JP2004313865A - Underground cleaning body arranged with hardly water-permeating division layer and construction method for underground cleaning body - Google Patents

Underground cleaning body arranged with hardly water-permeating division layer and construction method for underground cleaning body Download PDF

Info

Publication number
JP2004313865A
JP2004313865A JP2003108763A JP2003108763A JP2004313865A JP 2004313865 A JP2004313865 A JP 2004313865A JP 2003108763 A JP2003108763 A JP 2003108763A JP 2003108763 A JP2003108763 A JP 2003108763A JP 2004313865 A JP2004313865 A JP 2004313865A
Authority
JP
Japan
Prior art keywords
aquifer
underground
layer
ground
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003108763A
Other languages
Japanese (ja)
Other versions
JP4067440B2 (en
Inventor
Masayoshi Shibuki
雅良 渋木
治雄 ▲吉▼川
Haruo Yoshikawa
Nariyuki Sakai
成之 酒井
Hirohisa Yamaguchi
博久 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oyo Corp
Fudo Tetra Corp
Original Assignee
Oyo Corp
Fudo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oyo Corp, Fudo Construction Co Ltd filed Critical Oyo Corp
Priority to JP2003108763A priority Critical patent/JP4067440B2/en
Publication of JP2004313865A publication Critical patent/JP2004313865A/en
Application granted granted Critical
Publication of JP4067440B2 publication Critical patent/JP4067440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To totally generate no residual soil, to exhibit large water-permeability and to individually clean contaminated underground water in respective aquifers by one cleaning body without making underground water flowing in one aquifer flow to the other aquifer through the cleaning body. <P>SOLUTION: The underground cleaning body 10 has a hardly water-permeating layer 23 between the aquifer 22 and the aquifer 24 is made on a contaminated ground 30 existed with two or more of aquifers. The cleaning body divisions 11, 13, 15 positioned on the aquifer are formed by a mixture body including at least a cleaning material, a bioerodible polymer and original ground soil. Hardly water-permeating division layers 12, 14 for shutting off mutual communication of underground water flowing in aquifers at both vertical sides clamping a hardly water-permeating layer are arranged in the cleaning body division positioned in the hardly water-permeating layers 12, 14. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、残土を発生させず且つ大きな透水性を示すと共に、間隙水圧の異なる複数の帯水層を流れる各汚染地下水を1つの浄化体で個別に浄化することができる地中浄化体及び該地中浄化体を構築する工法に関するものである。
【0002】
【従来の技術】
例えば、半導体製造工場などの洗浄工程において多量に使用されるトリクロロエチレン等の揮発性有機化合物は、漏れなどにより土壌又は地下水を汚染する可能性があり、この場合、工場跡地の再利用の障害となったり、地下水の利用が制限されたりする問題がある。
【0003】
これを解決するものとして、揮発性有機化合物で汚染された地下水の流れを遮断する方向で金属性還元剤を含んだ浄化連続壁を地中に形成し、該浄化連続壁を地下水が通過する際に還元反応により、汚染物質を分解させ無公害化させる方法がある(特許文献1の国際公開番号WO91/08176号公報)。また、地中に連続配置される浄化壁を円柱の連続杭又は間欠杭とし、該円柱に金属性還元剤を収納した円筒袋を積み重ねることで金属性還元剤の分離を防止すると共に、透水性の改善を図ったものも開示されている(特許文献2の特開平11−156351号公報)。
【0004】
一方、地盤の構造は、一般的には間隙水圧の異なる複数の帯水層が存在するのがほとんどである。すなわち、図7に示すように、通常の地盤50は、地中深度方向に地表層51、帯水層52、難透水層53、帯水層54及び基盤55を有するか、あるいは帯水層と難透水層が深部方向に更に繰り返して存在する構造を有する。このような地盤50において、工場56等から漏れ出た汚染物質は、透水性の良い部分を選択的に通過し拡散していくものの、汚染履歴が古い場合、難透水層53の内部まで浸入し、更には難透水層53を貫通して下の帯水層54に達する場合もある。しかも、難透水層53を挟む上下の帯水層52、54で地下水の流れが異なる場合も多く、汚染物質が地下水に溶解している場合、汚染は地下水の流れに伴って移動、拡散し、地中の汚染源57は水平方向に広がり、深度方向に深く及んでいる場合も稀ではなく、更に各帯水層における汚染濃度も当然異なっているのが現状である。
【0005】
【発明が解決しようとする課題】
しかしながら、特開平11−156351号公報等に開示されるような従来の地中浄化壁は、前述したような地盤構造に対応した構造を採っていない。このため、このような地中浄化壁を地中に配置した場合、間隙水圧の低い帯水層を流れる汚染地下水は浄化壁を通過し難く、浄化されにくいという問題が生じる。その理由を図8を参照して説明する。すなわち、汚染源57の下流の地盤に配設された地中浄化壁58は通常汚染地下水を該浄化壁に円滑に通過させるため、通常帯水層と同じか又はそれより大きな透水性を有するように設計されている。しかし、この場合地中浄化壁58は同時に、両帯水層52、54を連通することになり、例えば間隙水圧の高い上方の帯水層52の汚染地下水Xはその一部は浄化壁58を通過して浄化地下水X1となるものの、残部の地下水X2は間隙水圧の低い下方の帯水層54に流れ込み、帯水層54部分に位置する地中浄化壁周り581に滞留することになる。このため、帯水層54の汚染地下水Yは地中浄化壁58を円滑には通過できず、地中浄化壁58を回り込むような流れが発生するため結局浄化されにくくなる。この現象は、下方の帯水層54が上方の帯水層52より間隙水圧が高い場合についても同様であり、間隙水圧が低い帯水層52の汚染地下水は浄化されない。
【0006】
一方、国際公開番号WO91/08176号公報記載の浄化連続壁は溝孔を掘削することから、残土が大量に発生する。また該溝孔に金属系還元剤と砂との混合物を設置する際、金属系還元剤等が分離してしまい均一に分散させることが困難であると共に、帯水層の透水性を安定して確保することができないという問題がある。また、特許文献2の特開平11−156351号公報記載の地中浄化壁は例えば円柱浄化壁の場合、中掘工法による掘削により形成されたケーシングパイプ内の中空部分に造成管を用いて活性炭等を打設した後で、ケーシングパイプを引抜くというオールケーシング工法によるものであるため、残土が大量に発生し産業廃棄物処理の問題を惹起する。
【0007】
【特許文献1】
国際公開番号WO91/08176号公報(特許請求の範囲)
【特許文献2】
特開平11−156351号公報(特許請求の範囲、段落番号0023)
【0008】
【発明が解決しようとする課題】
従って、本発明の目的は、残土をほとんど発生させず且つ大きな透水性を示すと共に、一の帯水層を流れる地下水が浄化体を通って他の帯水層に流入することがなく、各々の帯水層の汚染地下水を1つの浄化体で個別に浄化することができる地中浄化体及び地中浄化体の構築工法を提供することにある。
【0009】
【課題を解決するための手段】
すなわち、上記目的を達成する本発明(1)は、帯水層と帯水層の間に難透水層を有し、かつ該帯水層が2以上存在する汚染地盤に造成される地中浄化体であって、前記帯水層に位置する浄化体区画は少なくとも浄化材料、生分解性ポリマー及び原地盤土壌を含む混合体で形成され、前記難透水層に位置する浄化体区画は当該難透水層を挟む上下両側の帯水層を流れる地下水の互いの流通を遮断する難透水性の区画層を配設したものである地中浄化体を提供するものである。また、本発明(2)は、前記汚染地盤が、地中深度方向に帯水層、難透水層及び帯水層の繰り返し構造を有し、第3番目以降の帯水層が非汚染層である場合、前記地中浄化体の下端部が、最深汚染層の帯水層と非汚染層の帯水層で挟まれる難透水層に着底させている前記地中浄化体を提供するものである。また、本発明(3)は、前記浄化材料は、汚染物質吸着材及び汚染物質分解材から選ばれる1種以上である前記地中浄化体を提供するものである。また、本発明(4)は、前記難透水性の区画層は、該区画層に連なる難透水層と同じ難透水性か又はそれより大きな難透水性を有する前記地中浄化体を提供するものである。また、本発明(5)は、帯水層と帯水層の間に難透水層を有し、かつ該帯水層が2以上存在する汚染地盤に地中浄化体を造成する工法であって、浄化材料と生分解性ポリマーを含有する混合薬材を地上から地中に供給し該混合薬材と原地盤土壌を攪拌混合して該帯水層に位置する浄化体区画を形成する工程と、遮水性材料を地上から地中に供給し該遮水性材料と原地盤土壌を攪拌混合して形成して、当該難透水層を挟む上下両側の帯水層を流れる地下水の互いの流通を遮断する難透水性の区画層を配設する工程を行う地中浄化体の構築工法を提供するものである。
【0010】
【発明の実施の形態】
本発明において、地中浄化体が造成される汚染地盤としては、帯水層と帯水層の間に難透水層を有し、かつ該帯水層が2以上存在する地盤である。すなわち、地中深度方向に帯水層、難透水層及び帯水層の3層構造を有する汚染地盤、又は該3層構造に続いて更に地中深度方向に難透水層及び帯水層の繰り返し構造を有する地盤である。この積層構造の上方は、地表層であり、下方は硬質層の基盤である。従って、例えば難透水層が2層の場合、該地盤は地表から深部方向へ、地表層、第1帯水層、第1難透水層、第2帯水層、第2難透水層、第3帯水層及び基盤からなる。また、複数の帯水層の間隙水圧は同じでも、互いに異なるものでもよいが、通常異なる場合がほとんどであり、本発明においては、この間隙水圧が異なる場合に顕著な効果を奏することができる。また、複数の帯水層の地下水の流れ方向は同じでも、互いに異なるものでもよい。
【0011】
本発明の地中浄化体が造成される汚染地盤において、汚染物質が存在する汚染層は少なくとも2つの帯水層に亘って存在するものが対象となる。1つの最浅の帯水層のみが汚染層であれば、地中浄化体を該地中浄化体の下端部を第1の難透水層に着底するように造成すれば、一の帯水層を流れる地下水が他の帯水層に流れる恐れはない。また、複数の帯水層の汚染濃度は同じでも、互いに異なっていてもよいが、本発明においては、複数の帯水層の汚染濃度が異なる場合において、特に顕著な効果を奏する。また、汚染地盤には汚染層の他、非汚染層の帯水層が存在していてもよい。汚染物質としては、特に制限されないが、トリクロロエチレン等の揮発性有機化合物及び重金属等が挙げられる。
【0012】
本発明においては、汚染地盤に地中浄化体を造成する前に、予め地中の地盤構造及び汚染状況を把握するための事前調査が行われる。調査方法は公知の方法で行われ、調査項目としては、例えば帯水層及び難透水層の存在及びその深さ、各々の帯水層及び難透水層の透水係数、各々の地下水の流れ方向、及び汚染層、非汚染層の存在等が挙げられる。帯水層の透水係数は通常10−1〜10−4cm/秒であり、難透水層の透水係数は通常10−6〜10−8cm/秒である。国内のある地点における地盤調査によれば、当該地盤は地中深度方向に順に第1帯水層10m、第1難透水層3m、第2帯水層10m、第2難透水層5m、第3帯水層5mであり、これら全層のうち、第1帯水層から第2帯水層までが汚染層であった。
【0013】
次に、本発明の実施の形態における地中浄化体を図1を参照して説明する。図1は本実施の形態における地中浄化体の概略断面図である。本例の地中浄化体10は、地中深部方向に地表層21、第1帯水層22、第1難透水層23、第2帯水層24、第2難透水層25、第3帯水層26、第3難透水層27、第4帯水層28及び基盤29からなる地盤の汚染源19の下流側に造成される地中浄化体であって、第1帯水層22に位置する浄化体区画11、第2帯水層24に位置する浄化体区画13及び第3帯水層26に位置する浄化体区画15は少なくとも浄化材料、生分解性ポリマー及び原地盤土壌を含む混合体で形成され、第1難透水層23に位置する浄化体区画は第1難透水層23を挟む上下両側に位置する第1帯水層22及び第2帯水層24を流れる汚染地下水の互いの流通を遮断する難透水性の区画層12を配設し、第2難透水層25に位置する浄化体区画は第2難透水層25を挟む上下両側に位置する第2帯水層24及び第3帯水層26を流れる汚染地下水の互いの流通を遮断する難透水性の区画層14を配設したものである。
【0014】
また、本例の地中浄化体10は、最浅の第1帯水層22に位置する浄化体区画11より上方の地表層112部分は特段の施工を行なう必要がない。但し、図1では、地表層112の原地盤土壌は施工過程において攪拌混合され、透水性が高められているため、地中浄化体10の頭部に難透水性の雨水浸入防止層17を設けている。また、地中浄化体10の下端部16を、最深汚染層の第3帯水層26と非汚染層の第4帯水層28で挟まれる第3難透水層27に着底させている。地中浄化体10の下端部16を、第3難透水層27を貫通して着底させると、第3帯水層26の汚染地下水が非汚染層の第4帯水層28に流入する恐れがある。この場合、他の難透水層に位置する浄化体区画と同様、第3難透水層27に位置する浄化体部分に難透水性の区画層を配置すれば、地中浄化体10の下端部16を第3難透水層27を貫通して着底させてもよいが、無駄な施工部分が生じるため好ましくない。
【0015】
本例の地中浄化体10の帯水層に位置する浄化体区画は、浄化材料、生分解性ポリマー及び原地盤土壌を含む混合体からなる。浄化材料としては、例えば汚染物質吸着材又は汚染物質分解材が挙げられる。汚染物質吸着材としては、有機ハロゲン化合物又は重金属等の汚染物質を主に吸着により除去するものであれば特に制限されず、例えば活性炭が挙げられる。また汚染物質分解材としては、汚染物質を主に分解により除去するものであれば特に制限されず、例えば金属系還元材及び酸化鉄系分解材が挙げられる。金属系還元材としては、例えば鉄又は亜鉛の金属粉体、若しくはそれらの合金又は化合物の粉体等が挙げられ、このうち、鉄粉が安価であり且つ廃棄物として排出されるものも使用できる点で好適である。酸化鉄系分解材としては、例えば酸化チタン製造工程から副生する含鉄硫酸から合成したマグネタイト系酸化チタン副生酸化鉄を活性処理した市販のものが使用できる。また、特開2002−317202号公報記載のような金属系還元材と酸化鉄系分解材の複合材料を使用することもできる。これら浄化材料のうち、汚染物質分解材を使用することが、汚染物質を分解して無害化できる点で好ましい。これらの浄化材料は1種単独又はこれらの2種以上を組合わせて使用することもできる。
【0016】
生分解性ポリマーは、浄化材料と混合され地上から原位置土壌に供給される際、混合薬材中の浄化材料を均一に分散する分散助剤として作用すると共に、原地盤土壌に供給された後は、例えば約1週間程度で分解され、地下水と共に流出するため、原地盤土壌に空隙を生み透水性を与える機能を果たす。混合薬材における生分解性ポリマーの浄化材料分散作用は、特に、混合薬材がスラリー状の混合薬液である場合、該混合薬液が高粘性となるためより顕著となる。生分解性ポリマーとしては、特に制限されず、例えば天然又は合成の水溶性高分子が挙げられ、具体的にはポリ乳酸系;カルボキシメチルセルローズ(CMC)等のセルローズ系高分子;可溶性澱粉及びカルボキシメチルスターチ(CMS)等の澱粉系高分子が例示される。このうち、セルローズ系高分子が、混合薬材をスラリー状の混合薬液とした場合、該高分子の増粘作用による浄化材料分散機能を発揮すると共に、比較的短期間で分解される点で好ましい。
【0017】
地中浄化体の難透水性の区画層12、14は遮水性材料で形成されたものであれば特に制限されない。遮水性材料としては、例えばセメントミルク等が挙げられる。難透水性の区画層12、14は、第1難透水層23及び第2難透水層25にそれぞれ位置する浄化体区画の少なくとも一部に形成されていればよい。すなわち、難透水性の区画層12を例にとり更に説明すれば、図2に示すように、第1難透水層23が厚さHである場合、第1難透水層23に位置する浄化体区画111(厚さH)の一部に、厚さがHより小さいhの層で形成されたものであればよい。この区画層12の厚さhは、難透水層の厚さ及びその難透水性等により適宜決定される。区画層12の厚さhが厚すぎると、過剰な難透水性となるばかりか材料の無駄遣いとなり、一方、薄すぎると安定した難透水性が得られない恐れがでてくる。また、難透水性の区画層12、14は、該区画層12、14に連なる第1難透水層23や第2難透水層25と同じ難透水性か又はそれより大きな難透水性を有するものであればよく、このうち、連なる第1難透水層23や第2難透水層25と同じ難透水性とすることが、材料の無駄を省きかつ地下水の上下方向の流通を確実に遮断できる点で好適である。
【0018】
前記地中浄化体10は、浄化材料と生分解性ポリマーを含有する混合薬材を、地上から地中に供給し該混合薬材と原地盤土壌を攪拌混合して該帯水層に位置する浄化体区画を形成する工程と、遮水性材料を地上から地中に供給し該遮水性材料と原地盤土壌を攪拌混合して形成して、当該難透水層を挟む上下両側の帯水層を流れる地下水の互いの流通を遮断する難透水性の区画層を配設する工程を行うことで得られる。この地中浄化体を地中に設置する工法としては、特に制限されず、いわゆる機械式攪拌装置を使用する機械式攪拌混合工法、噴射式攪拌混合装置を使用する噴射式攪拌混合工法、機械式攪拌混合工法と噴射式攪拌混合工法との併用工法及び機械式攪拌機能と噴射式攪拌機能を備えた装置で行う複合工法が適用できる。これらの工法はいずれも残土の発生がほとんどなく、産業廃棄物処理の問題も起こらない。また、これらの工法のうち、機械式攪拌混合工法を適用することが、浄化材料、生分解性ポリマー及び原地盤土壌の均一混合が比較的容易で且つ確実に行うことができる点で好ましい。
【0019】
混合薬液中、浄化材料と生分解性ポリマーの配合比率は、汚染地下水の汚染程度、原地盤土壌の地質及び生分解性ポリマーの分解進行度等により異なり、適宜決定される。また、混合薬材には、必要に応じて、生分解性ポリマーの分解の進行度を調整するための助剤を配合することができる。混合薬材の供給形態は粉状物及び液状物であり、このうち、浄化材料、生分解性ポリマー及び水を含有するスラリー状の液状物とすることが、前述の如く、混合薬液における生分解性ポリマーの浄化材料分散機能を効果的に発現せしめることができる点で好ましい。
【0020】
以下に本例の地中浄化体10を機械式攪拌装置を使用して地中に構築する方法について説明する。機械式攪拌装置としては、例えば攪拌軸の下方に付設される複数の攪拌翼と、該攪拌翼の近傍に付設される混合薬液を吐出する第1開口と、遮水性材料を吐出する第2開口とを備える装置、あるいは同様の複数の攪拌翼と、該攪拌翼の近傍に付設される混合薬液と遮水性材料を供給する単一の開口と、混合薬液と遮水性材料の供給を切替える材料供給切替手段を備える装置が挙げられる。また、地上には浄化材料、生分解性ポリマー及び水を含有するスラリー状の混合薬液を供給する第1プラント設備と、セメントミルク等の遮水性材料を供給する第2プラント設備を設置する。該混合薬液と遮水性材料の供給を切替える材料供給切替手段を設けた場合には、該材料供給切替手段によって、該攪拌翼近傍に付設された単一の開口より吐出する材料を変更することができる。
【0021】
本例では先ず帯水層に位置する浄化体区画を形成する工程を実施する。不図示の機械式攪拌装置を、汚染層19より下流側の地盤中に所定の深度まで貫入する。貫入後、第1プラント設備を駆動して第1開口からスラリー状の混合薬液を原地盤土壌に供給し、該混合薬液と原地盤土壌を攪拌翼で均一に攪拌混合し、更に攪拌軸を引き上げつつ帯水層26の位置に浄化体区画15を造成する。次いで、第2難透水層25を挟む上下両側の第2帯水層24及び第3帯水層25を流れる地下水の互いの流通を遮断する難透水性の区画層14を配設する工程を実施する。すなわち浄化体区画15の造成途中で、混合薬液の供給を停止し、第2プラント設備を駆動して第2開口から遮水性材料を原地盤土壌に供給し、該遮水性材料と原地盤土壌を攪拌翼で均一に攪拌混合し、難透水層25の位置に難透水性の区画層14を造る。この操作を更に順次繰返して、難透水性の区画層14の上方へ順に、浄化体区画13、難透水性の区画層12、浄化体区画11、難透水性の雨水浸入防止層17を形成する。なお、雨水進入防止層17は、難透水性の区画層と同様の材料が使用され、透水係数も同様の値でよい。また、地下水位WLから難透水性の雨水浸入防止層17までの地中浄化体上部の地表層112は、混合薬液や遮水性材料を供給せず、施工過程で攪拌されほぐされた土壌のままであってもよい。
【0022】
次に、地中に構築された地中浄化体の帯水層に位置する浄化体区画が実際に汚染地下水を浄化する構造体となる過程を図3を参照して説明する。図3は地中に構築された地中浄化体の帯水層部分における構造の変化を説明するための概念図である。地中浄化体が構築される前の地中構造は、概ね、土粒子31と土粒子31間の間隙32(地下水が流れる部分)とから構成される(図3(A))。この間隙32の存在により適度の透水性が得られている。この地中に地中浄化体が構築されると、地中構造は土粒子31と土粒子31間に例えば浄化材料、生分解性ポリマー及び水からなる高粘性のスラリー34を含むものとなる(図3(B))。この状態の浄化体は透水性を示さない。その後、該浄化体中の生分解性ポリマーは微生物の持つ生理活性等により徐々に分解され、例えば増粘作用が消失して地下水と共に流れ出し、当該消失部分が間隙32となって表れる(図3(C))。地中浄化体構築後、例えば5〜10日間で生分解性ポリマーは完全に分解し消失すると、間隙部分に残った浄化材料33は重力沈降や地下水の流れに伴い移動し、近傍にある土粒子31の表面に付着する(図3(D))。この状態の地中浄化体の構造は土粒子31と、土粒子の表面に付着した浄化材料33と、土粒子31間に適度の透水性を示す間隙32を有するものとなる。これにより、該浄化体の透水性はほぼ浄化体構築前の地中の透水性と同じものとなると共に、浄化効率が向上する。
【0023】
地中浄化体の構築過程において、該地中浄化体の浄化体区画分は、上記の如く、生分解性ポリマーの効果で5〜10日間程度は不透水性が保持される。一方、難透水性の区画を構築する際、好適な遮水性材料であるセメントミルクは3日で固化する。このように、生分解性ポリマーの分解時間をセメントミルクの固化時間より長く制御することで、難透水性の区画を確実に構築することができる。逆に、生分解性ポリマーの分解時間が、セメントミルクの固化時間より短い場合、セメントミルクの固化体である難透水性の区画が形成される前に圧力が作用するため、孔が開き、難透水性の区画層を造成できない。
【0024】
該地中浄化体は、例えば間隙水圧の異なる複数の帯水層を有する汚染地盤中に所定の深度で造成されるにも拘わらず、地盤の帯水層の位置には透過性の浄化区画が形成され、難透水層に位置する浄化体区画には難透水性の区画層が形成され地盤構造に対応した構造を採るため、各帯水層の汚染地下水の流れはあたかも当該地中浄化体が造成されていないかのように、その流れを維持し当該透過性の浄化体区画を通過する。このため、間隙水圧の高い帯水層の汚染地下水が間隙水圧の低い帯水層に流入し、当該部分の汚染地下水が浄化されないという問題は起こらない。
【0025】
前記機械式攪拌混合工法、噴射式攪拌混合工法、これら両工法を供に用いた併用工法又は複合工法により構築される地中浄化体としては、例えば円形断面の地中浄化体が挙げられる。前記円形断面の地中浄化体は通常これを地中に多数配設して造成されるもので、例えば前記地中浄化体を接円又は一部重複して構築された地中連続壁及び前記地中浄化体を地中に間欠的且つ複数列状で、更に千鳥状となるように配置してなる浄化体等が挙げられ、このうち、地中に間欠的且つ複数列状で、更に千鳥状となるように配置してなる浄化体が、流向が異なる複数の地下水を効果的に浄化できる点で好適であり、更に流向が異なる複数の地下水の透過率が共に100%となるように配置することが浄化を確実に行える点で特に好適である。千鳥状の平面形態としては、例えば1つの地中浄化体が互い違いに配置された形態のもの、W字が連続して配置された形態のもの(図4)及び菱形が連続して配置された形態のもの(図5)が挙げられる。地中に間欠的に多数配設して造成される地中浄化体全体の平面視の概略形状としては、特に制限されず、長尺矩形状、弓状、ドーナツ状及び不定形状等が挙げられる。ドーナツ状は、その中心に汚染層が存在するものであり、いわゆる汚染源を封じ込めにより浄化するものである。また、連続壁状の地中浄化体の平面視の概略形状としては、長尺矩形状、弓状及び不定形状等が挙げられる。
【0026】
連続壁の他の形態としては、可撓性合成樹脂製板及び鋼製薄板等の遮水壁と本発明の地中浄化体とが組み合わされたものが挙げられる。この連続壁は、例えば汚染源を封じ込めるドーナツ状とすることができる。また、遮水壁を組み合わせた連続壁を構築する工法としては、例えば噴射式攪拌混合工法、機械式攪拌混合工法と噴射式攪拌混合工法との併用工法及び機械式攪拌機能と噴射式攪拌機能を備えた装置で行う複合工法が適用できる。特に埋設管等の地中構造物が障害となる場合、噴射式攪拌混合工法及び機械式攪拌機能と噴射式攪拌機能を備えた装置で行う複合工法が、連続壁の構築を可能にすると共に、地中浄化体と地中構造物との密接性を確保できる点で好適である。
【0027】
図6は地中に構築された地中浄化体の一例を示す概略平面図である。なお、図6中、符号41は地中浄化体40の流向Aに対する平均投影幅W1、符号42は地中浄化体40の流向Bに対する平均投影幅W2を参考のためにそれぞれ示したもので、地中浄化体ではない。本例の地中浄化体40は、円形断面の地中浄化体10を地中に間欠的且つ2列状で、更に千鳥状に多数配設し全体の概略形状が長尺矩形状となるように配置したもので、汚染層44を通過する流向Aの地下水Iに対して直交するように、かつ異なる帯水層に位置する汚染層43を通過する流向Bの地下水IIに対して傾斜角度αとなるように配置され、更に両地下水の透過率が共に100%となるように配置したものである。透過率とは、地下水の流向に沿って見た場合、浄化体造成領域断面中、浄化体が占める断面積の割合をいい、透過率100%とは、流入する汚染地下水の全てが浄化体を通過することを意味する。
【0028】
次に、図6のように配置された地中浄化体40を用いて2つの帯水層を有する地盤30Aの汚染地下水の浄化方法について説明する。ここで、地中浄化体40は生分解性ポリマーが分解して安定した透水性を示す状態にある。地中浄化体40を通過する地下水は、例えばpHが中性域、且つ酸化還元電位が低い状況にあり、帯水層に位置する浄化体区画に均一に分散されている浄化材料は例えば還元性金属粉体である。2つの帯水層を流向A及び流向Bで流れる各地下水は地中浄化体40に達すると、地中浄化体40のその帯水層に位置する浄化体区画にそれぞれ流入する。この場合、帯水層に位置する浄化体区画の高い透水性により各帯水層の汚染地下水の流れはあたかも当該浄化体10が造成されていないかのように、自然の流れを維持して当該浄化体の当該区画を通過する。この際、2つの汚染地下水中の例えば難分解性ハロゲン化炭化水素は、各浄化体区画において還元性金属粉体の存在下、脱ハロゲン化され、無害な炭化水素に変換されるため、汚染地下水が浄化される。
【0029】
【発明の効果】
本発明によれば、間隙水圧の異なる複数の帯水層を有する汚染地盤において、一の帯水層を流れる地下水が地中浄化体を通過する際、該浄化体を介して他の
帯水層に流入することがなく、各々の帯水層の汚染地下水を1つの浄化体で個別に浄化することができると共に、この地中浄化体を構築する際、残土をほとんど発生させず且つ得られる浄化体区画は大きな透水性を示す。
【図面の簡単な説明】
【図1】本発明の実施の形態における地中浄化体の概略断面図である。
【図2】図1の丸印Xの概略拡大図である。
【図3】地中に構築された地中浄化体の帯水層部分における構造の変化を説明するための概念図である。
【図4】平面視の千鳥状配置の形態を示す図である。
【図5】平面視の千鳥状配置の他の形態を示す図である。
【図6】本発明の実施の形態における地中浄化体の概略平面図である。
【図7】一般的な汚染地盤の構造を示す概略断面図である。
【図8】従来の地中浄化体の概略断面図である。
【符号の説明】
10 地中浄化体
11 第1帯水層に位置する浄化体区画
12 第1難透水層に連なる難透水性の区画層
13 第2帯水層に位置する浄化体区画
14 第2難透水層に連なる難透水性の区画層
15 第3帯水層に位置する浄化体区画
16 地中浄化体の下端部
17 雨水浸入防止層
19、57 汚染源
21、51 地表層
22 第1帯水層
23 第1難透水層
24 第2帯水層
25 第2難透水層
26 第3帯水層
27 第3難透水層
28 第4帯水層
29、55 基盤
31 土粒子
32 間隙
33 浄化材料
34 高粘性スラリー
40 地中浄化体
43、44 汚染層
52、54 帯水層
53 難透水層
58 地中浄化壁
WL 地下水水位
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an underground purifying body which does not generate residual soil, exhibits large water permeability, and can separately purify each contaminated groundwater flowing through a plurality of aquifers having different pore water pressures with a single purifying body. It relates to a construction method for constructing an underground purification body.
[0002]
[Prior art]
For example, volatile organic compounds such as trichloroethylene, which are used in large quantities in cleaning processes at semiconductor manufacturing plants, may contaminate soil or groundwater due to leakage, etc. And the use of groundwater is limited.
[0003]
In order to solve this, a purification continuous wall containing a metallic reducing agent is formed in the ground in a direction of blocking the flow of groundwater contaminated with volatile organic compounds, and when groundwater passes through the purification continuous wall. There is a method of decomposing pollutants by a reduction reaction to make the pollutants non-polluting (International Publication No. WO91 / 08176 of Patent Document 1). Further, the purification wall continuously arranged in the ground is a continuous pillar or an intermittent pile of a cylinder, and separation of the metallic reducing agent is prevented by stacking the cylindrical bags containing the metallic reducing agent on the cylinder, and water permeability is also provided. There has also been disclosed a method that improves the above (Japanese Patent Application Laid-Open No. H11-156351 of Patent Document 2).
[0004]
On the other hand, the structure of the ground generally has a plurality of aquifers with different pore water pressures. That is, as shown in FIG. 7, the normal ground 50 has a surface layer 51, an aquifer 52, a poorly permeable layer 53, an aquifer 54, and a base 55 in the depth direction of the ground, or It has a structure in which a poorly permeable layer is further repeatedly present in the depth direction. In such a ground 50, the contaminants leaked from the factory 56 and the like selectively pass through a portion having good water permeability and diffuse, but when the contamination history is old, the contaminants infiltrate into the inside of the poorly permeable layer 53. In some cases, it may penetrate through the poorly permeable layer 53 to reach the lower aquifer 54. Moreover, the flow of groundwater is often different between the upper and lower aquifers 52, 54 sandwiching the poorly permeable layer 53, and when contaminants are dissolved in the groundwater, the contamination moves and diffuses with the flow of the groundwater, It is not rare that the underground pollution source 57 spreads in the horizontal direction and extends deep in the depth direction, and the pollution concentration in each aquifer naturally differs at present.
[0005]
[Problems to be solved by the invention]
However, the conventional underground purification wall as disclosed in JP-A-11-156351 does not adopt a structure corresponding to the above-described ground structure. Therefore, when such an underground purification wall is disposed underground, there is a problem that contaminated groundwater flowing in an aquifer having a low pore water pressure hardly passes through the purification wall and is difficult to be purified. The reason will be described with reference to FIG. That is, the underground purification wall 58 disposed on the ground downstream of the pollution source 57 normally has the same or larger permeability as the aquifer in order to smoothly pass the contaminated groundwater through the purification wall. Designed. However, in this case, the underground purification wall 58 communicates the two aquifers 52 and 54 at the same time. For example, the contaminated groundwater X of the upper aquifer 52 having a high pore water pressure partially passes through the purification wall 58. Although it passes through and becomes purified groundwater X1, the remaining groundwater X2 flows into the lower aquifer 54 having a low pore water pressure and stays around the underground purification wall 581 located in the aquifer 54 portion. For this reason, the contaminated groundwater Y in the aquifer 54 cannot smoothly pass through the underground purification wall 58, and a flow that flows around the underground purification wall 58 is generated. This phenomenon is the same also when the lower aquifer 54 has a higher pore water pressure than the upper aquifer 52, and contaminated groundwater in the lower aquifer 52 is not purified.
[0006]
On the other hand, since the purification continuous wall described in International Publication No. WO91 / 08176 excavates a slot, a large amount of residual soil is generated. Further, when a mixture of a metal-based reducing agent and sand is installed in the slot, it is difficult to uniformly disperse the metal-based reducing agent and the like, and stably maintain the water permeability of the aquifer. There is a problem that it cannot be secured. Further, in the case of an underground purification wall described in Japanese Patent Application Laid-Open No. H11-156351 of Patent Document 2, for example, in the case of a cylindrical purification wall, activated carbon or the like is formed by using a forming pipe in a hollow portion of a casing pipe formed by excavation by a digging method. After the casting, the casing pipe is pulled out, so that a large amount of residual soil is generated, which causes a problem of industrial waste treatment.
[0007]
[Patent Document 1]
International Publication No. WO91 / 08176 (Claims)
[Patent Document 2]
JP-A-11-156351 (Claims, paragraph number 0023)
[0008]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to generate almost no residual soil and exhibit large water permeability, and to prevent groundwater flowing in one aquifer from flowing into another aquifer through a purification body. It is an object of the present invention to provide an underground purifier capable of individually purifying contaminated groundwater in an aquifer with one purifier, and a construction method of the underground purifier.
[0009]
[Means for Solving the Problems]
That is, the present invention (1) that achieves the above object has an underground purification system that is formed on a contaminated ground having a poorly permeable layer between aquifers and two or more aquifers. Wherein the purifier section located in the aquifer is formed of a mixture containing at least a purifying material, a biodegradable polymer, and ground soil, and the purifier section located in the poorly permeable layer comprises the poorly permeable section. It is an object of the present invention to provide an underground purifier in which a poorly permeable partition layer for blocking the mutual flow of groundwater flowing in aquifers on both upper and lower sides of a layer is provided. Further, in the present invention (2), the contaminated ground has a repeating structure of an aquifer, a poorly permeable layer and an aquifer in the depth direction of the ground, and the third and subsequent aquifers are non-contaminated layers. In some cases, the underground purifier is provided with the lower end portion of the underground purifier being landed on a poorly permeable layer sandwiched between an aquifer of a deepest contaminated layer and an aquifer of a non-contaminated layer. is there. Further, the present invention (3) provides the underground purifying body, wherein the purifying material is at least one selected from a pollutant adsorbent and a pollutant decomposing material. Further, the present invention (4) provides the underground purification body in which the poorly permeable partition layer has the same or higher permeability than the poorly permeable layer connected to the partition layer. It is. Further, the present invention (5) is a method for constructing an underground purification body on a contaminated ground having a poorly permeable layer between aquifers and two or more aquifers. Supplying a mixed drug material containing a purification material and a biodegradable polymer from the ground to the ground, and mixing and mixing the mixed drug material and the original ground soil to form a purifier body section located in the aquifer; The water-impervious material is supplied from the ground to the ground, and the water-impervious material and the original ground are formed by stirring and mixing, and the mutual flow of groundwater flowing through the upper and lower aquifers sandwiching the impervious layer is cut off. The present invention provides a construction method of an underground purification body for performing a step of arranging a partition layer having poor water permeability.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the contaminated ground on which the underground purification body is formed is a ground having a poorly permeable layer between aquifers and two or more aquifers. That is, contaminated ground having a three-layer structure of an aquifer, a poorly permeable layer, and an aquifer in the depth direction of the ground, or a repetition of a poorly permeable layer and an aquifer further in the depth direction of the ground following the three-layer structure. The ground has a structure. The upper part of this laminated structure is the surface layer, and the lower part is the base of the hard layer. Therefore, for example, when there are two layers of impervious layers, the ground is deep from the surface of the ground to the surface layer, the first aquifer, the first impervious layer, the second aquifer, the second impervious layer, and the third impervious layer. Consists of aquifer and basement. Further, the pore water pressures of a plurality of aquifers may be the same or different from each other, but in most cases usually differ. In the present invention, a remarkable effect can be obtained when the pore water pressures are different. In addition, the flow directions of the groundwater in the plurality of aquifers may be the same or different from each other.
[0011]
In the contaminated ground on which the underground purification body of the present invention is formed, the contaminated layer in which the contaminant is present is one that exists over at least two aquifers. If only one of the shallowest aquifers is a contaminated layer, the underground purifier may be constructed such that the lower end of the underground purifier is settled on the first impervious layer to form one aquifer. There is no danger that groundwater flowing through the formation will flow to other aquifers. In addition, a plurality of aquifers may have the same or different contaminant concentrations, but in the present invention, a particularly remarkable effect is exerted when the plurality of aquifers have different contaminant concentrations. In addition, a non-polluted aquifer may be present in the contaminated ground in addition to the polluted layer. Examples of the contaminants include, but are not particularly limited to, volatile organic compounds such as trichloroethylene and heavy metals.
[0012]
In the present invention, prior to constructing the underground purification body on the contaminated ground, a preliminary investigation for grasping the underground ground structure and the state of contamination is performed in advance. The survey method is performed by a known method, and the survey items include, for example, the existence and depth of the aquifer and the impervious layer, the permeability coefficient of each aquifer and the impervious layer, the flow direction of each groundwater, And the presence of a contaminated layer and a non-contaminated layer. The permeability coefficient of the aquifer is usually 10 -1 -10 -4 cm / sec, and the permeability coefficient of the poorly permeable layer is usually 10 -6 -10 -8 cm / sec. According to the ground survey at a certain point in the country, the ground concerned is, in order in the depth of the ground, the first aquifer 10m, the first impervious layer 3m, the second aquifer 10m, the second impervious layer 5m, and the third aquifer 5m. The aquifer was 5 m, and of these layers, the first aquifer to the second aquifer were contaminated layers.
[0013]
Next, an underground purification body according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic sectional view of the underground purifier in the present embodiment. The underground purification body 10 of this example includes a surface layer 21, a first aquifer 22, a first poorly permeable layer 23, a second aquifer 24, a second poorly permeable layer 25, and a third terrain in the deep underground direction. An underground purifier formed downstream of the soil pollution source 19 comprising the water layer 26, the third water-impermeable layer 27, the fourth aquifer 28, and the base 29, and is located in the first aquifer 22. The purifying body section 11, the purifying body section 13 located in the second aquifer 24, and the purifying body section 15 located in the third aquifer 26 are a mixture containing at least a purifying material, a biodegradable polymer, and original ground soil. The purifying body sections formed and located in the first impervious layer 23 circulate the contaminated groundwater flowing through the first aquifer 22 and the second aquifer 24 located on both upper and lower sides of the first impervious layer 23. A barrier layer 12 that blocks water is provided, and the purifying body located in the second water-impermeable layer 25 has a second water-impervious section. It is obtained by providing the partition layer 14 of low permeability to block the mutual flow of contaminated groundwater flowing through the second aquifer 24 and the third aquifer 26 positioned above and below both sides of the 25.
[0014]
Further, in the underground purifier 10 of this example, it is not necessary to perform any special construction on the surface layer 112 above the purifier section 11 located in the first aquifer 22 at the lowest depth. However, in FIG. 1, since the original ground soil of the surface layer 112 is stirred and mixed in the construction process and the water permeability is enhanced, the impervious rainwater infiltration prevention layer 17 is provided on the head of the underground purification body 10. ing. Further, the lower end portion 16 of the underground purification body 10 is landed on a third water-impermeable layer 27 sandwiched between a third aquifer 26 as a deepest contaminated layer and a fourth aquifer 28 as a non-contaminated layer. When the lower end portion 16 of the underground purification body 10 is settled by penetrating the third water-impermeable layer 27, the contaminated groundwater in the third aquifer 26 may flow into the fourth non-contaminated aquifer 28. There is. In this case, similarly to the purifying body section located in the other water-impermeable layer, if the water-impermeable partition layer is arranged in the purifying body portion located in the third water-impermeable layer 27, the lower end portion 16 of the underground purifying body 10 can be provided. May be penetrated through the third water-impermeable layer 27 and landed, but this is not preferable because a wasteful construction portion occurs.
[0015]
The purifier section located in the aquifer of the underground purifier 10 of this example is made of a mixture containing a purifying material, a biodegradable polymer, and original ground soil. Examples of the purification material include a contaminant adsorbent and a contaminant decomposer. The contaminant adsorbent is not particularly limited as long as it mainly removes contaminants such as organic halogen compounds or heavy metals by adsorption, and examples thereof include activated carbon. The contaminant decomposing material is not particularly limited as long as the contaminant is mainly removed by decomposition, and examples thereof include a metal-based reducing material and an iron oxide-based decomposing material. Examples of the metal-based reducing material include metal powders of iron or zinc, or powders of alloys or compounds thereof, and among them, those in which iron powder is inexpensive and discharged as waste can also be used. It is preferable in this respect. As the iron oxide-based decomposition material, for example, a commercially available iron oxide-based by-produced magnetite-based titanium oxide synthesized from iron-containing sulfuric acid produced as a by-product from the titanium oxide production process can be used. Further, a composite material of a metal-based reducing material and an iron oxide-based decomposing material as described in JP-A-2002-317202 can also be used. Among these purifying materials, it is preferable to use a pollutant decomposing material in that pollutants can be decomposed and made harmless. These purification materials can be used alone or in combination of two or more.
[0016]
When the biodegradable polymer is mixed with the purification material and supplied to the in-situ soil from the ground, the biodegradable polymer acts as a dispersion aid to uniformly disperse the purification material in the mixed drug material, and after being supplied to the original ground soil. Is decomposed in about one week, for example, and flows out together with the groundwater, so that it has a function of creating voids in the original ground soil and giving water permeability. The action of the biodegradable polymer in the mixed drug material for dispersing the purification material becomes more remarkable particularly when the mixed drug material is a slurry-type mixed drug solution because the mixed drug solution has a high viscosity. The biodegradable polymer is not particularly limited, and includes, for example, a natural or synthetic water-soluble polymer. Specific examples include polylactic acid; cellulose-based polymers such as carboxymethyl cellulose (CMC); Examples include starch-based polymers such as methyl starch (CMS). Among them, when the cellulose-based polymer is used as a mixed drug material in the form of a slurry, the mixed drug material exhibits a purifying material dispersing function by a thickening action of the polymer and is preferable in that it is decomposed in a relatively short time. .
[0017]
The poorly permeable partition layers 12 and 14 of the underground purifier are not particularly limited as long as they are formed of a water-blocking material. Examples of the water blocking material include cement milk and the like. The water-impermeable partition layers 12 and 14 may be formed on at least a part of the purifying body sections located in the first water-impermeable layer 23 and the second water-impermeable layer 25, respectively. In other words, if the first water-impermeable layer 23 has a thickness H, as shown in FIG. What is necessary is just to form a part of 111 (thickness H) with a layer having a thickness h smaller than H. The thickness h of the partition layer 12 is appropriately determined based on the thickness of the water-impermeable layer, its water-impermeability, and the like. If the thickness h of the partition layer 12 is too large, not only excessive water permeability will be caused, but also material waste will be caused. On the other hand, if the thickness h is too small, stable water permeability may not be obtained. Further, the impervious partition layers 12 and 14 have the same impermeability as the first impervious layer 23 and the second impervious layer 25 connected to the divider layers 12 and 14 or have greater impermeability. Among them, the same imperviousness to the continuous first impervious layer 23 and the second impervious layer 25 can be used, so that waste of materials can be omitted and the flow of groundwater in the vertical direction can be reliably shut off. Is preferred.
[0018]
The underground purification body 10 supplies a mixed drug material containing a purification material and a biodegradable polymer into the ground from the ground, stirs and mixes the mixed drug material and the original ground soil, and is located in the aquifer. A step of forming a purifier body section, supplying the water-impervious material into the ground from the ground, stirring and mixing the water-impervious material and the original ground soil, and forming the upper and lower aquifers sandwiching the poorly permeable layer. It can be obtained by performing a step of arranging a poorly permeable partition layer that blocks mutual flow of flowing groundwater. The method of installing this underground purification body in the ground is not particularly limited, and is a mechanical stirring and mixing method using a so-called mechanical stirring device, a jet stirring and mixing method using a jet stirring and mixing device, a mechanical stirring method. A combined method using a stirring / mixing method and a jet-type stirring / mixing method, and a compound method using an apparatus having a mechanical stirring function and a jet-type stirring function can be applied. All of these methods generate little residual soil and do not cause problems with industrial waste disposal. Among these methods, it is preferable to use the mechanical stirring and mixing method in that the uniform mixing of the purification material, the biodegradable polymer and the ground soil can be performed relatively easily and reliably.
[0019]
The mixing ratio of the purification material and the biodegradable polymer in the mixed chemical varies depending on the degree of contamination of the contaminated groundwater, the geology of the original ground soil, the degree of decomposition of the biodegradable polymer, and the like, and is appropriately determined. In addition, an auxiliary agent for adjusting the degree of progress of the decomposition of the biodegradable polymer can be added to the mixed drug material, if necessary. The supply form of the mixed drug material is a powdery substance and a liquid substance. Of these, a slurry-like liquid substance containing a purification material, a biodegradable polymer, and water can be used as described above. This is preferable in that the function of dispersing the purification material of the conductive polymer can be effectively exhibited.
[0020]
Hereinafter, a method of constructing the underground purifier 10 of the present embodiment underground using a mechanical stirrer will be described. As the mechanical stirring device, for example, a plurality of stirring blades provided below the stirring shaft, a first opening for discharging a mixed chemical solution provided in the vicinity of the stirring blades, and a second opening for discharging a water-blocking material Or a plurality of similar stirring blades, a single opening provided near the stirring blades for supplying a mixed chemical solution and a water-blocking material, and a material supply for switching the supply of the mixed chemical solution and the water-blocking material There is an apparatus provided with a switching unit. Further, on the ground, a first plant facility for supplying a slurry-type mixed chemical solution containing a purification material, a biodegradable polymer and water, and a second plant facility for supplying a water-blocking material such as cement milk will be installed. When material supply switching means for switching the supply of the mixed chemical liquid and the water-blocking material is provided, the material supply switching means can change a material discharged from a single opening provided near the stirring blade. it can.
[0021]
In this example, first, a step of forming a purifying body section located in the aquifer is performed. A mechanical stirring device (not shown) penetrates into the ground downstream of the contaminated layer 19 to a predetermined depth. After the penetration, the first plant equipment is driven to supply the mixed chemical solution in the form of slurry to the original ground soil from the first opening, and the mixed chemical solution and the original ground soil are uniformly stirred and mixed by the stirring blade, and the stirring shaft is further pulled up. The purification body section 15 is formed at the position of the aquifer 26. Next, a step of arranging the impervious partition layer 14 that blocks the mutual flow of groundwater flowing through the second aquifer 24 and the third aquifer 25 on the upper and lower sides sandwiching the second impervious layer 25 is performed. I do. That is, during the formation of the purifying body section 15, the supply of the mixed chemical solution is stopped, the second plant equipment is driven to supply the water-blocking material to the original ground soil from the second opening, and the water-blocking material and the raw ground soil are separated. The mixture is uniformly stirred and mixed with a stirring blade to form a poorly permeable partition layer 14 at the position of the poorly permeable layer 25. This operation is further successively repeated to form the purifier section 13, the poorly permeable partition layer 12, the purifier section 11, and the poorly permeable rainwater infiltration prevention layer 17 in order above the poorly permeable partition layer 14. . The rainwater intrusion prevention layer 17 is made of the same material as the hardly permeable partition layer, and the water permeability may be the same. In addition, the surface layer 112 above the underground purification body from the groundwater level WL to the poorly permeable rainwater infiltration prevention layer 17 does not supply the mixed chemical solution or the water-blocking material, and remains as the soil that has been stirred and loosened during the construction process. It may be.
[0022]
Next, the process in which the purifier body section located in the aquifer of the underground purifier constructed underground becomes a structure that actually purifies the contaminated groundwater will be described with reference to FIG. FIG. 3 is a conceptual diagram for explaining a structural change in an aquifer portion of an underground purification body constructed underground. The underground structure before the underground purification body is constructed is generally composed of soil particles 31 and gaps 32 (portions through which groundwater flows) between the soil particles 31 (FIG. 3A). Due to the presence of the gap 32, appropriate water permeability is obtained. When the underground purifying body is constructed in the ground, the underground structure includes a high-viscosity slurry 34 composed of, for example, a purifying material, a biodegradable polymer, and water between the soil particles 31 ( FIG. 3 (B)). The purifier in this state does not show water permeability. Thereafter, the biodegradable polymer in the purifying body is gradually decomposed due to the biological activity or the like of the microorganism, for example, the thickening action disappears and flows out together with the groundwater, and the disappeared portion appears as a gap 32 (FIG. C)). When the biodegradable polymer is completely decomposed and disappears, for example, within 5 to 10 days after the construction of the underground purification body, the purification material 33 remaining in the gap moves with gravity settling or the flow of groundwater, and the nearby soil particles are removed. 31 (FIG. 3D). The structure of the underground purification body in this state has soil particles 31, a purification material 33 attached to the surface of the soil particles, and a gap 32 between the soil particles 31 that exhibits appropriate water permeability. Thereby, the water permeability of the purifier becomes substantially the same as the underground water permeability before construction of the purifier, and the purification efficiency is improved.
[0023]
In the process of constructing the underground purifier, the purifier body section of the underground purifier is kept impermeable for about 5 to 10 days due to the effect of the biodegradable polymer as described above. On the other hand, when constructing a poorly permeable compartment, cement milk, a preferred water-blocking material, solidifies in three days. As described above, by controlling the decomposition time of the biodegradable polymer to be longer than the solidification time of the cement milk, it is possible to reliably construct a partition having poor water permeability. Conversely, if the decomposition time of the biodegradable polymer is shorter than the solidification time of the cement milk, pressure acts before the hardly permeable section, which is the solidified cement milk, is formed, so that pores are opened and difficult. A water-permeable partition layer cannot be created.
[0024]
Although the underground purifier is formed at a predetermined depth in a contaminated ground having a plurality of aquifers having different pore water pressures, for example, a permeable purifying section is provided at the position of the aquifer on the ground. In the purifier body formed and located in the impervious layer, the impervious partition layer is formed and adopts a structure corresponding to the ground structure, so that the flow of contaminated groundwater in each aquifer is as if the underground purifier is It maintains its flow as if it had not been created and passes through the permeable purifier section. For this reason, the problem that the contaminated groundwater in the aquifer with high pore pressure flows into the aquifer with low pore pressure and the contaminated groundwater in that part is not purified is not caused.
[0025]
Examples of the underground purifying body constructed by the mechanical stirring / mixing method, the jet stirring / mixing method, the combined method using these two methods, or the combined method include, for example, a ground purifying body having a circular cross section. The underground purification body having a circular cross section is generally formed by arranging a large number of the underground purification bodies in the ground, and for example, the underground continuous wall constructed by tangently or partially overlapping the underground purification body and the underground purification body Purifiers in which the underground purifiers are arranged intermittently and in a plurality of rows in the ground and further in a staggered manner, and the like. The purifying body arranged so as to have a shape is suitable in that a plurality of groundwaters having different flow directions can be effectively purified, and further, the plurality of groundwaters having different flow directions are arranged so that the transmittances of the respective groundwaters become 100%. Is particularly preferable in that the purification can be reliably performed. As the staggered planar form, for example, a form in which one underground purifier is arranged alternately, a form in which W-shapes are arranged continuously (FIG. 4), and a rhombus are arranged continuously Form (FIG. 5). The schematic shape in plan view of the whole underground purifier formed by intermittently arranging a large number in the ground is not particularly limited, and examples thereof include a long rectangular shape, a bow shape, a donut shape, and an irregular shape. . The donut shape has a contaminated layer at its center, and purifies the so-called contaminated source by containing it. The schematic shape of the continuous wall-shaped underground purifier in plan view includes a long rectangular shape, a bow shape, an irregular shape, and the like.
[0026]
Another form of the continuous wall includes a combination of a water impermeable wall such as a flexible synthetic resin plate and a steel thin plate and the underground purification body of the present invention. The continuous wall may be, for example, a donut that contains the source of contamination. In addition, as a method of constructing a continuous wall combining the impermeable walls, for example, a jet-type stirring and mixing method, a combined method of a mechanical stirring and mixing method and a jet-type stirring and mixing method, and a mechanical stirring function and a jet-type stirring function. A composite construction method using an equipped device can be applied. In particular, when underground structures such as buried pipes become obstacles, the injection type mixing and mixing method and the combined method performed with a device equipped with a mechanical stirring function and an injection type stirring function enable the construction of a continuous wall, This is preferable in that close contact between the underground purifier and the underground structure can be ensured.
[0027]
FIG. 6 is a schematic plan view showing an example of an underground purifier constructed underground. In FIG. 6, reference numeral 41 denotes an average projection width W1 of the underground purification body 40 with respect to the flow direction A, and reference numeral 42 denotes an average projection width W2 of the underground purification body 40 with respect to the flow direction B for reference. Not an underground purifier. The underground purifier 40 of this example is such that a plurality of the underground purifiers 10 having a circular cross section are intermittently arranged in the ground in two rows and further in a zigzag pattern so that the overall schematic shape becomes a long rectangular shape. At an angle α perpendicular to the groundwater I in the flow direction A passing through the pollution layer 44 and the groundwater II in the flow direction B passing through the pollution layer 43 located in a different aquifer. Are arranged so that the transmittance of both groundwaters is 100%. Permeability refers to the ratio of the cross-sectional area occupied by the purifier in the cross-section of the purifier formation area when viewed along the direction of groundwater flow. Means passing through.
[0028]
Next, a method for purifying contaminated groundwater in the ground 30A having two aquifers using the underground purifier 40 arranged as shown in FIG. 6 will be described. Here, the underground purification body 40 is in a state where the biodegradable polymer is decomposed and shows stable water permeability. The groundwater passing through the underground purifier 40 has, for example, a neutral pH range and a low oxidation-reduction potential, and the purifying material uniformly dispersed in the purifier section located in the aquifer is, for example, a reducing material. It is a metal powder. When each of the groundwater flowing in the two aquifers in the flow direction A and the flow direction B reaches the underground purifier 40, it flows into the purifier section of the underground purifier 40 located in the aquifer. In this case, the flow of the contaminated groundwater in each aquifer is maintained by maintaining the natural flow as if the purifier 10 had not been created due to the high permeability of the purifier section located in the aquifer. Pass through the section of the purifier. At this time, for example, the hardly decomposable halogenated hydrocarbons in the two contaminated groundwaters are dehalogenated and converted into harmless hydrocarbons in the respective purifier sections in the presence of the reducing metal powder. Is purified.
[0029]
【The invention's effect】
According to the present invention, in a contaminated ground having a plurality of aquifers having different pore water pressures, when groundwater flowing in one aquifer passes through an underground purification body, another groundwater flows through the purification body.
Contaminated groundwater in each aquifer can be individually purified by one purifier without flowing into the aquifer, and when constructing this underground purifier, hardly any residual soil is generated and The resulting purifier compartment exhibits high water permeability.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of an underground purification body according to an embodiment of the present invention.
FIG. 2 is a schematic enlarged view of a circle X in FIG.
FIG. 3 is a conceptual diagram for explaining a structural change in an aquifer portion of an underground purifier constructed underground.
FIG. 4 is a diagram showing a form of a staggered arrangement in a plan view.
FIG. 5 is a diagram showing another form of the staggered arrangement in plan view.
FIG. 6 is a schematic plan view of the underground purification body according to the embodiment of the present invention.
FIG. 7 is a schematic sectional view showing a structure of a general contaminated ground.
FIG. 8 is a schematic sectional view of a conventional underground purifier.
[Explanation of symbols]
10 Underground purification body
11 Purification body section located in the first aquifer
12 Impervious partition layer connected to the first impervious layer
13 Purification body section located in the second aquifer
14 Impervious partition layer connected to the second impervious layer
15 Purification body section located in the third aquifer
16 Lower end of underground purification body
17 Rainwater infiltration prevention layer
19, 57 Source of pollution
21,51 Surface layer
22 First aquifer
23 First impervious layer
24 Second Aquifer
25 Second impervious layer
26 Third Aquifer
27 Third impervious layer
28 4th aquifer
29, 55 Base
31 soil particles
32 gap
33 Purification materials
34 High viscosity slurry
40 Underground Purifier
43, 44 Contamination layer
52, 54 Aquifer
53 impervious layer
58 Underground Purification Wall
WL groundwater level

Claims (5)

帯水層と帯水層の間に難透水層を有し、かつ該帯水層が2以上存在する汚染地盤に造成される地中浄化体であって、前記帯水層に位置する浄化体区画は少なくとも浄化材料、生分解性ポリマー及び原地盤土壌を含む混合体で形成され、前記難透水層に位置する浄化体区画は当該難透水層を挟む上下両側の帯水層を流れる地下水の互いの流通を遮断する難透水性の区画層を配設したものであることを特徴とする地中浄化体。An underground purifier constructed on a contaminated ground having an aquifer between two aquifers and having two or more aquifers, wherein the purifier is located in the aquifer. The compartments are formed of a mixture containing at least a purification material, a biodegradable polymer, and ground soil. An underground purification body characterized in that it is provided with a poorly permeable partition layer that blocks the flow of water. 前記汚染地盤が、地中深度方向に帯水層、難透水層及び帯水層の繰り返し構造を有し、第3番目以降の帯水層が非汚染層である場合、前記地中浄化体の下端部が、最深汚染層の帯水層と非汚染層の帯水層で挟まれる難透水層に着底させていることを特徴とする請求項1記載の地中浄化体。The contaminated ground has a repeating structure of an aquifer, a poorly permeable layer and an aquifer in the depth direction of the ground, and when the third and subsequent aquifers are non-contaminated layers, The underground purifying body according to claim 1, wherein the lower end portion is landed on a poorly permeable layer sandwiched between an aquifer of the deepest contaminated layer and an aquifer of the non-contaminated layer. 前記浄化材料は、汚染物質吸着材及び汚染物質分解材から選ばれる1種以上であることを特徴とする請求項1又は2記載の地中浄化体。The underground purifying body according to claim 1, wherein the purifying material is at least one selected from a pollutant adsorbing material and a pollutant decomposing material. 前記難透水性の区画層は、該区画層に連なる難透水層と同じ難透水性か又はそれより大きな難透水性を有することを特徴とする請求項1〜3のいずれか1項記載の地中浄化体。The ground according to any one of claims 1 to 3, wherein the poorly permeable partition layer has the same poor permeability or a greater poor permeability than the poorly permeable layer connected to the partition layer. Medium purifier. 帯水層と帯水層の間に難透水層を有し、かつ該帯水層が2以上存在する汚染地盤に地中浄化体を造成する工法であって、浄化材料と生分解性ポリマーを含有する混合薬材を地上から地中に供給し該混合薬材と原地盤土壌を攪拌混合して該帯水層に位置する浄化体区画を形成する工程と、遮水性材料を地上から地中に供給し該遮水性材料と原地盤土壌を攪拌混合して形成して、当該難透水層を挟む上下両側の帯水層を流れる地下水の互いの流通を遮断する難透水性の区画層を配設する工程を行うことを特徴とする地中浄化体の構築工法。A method for forming an underground purification body on a contaminated ground having an aquifer between two aquifers and having two or more aquifers, wherein the purification material and the biodegradable polymer are mixed. A step of supplying the mixed drug material to the ground from the ground, stirring and mixing the mixed drug material and the original ground soil to form a purifying body section located in the aquifer; and And a water impervious partition layer for blocking the mutual flow of groundwater flowing through the upper and lower aquifers sandwiching the water impervious layer. A construction method of an underground purification body characterized by performing an installation step.
JP2003108763A 2003-04-14 2003-04-14 Underground purification body with poorly permeable partition layer and construction method of underground purification body Expired - Lifetime JP4067440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108763A JP4067440B2 (en) 2003-04-14 2003-04-14 Underground purification body with poorly permeable partition layer and construction method of underground purification body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108763A JP4067440B2 (en) 2003-04-14 2003-04-14 Underground purification body with poorly permeable partition layer and construction method of underground purification body

Publications (2)

Publication Number Publication Date
JP2004313865A true JP2004313865A (en) 2004-11-11
JP4067440B2 JP4067440B2 (en) 2008-03-26

Family

ID=33470128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108763A Expired - Lifetime JP4067440B2 (en) 2003-04-14 2003-04-14 Underground purification body with poorly permeable partition layer and construction method of underground purification body

Country Status (1)

Country Link
JP (1) JP4067440B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264399A (en) * 2009-05-15 2010-11-25 Shimizu Corp Resoiling preventing method after contaminated soil cleaning
JP2013011117A (en) * 2011-06-30 2013-01-17 Fudo Tetra Corp Ground improvement method for composite ground
JP2014114600A (en) * 2012-12-10 2014-06-26 Kajima Corp Foundation pile construction method
JP2014114601A (en) * 2012-12-10 2014-06-26 Kajima Corp Foundation pile construction method
CN114278271A (en) * 2021-11-22 2022-04-05 中国地质大学(北京) Composite circulation well system and use method
CN114320263A (en) * 2021-11-22 2022-04-12 中国地质大学(北京) Multi-filter-layer circulating well system and working mode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264399A (en) * 2009-05-15 2010-11-25 Shimizu Corp Resoiling preventing method after contaminated soil cleaning
JP2013011117A (en) * 2011-06-30 2013-01-17 Fudo Tetra Corp Ground improvement method for composite ground
JP2014114600A (en) * 2012-12-10 2014-06-26 Kajima Corp Foundation pile construction method
JP2014114601A (en) * 2012-12-10 2014-06-26 Kajima Corp Foundation pile construction method
CN114278271A (en) * 2021-11-22 2022-04-05 中国地质大学(北京) Composite circulation well system and use method
CN114320263A (en) * 2021-11-22 2022-04-12 中国地质大学(北京) Multi-filter-layer circulating well system and working mode
CN114278271B (en) * 2021-11-22 2022-10-04 中国地质大学(北京) Composite circulating well system and using method
CN114320263B (en) * 2021-11-22 2023-01-17 中国地质大学(北京) Multi-filter-layer circulating well system and working mode

Also Published As

Publication number Publication date
JP4067440B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP3079109B2 (en) How to remove halogenated pollutants in groundwater
KR100729820B1 (en) Method and apparatus for purifying polluted substances containing halogenated organic compound
JP2017109188A (en) Soil cleaning method
JP4410491B2 (en) Groundwater purification structure
JP4067440B2 (en) Underground purification body with poorly permeable partition layer and construction method of underground purification body
JP2008188478A (en) Method and system for purifying polluted soil
JP3516613B2 (en) Contaminated groundwater purification method
JP2002079233A (en) Underground wall for soil cleaning
JP2014205112A (en) Original-position decontamination method by multi-point injection
JP3612258B2 (en) Soil purification agent and soil purification method
JP2001131955A (en) Purifying structure and purifying method of soil and ground water pollution by use of diaphragm wall
JPH11333493A (en) Method and apparatus for cleaning contaminated underground water
JP2940867B1 (en) Water seal type impermeable wall and its function management method
JP4177155B2 (en) Purification body construction method
JP4802621B2 (en) PH adjustment method for groundwater
JP2005000758A (en) Water cleaning structure and method for constructing the same
KR100667465B1 (en) The clean-up and remediation equipment of contaminated ground mixed with cohesionless and cohesive soils by electro flushing reactive pile technology
JPH0957247A (en) Method for purifying leaching contaminated water in original position
CN108568449B (en) Pollute soil normal position prosthetic devices
JP3555028B2 (en) Groundwater purifier with impervious partition layer
JP3805280B2 (en) Semi-permeable impermeable board with purification function, groundwater purification structure and contaminated groundwater purification method
JP4140031B2 (en) Water purification subsurface dam and its construction method
JP4167563B2 (en) Contaminated groundwater purification structure
JP2004154670A (en) Method for cleaning contaminated soil
JP2000308878A (en) Device and method for improving polluted soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4067440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term