JP4410491B2 - Groundwater purification structure - Google Patents

Groundwater purification structure Download PDF

Info

Publication number
JP4410491B2
JP4410491B2 JP2003150546A JP2003150546A JP4410491B2 JP 4410491 B2 JP4410491 B2 JP 4410491B2 JP 2003150546 A JP2003150546 A JP 2003150546A JP 2003150546 A JP2003150546 A JP 2003150546A JP 4410491 B2 JP4410491 B2 JP 4410491B2
Authority
JP
Japan
Prior art keywords
purification
groundwater
permeable
contaminated
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003150546A
Other languages
Japanese (ja)
Other versions
JP2004351293A (en
Inventor
雄一 樋口
聡 今村
雄治 森
卓也 酒見
正明 海老原
俊也 升本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2003150546A priority Critical patent/JP4410491B2/en
Publication of JP2004351293A publication Critical patent/JP2004351293A/en
Application granted granted Critical
Publication of JP4410491B2 publication Critical patent/JP4410491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Processing Of Solid Wastes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地下水浄化技術に関するもので、汚染された地下水を浄化するために用いる、地下水浄化構造に関する。
【0002】
【従来の技術】
近年、廃棄物処理場や不法投棄廃棄物から流れ出た有害物質や工場廃液などが地下に浸透し、地下水を汚染する事例が頻繁に発生し、大きな社会問題になっている。このようにして汚染された地下水(以下「汚染地下水」という)は、その流れにより汚染地域を広め、様々な環境汚染を引き起こす。そのため、このような汚染地下水の周辺地域への流出を阻止するために各種の浄化技術が提案されている。
【0003】
例えば、本出願人は図6に示すような、地下に浸透した有害物質(汚染源)Pにより汚染された汚染地下水W1の下流側流域に、透水性の確保された1種類の透水性浄化材111を地中に配置してなる透水性地下水浄化壁110と、止水壁120から構成される地下水浄化構造を構築し、透水性地下水浄化壁110に汚染地下水W1を導水して透水性浄化材111により浄化して処理水W2とする技術を開発し、実用化している(特許文献1参照)。
【0004】
【特許文献1】
特開2000−263068号公報([0010]−[0018]、図2)
【0005】
【発明が解決しようとする課題】
しかしながら、廃棄物処理場や不法投棄廃棄物から流れ出た有害物質や工場廃液などからなる汚染地下水W1は、複合的に汚染されている場合が多く、従来の透水性地下水浄化壁110の、限られた種類の汚染物質を対象として、1種類の透水性浄化材111により汚染地下水W1を浄化するものでは、複合的に汚染された地下水の浄化を行いきれないという問題を有していた。
【0006】
本発明は、前記の問題点を解決するためになされたものであり、複合的に汚染された汚染地下水を、効率良く浄化することができる、地下水浄化構造を提案するものである。
【0007】
【課題を解決するための手段】
このような課題を解決するために、請求項1に係る発明は、透水性浄化材を有する壁体又は複数本の柱体を地中に配置してなる透水性地下水浄化領域を少なくとも2領域備え、複数の汚染物質により複合的に汚染された汚染地下水が前記各透水性地下水浄化領域を透過可能となるように前記汚染地下水の流れ方向に対して横断するように配置されているとともに、前記複数の汚染物質に対応して複数の前記透水性地下水浄化領域にそれぞれ異なる種類の成分が含まれる透水性浄化材が配置され、前記各透水性地下水浄化領域は浄化方法が異なるとともに互いに混ざり合うことがなく、前記各透水性地下水浄化領域の浄化雰囲気を相互に干渉しないように配置されていることを特徴とする地下水浄化構造である。
【0008】
かかる地下水浄化構造に用いる透水性浄化材には、活性炭、アロフェン、キレート材、砂層等の物理的吸着作用により揮発性有機化合物、重金属等の浄化を行うもの、微生物などの生化学的な分解作用により有機塩素系化合物や油等の浄化を行うもの、鉄粉やアルミ粉等の金属還元剤、酸化剤、石灰などの還元、酸化、触媒反応などによる化学的な分解作用により揮発性有機化合物、重金属等の浄化を行うものなどがある。
【0009】
かかる地下水浄化構造は、前述の異なる種類の成分が含まれる透水性浄化材による異なる浄化作用を有する複数の透水性地下水浄化領域を組合せ、その透水性地下水浄化領域を汚染地下水が通過するように構成したことにより、複合的に汚染された汚染地下水を、それぞれの汚染物質に対応した透水性地下水浄化領域であるため、確実に汚染物質を排除することができ、環境破壊を防ぐものである。ここで、異なる種類の成分が含まれる透水性浄化材として、通常は、前記の異なる作用を奏する透水性浄化材を用いることが好ましいが、場合によっては、異なる成分の同様の作用を有する透水性浄化材を使用しても良い。
【0010】
請求項2に係る発明は、透水性浄化材を有する壁体又は複数本の柱体を地中に配置してなる透水性地下水浄化領域を少なくとも2領域備え、複数の汚染物質により複合的に汚染された汚染地下水が前記各透水性地下水浄化領域を透過可能となるように配置されているとともに、前記複数の汚染物質に対応して複数の前記透水性地下水浄化領域にそれぞれ異なる種類の成分が含まれる透水性浄化材が配置され、前記各透水性地下水浄化領域は浄化方法が異なるとともに互いに混ざり合うことがなく、互いの浄化雰囲気に影響がないように、前記各透水性地下水浄化領域が前記汚染地下水の流れ方向に対して影響範囲の0.5倍以上の間隔で隙間を有して配置されていることを特徴とする。
【0011】
かかる地下水浄化構造は、汚染地下水が確実に各透水性地下水浄化領域を通過するのであれば、各透水性地下水浄化領域がお互いに接していても、離れていてもその役割を果たすものである。
しかし、例えば、汚染地下水の流速が早く、十分な浄化効果を得ないまま透水性地下水浄化領域を汚染地下水が透過してしまうような場合に、より効果的に汚染地下水の浄化を行うために、汚染地下水の流速に応じて各透水性地下水浄化領域の層厚を変化させる構造や、各透水性地下水浄化領域の間に間隔を設ける構造としてもよい。また、透水性浄化材の種類によっては近接して配置すると各材料が反応し融合することでその効果が十分に得られない場合や、好気性雰囲気に保つ透水性地下水浄化領域と嫌気性雰囲気に保つ透水性地下水浄化領域のようにお互いに干渉しあうことを避けて分離したほうが良い場合もあり、部分的に透水面を有し一定の地下水しか通さないように部分的に不透水層等を設け、各透水性地下水浄化領域を分離するとともに、汚染地下水が浄化できる十分な時間だけ透水性地下水浄化領域に留まることができる構造とする場合もある。
つまり、本発明による地下水浄化構造は、各設置箇所の地下水の流速や流量、地質や地層などにより各透水性地下水浄化領域の層厚や間隔を決定し、より効果的に汚染地下水の浄化を行うものである。
【0012】
請求項3に係る発明は、透水性浄化材を有する壁体又は複数本の柱体を地中に配置してなる透水性地下水浄化領域を少なくとも2領域備え、複数の汚染物質により複合的に汚染された汚染地下水が前記各透水性地下水浄化領域を透過可能となるように配置されているとともに、前記複数の汚染物質に対応して複数の前記透水性地下水浄化領域にそれぞれ異なる種類の成分が含まれる透水性浄化材が配置され、前記各透水性地下水浄化領域は浄化方法が異なるとともに互いに混ざり合うことがないように配置されていて、前記透水性浄化材として所定の微生物を含み、好気性雰囲気に保たれた第1の前記透水性地下水浄化領域と、嫌気性雰囲気に保たれた第2の前記透水性地下水浄化領域とを備え、前記第1の透水性地下水浄化領域が前記第2の透水性地下水浄化領域より、前記汚染地下水の流れの上流側に配置されていることを特徴とする。
【0013】
かかる地下水浄化構造により、バイオレメディエーション等の好気性雰囲気の透水性地下水浄化領域(以下「好気性浄化領域」という場合がある)と、鉄粉、アルミ粉等の嫌気性雰囲気の透水性地下水浄化領域(以下「嫌気性浄化領域」という場合がある)とにより、好気性浄化領域による有機分、油分の分解や、浮遊物質量(SS)、ダイオキシン(DXN)、生物化学的酸素要求量(BOD)、化学的酸素要求量(COD)の低減等、また、嫌気性浄化領域による揮発性有機化合物(VOC)、重金属、農薬等の分解及び吸着を行わせることができる。つまり、これらの透水性地下水浄化領域の組合せにより、廃棄物処理場や不法投棄廃棄物から流れ出た有害物質や工場廃液などの複合的に汚染された汚染地下水の浄化をすることが可能となる。ここで、好気性浄化領域を地下水の流れの上流側に配置することは、油分などの嫌気性浄化領域の還元剤に付着してその還元作用を低下させる物質を予め除去するため、嫌気性浄化領域の浄化機能を十分に発揮させることが可能となり好ましい。
【0014】
請求項4に係る発明は、請求項1乃至請求項3のいずれか1項に記載の地下水浄化構造であって、前記各透水性地下水浄化領域の透水性浄化材が、交換可能に地中に配置されていることを特徴とする。
【0015】
かかる地下水浄化構造は、透水性地下水浄化領域の透水性浄化材を袋詰やカートリッジ状の容器などに充填して地中に埋設し、交換可能に構築することで、当該透水性地下水浄化領域が、長期間に渡り汚染地下水を浄化することにより、その浄化機能が損なわれる恐れがある場合でも、簡易に透水性浄化材を交換することが可能であるため、浄化機能を損なわずに長期間使用することが可能である。
【0016】
【発明の実施の形態】
本発明の好適な実施の形態について、図面を参照して詳細に説明する。なお、説明において、同一要素には同一の符号を用い、重複する説明は省略する。また、以下の説明において、地下水浄化構造から地下水下流側の流出面を前面、上流側である流入面を後面と称し、左右方向は、正面視で地下水浄化構造の流出面を見た状態とする。
【0017】
(第一の実施の形態)
図1は、第一の実施の形態に係る地下水浄化構造の斜視図である。1は、3層の透水性地下水浄化領域と、止水壁とからなる地下水浄化構造である。10は、各透水性地下水浄化領域を収容する浄化槽を示しており、20は止水壁を示す。W1は、浄化前の汚染地下水を示し、W2は、地下水浄化構造1による浄化後の処理水を示している。
【0018】
図1に示すように、浄化槽10は、コンクリート製の外壁11により横長であり中空の直方体である箱型に形成されており、その内部には3種類の成分を含む複合透水性地下水浄化領域(以下「複合浄化領域」という)30が収容されている。また、浄化槽10には、各透水性地下水浄化領域を区画するように地下水の横断方向に所定間隔で立設された2枚の横内壁12と縦断方向に所定間隔で立設された2枚の縦内壁13が設けられている。外壁11と横内壁12及び縦内壁13の各壁体にはそれぞれ所定の位置に透水性のスクリーン15が設けられている。一方、止水壁20は、鋼矢板からなり、汚染源から発生した汚染地下水W1を浄化槽10に誘導するように、汚染地下水W1の流れの最大幅よりも広くなるように浄化槽10の後面に近接する両側に延設されている。ここで、横内壁12の間隔は、現地地下水の流速により決定される各透水性地下水浄化領域の層厚により決定する。
【0019】
図2は、図1で示した浄化槽10の断面図を示しており、(a)は平断面図、(b)は縦断面図である。図2(b)に示すように、浄化槽10の頂部は、地表面GLよりやや突出しており、その上は天端覆シート16で覆い、雨水・地表水等の浄化槽10への流入を防ぐ構造となっている。また、浄化槽10の底部は、少なくとも底版14の上面が不透水層線RL以下になるように、岩盤などの不透水層線RLより所定深さだけ掘り下げて形成し、汚染地下水W1が、浄化槽10の下を通って流出することを防ぐように構築されている。複合浄化領域30の天端の高さは、地下水位WLの高さ以上とし、汚染地下水W1が確実に複合浄化領域30を通るように構築されている。
【0020】
図2(b)に示すように、外壁11と横内壁12に設けられたスクリーン15は、流入してきた汚染地下水W1が、浄化槽10内の複合浄化領域30を上下しながら通過するように、地下水の流れ方向に隣り合う外壁11と横内壁12とに設けられたスクリーン15が側面視で互い違い、すなわち後側外壁11aは低部、後側横内壁12aは上部、前側横内壁12bは低部、前側外壁11bは上部になるように設けられている。さらに、縦内壁13にもスクリーン15が横内壁12と同様に上部と下部に互い違いになるように設けられている(図1参照)。ここで、上部に設けられたスクリーン15の上端は、地下水位WL以下に位置するように設けられている。また、スクリーン15は、複合浄化領域30の各透水性地下水浄化領域が混合することがないような網目を有する金網などから形成されている。
【0021】
図2(a)に示すように、浄化槽10は、横内壁12により区分された3つの槽を有し、複合浄化領域30は各槽にそれぞれ浄化作用が異なる成分の透水性浄化材を有する透水性地下水浄化領域が充填されている。本実施の形態の複合浄化領域30は、後面から、第1浄化領域31として砂層を好気性雰囲気に保ち内部に微生物を存在させたバイオレメディエーション等の好気性浄化領域、第2浄化領域32として砂層からなる砂ろ過領域、第3浄化領域33として嫌気性雰囲気に保たれ内部に鉄粉と珪砂が含まれている透水性浄化材である嫌気性浄化領域、の3種類の透水性浄化材を有する壁体として配置されている。さらに、各透水性地下水浄化領域は、後述するように縦内壁13により各透水性地下水浄化領域の交換を容易にするために、横断方向において3領域に分割されている。3領域に分割された透水性浄化材は、それぞれ、カートリッジ状である容器の内部に充填されており、透水性地下水浄化領域の交換が容易になっている。
【0022】
第一の実施の形態に係る地下水浄化構造1は、第1浄化領域31、第2浄化領域32、第3浄化領域33の3層の透水性地下水浄化領域からなる複合浄化領域30を有することで、第1浄化領域31の好気性浄化領域に生息している微生物の生化学的な分解によりベンゼン等の揮発性の高い有機物の分解を行い、第2浄化領域32の砂ろ過領域で固体粒子の除去を行い、第3浄化領域33の嫌気性浄化領域で金属還元剤の還元作用により重金属などの還元を行うことで、複合的に汚染された汚染地下水W1を効果的に浄化することが可能となっている。第1浄化領域31の好気性浄化領域は空気や酸素を通気し、特定の種類の汚染物質を分解する性質を有する微生物により浄化するものであり、通気は、真空抽出方式や注入方式により行う。第3浄化領域33の鉄粉からなる嫌気性浄化領域は、還元分解法により重金属などの安定化に効果的である。なお、各透水性浄化材の透水係数は、周辺地盤の透水係数と同等以上とする。
【0023】
また、複合浄化領域30の各透水性浄化材は、横内壁12と縦内壁13により区分された中に配置されたカートリッジ状の容器の内部に充填されているため、長期間の利用により浄化機能が低下した場合において、これらのカートリッジ状の容器を個別に交換することにより、簡単な作業で短時間に各透水性地下水浄化領域を交換することが可能となる。また、この交換作業において、各透水性地下水浄化領域はそれぞれ3つに区分されているため、一箇所ずつ交換することにより、残りの2箇所では引き続き浄化を行えるため、汚染地下水W1の浄化機能を止めることなく、交換作業を行うことが可能である。
【0024】
また、横内壁12と縦内壁13にそれぞれスクリーン15を互い違いになるように設けて、汚染地下水W1の浄化槽10内の流れを上下させることにより、各透水性地下水浄化領域の通過時間を長くすることができ、汚染地下水W1を効果的に浄化することが可能となる。つまり、外壁11と、横内壁12と、それぞれに設けたスクリーン15との位置を調節することにより、汚染地下水W1が有する有害物質の浄化に必要な時間・距離を、縦方向で確保することができ、必要スペースの削減、必要材料の減量化が可能となり経済的である。
【0025】
(第二の実施の形態)
図3は、第二の実施の形態に係る地下水浄化構造の断面図であり、(a)は平断面図、(b)は縦断面図を示す。
【0026】
第二の実施の形態に係る地下水浄化構造1は、図3(a)に示すように、横長に配置された3種類の透水性地下水浄化領域を有する複合浄化領域30と、この複合浄化領域30の左右に設けられた鋼矢板からなる外壁11及び止水壁20からなる。
【0027】
第二の実施の形態では、第一の実施の形態と略同等の複合浄化領域30として、第1浄化領域31に好気性浄化領域、第2浄化領域32に砂ろ過領域、第3浄化領域に嫌気性浄化領域33を設けて、複合的に汚染された汚染地下水W1を効果的に浄化するものとした。なお、第1浄化領域31には、図示しない送気ブロアにつながる送気孔35を設置し、定期的に酸素を供給することができるように構成されている。ここで、各透水性地下水浄化領域の層厚は現地地下水の流速により決定するものとし、それぞれの透水性浄化材の透水係数は、周辺地盤の透水係数と同等以上とする。
【0028】
本実施の形態に係る地下水浄化構造1は、浄化槽10として箱型のコンクリート構造体による浄化槽を構築せずに、4辺に仮土留矢板21を横長の直方体形状に設置して、これを利用して立坑を不透水層に至るまで掘削し、その底面に底版14を設置し、その上に3層の透水性地下水浄化領域を地下水の流れに直交する向きに複合浄化領域30を隙間なく並設し、その上部に覆土34を行ったものである。複合浄化領域30と覆土34の構築が完了したら、複合浄化領域30の前後に設けられている仮土留矢板21を撤去する。この際、側面の仮土留矢板21は、外壁11として残置し、汚染地下水W1が、複合浄化領域30にて確実に浄化されるように誘導する。また、止水壁20を、第一の実施の形態と同様に汚染源から発生した汚染地下水W1を浄化槽10に誘導するように、複合浄化領域30の両側面に延設する。
【0029】
第1浄化領域31の好気性浄化領域により、ベンゼン等の揮発性の高い有機物を分解し、第2浄化領域32の砂ろ過領域で固体粒子の除去を行い、第3浄化領域33の鉄粉などからなる嫌気性浄化領域で重金属などの安定化を行うことで、複合的に汚染された汚染地下水W1を効果的に浄化することが可能となった。また、施工には特別な重機、資材を使用することなく、特別な構造物を構築する必要もないことから、より簡単に地下水浄化構造を構築することが可能となる。
【0030】
(第三の実施の形態)
図4は、第三の実施の形態を示す断面図であり、(a)は平断面図、(b)は縦断面図を示す。
【0031】
第三の実施の形態では、複数本の円柱杭状の透水性浄化材の集合体による、第1浄化領域31’、第2浄化領域32’、第3浄化領域33’の3種類の透水性地下水浄化領域からなる複合浄化領域30を構築し、複合的に汚染された汚染地下水W1が各透水性地下水浄化領域を通過することで、浄化される構造である。複合浄化領域30の側面には、第二の実施の形態に係る地下水浄化構造と同様に、鋼矢板による外壁11と止水壁20を設け、汚染地下水W1が、流出することの無いようになっている。
【0032】
各透水性地下水浄化領域は、図示しないケーシングパイプを用いて地山の崩壊を防止しながら削孔した孔に、透水性の浄化材を充填してなり、杭径の1/2〜5倍の間隔で汚染地下水に対して直角に列状に配置し、また、汚染地下水の流れ方向に対しては千鳥に配置する。ここで、各円柱杭状の透水性浄化材の間隔・列数は、現地地下水の流速により決定し、また、各円柱杭状の透水性浄化材の透水係数は、周辺地盤の透水係数の10倍以上とし、汚染地下水が、各杭状の浄化材に誘導されるようにする。また、削孔は岩盤などの不透水層線RLより所定深さだけ掘り下げるものとし、各杭状の透水性浄化材の下端が不透水層線RL以下になるように構築し、汚染地下水W1が、複合浄化領域30の下を通って流出することを防ぐように構築する。さらに、複合浄化領域30上には覆土34を行い、降雨水や地表面水の流入を防ぐものとする。
【0033】
複合浄化領域30の各透水性地下水浄化領域は、地下水の上流側から第1浄化領域31’として好気性浄化領域を構築し微生物の分解能力により油分・有機分等の浄化を行い、第2浄化領域32’として砂ろ過領域を構築し濁度処理を行い、第3浄化領域33’として鉄粉が含まれている嫌気性浄化領域により重金属・揮発性有機化合物(VOC)などの浄化を行うことにより、複合的に汚染された汚染地下水W1の浄化を効果的に行うものとした。
また、各透水性地下水浄化領域の円柱杭状の透水性浄化材は、その浄化力が断面領域のみならず、外側領域にまで実質的に及ぶことから、その浄化力を考慮して、配置する間隔を決定する。こうして所定の間隔を設けて配置することにより、設置する浄化材を少なくすることができ、経済性に優れた地下水浄化構造1を構築することができる。
【0034】
以上、本発明に係る地下水浄化構造について説明したが、本発明はこれに限定されるものではなく、発明の趣旨に応じた様々な変更実施が可能である。例えば、図5に、上述の各実施形態を組合せ変形した例を示している。図5(a)は、第一の実施の形態のように、箱型の外壁11を構築し、内壁12を設けて浄化槽を構築したものであるが、第1浄化領域31を砂層にエアースパージング等を行って好気性雰囲気に保つ好気性浄化領域とし、図示しない送気ブロアの送気孔35及び排気孔36を設け、空気を循環させて微生物を活性化させ効果的に浄化を行うことができるように構成されている。送気孔35の配置は、送気ブロアの送風能力による影響範囲Dを考慮し、その0.5から1倍の間隔で地下水に対して直角に列状に配置し、好気性雰囲気に保たれるようにする。排気孔36は、各送気ブロアの影響範囲D外の所定の位置に所定数(本実施の形態では4箇所)配置する。また、浄化槽10の後面に近接する両側に延設された止水壁20は、平面視で、各々の先端部が左右の斜め後方向に、汚染地下水W1の流れの最大幅より広くなるように延設されており、汚染源から発生した汚染地下水W1を浄化槽10に誘導するように構築するものである。ここで、各透水性地下水浄化領域の層厚は、現地地下水の流速により決定するものとし、各透水性地下水浄化領域の透水係数は、周辺地盤の透水係数と同程度以上とする。
【0035】
また、図5(b)は第1浄化領域31” として砂層にオキシジェン・リリース・コンパウンド(以下「ORC」という)を注入して好気性雰囲気に保つ好気性浄化領域、第2浄化領域32”として砂層からなる砂ろ過領域、そして、第3浄化領域33”は、第3の実施の形態と同様に、鉄粉が含まれる透水性浄化材からなる円柱杭状の集合体による嫌気性浄化領域を設けた構造である。第1浄化領域31”は、砂ろ過領域にORCを注入する注入孔37を複数設け、この注入孔37より注入されるORCの影響範囲Dにより構築される柱杭の集合体により構築される。注入孔37は、ORCの影響範囲Dの1.0から1.5倍の間隔で列状に配置するものとする。注入孔37より、定期的にORCを注入することで砂ろ過領域に生息する微生物を活性化させ、第1浄化領域31”の浄化能力を維持できるようにしている。ORCは主成分が過酸化マグネシウムからなる米国のレジェネシス社の開発した薬剤で、水と接触することで酸素を放出するため、長期間にわたって、必要な酸素を供給する状態を維持することができる(化1参照)。本剤による浄化対象汚染物質は、好気性で分解するすべての物質で、ガソリン、軽油、塩化ビニール、MTBE(エーテルの一種)など広範囲にわたるため非常に好適である。第3浄化領域33”では、汚染地下水と鉄粉が接触して酸化するときに揮発性有機化合物を還元し、無害な物質に分解する。ここで、第3浄化領域33”の各円柱杭間隔及び列数は、第三の実施の形態と同様に、現地地下水の流速から決定するものとし、本実施例では列数を2列として千鳥状に配置した。また、第3浄化領域は嫌気性雰囲気なので第1浄化領域の好気性雰囲気の影響を受けてはならないため、第1浄化領域と第3浄化領域の間隔は、第1浄化領域の注入孔37から影響範囲Dの0.5倍以上とする。ここで、各透水性地下水浄化領域の透水係数は、周辺地盤の透水係数の10倍以上とする。
【0036】
【化1】
MgO2+H2O → 1/2O2+Mg(OH)2
【0037】
また、前述の各実施の形態では、止水壁に鋼矢板を使用したが、この限りではなく、連続地中壁や薬液注入など、同様の効果が得られるものであれば、その形式は限定されるものではない。
また、第一の実施の形態では、各透水性地下水浄化領域を内壁により横断方向で3つに分割したが、この限りではなく、各透水性地下水浄化領域交換時に施工性を考慮し、さらに細分化するなど、その分割数は限定されない。
また、複合浄化領域を、3種類の透水性地下水浄化領域の組合せにより構築したが、これに限定されるものではなく、複合的に汚染された汚染地下水の有害物質に対応する透水性地下水浄化領域の組合せにより、浄化領域の数は自由に設定することが可能である。
また、3種類の透水性地下水浄化領域は、前述の組合せのみではなく、汚染地下水に含まれる有害物質により、その組合せは変更が可能である。また、その順番も、限定されるものではない。
また、前述の実施の形態では、浄化槽のスクリーンの配置を上下に2段としたが、この限りではなく、浄化槽の構造によりその配置は適宜決定するものとする。
【0038】
【発明の効果】
請求項1に係る発明により、複合的に汚染された汚染地下水を、確実に浄化することができ、環境破壊を防ぐことが可能となった。
【0039】
また、請求項2に係る発明により、各設置箇所の地下水の流速や流量、地質や地層などにより各透水性地下水浄化領域の間隔を決定し、より効果的に汚染地下水の浄化を行うことを可能とした。
【0040】
また、請求項3に係る発明により、好気性浄化領域と、嫌気性浄化領域との組合せにより、廃棄物処理場や不法投棄廃棄物から流れ出た有害物質や工場廃液などの複合的に汚染された汚染地下水の浄化をすることを可能とした。
【0041】
さらに、請求項4に係る発明により、簡易に透水性浄化材を交換すること可能であるため、浄化機能を損なわずに長期間使用することを可能とした。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る地下水浄化構造の斜視図である。
【図2】本発明の第1の実施の形態に係る地下水浄化構造の断面図であり、(a)は平断面図、(b)は縦断面図である。
【図3】本発明の第2の実施の形態に係る地下水浄化構造の断面図であり、(a)は平断面図、(b)は縦断面図である。
【図4】本発明の第3の実施の形態に係る地下水浄化構造の断面図であり、(a)は平断面図、(b)は縦断面図である。
【図5】本発明の地下水浄化構造のさらに他の変更例の平断面図である。
【図6】従来の地下水浄化構造の平面図である。
【符号の説明】
1 地下水浄化構造
10 浄化槽
11 外壁
12 横内壁
13 縦内壁
14 底版
15 スクリーン
16 覆シート
20 止水壁
30 複合浄化領域
31 第1浄化領域
32 第2浄化領域
33 第3浄化領域
34 覆土
35 送気孔
W1 汚染地下水
W2 処理水
GL 地表面
WL 地下水位
RL 不透水層線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a groundwater purification technique, and relates to a groundwater purification structure used for purifying contaminated groundwater.
[0002]
[Prior art]
In recent years, toxic substances and factory effluents flowing from waste disposal sites and illegally dumped wastes have permeated underground and frequently contaminated groundwater, which has become a major social problem. The groundwater contaminated in this way (hereinafter referred to as “contaminated groundwater”) spreads the contaminated area by its flow and causes various environmental pollution. For this reason, various purification techniques have been proposed in order to prevent such contaminated groundwater from flowing into the surrounding area.
[0003]
For example, the applicant of the present invention, as shown in FIG. 6, has one kind of water permeable purifying material 111 in which water permeability is secured in the downstream basin of the contaminated groundwater W1 contaminated by the harmful substance (contamination source) P that has penetrated underground. Is constructed with a permeable groundwater purification wall 110 that is arranged in the ground and a water blocking wall 120, and the permeable purification material 111 is introduced by introducing the contaminated groundwater W1 to the permeable groundwater purification wall 110. Has been developed and put into practical use (see Patent Document 1).
[0004]
[Patent Document 1]
JP 2000-263068 A ([0010]-[0018], FIG. 2)
[0005]
[Problems to be solved by the invention]
However, the contaminated groundwater W1 composed of hazardous substances and factory waste liquids flowing out from waste disposal sites and illegal dumping waste is often contaminated in a complex manner, and the conventional permeable groundwater purification wall 110 is limited. In the case of purifying the contaminated groundwater W1 with one kind of water permeable purification material 111 for the different types of pollutants, there is a problem that the contaminated groundwater cannot be purified.
[0006]
The present invention has been made to solve the above-described problems, and proposes a groundwater purification structure capable of efficiently purifying complex contaminated groundwater.
[0007]
[Means for Solving the Problems]
  In order to solve such a problem, the invention according to claim 1 includes at least two permeable groundwater purification regions in which a wall body having a water permeable purification material or a plurality of pillars are arranged in the ground. The contaminated groundwater contaminated with a plurality of pollutants can pass through each permeable groundwater purification area.So as to cross the direction of flow of the contaminated groundwaterAnd a plurality of the permeable groundwater purification regions corresponding to the plurality of pollutants, wherein the permeable groundwater purification regions include different types of components, and each of the permeable groundwater purification regions is a purification method. Are different and do not mix with each other,Each permeable groundwater purification areaPurifying atmosphereDo not interfere with each otherIt is the groundwater purification structure characterized by being arranged like this.
[0008]
Water-permeable purification materials used for such groundwater purification structures include activated carbon, allophane, chelating materials, those that purify volatile organic compounds, heavy metals, etc. by physical adsorption such as sand layers, biochemical decomposition of microorganisms, etc. That purifies organic chlorine compounds and oils, volatile organic compounds by chemical decomposition by reduction, oxidation, catalytic reaction, etc., metal reducing agents such as iron powder and aluminum powder, oxidizing agents, lime, etc. There are things that purify heavy metals.
[0009]
Such a groundwater purification structure is configured to combine a plurality of permeable groundwater purification regions having different purification effects by the permeable purification material containing the above-described different types of components, and contaminated groundwater passes through the permeable groundwater purification region. As a result, the contaminated groundwater contaminated by the complex is a permeable groundwater purification area corresponding to each pollutant, so that the pollutant can be surely eliminated and environmental destruction is prevented. Here, as the water-permeable purification material containing different types of components, it is usually preferable to use the water-permeable purification material having the above-described different actions, but depending on the case, the water-permeability purification material having the same action of different components may be used. A purification material may be used.
[0010]
  The invention according to claim 2At least two permeable groundwater purification regions comprising a wall body having a water permeable purification material or a plurality of pillars in the ground are provided, and the contaminated groundwater complexly contaminated with a plurality of contaminants is said each permeable water. And a water-permeable purification material containing different types of components in the plurality of water-permeable groundwater purification regions corresponding to the plurality of contaminants, respectively. Each of the permeable groundwater purification areas has different purification methods and is not mixed with each other, so that the purification atmosphere of each other is not affected.Each permeable groundwater purification area is in the direction of flow of the contaminated groundwater.More than 0.5 times the range of influenceIt is characterized by being arranged with gaps at intervals of.
[0011]
Such a groundwater purification structure plays a role regardless of whether the permeable groundwater purification regions are in contact with each other or separated from each other as long as contaminated groundwater reliably passes through each permeable groundwater purification region.
However, in order to purify contaminated groundwater more effectively, for example, when the flow rate of contaminated groundwater is fast and the contaminated groundwater passes through the permeable groundwater purification area without obtaining a sufficient purification effect, It is good also as a structure which changes the layer thickness of each permeable groundwater purification area | region according to the flow velocity of contaminated groundwater, or a structure which provides a space | interval between each permeable groundwater purification area | region. Also, depending on the type of water permeable purification material, if they are placed close to each other, the materials will react and coalesce so that the effect can not be obtained sufficiently, or in the permeable groundwater purification area and anaerobic atmosphere that keeps the aerobic atmosphere In some cases, it is better to separate them so that they do not interfere with each other as in the area of water-permeable groundwater purification that is maintained. There may be a structure in which each permeable groundwater purification region is provided and separated from the permeable groundwater purification region, and can remain in the permeable groundwater purification region for a sufficient time that the contaminated groundwater can be purified.
In other words, the groundwater purification structure according to the present invention determines the layer thickness and interval of each permeable groundwater purification region according to the flow velocity and flow rate of the groundwater at each installation location, the geology, the stratum, etc., and more effectively purifies contaminated groundwater. Is.
[0012]
  The invention according to claim 3At least two permeable groundwater purification regions comprising a wall body having a water permeable purification material or a plurality of pillars in the ground are provided, and the contaminated groundwater complexly contaminated with a plurality of contaminants is said each permeable water. And a water-permeable purification material containing different types of components in the plurality of water-permeable groundwater purification regions corresponding to the plurality of contaminants, respectively. The permeable groundwater purification areas are arranged so that the purification methods are different and are not mixed with each other.Including the predetermined microorganism as the water-permeable purification material, the first water-permeable groundwater purification region maintained in an aerobic atmosphere, and the second water-permeable groundwater purification region maintained in an anaerobic atmosphere, The first permeable groundwater purification region is arranged on the upstream side of the contaminated groundwater flow from the second permeable groundwater purification region.
[0013]
With such a groundwater purification structure, a water-permeable groundwater purification region with an aerobic atmosphere such as bioremediation (hereinafter sometimes referred to as “aerobic purification region”) and a water-permeable groundwater purification region with an anaerobic atmosphere such as iron powder and aluminum powder. (Hereinafter sometimes referred to as “anaerobic purification region”), decomposition of organic and oil components in the aerobic purification region, suspended solids (SS), dioxin (DXN), biochemical oxygen demand (BOD) In addition, reduction of chemical oxygen demand (COD), etc., and decomposition and adsorption of volatile organic compounds (VOC), heavy metals, agricultural chemicals and the like by an anaerobic purification region can be performed. In other words, by combining these permeable groundwater purification areas, it becomes possible to purify contaminated groundwater that is contaminated in a complex manner, such as hazardous substances flowing from waste disposal sites and illegally dumped waste and factory waste liquid. Here, the arrangement of the aerobic purification region upstream of the flow of groundwater removes substances that adhere to the reducing agent in the anaerobic purification region such as oil and reduce the reduction action in advance, and therefore anaerobic purification. This is preferable because the purification function of the region can be sufficiently exhibited.
[0014]
The invention which concerns on Claim 4 is the groundwater purification structure of any one of Claim 1 thru | or 3, Comprising: The water-permeable purification material of each said water-permeable groundwater purification area | region is exchangeable in the ground It is arranged.
[0015]
Such a groundwater purification structure is constructed such that the permeable groundwater purification area is constructed by filling the permeable purification material of the permeable groundwater purification area into a bag or a cartridge-like container and burying it in the ground and replacing it. Even if there is a possibility that the purification function may be impaired by purifying contaminated groundwater over a long period of time, it is possible to easily replace the water permeable purification material, so it can be used for a long time without impairing the purification function. Is possible.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Preferred embodiments of the present invention will be described in detail with reference to the drawings. In the description, the same reference numerals are used for the same elements, and duplicate descriptions are omitted. Also, in the following explanation, the outflow surface downstream of the groundwater from the groundwater purification structure is referred to as the front surface, the inflow surface upstream is referred to as the rear surface, and the left and right directions are as seen from the outflow surface of the groundwater purification structure in front view. .
[0017]
(First embodiment)
FIG. 1 is a perspective view of a groundwater purification structure according to the first embodiment. Reference numeral 1 denotes a groundwater purification structure composed of a three-layer permeable groundwater purification region and a water blocking wall. 10 shows the septic tank which accommodates each permeable groundwater purification area | region, 20 shows a water stop wall. W1 indicates contaminated groundwater before purification, and W2 indicates treated water after purification by the groundwater purification structure 1.
[0018]
As shown in FIG. 1, the septic tank 10 is formed in a box shape which is a horizontally long and hollow rectangular parallelepiped by a concrete outer wall 11, and a composite water-permeable groundwater purification region containing three types of components therein ( (Hereinafter referred to as “composite purification region”) 30 is accommodated. Further, in the septic tank 10, two horizontal inner walls 12 erected at a predetermined interval in the transverse direction of the groundwater so as to partition each permeable groundwater purification region and two sheets erected at a predetermined interval in the longitudinal direction. A vertical inner wall 13 is provided. A water-permeable screen 15 is provided at a predetermined position on each of the outer wall 11, the horizontal inner wall 12, and the vertical inner wall 13. On the other hand, the water blocking wall 20 is made of a steel sheet pile and is close to the rear surface of the septic tank 10 so as to be wider than the maximum width of the contaminated groundwater W1 so as to guide the contaminated groundwater W1 generated from the contamination source to the septic tank 10. It extends on both sides. Here, the space | interval of the horizontal inner wall 12 is determined by the layer thickness of each permeable groundwater purification area | region determined by the flow velocity of local groundwater.
[0019]
2 shows a cross-sectional view of the septic tank 10 shown in FIG. 1, wherein (a) is a plane cross-sectional view and (b) is a vertical cross-sectional view. As shown in FIG.2 (b), the top part of the septic tank 10 protrudes a little from the ground surface GL, and the top is covered with the top end covering sheet 16, and the structure which prevents inflow to the septic tank 10 of rainwater, surface water, etc. It has become. Further, the bottom portion of the septic tank 10 is formed by digging a predetermined depth from the impermeable layer line RL such as a rock so that at least the upper surface of the bottom plate 14 is equal to or less than the impermeable layer line RL. Built to prevent spilling through underneath. The height of the top of the combined purification area 30 is set to be equal to or higher than the height of the groundwater level WL, and the contaminated groundwater W1 is constructed so as to surely pass through the combined purification area 30.
[0020]
As shown in FIG. 2 (b), the screen 15 provided on the outer wall 11 and the lateral inner wall 12 allows the groundwater W1 that has flowed in to pass through the combined purification region 30 in the septic tank 10 while going up and down. The screens 15 provided on the outer wall 11 and the lateral inner wall 12 adjacent to each other in the flow direction are staggered in a side view, that is, the rear outer wall 11a is a lower portion, the rear lateral inner wall 12a is an upper portion, and the front lateral inner wall 12b is a lower portion. The front outer wall 11b is provided so as to be an upper part. Further, the screens 15 are also provided on the vertical inner wall 13 so as to alternate between the upper part and the lower part similarly to the horizontal inner wall 12 (see FIG. 1). Here, the upper end of the screen 15 provided in the upper part is provided so that it may be located below the groundwater level WL. Further, the screen 15 is formed of a wire net having a mesh so that the water-permeable groundwater purification regions of the composite purification region 30 are not mixed.
[0021]
As shown in FIG. 2 (a), the septic tank 10 has three tanks divided by the horizontal inner wall 12, and the composite purification region 30 has water permeable purification materials having components having different purification actions in each tank. The groundwater purification area is filled. The composite purification region 30 of the present embodiment includes an aerobic purification region such as bioremediation in which a sand layer is maintained in an aerobic atmosphere as a first purification region 31 and microorganisms are present therein, and a sand layer as a second purification region 32 from the rear surface. The three types of water-permeable purification materials are the sand filtration region and the third purification region 33, which are anaerobic purification regions that are maintained in an anaerobic atmosphere and contain iron powder and silica sand inside. It is arranged as a wall. Further, each permeable groundwater purification region is divided into three regions in the transverse direction in order to facilitate exchange of each permeable groundwater purification region by the vertical inner wall 13 as described later. Each of the water-permeable purification materials divided into the three regions is filled in a cartridge-like container so that the water-permeable groundwater purification region can be easily replaced.
[0022]
The groundwater purification structure 1 according to the first embodiment includes a composite purification region 30 including a three-layer permeable groundwater purification region including a first purification region 31, a second purification region 32, and a third purification region 33. , Organic substances having high volatility such as benzene are decomposed by biochemical decomposition of microorganisms living in the aerobic purification region of the first purification region 31, and solid particles are separated in the sand filtration region of the second purification region 32. It is possible to effectively purify the contaminated groundwater W1 that is contaminated in a complex manner by performing removal and reducing heavy metals and the like by the reducing action of the metal reducing agent in the anaerobic purification region of the third purification region 33. It has become. The aerobic purification region of the first purification region 31 is for purifying with microorganisms having the property of aerating air and oxygen and decomposing specific types of pollutants, and aeration is performed by a vacuum extraction method or an injection method. The anaerobic purification region made of iron powder in the third purification region 33 is effective for stabilizing heavy metals and the like by the reductive decomposition method. In addition, the water permeability coefficient of each water permeable purification material shall be equal to or greater than the water permeability coefficient of the surrounding ground.
[0023]
Moreover, since each water-permeable purification material of the composite purification area | region 30 is filled in the inside of the cartridge-shaped container arrange | positioned in the inside divided by the horizontal inner wall 12 and the vertical inner wall 13, it is a purification function by long-term utilization. In the case where the water content is lowered, by replacing these cartridge-like containers individually, it becomes possible to replace each permeable groundwater purification region in a short time with a simple operation. Also, in this replacement work, each permeable groundwater purification area is divided into three areas, so by replacing one place at a time, the remaining two places can continue purification, so the function of purifying contaminated groundwater W1 is achieved. It is possible to perform the replacement work without stopping.
[0024]
Moreover, the passage time of each permeable groundwater purification area | region is lengthened by providing the screen 15 in the horizontal inner wall 12 and the vertical inner wall 13 so that it may alternate, and raising and lowering the flow in the purification tank 10 of the contaminated groundwater W1. Thus, the contaminated groundwater W1 can be effectively purified. That is, by adjusting the positions of the outer wall 11, the horizontal inner wall 12, and the screen 15 provided on each of the outer wall 11, it is possible to ensure the time and distance necessary for the purification of harmful substances contained in the contaminated groundwater W1 in the vertical direction. It is possible to reduce the required space and the required material, which is economical.
[0025]
(Second embodiment)
FIG. 3 is a cross-sectional view of the groundwater purification structure according to the second embodiment, where (a) is a plan cross-sectional view and (b) is a vertical cross-sectional view.
[0026]
As shown in FIG. 3A, the groundwater purification structure 1 according to the second embodiment includes a composite purification region 30 having three types of water-permeable groundwater purification regions arranged horizontally, and the composite purification region 30. It consists of the outer wall 11 and the water stop wall 20 which consist of the steel sheet pile provided in the right and left.
[0027]
In the second embodiment, as a combined purification region 30 substantially equivalent to the first embodiment, an aerobic purification region is provided in the first purification region 31, a sand filtration region is provided in the second purification region 32, and a third purification region is provided. The anaerobic purification region 33 is provided to effectively purify the contaminated groundwater W1 contaminated in a complex manner. The first purification region 31 is provided with an air supply hole 35 connected to an air supply blower (not shown) so that oxygen can be supplied periodically. Here, the layer thickness of each permeable groundwater purification area is determined by the flow rate of the local groundwater, and the permeable coefficient of each permeable purification material is equal to or greater than the permeable coefficient of the surrounding ground.
[0028]
The groundwater purification structure 1 according to the present embodiment does not construct a septic tank made of a box-shaped concrete structure as the septic tank 10, but uses temporary earth retaining sheet piles 21 on four sides in a horizontally long rectangular parallelepiped shape. The shaft is excavated up to the impermeable layer, the bottom plate 14 is installed on the bottom, and the three layers of permeable groundwater purification region are arranged on the bottom in parallel to the groundwater flow without any gaps. In this case, the top cover 34 is provided. When the construction of the composite purification region 30 and the soil covering 34 is completed, the temporary earth retaining sheet piles 21 provided before and after the composite purification region 30 are removed. At this time, the temporary earth retaining sheet pile 21 on the side surface is left as the outer wall 11, and the contaminated groundwater W <b> 1 is guided so as to be reliably purified in the combined purification region 30. Further, the water blocking walls 20 are extended on both side surfaces of the combined purification region 30 so as to guide the contaminated groundwater W1 generated from the contamination source to the purification tank 10 as in the first embodiment.
[0029]
The aerobic purification region of the first purification region 31 decomposes highly volatile organic substances such as benzene, removes solid particles in the sand filtration region of the second purification region 32, iron powder of the third purification region 33, etc. By stabilizing heavy metals and the like in the anaerobic purification region consisting of the above, it becomes possible to effectively purify the contaminated groundwater W1 contaminated in a complex manner. Moreover, since it is not necessary to construct a special structure without using special heavy machinery and materials for construction, it becomes possible to construct a groundwater purification structure more easily.
[0030]
(Third embodiment)
FIG. 4 is a cross-sectional view showing a third embodiment, where (a) is a plan cross-sectional view and (b) is a vertical cross-sectional view.
[0031]
In 3rd Embodiment, three types of water permeability of 1st purification | cleaning area | region 31 ', 2nd purification | cleaning area | region 32', and 3rd purification | cleaning area | region 33 'by the aggregate | assembly of a plurality of cylindrical pile-shaped water-permeable purification materials. A complex purification region 30 composed of a groundwater purification region is constructed, and the contaminated groundwater W1 contaminated in a complex manner is purified by passing through each permeable groundwater purification region. Similar to the groundwater purification structure according to the second embodiment, the outer wall 11 and the water blocking wall 20 made of steel sheet piles are provided on the side surface of the combined purification region 30 so that the contaminated groundwater W1 does not flow out. ing.
[0032]
Each permeable groundwater purification area is formed by filling the hole drilled with a casing pipe (not shown) while preventing the collapse of the natural ground, and ½ to 5 times the pile diameter They are arranged in a row perpendicular to the contaminated groundwater at intervals, and in a staggered manner with respect to the flow direction of the contaminated groundwater. Here, the interval and the number of columns of the permeable purification material in the columnar pile shape are determined by the flow rate of the groundwater in the field, and the permeability coefficient of the permeable purification material in the columnar pile shape is 10 of the permeability coefficient of the surrounding ground. Double or more so that contaminated groundwater is guided to each pile-shaped purification material. In addition, the drilling hole is to be dug by a predetermined depth from the impermeable layer line RL such as bedrock, and constructed so that the lower end of each pile-shaped water permeable purification material is equal to or less than the impermeable layer line RL. It is constructed so as to prevent it from flowing out under the composite purification region 30. Further, a cover soil 34 is provided on the combined purification region 30 to prevent inflow of rainwater and ground surface water.
[0033]
Each permeable groundwater purification region of the combined purification region 30 is constructed as an aerobic purification region as a first purification region 31 ′ from the upstream side of the groundwater, and purifies oil and organic components by the ability of microorganisms to be decomposed. A sand filtration area is constructed as the area 32 'and turbidity treatment is performed, and a heavy metal / volatile organic compound (VOC) is purified by the anaerobic purification area containing iron powder as the third purification area 33'. Thus, the contaminated groundwater W1 contaminated in combination is effectively purified.
In addition, the columnar pile-shaped water-permeable purification material in each water-permeable groundwater purification area is disposed in consideration of its purification power because its purification power substantially extends not only to the cross-sectional area but also to the outer area. Determine the interval. By arranging them at predetermined intervals in this way, it is possible to reduce the amount of purification material to be installed, and it is possible to construct a groundwater purification structure 1 that is excellent in economic efficiency.
[0034]
The groundwater purification structure according to the present invention has been described above, but the present invention is not limited to this, and various modifications can be made according to the spirit of the invention. For example, FIG. 5 shows an example in which the above-described embodiments are combined and modified. FIG. 5A shows a case in which a box-shaped outer wall 11 is constructed and a septic tank is constructed by providing an inner wall 12 as in the first embodiment, but the first purification region 31 is air sparged into a sand layer. The aerobic purification region is maintained to maintain an aerobic atmosphere by providing an air supply hole 35 and an exhaust hole 36 of an air supply blower (not shown), and air can be circulated to activate microorganisms and effectively perform purification. It is configured as follows. The air supply holes 35 are arranged in a row perpendicular to the ground water at intervals of 0.5 to 1 times in consideration of the influence range D due to the air blowing ability of the air supply blower, and maintained in an aerobic atmosphere. Like that. A predetermined number (four in this embodiment) of exhaust holes 36 are arranged at a predetermined position outside the influence range D of each air blower. In addition, the water blocking walls 20 extending on both sides close to the rear surface of the septic tank 10 are so that each tip end is wider than the maximum width of the flow of the contaminated groundwater W1 in the diagonally rearward direction on the left and right in plan view. It is extended and constructed so as to guide the contaminated groundwater W1 generated from the contamination source to the septic tank 10. Here, the layer thickness of each permeable groundwater purification area is determined by the flow rate of the local groundwater, and the permeable coefficient of each permeable groundwater purification area is equal to or greater than the permeability coefficient of the surrounding ground.
[0035]
  FIG. 5B shows an aerobic purification region 32 ″, in which oxygen release compound (hereinafter referred to as “ORC”) is injected into the sand layer to maintain an aerobic atmosphere as the first purification region 31 ″. As in the third embodiment, the sand filtration region composed of a sand layer and the third purification region 33 ″ are an anaerobic purification region formed by a cylindrical pile-shaped assembly made of a water-permeable purification material containing iron powder. This is the structure provided. The first purification region 31 ″ is formed by an aggregate of pillar piles that are provided with a plurality of injection holes 37 for injecting ORC into the sand filtration region and are constructed by the influence range D of the ORC injected from the injection holes 37. The injection holes 37 are arranged in rows at intervals of 1.0 to 1.5 times the influence range D of the ORC, and inhabit the sand filtration region by periodically injecting the ORC from the injection holes 37. The microorganisms to be activated are activated so that the purification ability of the first purification region 31 ″ can be maintained. ORC is a drug developed by Regenesis of the United States, whose main component is magnesium peroxide. Since oxygen is released when it comes into contact with water, it can maintain the state of supplying necessary oxygen for a long period of time. (See Chemical Formula 1). The pollutants to be purified by this agent are all aerobic and decomposed substances and are very suitable because they cover a wide range such as gasoline, light oil, vinyl chloride, MTBE (a kind of ether). In the third purification region 33 ", when contaminated groundwater and iron powder come into contact and oxidize, volatile organic compounds are reduced and decomposed into harmless substances. Here, the intervals between the column piles in the third purification region 33" Similarly to the third embodiment, the number of rows is determined from the flow velocity of the local groundwater, and in this embodiment, the number of rows is set to two rows in a staggered manner. In addition, since the third purification region is an anaerobic atmosphere,The influence of the aerobic atmosphereSince it should not be received, the interval between the first purification region and the third purification region is 0.5 times or more the influence range D from the injection hole 37 of the first purification region. Here, the water permeability coefficient of each permeable groundwater purification area shall be 10 times or more of the water permeability coefficient of the surrounding ground.
[0036]
[Chemical 1]
MgO2+ H2O → 1 / 2O2+ Mg (OH)2
[0037]
Further, in each of the above-described embodiments, the steel sheet pile is used for the water blocking wall. However, the present invention is not limited to this, and the form is limited as long as similar effects such as continuous underground wall and chemical injection can be obtained. Is not to be done.
Further, in the first embodiment, each permeable groundwater purification area is divided into three in the transverse direction by the inner wall. However, this is not a limitation, and the workability is further considered in replacing each permeable groundwater purification area. For example, the number of divisions is not limited.
Moreover, although the composite purification area was constructed by combining three types of permeable groundwater purification areas, it is not limited to this, and the permeable groundwater purification area corresponding to the harmful substances of the contaminated contaminated groundwater. The number of purification regions can be set freely by combining the above.
In addition, the three types of water-permeable groundwater purification areas can be changed not only by the above-described combination but also by a harmful substance contained in the contaminated groundwater. Further, the order is not limited.
In the above-described embodiment, the screen of the septic tank is arranged in two stages up and down, but this is not a limitation, and the layout is appropriately determined depending on the structure of the septic tank.
[0038]
【The invention's effect】
According to the first aspect of the present invention, contaminated groundwater contaminated in a complex manner can be reliably purified, and environmental destruction can be prevented.
[0039]
Further, according to the invention according to claim 2, it is possible to determine the interval between the permeable groundwater purification regions based on the flow velocity and flow rate of the groundwater at each installation location, the geology, the geological formation, etc., and to purify the contaminated groundwater more effectively. It was.
[0040]
Further, according to the invention according to claim 3, due to the combination of the aerobic purification region and the anaerobic purification region, harmful substances and factory waste liquids flowing out from the waste treatment plant and illegal dumping waste were mixed and contaminated. It became possible to purify contaminated groundwater.
[0041]
Further, according to the invention of claim 4, since the water-permeable purification material can be easily exchanged, it can be used for a long time without impairing the purification function.
[Brief description of the drawings]
FIG. 1 is a perspective view of a groundwater purification structure according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of the groundwater purification structure according to the first embodiment of the present invention, (a) is a plan cross-sectional view, and (b) is a vertical cross-sectional view.
FIG. 3 is a cross-sectional view of a groundwater purification structure according to a second embodiment of the present invention, (a) is a plan cross-sectional view, and (b) is a vertical cross-sectional view.
FIG. 4 is a cross-sectional view of a groundwater purification structure according to a third embodiment of the present invention, (a) is a plan cross-sectional view, and (b) is a vertical cross-sectional view.
FIG. 5 is a plan sectional view of still another modification of the groundwater purification structure of the present invention.
FIG. 6 is a plan view of a conventional groundwater purification structure.
[Explanation of symbols]
1 Groundwater purification structure
10 Septic tank
11 Exterior wall
12 Horizontal inner wall
13 Vertical inner wall
14 Bottom plate
15 screens
16 Cover sheet
20 Water barrier
30 Complex purification area
31 1st purification area
32 Second purification zone
33 Third purification zone
34 Covering soil
35 Air supply holes
W1 contaminated groundwater
W2 treated water
GL Ground surface
WL Groundwater level
RL impermeable layer wire

Claims (4)

透水性浄化材を有する壁体又は複数本の柱体を地中に配置してなる透水性地下水浄化領域を少なくとも2領域備え、
複数の汚染物質により複合的に汚染された汚染地下水が前記各透水性地下水浄化領域を透過可能となるように前記汚染地下水の流れ方向に対して横断するように配置されているとともに、
前記複数の汚染物質に対応して複数の前記透水性地下水浄化領域にそれぞれ異なる種類の成分が含まれる透水性浄化材が配置され、
前記各透水性地下水浄化領域は浄化方法が異なるとともに互いに混ざり合うことがなく、前記各透水性地下水浄化領域の浄化雰囲気を相互に干渉しないように配置されていることを特徴とする地下水浄化構造。
At least two permeable groundwater purification regions comprising a wall having a water permeable purification material or a plurality of pillars disposed in the ground,
The contaminated groundwater contaminated by a plurality of pollutants is disposed so as to cross the direction of flow of the contaminated groundwater so that the permeable groundwater purification area can be permeated.
A plurality of permeable groundwater purification regions corresponding to the plurality of contaminants are arranged with permeable purification materials containing different types of components,
Each of the permeable groundwater purification regions has a different purification method and does not mix with each other, and is disposed so as not to interfere with the purification atmosphere of each of the permeable groundwater purification regions .
透水性浄化材を有する壁体又は複数本の柱体を地中に配置してなる透水性地下水浄化領域を少なくとも2領域備え、
複数の汚染物質により複合的に汚染された汚染地下水が前記各透水性地下水浄化領域を透過可能となるように配置されているとともに、
前記複数の汚染物質に対応して複数の前記透水性地下水浄化領域にそれぞれ異なる種類の成分が含まれる透水性浄化材が配置され、
前記各透水性地下水浄化領域は浄化方法が異なるとともに互いに混ざり合うことがなく、互いの浄化雰囲気に影響がないように、前記各透水性地下水浄化領域が前記汚染地下水の流れ方向に対して影響範囲の0.5倍以上の間隔で隙間を有して配置されていることを特徴とする地下水浄化構造。
At least two permeable groundwater purification regions comprising a wall having a water permeable purification material or a plurality of pillars disposed in the ground,
The contaminated groundwater contaminated with a plurality of pollutants is arranged so as to be able to permeate each permeable groundwater purification area,
A plurality of permeable groundwater purification regions corresponding to the plurality of contaminants are arranged with permeable purification materials containing different types of components,
Each permeability groundwater purification region without purification method is mutual mixing with different, so that there is no influence on the purification atmosphere of one another, before Symbol influence the flow direction of the water-permeable ground water purification area the contaminated groundwater groundwater purifying structure characterized by being arranged with a gap of 0.5 times or more intervals ranging.
透水性浄化材を有する壁体又は複数本の柱体を地中に配置してなる透水性地下水浄化領域を少なくとも2領域備え、
複数の汚染物質により複合的に汚染された汚染地下水が前記各透水性地下水浄化領域を透過可能となるように配置されているとともに、
前記複数の汚染物質に対応して複数の前記透水性地下水浄化領域にそれぞれ異なる種類の成分が含まれる透水性浄化材が配置され、
前記各透水性地下水浄化領域は浄化方法が異なるとともに互いに混ざり合うことがないように配置されていて、
前記透水性浄化材として所定の微生物を含み、好気性雰囲気に保たれた第1の前記透水性地下水浄化領域と、嫌気性雰囲気に保たれた第2の前記透水性地下水浄化領域と、を備え、
前記第1の透水性地下水浄化領域が前記第2の透水性地下水浄化領域より、前記汚染地下水の流れの上流側に配置されていることを特徴とする地下水浄化構造。
At least two permeable groundwater purification regions comprising a wall having a water permeable purification material or a plurality of pillars disposed in the ground,
The contaminated groundwater contaminated with a plurality of pollutants is arranged so as to be able to permeate each permeable groundwater purification area,
A plurality of permeable groundwater purification regions corresponding to the plurality of contaminants are arranged with permeable purification materials containing different types of components,
Each permeable groundwater purification area is arranged so that it does not mix with each other with different purification methods,
The first permeable groundwater purification region containing a predetermined microorganism as the permeable purification material and maintained in an aerobic atmosphere, and the second permeable groundwater purification region maintained in an anaerobic atmosphere ,
The groundwater purification structure according to claim 1, wherein the first permeable groundwater purification region is disposed upstream of the second permeable groundwater purification region in the flow of the contaminated groundwater.
前記各透水性地下水浄化領域の透水性浄化材が、交換可能に地中に配置されていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の地下水浄化構造。  The groundwater purification structure according to any one of claims 1 to 3, wherein the water-permeable purification material in each of the water-permeable groundwater purification regions is exchangeably disposed in the ground.
JP2003150546A 2003-05-28 2003-05-28 Groundwater purification structure Expired - Fee Related JP4410491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003150546A JP4410491B2 (en) 2003-05-28 2003-05-28 Groundwater purification structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003150546A JP4410491B2 (en) 2003-05-28 2003-05-28 Groundwater purification structure

Publications (2)

Publication Number Publication Date
JP2004351293A JP2004351293A (en) 2004-12-16
JP4410491B2 true JP4410491B2 (en) 2010-02-03

Family

ID=34046320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003150546A Expired - Fee Related JP4410491B2 (en) 2003-05-28 2003-05-28 Groundwater purification structure

Country Status (1)

Country Link
JP (1) JP4410491B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2549521C (en) * 2003-12-19 2012-07-10 Terreco Process for removing a contaminant from contaminated groundwater
JP4572761B2 (en) * 2005-03-29 2010-11-04 栗田工業株式会社 In-situ containment method and in-situ containment device
JP4802621B2 (en) * 2005-09-02 2011-10-26 栗田工業株式会社 PH adjustment method for groundwater
JP4709010B2 (en) * 2006-01-04 2011-06-22 パナソニック株式会社 Gas station groundwater purification system and purification method
JP5244296B2 (en) * 2006-02-15 2013-07-24 一般財団法人石油エネルギー技術センター Permeability purification wall and purification method of contaminated groundwater
JP5292672B2 (en) * 2006-03-28 2013-09-18 栗田工業株式会社 Contaminated groundwater purification method and purification structure
JP4915200B2 (en) * 2006-10-12 2012-04-11 パナソニック株式会社 Purification device and groundwater purification method using the purification device
JP2008173557A (en) * 2007-01-17 2008-07-31 Petroleum Energy Center Water-permeable purifying wall and purification treatment method of polluted underground water
JP5244321B2 (en) * 2007-01-17 2013-07-24 一般財団法人石油エネルギー技術センター Permeability purification wall and purification method of contaminated groundwater
JP5247047B2 (en) * 2007-02-23 2013-07-24 出光興産株式会社 Decomposition method of ethers
JP2011156454A (en) * 2010-01-29 2011-08-18 Shimizu Corp In-situ purification method for contaminated underground water
JP5839252B2 (en) * 2010-08-05 2016-01-06 清水建設株式会社 Contaminated groundwater purification structure
JP6282878B2 (en) * 2014-02-07 2018-02-21 株式会社熊谷組 Contaminated soil and groundwater purification system
JP7375423B2 (en) * 2019-09-27 2023-11-08 株式会社大林組 underground purification wall

Also Published As

Publication number Publication date
JP2004351293A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP4410491B2 (en) Groundwater purification structure
JP3079109B2 (en) How to remove halogenated pollutants in groundwater
DE69425677T2 (en) METHOD FOR SOIL REMOVAL BY OXIDATION AND VACUUM EXTRACTION
JP5971606B1 (en) Soil purification method
JP2004283709A (en) Soil pollution countermeasure method and soil pollution countermeasure system
JP2008188478A (en) Method and system for purifying polluted soil
EP1218120B1 (en) Method and device for sanitizing contaminated ground water
JP2014205112A (en) Original-position decontamination method by multi-point injection
JP4067440B2 (en) Underground purification body with poorly permeable partition layer and construction method of underground purification body
JP2011020057A (en) Soil contamination cleaning zone construction method, soil contamination cleaning zone and soil contamination cleaning method
JP4167563B2 (en) Contaminated groundwater purification structure
JP2004154670A (en) Method for cleaning contaminated soil
JP4177155B2 (en) Purification body construction method
JP2008173557A (en) Water-permeable purifying wall and purification treatment method of polluted underground water
KR100377911B1 (en) Integrated treatment facilities for remediation of mobile contaminants of soil and groundwater by the direction of flowpath, and it&#39;s installation metnod
JP2007061799A (en) METHOD FOR pH ADJUSTMENT OF GROUND WATER
Yang et al. A conceptual study on the bio‐wall technology: Feasibility and process design
JP3805280B2 (en) Semi-permeable impermeable board with purification function, groundwater purification structure and contaminated groundwater purification method
JP2002011455A (en) Method and device for cleaning contaminated soil
JP5839252B2 (en) Contaminated groundwater purification structure
JP2005279394A (en) Method for cleaning polluted soil and ground water
JP2005007247A (en) Water purifying underground dam and construction method therefor
KR200198030Y1 (en) Integrated treatment facilities for remediation of mobile contaminants of soil and groundwater by the direction of flowpath
JP3830606B2 (en) Purification method for contaminated ground
JP2005046658A (en) Soil purifying method and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4410491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151120

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees