containing hydraulic material, sulfur and sulfur-oxidizing bacteria before solidification of the alkaline waste mud. is there.
[0018]
Further, the water purification pad according to the present invention is a mixture of the water purification material, the waste sludge solidified by alkaline waste mud containing the hydraulic material solidified by the solidification action of the hydraulic material, and sulfur and sulfur-oxidizing bacteria. It is configured as follows.
[0019]
In the water purification tank according to the present invention, the water purification material having a denitrification action and water permeability is configured such that a hollow space is formed therein, or has a denitrification action and water permeability. In addition, a water purification material having air permeability is solidly formed, and a pumping pipe or a drain pipe is inserted into the water purification material.
[0020]
If it does in this way, nitrate nitrogen in water will be reduced to nitrogen gas by the denitrification action of a water purification material.
[0021]
For example, in the inventions according to claims 4 to 6, the water purification material contains sulfur and sulfur-oxidizing bacteria, and when the water purification material and water containing nitrate nitrogen come into contact with each other, Sulfur is oxidized by the enzyme activity of sulfur-oxidizing bacteria, and along with the oxidation reaction, the sulfur becomes an electron donor, and nitrate nitrogen in water is reduced to nitrogen gas.
[0022]
Here, sulfur is oxidized by itself to become sulfuric acid, but is neutralized by alkali components in lime and alkaline waste mud. For example, sulfuric acid becomes neutral gypsum by neutralizing with calcium carbonate or calcium hydroxide in lime or alkaline waste mud. Therefore, it is possible to prevent the pH from being lowered by sulfuric acid and prevent the enzyme activity of sulfur-oxidizing bacteria from being lowered. In the case of alkaline waste mud, in the past, it had to be disposed of as industrial waste. However, according to the present invention, there is a remarkable effect that it can be effectively used as a raw material for detoxifying nitrate nitrogen.
[0023]
The problem of nitrate nitrogen contamination is already known in the field of microorganisms at the time of filing of the present application, and the possibility of using sulfur and sulfur-oxidizing bacteria as a method for denitrifying such nitrate nitrogen and sulfuric acid in limestone It is also known that can be neutralized.
[0024]
On the other hand, in the civil engineering and construction industry, a large amount of alkaline waste mud is generated by mud construction methods such as the underground continuous wall construction method, and its disposal becomes a big social problem, and groundwater contaminated with nitrate nitrogen is also removed. When it was used as a water source, development of economically feasible purification technology was awaited. In addition, development of a purification technology that prevents the contaminated water contaminated with nitrate nitrogen from penetrating into the ground and flowing into the groundwater has been awaited.
[0025]
The applicant is concerned with the above-mentioned problem and the social situation where sulfur is surplus in the desulfurization process in gasoline refining etc. As a result of conducting various research and development, we have obtained the above-mentioned new knowledge, and I will add it just in case that the knowledge is extremely significant in the industry.
[0026]
In order for the water purification material to have water permeability or water permeability and air permeability, for example, a method of adjusting components so as to cause cracking, or a method of forming a porous body by adding a foaming agent or the like can be considered. .
[0027]
Constructing the water purification material such that a hollow space is formed therein includes, for example, a case where the water purification material is formed in a bottomed cylindrical shape, and a case where the water purification material is formed in a solid shape. Including a solid cylindrical shape, a solid rectangular tube shape is included.
[0028]
In the configuration in which the water purification material is solidly formed and the pumping pipe or the drainage pipe penetrates the water purification material, the inside of the pumping pipe or the drainage pipe is communicated with the internal water-permeable space of the water purification material, and at the penetration point, It is desirable to provide a number of holes in the pumping pipe and drain pipe. The internal water permeable space mainly means fine cracks and voids.
[0029]
Here, in order to use the water purification tank according to claim 1, the water purification tank is buried near the ground surface so that the top opening of the water purification tank communicates with the atmosphere.
[0030]
In this case, the water purification tank can be used in two ways: a water source tank and an underground infiltration tank.
[0031]
That is, when the surrounding groundwater is contaminated with nitrate nitrogen and the groundwater is to be used as a water source, the water in the hollow space of the water source purification tank is pumped up.
[0032]
The water in the purification basin for the water source is one in which the surrounding ground water has permeated through the water purification material that constitutes the purification basin for the water source. The action occurs, and nitrate nitrogen contained in the groundwater is reduced to nitrogen gas, and the nitrogen gas is released to the atmosphere through the top opening of the water source purification tank. The pumped water can be used as water from which nitrate nitrogen has been removed.
[0033]
By the way, the environment where the surrounding groundwater is contaminated with nitrate nitrogen includes the environment where groundwater is stored by underground dams and the groundwater is contaminated.
[0034]
On the other hand, when contaminated water containing nitrate nitrogen generated from domestic wastewater, agricultural chemicals, herbicides, fertilizers, manure, etc. is to be infiltrated underground, such contaminated water is put into the hollow space of the underground infiltration septic tank.
[0035]
In this case, the contaminated water in the underground infiltration basin passes through the water purification material constituting the underground infiltration basin and flows out to the surrounding ground. Nitrification occurs, and nitrate nitrogen contained in the contaminated water is reduced to nitrogen gas, and the nitrogen gas is released to the atmosphere through the soil voids. The outflowed water eventually joins groundwater as water from which nitrate nitrogen has been removed.
[0036]
In the water purification tank according to claim 1, an impermeable pipe is disposed in the hollow space so that a water guide space is formed between the hollow inner surface of the water purification material and the impervious pipe is filled with a filter medium. In addition, when the lower part of the filter medium is communicated with the water conveyance space, the treated water from which nitrate nitrogen has been removed by the denitrification action flows through the water conveyance space when used as a water source purification tank, and enters the impermeable pipe. Water is once collected below the filled filter medium.
[0037]
Therefore, the treated water from which nitrate nitrogen has been removed passes through the filter medium from the bottom to the top during pumping, and it is possible to perform not only nitrate nitrogen but also necessary purification as clean water. .
[0038]
In order to use the water purification pad according to claim 3, it is embedded near the ground surface so that the internal ventilation space of the water purification material constituting the water purification pad communicates with the atmosphere. The internal ventilation space means mainly fine cracks and voids like the internal water permeable space, and may also serve as the internal water permeable space.
[0039]
In this case, the water purification tank can be used in two ways, as in the case of claim 1, a water source cleaning tank and an underground infiltration tank.
[0040]
That is, when the surrounding groundwater is contaminated with nitrate nitrogen and the groundwater is to be used as a water source, the water in the internal permeable space of the water source purification tub is pumped through the pumping pipe.
[0041]
In this way, as in the invention according to claim 1, the denitrification action described above occurs in the water permeation step, nitrate nitrogen contained in the groundwater is reduced to nitrogen gas, and the nitrogen gas is water purification. It is released to the atmosphere through the internal ventilation space of the material. The pumped water can be used as water from which nitrate nitrogen has been removed.
[0042]
On the other hand, if you want to infiltrate contaminated water containing nitrate nitrogen generated from domestic wastewater, pesticides, herbicides, fertilizers, manure, etc., the internal permeable space in the water purification material through the drainage pipe To send.
[0043]
If it does in this way, like the invention concerning Claim 1, denitrification occurs in a water permeation process, nitrate nitrogen contained in polluted water will be reduced into nitrogen gas, and such nitrogen gas will be Released to the atmosphere through the internal ventilation space. The outflowed water flows out to the surrounding ground as water from which nitrate nitrogen has been removed, and eventually joins the groundwater.
[0044]
The water purification material may have any denitrification action and water permeability, or any water quality purification material having a denitrification action and water permeability and air permeability. Thus, the composition containing sulfur and sulfur-oxidizing bacteria is preferable.
[0045]
For example, a mixture of lime, sulfur and sulfur-oxidizing bacteria, and alkaline waste mud containing hydraulic material solidified by solidifying action of the hydraulic material, and sulfur and sulfur-oxidizing bacteria It is conceivable that the mixture is constituted by mixing alkaline waste mud containing hydraulic material, sulfur and sulfur-oxidizing bacteria before solidifying the alkaline waste mud. In addition, what is necessary is just to add suitably the enzyme active substance required for the enzyme activity of the sulfur oxidation bacterium which catalyzes sulfur oxidation reaction, for example, a carbon source or organic substance as needed. For example, charcoal, wood, sugarcane residue, waste material, and the like can be considered.
[0046]
Hydraulic materials include cement and lime.
[0047]
Alkaline waste mud containing hydraulic materials is mainly for waste mud produced by underground wall construction methods and mud construction methods such as shields, but for the convenience of transportation, hydraulic materials are added for the purpose of solidification. The waste mud is not limited to the waste mud produced by the muddy water method as long as it is alkaline. The solidifying action of the hydraulic material mainly means a hydration reaction by cement.
[0048]
In addition, when water purification material is constituted by mixing alkaline waste mud containing hydraulic material, sulfur and sulfur oxidation bacteria before solidification of alkaline waste mud, sulfur oxidation bacteria catalyze the oxidation reaction of sulfur. Therefore, it takes a number of days until the microbial activity becomes high, and even if it is added to the alkaline waste mud, the alkaline waste mud solidifies before the oxidation reaction of sulfur starts. Therefore, there is almost no concern that sulfur is oxidized when the water purification structure is constructed.
[0049]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a water purification tank according to the present invention will be described with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.
[0050]
(First embodiment)
[0051]
FIG. 1 is a cross-sectional view showing a water purification tank according to the present embodiment. As shown in the figure, the water source purification pad 1 as the water purification pad according to the present embodiment is configured such that a hollow space is formed in the water purification material.
[0052]
As shown in the figure, the water source purification tub 1 has a hollow space 2 inside by forming a water purification material so as to have a bottomed hollow cylindrical shape.
[0053]
The water source purification tub 1 may be manufactured with a water purification material having a denitrification action and water permeability, but can be specifically manufactured by the following three methods.
[0054]
(I) The purification jar 1 for water sources is comprised by mixing lime, sulfur, and sulfur oxidation bacteria.
[0055]
In this case, a mold that can be formed into a cylindrical shape with a bottom is manufactured in advance, and the lime, sulfur, and sulfur-oxidizing bacteria described above are mixed and added together with water to be solidified. At the time of solidification, water permeability is ensured by appropriately adopting known techniques such as intentionally generating cracks or adding a foaming agent to form a porous structure.
[0056]
(Ii) The water purification slag 1 is constituted by mixing the waste sludge solidified by the solidification action of the cement with alkaline waste sludge containing cement, and sulfur and sulfur-oxidizing bacteria.
[0057]
In this case, a mold that can be formed into a cylindrical shape with a bottom is manufactured in advance, and the solidified sludge and the sulfur and sulfur-oxidizing bacteria described above are charged therein and a solidifying agent for solidifying them, such as cement milk. May be added and solidified. At the time of solidification, water permeability is ensured by appropriately adopting known techniques such as intentionally generating cracks or adding a foaming agent to form a porous structure.
[0058]
(Iii) The alkaline waste mud containing cement, which is a hydraulic material, and sulfur and sulfur-oxidizing bacteria are mixed before the alkaline waste mud is solidified to constitute the water source purification tub 1.
[0059]
In this case, a mold that can be formed into a bottomed cylindrical shape is manufactured in advance, and the alkaline waste mud described above, sulfur and sulfur-oxidizing bacteria are mixed and charged therein, and solidified. At the time of solidification, water permeability is ensured by appropriately adopting known techniques such as intentionally generating cracks or adding a foaming agent to form a porous structure.
[0060]
In the production methods (i), (ii), and (iii) described above, an enzyme active substance, such as a carbon source or an organic substance, necessary for the enzyme activity of sulfur-oxidizing bacteria that catalyze the oxidation reaction of sulfur is used as necessary. What is necessary is just to add suitably. For example, charcoal, wood, sugarcane residue, waste material, and the like can be considered.
[0061]
In order to catalyze the sulfur oxidation reaction by sulfur-oxidizing bacteria, it takes time until the microbial activity becomes high. Therefore, when sulfur and sulfur-oxidizing bacteria are mixed and solidified in lime or alkaline waste mud, In combination with the consumption of water in the hydration reaction, there is almost no concern that the microbial activity is increased and sulfur is oxidized until the water source purification tank 1 is completed.
[0062]
By the way, after installation, since groundwater permeates into the internal water-permeable space of the water purification material constituting the water source purification tub 1, sulfur-oxidizing bacteria oxidize sulfur in the internal water-permeable space and sulfur is Nitrate nitrogen contained in groundwater as an electron donor is reduced and converted to nitrogen gas. Moreover, since the sulfuric acid produced by the oxidation of sulfur is neutralized with an alkaline component derived from lime or cement, the enzyme activity of sulfur-oxidizing bacteria does not decrease.
[0063]
Moreover, in the case of the manufacturing method of (ii) and (iii) which uses alkaline waste mud, the mixing ratio of alkaline waste mud and sulfur should just be set to 50-90: 50-10 by weight ratio, for example.
[0064]
The alkaline waste mud that is the raw material should use the waste mud generated by underground continuous wall construction. In continuous underground wall construction, when excavating the ground, in order to prevent the excavated hole wall from collapsing, excavation is carried out while putting muddy water as a stabilizing liquid in the excavation hole. Replace and collect the stable solution while placing.
[0065]
Although this spent stable liquid becomes waste mud, it is replaced and recovered with underwater concrete, so cement is mixed in the waste mud, and therefore, such waste mud becomes alkaline waste mud. Yes.
[0066]
In order to use the water source purification pad 1 manufactured in this way when the surrounding ground water is contaminated with nitrate nitrogen and wants to use the ground water as a water source, as shown in FIG. It is buried near the ground surface of the ground 4 so that the top opening 3 of the gutter 1 communicates with the atmosphere, and the pumping pipe 5 is disposed in the hollow space 2.
[0067]
The embedding depth of the water source purification tub 1 is set to such a depth that the water level of the hollow space 2 of the water source purification tub can be lowered by lowering the water level of the hollow space than the surrounding groundwater level.
[0068]
Here, if the underground water level is low and the embedding depth of the water source purification tub 1 is deepened, and therefore the head is increased, a pump is installed at the bottom of the water source purification basin 1, and the pump It is only necessary to connect the pumping pipe 5 to the pump to pump the water on the ground.
[0069]
In the water source purification tub 1 installed in this manner, the surrounding groundwater will flow through the water purification material constituting the water source purification tub 1 and flow into the hollow space 2. The nitrate nitrogen in the groundwater is reduced to nitrogen gas by the denitrification action of the purification material.
[0070]
That is, when the water purification material that constitutes the water source purification tank 1 and the groundwater containing nitrate nitrogen come into contact, sulfur in the water purification material is oxidized by the enzyme activity of the sulfur-oxidizing bacteria, and accompanying the oxidation reaction. The sulfur becomes an electron donor, and nitrate nitrogen contained in the ground water is reduced to nitrogen gas, and the nitrogen gas is released to the atmosphere through the top opening of the water source purification tub 1. The pumped water can be used as water from which nitrate nitrogen has been removed.
[0071]
Here, as described above, the sulfuric acid produced by the sulfur oxidation is neutralized by the alkali component in the lime or alkaline waste mud, and the sulfuric acid becomes neutral gypsum. Therefore, it can prevent that pH decreases with sulfuric acid and the enzyme activity of sulfur oxidation bacteria falls.
[0072]
As described above, according to the water source purification pad 1 according to the present embodiment, when the water purification material and the groundwater containing nitrate nitrogen come into contact with each other, sulfur in the water purification material is oxidized by the enzyme activity of the sulfur-oxidizing bacteria. Along with the oxidation reaction, the sulfur becomes an electron donor, and nitrate nitrogen in the groundwater is reduced to nitrogen gas.
[0073]
Therefore, nitrate nitrogen contained in groundwater can be efficiently removed at low cost, and the water flowing into the hollow space 2 of the water source purification tub 1 becomes treated water from which nitrate nitrogen has been removed. By pumping this to the ground, it can be effectively used as a water source.
[0074]
On the other hand, sulfur is oxidized by itself to become sulfuric acid, but since it is neutralized by the alkaline component in the alkaline waste mud, it prevents the pH from being lowered by sulfuric acid and the enzymatic activity of sulfur-oxidizing bacteria from being reduced. Can do.
[0075]
In addition, since alkaline waste mud has a high phosphorus adsorption capacity, the water purification material constituting the water source purification tank 1 according to the present embodiment has not only the action of purifying nitrate nitrogen but also the action and effect of adsorbing and removing phosphorus. Have.
[0076]
In addition, according to the water source purification pad 1 according to the present embodiment, it is possible to effectively use alkaline waste mud that has been conventionally disposed as industrial waste as a raw material for detoxifying nitrate nitrogen. Has a remarkable effect.
[0077]
Moreover, according to the water purification tank 1 which concerns on this embodiment, the sulfur which tends to be surplus in the desulfurization process in gasoline refining etc. can also be used effectively.
[0078]
Although not particularly mentioned in this embodiment, when the concentration of nitrate nitrogen contamination is high, the pumped water is not used immediately, but instead is permeated into the ground via the water source tail purifier 1. By repeating the procedure of pumping up water, it is possible to reliably purify high-concentration groundwater contaminated areas.
[0079]
By the way, if the pumping energy in that case is covered by electric energy converted from natural energy such as wind power generation, it is possible to construct an environmental restoration system that can be self-sufficient in terms of energy.
[0080]
(Second Embodiment)
[0081]
In the first embodiment, the water purification material is configured so that a hollow space is formed therein, and the water purification column 1 is used. However, instead of this configuration, the water purification material has a denitrification action and is permeable and breathable. It is good also as a structure which formed the water quality purification material which has solid.
[0082]
FIG. 2 shows this embodiment as a second embodiment. As can be seen from the figure, the water purification tub 1a as the water purification tub according to the present embodiment has a solid water purification material and has a water pump 11 inserted into the water purification material.
[0083]
The purification jar 1a for water source may be manufactured with a water purification material having a denitrification action and water permeability and breathability, but specifically, it is manufactured by the following three methods almost similar to the first embodiment. can do.
[0084]
(I ') The water source purification waste 1a is constituted by mixing lime with sulfur and sulfur-oxidizing bacteria.
[0085]
In this case, if a mold that can be formed into a solid cylindrical shape is manufactured in advance, the pumping pipe 11 is previously disposed therein, and then the lime, sulfur, and sulfur-oxidizing bacteria described above are mixed with water and solidified. Good.
[0086]
If it does in this way, the pumping pipe 11 will be connected to the internal water-permeable space of a water purification material, and it will become possible to pump the water which permeate | transmitted this water purification material.
[0087]
It is desirable to provide a large number of water-permeable holes 12 in the pumping pipe 11 inserted into the water purification material.
[0088]
In solidification, water permeability and air permeability are ensured by appropriately adopting known techniques such as intentionally cracking or adding a foaming agent to form a porous structure.
[0089]
(Ii ′) The water source purification tub 1a is formed by mixing the waste sludge solidified by the solidification action of the alkaline waste sludge containing cement with sulfur and sulfur-oxidizing bacteria.
[0090]
In this case, a mold that can be formed into a solid cylindrical shape is manufactured in advance, and the pumping pipe 11 is previously disposed therein, and then the above-described waste mud solidified body, sulfur, and sulfur-oxidizing bacteria are added to the mold. A solidifying agent for solidification, for example, cement milk, may be additionally charged and solidified. In solidification, water permeability and air permeability are ensured by appropriately adopting known techniques such as intentionally cracking or adding a foaming agent to form a porous structure.
[0091]
(Iii ') The water source purification waste 1a is constituted by mixing alkaline waste mud containing cement, which is a hydraulic material, and sulfur and sulfur-oxidizing bacteria before the alkaline waste mud is solidified.
[0092]
In this case, a mold that can be formed into a solid cylindrical shape is manufactured in advance, the pumping pipe 11 is previously disposed therein, and then the above-described alkaline waste mud, sulfur and sulfur-oxidizing bacteria are mixed and charged and solidified. Just do it. In solidification, water permeability and air permeability are ensured by appropriately adopting known techniques such as intentionally cracking or adding a foaming agent to form a porous structure.
[0093]
In order to use the water source purification tub 1a thus manufactured when the surrounding ground water is contaminated with nitrate nitrogen and wants to use the ground water as a water source, as shown in FIG. It is buried near the ground surface of the ground 4 so that the internal ventilation space of the water purification material constituting the ridge 1a communicates with the atmosphere.
[0094]
The burial depth of the water source purification tub 1a is determined by pumping water that has permeated through the internal water permeable space of the water purification material constituting the water source purification basin so that the water level of the internal water permeable space is higher than the surrounding groundwater level. The depth should be as low as possible.
[0095]
In the purification basin 1a for the water source installed in this way, the surrounding groundwater will permeate the water purification material constituting the purification basin and flow into the internal permeable space. The nitrate nitrogen in the groundwater is reduced to nitrogen gas by the denitrification action of the material.
[0096]
That is, when the water purification material that constitutes the water source purification tank 1a and the groundwater containing nitrate nitrogen come into contact, sulfur in the water purification material is oxidized by the enzyme activity of the sulfur-oxidizing bacteria, and accompanying the oxidation reaction. The sulfur becomes an electron donor, and nitrate nitrogen contained in the groundwater is reduced to nitrogen gas. The nitrogen gas passes through the internal ventilation space of the water purification material constituting the water source purification tank 1a. Is released. The pumped water can be used as water from which nitrate nitrogen has been removed.
[0097]
The internal water-permeable space and the internal air-permeable space are shared by a cracked portion and a void portion in the water purification material.
[0098]
Since the configuration, operation, and effect not particularly described in the present embodiment, including the description regarding the microbial activity and alkaline waste mud, are the same as those in the first embodiment, the description thereof is omitted here.
[0099]
(Third embodiment)
[0100]
In the first embodiment, the water purification material is configured so as to form the hollow space 2 therein, and the water source purification tub 1 is used. However, instead of this configuration, the water purification material is filtered into the hollow space 2 as shown in FIG. The material 24 may be arranged.
[0101]
FIG. 3 shows this embodiment as a third embodiment. As can be seen in the figure, the water source purification pad 1b as the water purification pad according to the present embodiment is similar to the first embodiment by forming the water purification member so as to have a bottomed hollow cylindrical shape. However, in this embodiment, a water-impermeable tube 23 is disposed in the hollow space 2 so that a water guide space 22 is formed between the hollow inner surface 21 and filtered in the water-impermeable tube. The material 24 is filled, and the lower part of the filter material is communicated with the water guide space 22.
[0102]
Here, the filter medium 24 can be configured by laminating, for example, a carbide layer, a sand layer, a carbide layer, and a gravel layer in the impermeable pipe 23 in this order. The lower end is penetrated.
[0103]
Since the water purification tub 1b may be manufactured in the same manner as in the first embodiment, the description thereof is omitted here. Moreover, since the installation method (relative depth relationship with the groundwater level) is the same as that of the first embodiment, the description thereof is omitted here.
[0104]
In the water source purification basin 1b installed in this way, the surrounding ground water will permeate the water purification material of the water source purification basin 1, and the denitrification described in the first embodiment in this water permeation step. An action occurs, and nitrate nitrogen contained in groundwater is reduced to nitrogen gas. By the way, if the water guide space 22 is communicated with the atmosphere, the nitrogen gas is smoothly released into the atmosphere through the water guide space.
[0105]
On the other hand, the treated water from which nitrate nitrogen has been removed by the denitrification action flows down the water guide space 22 and is once collected below the filter medium 24 filled in the impermeable pipe 23.
[0106]
Therefore, the treated water from which nitrate nitrogen has been removed will surely pass through the filter medium 24 from the bottom to the top during pumping, and may be purified not only for nitrate nitrogen but also as clean water. It becomes possible.
[0107]
Since the other operational effects have already been described in the first embodiment, the description thereof is omitted here.
[0108]
(Fourth embodiment)
[0109]
FIG. 4 is a cross-sectional view showing the water purification tank according to the present embodiment. As shown in the figure, the underground infiltration purification basin 41 as the water purification basin according to the present embodiment is configured such that a hollow space is formed inside the water purification material.
[0110]
As shown in the figure, the underground infiltration basin 41 has a structure having a hollow space 42 by forming a water purification material so as to have a bottomed hollow cylindrical shape.
[0111]
The underground infiltration purification tank 41 may be manufactured with a water purification material having a denitrification action and water permeability. Specifically, (i), (ii), (iii) described in the first embodiment. 3). Note that the details are redundantly described, and thus the description thereof is omitted here.
[0112]
When the contaminated water containing nitrate nitrogen generated from daily wastewater, agricultural chemicals, herbicides, fertilizers, manure, etc. is to be infiltrated underground using the thus produced underground infiltration slag 41, FIG. As shown in FIG. 2, the top opening 43 of the underground infiltration purifier 41 is buried near the ground surface of the ground 4 so as to communicate with the atmosphere, and the drain pipe 45 is disposed in the hollow space 42.
[0113]
In the underground infiltration basin 41 installed in this way, the contaminated water in the underground infiltration basin will flow through the water purification material and flow out to the surrounding ground. Denitrification occurs, and nitrate nitrogen contained in the contaminated water is reduced to nitrogen gas.
[0114]
That is, when the water purification material constituting the underground infiltration purification tank 41 and the contaminated water containing nitrate nitrogen come into contact, sulfur in the water purification material is oxidized by the enzyme activity of the sulfur-oxidizing bacteria, and the oxidation reaction is performed. Along with this, the sulfur becomes an electron donor, nitrate nitrogen contained in the contaminated water is reduced to nitrogen gas, and the nitrogen gas is released to the atmosphere through the soil gap. The outflowed water eventually joins groundwater as water from which nitrate nitrogen has been removed.
[0115]
Here, as described above, the sulfuric acid generated by the sulfur oxidation is neutralized by the alkaline component in the lime or alkaline waste mud, and the sulfuric acid becomes neutral gypsum. Therefore, it can prevent that pH decreases with sulfuric acid and the enzyme activity of sulfur oxidation bacteria falls.
[0116]
As described above, according to the underground infiltration basin 41 according to the present embodiment, when the water purification material and the contaminated water containing nitrate nitrogen come into contact with each other, sulfur in the water purification material is converted into the enzyme activity of the sulfur-oxidizing bacteria. In the oxidation reaction, the sulfur becomes an electron donor and nitrate nitrogen in the contaminated water is reduced to nitrogen gas.
[0117]
Therefore, nitrate nitrogen contained in the contaminated water can be efficiently removed at low cost, and the water flowing out from the hollow space 42 of the underground infiltration purifier 41 is treated with the treated water from which nitrate nitrogen has been removed. Therefore, there is no possibility of contaminating the groundwater even if it joins the groundwater.
[0118]
On the other hand, sulfur is oxidized by itself to become sulfuric acid, but since it is neutralized by the alkaline component in the alkaline waste mud, it prevents the pH from being lowered by sulfuric acid and the enzymatic activity of sulfur-oxidizing bacteria from being reduced. Can do.
[0119]
In addition, since alkaline waste mud has a high adsorption capacity for phosphorus, the water purification material constituting the underground infiltration purification tank 41 according to the present embodiment has an effect of adsorbing and removing phosphorus as well as a purification action of nitrate nitrogen. Also have.
[0120]
Moreover, according to the underground infiltration purification tank 41 according to the present embodiment, it is possible to effectively use alkaline waste mud that has been conventionally disposed as industrial waste as a raw material for detoxifying nitrate nitrogen. It has a remarkable effect.
[0121]
Moreover, according to the water purification tank 41 which concerns on this embodiment, the sulfur which tends to be excessive in the desulfurization process in gasoline refining etc. can also be used effectively.
[0122]
(Fifth embodiment)
[0123]
In the fourth embodiment, the water purification material is configured so as to form a hollow space therein, and the underground osmosis purification basin 41 is used. However, instead of such a configuration, it has a denitrification action and has water permeability and ventilation. It is good also as a structure which formed the water quality purification material which has property solidly.
[0124]
FIG. 5 shows this embodiment as a fifth embodiment. As can be seen from the figure, the underground infiltration basin 41a as the water purification basin according to the present embodiment has a solid water quality purification material and a drain pipe 51 penetrating into the water quality purification material.
[0125]
The underground infiltration basin 41a may be manufactured from a water purification material having a denitrification action and water permeability and air permeability. Specifically, substantially the same as in the fourth embodiment, the following three methods are used. Can be manufactured.
[0126]
(I ′) The underground permeation purifier 41a is configured by mixing lime with sulfur and sulfur-oxidizing bacteria.
[0127]
In this case, if a mold that can be formed into a solid cylindrical shape is manufactured in advance, a drain pipe 51 is previously disposed therein, and then the above-described lime, sulfur, and sulfur-oxidizing bacteria are mixed with water and solidified. Good.
[0128]
In this way, the drain pipe 51 communicates with the internal water permeable space of the water purification material, and the contaminated water that has flowed in through the drain pipe 51 is made to permeate the water purification material and then flows out to the surrounding ground. It becomes possible to make it.
[0129]
It is desirable to provide a large number of water permeable holes 12 in the drain pipe 51 penetrating into the water purification material.
[0130]
In solidification, water permeability and air permeability are ensured by appropriately adopting known techniques such as intentionally cracking or adding a foaming agent to form a porous structure.
[0131]
(Ii ′) The underground osmosis purification waste 41a is formed by mixing the waste sludge solidified by the solidification action of the alkaline waste sludge containing cement with sulfur and sulfur-oxidizing bacteria.
[0132]
In this case, a mold that can be formed into a solid cylindrical shape is manufactured in advance, and the drain pipe 51 is previously disposed therein, and then the above-described waste mud solidified body, sulfur, and sulfur-oxidizing bacteria are added to the mold. What is necessary is just to add solidifying agent for solidifying, for example, cement milk, and to solidify. In solidification, water permeability and air permeability are ensured by appropriately adopting known techniques such as intentionally cracking or adding a foaming agent to form a porous structure.
[0133]
(Iii ') The underground infiltration slag 41a is configured by mixing alkaline waste mud containing cement, which is a hydraulic material, and sulfur and sulfur-oxidizing bacteria before solidifying the alkaline waste mud.
[0134]
In this case, a mold that can be formed into a solid cylindrical shape is manufactured in advance, and a drain pipe 51 is previously disposed therein, and then the alkaline waste mud described above, sulfur and sulfur-oxidizing bacteria are mixed and charged and solidified. Just do it. In solidification, water permeability and air permeability are ensured by appropriately adopting known techniques such as intentionally cracking or adding a foaming agent to form a porous structure.
[0135]
When the contaminated water containing nitrate nitrogen generated from domestic wastewater, agricultural chemicals, herbicides, fertilizers, manure, etc. is to be infiltrated underground using the underground infiltration slag 41a thus manufactured, FIG. As shown in Fig. 4, the water purification material constituting the underground infiltration purification tank 41a is buried near the ground surface of the ground 4 so as to communicate with the atmosphere.
[0136]
The embedding depth of the underground infiltration purification tank 41a is set to such a depth that the water level of the internal permeable space of the contaminated water flowing in through the drain pipe 51 can be made higher than the surrounding underground water level.
[0137]
In the underground osmosis purification basin 41a installed in this way, the contaminated water will permeate the water purification material constituting the purification basin and flow out to the surrounding surrounding ground. The nitrate nitrogen in the contaminated water is reduced to nitrogen gas by the denitrification action of the purification material.
[0138]
That is, when the water purification material constituting the underground infiltration purification tank 41a and the contaminated water containing nitrate nitrogen come into contact, sulfur in the water purification material is oxidized by the enzyme activity of the sulfur-oxidizing bacteria, and the oxidation reaction is caused. Along with this, the sulfur becomes an electron donor, nitrate nitrogen contained in the contaminated water is reduced to nitrogen gas, and this nitrogen gas is an internal ventilation space of the water purification material constituting the underground infiltration purification tank 41a. Is released to the atmosphere via And the water which flowed out to the surrounding ground will join groundwater as the water from which nitrate nitrogen was removed.
[0139]
The internal water-permeable space and the internal air-permeable space are shared by a cracked portion and a void portion in the water purification material.
[0140]
Since the configuration, operation, and effect not particularly described in the present embodiment, including the description on the microbial activity and alkaline waste mud, are the same as those in the fourth embodiment, description thereof is omitted here.
[0141]
【The invention's effect】
As described above, according to the water purification plant according to the present invention, when the water purification material comes into contact with groundwater or contaminated water containing nitrate nitrogen, sulfur in the water purification material is oxidized by the enzyme activity of the sulfur-oxidizing bacteria. At the same time, with the oxidation reaction, the sulfur becomes an electron donor, and nitrate nitrogen in the ground water or contaminated water can be reduced to nitrogen gas to purify the ground water or contaminated water.
[0142]
[Brief description of the drawings]
1A and 1B are views of a water purification tank according to a first embodiment, wherein FIG. 1A is a vertical cross-sectional view, and FIG. 1B is a horizontal cross-sectional view along the line AA.
2A and 2B are views of a water purification tank according to a second embodiment, wherein FIG. 2A is a vertical cross-sectional view, and FIG. 2B is a horizontal cross-sectional view along the BB line direction.
FIGS. 3A and 3B are views of a water purification tank according to a third embodiment, wherein FIG. 3A is a vertical cross-sectional view, and FIG. 3B is a horizontal cross-sectional view along the direction of line CC.
FIGS. 4A and 4B are views of a water purification tank according to a fourth embodiment, wherein FIG. 4A is a vertical cross-sectional view, and FIG. 4B is a horizontal cross-sectional view along the DD line direction.
5A and 5B are views of a water purification tank according to a fifth embodiment, wherein FIG. 5A is a vertical cross-sectional view, and FIG.
[Explanation of symbols]
1,1a, 1b Water source purification tank (water purification tank)
2,42 hollow space
4 ground
5, 11, 25 Pumped pipe
22 Water transfer space
23 Impervious pipe
24 Filter media
41, 41a Underground seepage purification tank (water purification tank)
45,51 Drain pipe

Claims (6)

脱窒作用を有しかつ透水性を有する水質浄化材を内部に中空空間が形成されるように構成してなることを特徴とする水質浄化枡。A water purification tank comprising a water purification material having a denitrification action and water permeability so that a hollow space is formed therein. 前記水質浄化材の中空内面との間に導水スペースが形成されるように前記中空空間に不透水管を配置して該不透水管内に濾過材を充填するとともに、該濾過材の下方を前記導水スペースに連通させた請求項1記載の水質浄化枡。An impervious pipe is disposed in the hollow space so that a water guide space is formed between the hollow inner surface of the water purification material, and the water impervious pipe is filled with a filter medium. The water purification tank according to claim 1, which is communicated with a space. 脱窒作用を有しかつ透水性及び通気性を有する水質浄化材を中実に形成するとともに該水質浄化材に揚水管又は排水管を貫入したことを特徴とする水質浄化枡。A water purification jar characterized by solidly forming a water purification material having denitrification action and water permeability and breathability, and having a water pump or a drain pipe penetrated into the water purification material. 前記水質浄化材を、石灰と、硫黄及び硫黄酸化細菌とを混合して構成した請求項1乃至請求項3のいずれか一記載の水質浄化枡。The water purification jar according to any one of claims 1 to 3, wherein the water purification material is configured by mixing lime, sulfur, and sulfur-oxidizing bacteria. 前記水質浄化材を、水硬性材料を含むアルカリ性排泥と、硫黄及び硫黄酸化細菌とを、前記アルカリ性排泥の固化前に混合して構成した請求項1乃至請求項3のいずれか一記載の水質浄化枡。4. The water purification material according to claim 1, wherein alkaline waste mud containing a hydraulic material, sulfur and sulfur-oxidizing bacteria are mixed before solidification of the alkaline waste mud. 5. Water purification jar. 前記水質浄化材を、水硬性材料を含むアルカリ性排泥が該水硬性材料の固化作用によって固化した排泥固化体と、硫黄及び硫黄酸化細菌とを混合して構成した請求項1乃至請求項3のいずれか一記載の水質浄化枡。4. The water purification material according to claim 1, wherein alkaline waste mud containing a hydraulic material is solidified by a solidified action of the hydraulic material, and sulfur and sulfur-oxidizing bacteria are mixed. The water purification tank according to any one of the above.
JP2003171957A 2003-06-17 2003-06-17 Water purification jar Expired - Fee Related JP4517593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003171957A JP4517593B2 (en) 2003-06-17 2003-06-17 Water purification jar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003171957A JP4517593B2 (en) 2003-06-17 2003-06-17 Water purification jar

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009018461A Division JP4609582B2 (en) 2009-01-29 2009-01-29 Groundwater purification system

Publications (2)

Publication Number Publication Date
JP2005007234A true JP2005007234A (en) 2005-01-13
JP4517593B2 JP4517593B2 (en) 2010-08-04

Family

ID=34096266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003171957A Expired - Fee Related JP4517593B2 (en) 2003-06-17 2003-06-17 Water purification jar

Country Status (1)

Country Link
JP (1) JP4517593B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007000A (en) * 2004-06-22 2006-01-12 Ohbayashi Corp Water purification promoting material and high functional water purification material, and water purification method using them
WO2010067788A1 (en) * 2008-12-10 2010-06-17 Fujita Takurou Nitrate-removing bioreactor, method for forming nitrate-removing biofilm, and nitrate-removing method
JP2018051457A (en) * 2016-09-27 2018-04-05 株式会社大林組 Pumping method and in-situ purifying method of contaminated groundwater
CN114620832A (en) * 2022-04-15 2022-06-14 合肥工业大学 Sulfur-based autotrophic microbial denitrification material and preparation and application methods thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07195093A (en) * 1993-12-31 1995-08-01 Sou Giken:Kk Treatment of sewage using bioreactor
JPH08169745A (en) * 1994-12-19 1996-07-02 Mitsuru Sasaki Bioconcrete and bioporous concrete
JP2001340883A (en) * 2000-05-31 2001-12-11 Kazuyoshi Ono Wastewater treatment device
JP2004344765A (en) * 2003-05-22 2004-12-09 Ohbayashi Corp Water purifying material and its manufacturing method
JP2005000758A (en) * 2003-06-10 2005-01-06 Ohbayashi Corp Water cleaning structure and method for constructing the same
JP2005007247A (en) * 2003-06-17 2005-01-13 Ohbayashi Corp Water purifying underground dam and construction method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07195093A (en) * 1993-12-31 1995-08-01 Sou Giken:Kk Treatment of sewage using bioreactor
JPH08169745A (en) * 1994-12-19 1996-07-02 Mitsuru Sasaki Bioconcrete and bioporous concrete
JP2001340883A (en) * 2000-05-31 2001-12-11 Kazuyoshi Ono Wastewater treatment device
JP2004344765A (en) * 2003-05-22 2004-12-09 Ohbayashi Corp Water purifying material and its manufacturing method
JP2005000758A (en) * 2003-06-10 2005-01-06 Ohbayashi Corp Water cleaning structure and method for constructing the same
JP2005007247A (en) * 2003-06-17 2005-01-13 Ohbayashi Corp Water purifying underground dam and construction method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007000A (en) * 2004-06-22 2006-01-12 Ohbayashi Corp Water purification promoting material and high functional water purification material, and water purification method using them
JP4649887B2 (en) * 2004-06-22 2011-03-16 株式会社大林組 Water purification promotion material, highly functional water purification material, and water purification method using them
WO2010067788A1 (en) * 2008-12-10 2010-06-17 Fujita Takurou Nitrate-removing bioreactor, method for forming nitrate-removing biofilm, and nitrate-removing method
JP2010137157A (en) * 2008-12-10 2010-06-24 Takuro Fujita Nitric acid removal bioreactor, method for generating nitric acid removal biofilm, and method for removing nitric acid
JP2018051457A (en) * 2016-09-27 2018-04-05 株式会社大林組 Pumping method and in-situ purifying method of contaminated groundwater
CN114620832A (en) * 2022-04-15 2022-06-14 合肥工业大学 Sulfur-based autotrophic microbial denitrification material and preparation and application methods thereof

Also Published As

Publication number Publication date
JP4517593B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JPH05501520A (en) How to remove halogenated contaminants in groundwater
KR101218767B1 (en) Vegetation Wetland System for Treatment of Urban Non-Contaminant Pollutants by Aerobic and Anaerobic Decomposition
KR100729820B1 (en) Method and apparatus for purifying polluted substances containing halogenated organic compound
JP4199075B2 (en) Water purification facility
KR100635162B1 (en) Water clarifying agent inducing catalytic reaction and method of clarifying water through activation of microorganism
KR100597886B1 (en) Ds-mprbs
JP4608851B2 (en) Construction method of water purification structure
JP4517593B2 (en) Water purification jar
JP6274426B2 (en) Method and apparatus for denitrification of nitrate nitrogen
JP2015134343A (en) In-situ chemical fixation of metal contaminant
Abdel-Shafy et al. Land Infiltration for Wastewater Treatment As Efficient, Simple, And Low Techniques: An Overview
JP4609582B2 (en) Groundwater purification system
JP3735707B2 (en) Removal of nitrate nitrogen from soil seepage water
JP4140031B2 (en) Water purification subsurface dam and its construction method
JP4518207B2 (en) Water purification structure
JP2004344765A (en) Water purifying material and its manufacturing method
JP4649887B2 (en) Water purification promotion material, highly functional water purification material, and water purification method using them
KR20220128540A (en) Water infiltration system having improved denitrification effeciency
JPS61212386A (en) Method and apparatus for purifying sewage
JP2004313865A (en) Underground cleaning body arranged with hardly water-permeating division layer and construction method for underground cleaning body
JP2009011947A (en) Purification ground and method for soil saturation water
JP4370699B2 (en) Wastewater treatment equipment
JP2006291568A (en) Water purification method for rivers
JP2005046658A (en) Soil purifying method and apparatus therefor
JPH03262595A (en) Equipment for improving water quality of river and water channel or the like

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4517593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees