WO2004031084A1 - Method of removing nitrate nitrogen and device used for the method - Google Patents

Method of removing nitrate nitrogen and device used for the method Download PDF

Info

Publication number
WO2004031084A1
WO2004031084A1 PCT/JP2002/010180 JP0210180W WO2004031084A1 WO 2004031084 A1 WO2004031084 A1 WO 2004031084A1 JP 0210180 W JP0210180 W JP 0210180W WO 2004031084 A1 WO2004031084 A1 WO 2004031084A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
nitrate nitrogen
denitrification
sulfur
tank
Prior art date
Application number
PCT/JP2002/010180
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiaki Miyanaga
Yasuhiro Hirato
Tetsuo Ichiguchi
Toru Oishi
Katsuhiro Yamada
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to PCT/JP2002/010180 priority Critical patent/WO2004031084A1/en
Publication of WO2004031084A1 publication Critical patent/WO2004031084A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/345Biological treatment of water, waste water, or sewage characterised by the microorganisms used for biological oxidation or reduction of sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates

Definitions

  • the present invention relates to a method for removing nitrate nitrogen in wastewater using microorganisms, and a removal device used for the method.
  • BACKGROUND ART In recent years, the problem of nitrate ion concentration in wastewater has become more serious, and various treatment systems using biological treatment methods have been devised.
  • wastewater from agricultural lands such as upland fields, tea fields, orchards, pastures, etc. contains high concentrations of nitrate nitrogen due to excessive fertilization in recent years, which is a problem.
  • nitrate nitrogen contained in domestic wastewater such as septic tanks has been taken up as one of the problems of eutrophication of lakes.
  • a nitrate nitrogen treatment system using sulfur oxidizing and denitrifying bacteria does not require the addition of a methanol / organic carbon source. It does not require secondary treatment facilities after denitrification, and is attracting attention.
  • an object of the present invention was to use sulfur-oxidizing bacteria that always exhibit stable denitrification performance, and do not require a power source, etc., and are easy to maintain near a wastewater generation site.
  • An object of the present invention is to provide an efficient removal apparatus that makes full use of the features of the apparatus.
  • Another object of the present invention is to provide a method for removing nitric acid nitrogen which solves the above problems.
  • the present invention uses a sulfur-oxidizing bacterium by passing a wastewater containing nitrate nitrogen through a denitrification material packed bed in a wastewater treatment tank having a denitrification packed bed composed of sulfur and calcium-based components.
  • a nitrate nitrogen removal method that consists of removing nitrate nitrogen from the wastewater and returning at least part of the treated wastewater that has passed through the packed bed to the inlet side of the packed bed or to the middle layer of the packed bed. is there.
  • the present invention relates to an apparatus for removing nitrate nitrogen using a sulfur-oxidizing bacterium in a wastewater treatment tank having a packed bed filled with a denitrifying agent comprising sulfur and calcium-based components.
  • This is a nitrate nitrogen removal device having a circulation pump for circulating at least a part of the wastewater that has passed through the packed bed to the inlet side of the packed bed or to the intermediate bed.
  • the present invention relates to a denitrification material used for denitrification of nitrate nitrogen in water using a sulfur-oxidizing bacterium, wherein the composition of the denitrification material is calcium carbonate and a coexistence of sulfur and iron oxide. It is a denitrifying material which has a content of coexisting iron oxide of 1 to 20 wt% and a specific surface area of 0.1 lm 2 / g or more, and can suppress generation of hydrogen sulfide.
  • the present invention will be described in detail.
  • the wastewater containing nitrate nitrogen is wastewater containing at least one selected from nitrate ions and nitrite ions, and may be abbreviated as wastewater.
  • Wastewater includes industrial wastewater, domestic wastewater, and agricultural wastewater. Further, the present invention is effective for wastewater whose temperature, amount, and contaminant concentration have large differences in time, season, and the like. For example, it is effective for wastewater that can be 10 ° C or less, and such wastewater includes domestic wastewater and agricultural wastewater in winter.
  • Denitrifying materials consisting of sulfur and calcium components are described in the above publication. Examples of such materials include a material in which calcium carbonate powder is dispersed in molten sulfur and a material in which inorganic fibers, a porous material, an ion-exchange substance, and the like are mixed.
  • the calcium component is not particularly limited, calcium carbonate is preferred.
  • the ratio of sulfur and calcium-based components in the denitrification material is not particularly limited, but the sulfur content is preferably 30 to 90% by weight, more preferably 40 to 80% by weight. And more preferably 50 to 70% by weight. If the sulfur content in the denitrification material is less than 30% by weight, the material becomes brittle and easily friable, which is not practical. If it exceeds 90% by weight, the pH after water treatment becomes 5%. It can be:
  • the method for producing the denitrification material is not limited, but preferably, a calcium-based component such as limestone powder and elemental sulfur are mixed at a ratio of about 1: 2 to 2: 1, and heated to melt the sulfur.
  • inorganic fibers, porous materials, and the like are blended as necessary.
  • the ratio of sulfur to calcium carbonate-based components and other additives is determined by the fact that when these mixtures are melted, cooled, and solidified, an integrated product having a predetermined strength is obtained.
  • the nutrient source of the denitrifying bacteria is biased, so it is within the above range. Therefore, when an inorganic fiber, a porous material, or the like is blended, it is preferred to blend such that a part of the calcium carbonate-based component is replaced with the inorganic fiber, the porous material, or the like.
  • the ratio is preferably in the range of 1/10 to 1/2 of the calcium carbonate-based component. Examples of the mineral fiber include rock wool, slag wool, and glass wool.
  • the denitrification material When used in an environment where hydrogen sulfide is generated, the denitrification material is composed of a calcium-based component and a co-existing mixture of sulfur and iron oxide, and the content of co-existing iron oxide is low. It is preferable that the iron oxide has a specific surface area of 0.1 lm 2 / g or more and that the generation of hydrogen sulfide can be suppressed.
  • the calcium component and sulfur used may be the same as described above.
  • Iron oxide coexists to prevent the generation of hydrogen sulfide, which is likely to be generated when nitric acid in wastewater is low in concentration and dissolved oxygen is low.
  • As the iron oxide there are ferrous iron and trivalent iron or a mixture thereof depending on the form.
  • F e OF e 2 0 3 F e 3 0 4 F e O OH iron oxide hydroxide
  • Ya iron ore F e 2 ⁇ 3 present in natural F e 3 0 4 main components
  • crystalline or amorphous hydrous iron oxide such as red ⁇ generated from loess and mining waste water
  • red iron oxide F e 2 0 3
  • converter Dust generated from ironworks Mainnly Fe 2 ⁇ 3
  • the iron oxide has a specific surface area in order to capture the hydrogen sulfide generated in real is required is 0. l MVG above, preferably be 1 1 0 0 m 2 / g .
  • the amount of coexisting iron oxide is 120 wt% in the denitrification material, preferably 2 to 15 wt%.
  • this iron oxide-containing denitrifying material is composed of a coexistent of carbonate, sulfur and iron oxide, each is present in the same processing apparatus and has an appropriate amount such that the denitrification reaction and the capture of hydrogen sulfide can be performed. As long as the contact is maintained, they need not be present in the same particle, and may be present separately. However, particles in which the respective components are integrated into the same particle are preferable in terms of the denitrification reaction and the efficiency of capturing hydrogen sulfide.
  • the denitrifying material is filled as a single particle of each component, it is preferable to use a single particle having a diameter of about 0.55 Oram.
  • Sulfur-oxidizing bacteria are microorganisms that denitrify under anaerobic conditions in the presence of the denitrifying agent. Propagation of denitrifying bacteria inside or around the surface of the denitrifying material is achieved by training with drainage or soil dispersion water containing nitrate nitrogen and denitrifying bacteria in the presence of the denitrifying material. However, when treating wastewater containing nitrate nitrogen and denitrifying bacteria, training is not necessary because denitrifying bacteria grow during treatment. Denitrifying bacteria grow using nitrate nitrogen and denitrifier as main nutrients, and nitrate nitrogen is decomposed into nitrogen gas.
  • the sulfur-oxidizing bacteria may be, for example, sulfur-oxidizing dechambered bacteria (Thiobacil lus deni trifi cans), which are autotrophic sulfur-oxidizing bacteria generally found in nature. Sulfur and carbon content in denitrification materials There is no restriction as long as it grows as a nutrient and can decompose nitrate nitrogen to nitrogen gas.
  • sulfur-oxidizing dechambered bacteria Thiobacil lus deni trifi cans
  • the activity of these naturally occurring sulfur-oxidizing bacteria at temperatures as low as 15 ° C or less is significantly reduced.
  • the sulfur-oxidizing bacteria when the sulfur-oxidizing bacteria are established on the denitrifying agent, first contact the naturally occurring sulfur-oxidizing bacteria or soil containing the same with the denitrifying agent in a medium containing nitrate nitrogen. Then, it is preferable that the cells be cultured at a temperature of 1 to 10 ° C. for a predetermined period, and the bacteria be cultured, propagated, and fixed on the surface and voids of the denitrification material.
  • the cultivation method is a medium containing nitrate nitrogen, as long as it is maintained at the above temperature, and other trace components and the like may be present.
  • the culture period at 1 to 10 ° C may be a period during which the bacteria can be established, but may be a culture period of 2 days or more, preferably 10 days or more, more preferably about 1 month. Good. If no denitrification material is used for wastewater treatment under low temperature conditions, a culture temperature of about 15 to 40 ° C can be adopted.
  • nitrate nitrogen is added each time the concentration of nitrate nitrogen in the culture medium decreases, and the condition of low dissolved oxygen is maintained. If dissolved oxygen is high, sulfur It is preferable to maintain an anaerobic state because oxidizing bacteria consume dissolved oxygen and do not perform denitrification.
  • the wastewater treatment tank is a tank filled with the above-mentioned denitrification material, and may be abbreviated as a treatment tank.
  • a treatment tank There is no limitation on the shape of the treatment tank, but a type in which wastewater flows through the packed bed of denitrification material is advantageous.
  • a plurality of treatment tanks may be provided, in which case they may be connected in series or arranged in parallel.
  • Wastewater treatment equipment consists of one or more treatment tanks, pumps and other equipment.
  • the wastewater is supplied to the treatment tank and is denitrified by the action of sulfur-oxidizing bacteria when passing through the packed bed of denitrifying material and discharged.
  • at least a part of the wastewater that has passed through the packed bed is circulated.
  • a method of circulating when there is one packed bed, at least a part of the passed wastewater is returned to the wastewater before passing through the packed bed, or when there are multiple treatment tanks or packed beds
  • at least part of the downstream wastewater is returned to the upstream wastewater one or more times before the treatment tank or packed bed.
  • the wastewater to be treated may be mixed with the treated wastewater that has passed through the packed bed, and circulated to the inlet side of the packed bed.
  • the amount of circulation varies depending on the properties of the wastewater, the amount of wastewater supplied, and the like, and is 2 to 500 times, preferably 10 to 100 times the amount of wastewater supplied. Further, it is 2 to 150 times / hr, preferably 2 to 150 times / hr of the packed bed volume (the total volume if there are a plurality).
  • the denitrification reaction takes place over a wide range, and as a result, the processing speed increases. Furthermore, as the denitrification reaction progresses, air bubbles adhere to the surface of the denitrification material, causing poor contact between the wastewater and the denitrification material. Bubbles are more easily removed, resulting in increased processing speed. On the other hand, the amount of the denitrification material filled in the packed bed is gradually consumed and its amount decreases, so the circulation amount can be reduced if no denitrification material is added. If the packed bed is to be used for a long time without replacement, the initial circulation volume should be increased.
  • FIGS. 1 to 7 are schematic views of a nitrate nitrogen removing apparatus of the present invention.
  • 1 to 4 show a nitrate nitrogen removal device having a circulation pump
  • FIG. 5 shows a nitrate nitrogen removal device having a preliminary tank
  • FIG. 6 shows a nitrate nitrogen removal device provided with a deaeration means.
  • a nitrate nitrogen removing device 1 is composed of a treatment tank 11, a denitrification material packed bed 2, a circulation pump 4, and the like.
  • the treatment tank 11 has a denitrification material-filled layer 2 inside, and an upper aqueous phase 9 exists above the packed layer 2 and a lower aqueous phase 8 exists below.
  • the wastewater is introduced into the treatment tank 11 from the inlet line 5, mixed with the upper aqueous phase 9, and sent to the lower aqueous phase 8 through the pipe 3 by the circulation pump 4 arranged in the inlet line 5.
  • Can be The lower aqueous phase 8 thereby rises and passes through the filling tank 2 to reach the upper aqueous phase 9.
  • the wastewater that has reached the upper aqueous phase 9 near the outlet line 6 provided on the opposite side of the inlet line 5 is discharged from the outlet line 6 as treated water.
  • the wastewater that has reached the upper aqueous phase 9 near the circulation pump 4 is again sent to the lower aqueous phase 8 by the circulation pump 4 and circulated.
  • the lower part of the packed bed 2 has a perforated plate 7 that allows drainage to pass through but does not allow denitrification material to pass through.
  • FIG. 2 shows another embodiment, in which the inlet line 5 is located below the filling tank 2.
  • Fig. 3 shows yet another embodiment, in which the inlet line 5 is located above the filling tank 2 but is provided with a partition plate 10, and the drainage charged from the inlet line 5 is the partition plate. It passes through the packed bed 2 separated by 10 and then passes through the packed bed 2 on the exit 6 line side to reach the upper aqueous phase 9.
  • FIGS. 2 and 3 other symbols have the same meaning as in FIG. These examples prevent the wastewater that does not pass through the filling tank 2 from mixing with the wastewater that has passed and being discharged from the outlet line 6.
  • FIG. 4 shows still another embodiment, in which two treatment tanks are connected.
  • the wastewater introduced from the inlet line 5 of the first treatment tank 41 is
  • the water is circulated by the pump 4, comes into contact with the packed bed, reaches the upper aqueous phase 9, flows out from the connection line 43, and is introduced into the second treatment tank 42.
  • the wastewater introduced into the second treatment tank 42 is circulated by the pump 4 similarly to the first treatment tank 41, contacts the packed bed, reaches the upper aqueous phase 9, and is treated as treated water from the outlet line 6.
  • the same reference numerals as those in FIG. 1 indicate the same components.
  • Fig. 5 shows an example of a nitrate nitrogen removal device that is suitable when the wastewater to be charged is at low temperature.
  • the nitrate nitrogen removal device 1 has a configuration in which a treatment tank 11 is disposed in a preliminary tank 16.
  • the wastewater is charged from the inlet line 5 into the preliminary tank 16, where it stays, and is charged into the treatment tank 11 by the metering pump 15.
  • the treatment tank 11 has a packed bed 2 filled with a denitrifying agent inside, and is connected to the pump 15 at the bottom and to the outlet line 6 at the top.
  • a part of the drainage that has passed through the packed bed is circulated to the preliminary tank 16 by the pipe 3 and the circulation pump 4.
  • the treatment tank 11 is disposed inside the spare tank 16, and the wastewater 14 is stored in the spare tank 16.
  • a band heater 13 is attached to the outside of the preliminary tank 16 so as to keep the temperature at a set value.
  • the wastewater flows into the preparatory tank 16 from the inlet line 5, is heated to a predetermined temperature, is introduced from the bottom of the treatment tank 11 by the metering pump 15, and rises while contacting the denitrification material packed bed 2.
  • the gas is denitrified by the action of the denitrifying bacteria, and the generated gas is discharged from the gas vent line 12 and the treated water flows out of the outlet line 6.
  • the wastewater enters the preparatory tank 16 once, reaches a predetermined temperature sufficiently, and then enters the treatment tank 11, so that the activity of the denitrifying bacteria living inside or around the denitrification material in the treatment layer is reduced. There is no problem of extreme drop. Therefore, this device can maintain a high denitrification rate even if the wastewater to be charged is at a low temperature of less than 10 ° C, without the activity of the denitrifying bacteria dropping extremely.
  • the processing tank 11 may not be disposed in the preparatory tank 16 and may be provided independently. However, by disposing the processing tank 11 in the preparatory tank 16, it is easy to control the processing tank 11 to an optimum temperature.
  • the wastewater in the preliminary tank can be used as a heat medium for heating the processing tank, and the entire processing tank can be uniformly heated, so that more efficient heating can be performed than using a band heater or the like.
  • high-temperature wastewater that can kill the denitrifying bacteria If the gas flows into the reserve tank 16, the reserve tank may have a cooling device.
  • the reserve tank can be used as a stock tank for wastewater, for example, in wastewater treatment with intermittent flow characteristics
  • a constant volume pump is used to continuously discharge wastewater from the reserve layer to the treatment tank 11 filled with denitrification material. By controlling the flow of water, it is possible to continuously flow a constant amount of water into the treatment tank.
  • the amount of denitrification materials required for wastewater treatment depends on the amount of wastewater flow, for example, even if the amount of wastewater per day is the same, the amount of wastewater that is discharged continuously for one day and the amount of wastewater divided into several In the latter case, the flow rate per hour greatly changes, and a large amount of wastewater treatment must be performed at a certain time. And the disadvantage that the equipment becomes too large. Therefore, a method of flowing the treated wastewater into a tank filled with a denitrifying material composed of sulfur and calcium components with the above-mentioned reserve tank as a stock tank and a constant amount of continuous water flow from the reserve tank with a constant amount pump is used. It is very effective in terms of compacting equipment.
  • the temperature of the wastewater charged into the treatment tank is preferably from 10 to 50 ° C, more preferably from 15 to 40 ° C, and still more preferably from 20 to 40 ° C.
  • the heater is set to a temperature higher than that by 10 ° C or more and a predetermined temperature between 15 ° C and 40 ° C. It is preferable to adjust at 13.
  • the shapes of the treatment tank and the preliminary tank are not particularly limited, but a cylindrical shape or a rectangular parallelepiped shape is preferable from a practical shape.
  • the number of these tanks does not need to be one, but two or more depending on the processing purpose, required processing capacity, installation space, etc. It is also possible to combine tanks. For example, installing multiple treatment tanks in one spare tank is also an efficient method.
  • the size of the spare tank is
  • the amount is 0.5 to 5 times, preferably 1 to 3 times.
  • circulating the wastewater by the circulation pump 4 is effective for keeping the water temperature in the preparatory tank and the wastewater treatment tank constant.
  • Fig. 6 shows a device suitable for recovering from a decrease in the denitrification rate during use.
  • Inlet line 5 leads to the lower part of treatment tank 11 and outlet line 6 at the upper part.
  • the tank has a bed of denitrification material. From the inlet line 5, the wastewater introduced into the lower part of the packed bed passes through the packed bed and reaches the upper part, part of which is discharged as treated water from the outlet line 6, and part of which is pipe 3 and pump 4. And is circulated to the lower part of the treatment layer via the
  • the treatment tank 11 and a storage tank 21 for temporarily storing wastewater are connected by a pipe 22.
  • the monitoring device 23 provided at the wastewater outlet line 6 measures the concentration of nitrate nitrogen in the treated water. When the denitrification rate calculated from the measured nitrate nitrogen concentration falls below a predetermined value, the valves 24 and 25 are opened and closed and the operation of the pump 26 is controlled.
  • nitrate ions are constantly converted to nitrogen gas, and bubbles generated by the generated nitrogen gas gradually accumulate between the particles of the denitrifying material. Such accumulation of air bubbles prevents the contact between the wastewater and the denitrification material, and the denitrification efficiency gradually decreases.
  • the monitoring device 23 measures the nitrate nitrogen concentration of the treated wastewater discharged from the treatment tank 1, and when the denitrification rate of the treated water falls below the set value, the switching system built into the monitoring device 23 (Not shown) are configured to operate. In this switching system, the valve 24 is closed to stop the inflow of wastewater, and then the valve 25 is opened, and the pump 26 is driven to drive the wastewater in the treatment tank 11 to the storage tank 21. Move it temporarily to empty the processing tank 1 1. This operation breaks bubbles existing between the particles of the denitrifying agent and releases nitrogen gas.
  • the switching system operates not only when the nitrate nitrogen concentration exceeds the regulation value, but also when the denitrification rate at the start of the denitrification treatment (initial value) is lower than the denitrification rate at the time of measurement.
  • the circulation by the circulation pump 4 increases the flow velocity of the drainage passing through the packed bed, and also serves to prevent bubbles from flowing out and accumulating bubbles.
  • the pump 26 is driven to return the wastewater from the storage tank 21 to the processing tank 11, and then the valve 25 is closed and the valve 24 is opened to restart the denitrification processing.
  • the wastewater is sent to the treatment tank 11 once emptied, and the remaining air bubbles are pushed away.
  • removal of sludge and the like attached to the surface of the denitrification material can be expected.
  • the monitoring device 23 may be a device that can easily measure nitrate nitrogen, such as nitrate ion sensor measurement, colorimeter measurement, and GPC analysis by automatic drainage sampling.
  • the method of removing bubbles is not limited to the above-described embodiment, but includes various embodiments as follows.
  • pumps are provided at the drain inlet and drain outlet, and when the denitrification rate measured by the monitoring device exceeds a predetermined value, both valves are closed and the circulation pump 4 is driven to circulate the entire amount.
  • the wastewater in the treatment tank is circulated, and the air bubbles accumulated between the particles of the denitrification material are removed.
  • Effluent can be removed efficiently by increasing the flow velocity in the same direction as the flow of wastewater during denitrification or by making it flow backward (opposite to the flow of wastewater during denitrification).
  • air bubbles may be removed by reducing the pressure in the processing tank, applying vibration to the processing tank by ultrasonic waves, or blowing air or the like into the processing tank.
  • a timer device that activates / stops the bubble removal processing at a predetermined interval can be used.
  • the predetermined interval is usually in the range of 7 days to 6 months, and should be short if the concentration of nitrate in the wastewater to be charged is high, and long if it is low.
  • Means for reducing dissolved oxygen include heating, deaeration with an oxygen-free gas, addition of a reducing agent, treatment with aerobic microorganisms, such as treatment with aerobic sulfur-oxidizing bacteria.
  • Means for reducing dissolved oxygen include heating, aeration with gas that does not contain oxygen gas such as nitrogen gas, addition of a reducing agent such as sulfite that reacts with dissolved oxygen, and treatment with aerobic microorganisms.
  • oxygen gas such as nitrogen gas
  • a reducing agent such as sulfite that reacts with dissolved oxygen
  • aerobic microorganisms it is advantageous to use a dissolved oxygen-lowering material provided with aerobic sulfur-oxidizing bacteria, elemental sulfur, a carbon source for sulfur-oxidizing bacteria, and a wastewater neutralizer.
  • FIG. 7 shows an example of an apparatus suitable for treating wastewater containing a large amount of dissolved oxygen.
  • the apparatus has a dissolved oxygen removal tank 62 and a treatment tank 11. Drainage enters the dissolved oxygen removal tank 62 from the inlet line 5 and passes through the packed bed 62 filled with denitrification material.
  • the denitrification material of the packed layer 62 may be the same as the denitrification material filled in the treatment tank 11, but it is preferable that aerobic sulfur-oxidizing bacteria adhere. Therefore, this charge
  • the dissolved oxygen in the wastewater that has passed through the bed 62 decreases.
  • the wastewater that has passed through the packed bed 62 enters the lower part of the treatment tank 11 from the upper part of the dissolved oxygen removal tank 61 via the connecting pipe 63, passes through the packed bed 2 filled with denitrification material, and undergoes humid sulfur oxidation. Denitrification is performed by bacteria.
  • the wastewater that has passed through the packed bed 2 is discharged from the outlet line 6, but part of the wastewater is circulated to the lower part of the treatment tank 11 via the pump 4 and the pipe 3.
  • the nitrate nitrogen removal equipment of Figs. 1 to 7 can be used even in situations where hydrogen sulfide may be generated.
  • the denitrifying agent is composed of a coexistent of calcium carbonate, sulfuric acid and iron oxide.
  • the content of the coexisting iron oxide is 1 to 20 wt% s and the specific surface area of the iron oxide is 0.1 lm Vg.
  • a denitrification material using a denitrification material in which an effective amount of iron oxide for suppressing the generation of hydrogen sulfide in addition to sulfur and calcium-based components is used is described in JP-A-2002-159993.
  • a filter medium bed made of granular or massive sulfur-containing filter medium is provided in the tank, and a water supply piping system for feeding the water to be treated into the tank is provided with a filter medium.
  • a drainage pipe system is installed in the lower part of the tank below the floor, and the drainage pipe system that sends out the treated water from the filter medium bed to the outside of the tank is installed in the upper part of the tank above the filter medium bed, and the water to be treated is raised from below the filter medium bed to above.
  • the denitrifying agent coexists with an effective amount of iron oxide to suppress the generation of hydrogen sulfide in addition to sulfur and calcium components.
  • it is made of a denitrifying material.
  • the drained water uniformly penetrates into the denitrification material-filled layer 2 filled on the bottom plate having an opening and is subjected to denitrification.
  • the amount of denitrified treated water corresponding to the flow rate is discharged from the outlet line 6 to the wastewater flowing from the inlet line 5.
  • a rectangular parallelepiped treatment tank having a capacity of 100 L was filled with a sulfur-calcium carbonate mixed composition 4 O kg (bulk density 1.2) having a particle diameter of 5 to 20 mm as a denitrifying agent. Then, treated water (nutrient solution cultivation wastewater) 9 containing about 200 mg ZL of nitrate nitrogen was treated.
  • the denitrification material was obtained by melting and mixing sulfur and limestone in a ratio of 1: 1 (weight ratio), and then pulverized, and obtained by fixing sulfur oxidizing and denitrifying bacteria at room temperature.
  • the wastewater was passed through the inlet line 5 at a flow rate of 6 L / hr and circulated at a circulation rate of 1200 L / hr. Water temperature was maintained at 25 ° C.
  • the treatment tank was filled with 3 kg of a denitrifier made of an inorganic material obtained by granulating a sulfur molten mixture composed of 50 parts by weight of sulfur and 50 parts by weight of calcium carbonate into particles having a diameter of 5 to 20 mm.
  • This denitrifying material was cultured for three weeks with denitrifying bacteria contained in soil collected from a leek field.
  • the nitrate nitrogen removal device shown in Fig. 5 was used.
  • the treatment tank is a cylinder with a diameter of 10 cm and a length of 70 cm, the capacity of the spare tank 16 is about 20 L, the capacity of the treatment tank is about 5 L, and the capacity of the spare tank and the treatment tank is 30 L. ° C setting.
  • the concentration of nitrate nitrogen (N0 3 value) changes in the treated wastewater discharged from the outlet of the treatment tank through continuous water flow for 3 times at a wastewater temperature of 100 ° C at a temperature of 100 ° C / 100 ° C. was examined over time.
  • the amount of circulation was 100 L / hr or 0.
  • the lower limit of the concentration was 3 mg / L and the upper limit was 7 mg ZL.
  • the lower limit of the concentration was 1 mg / L and the upper limit was 3 mg ZL.
  • the wastewater with a wastewater temperature of 10 ° C will be charged to the inlet of the processing tank at the same temperature, and will be discharged from the outlet.
  • the nitrate nitrogen concentration of the treated wastewater was a lower limit of 25 mg ZL and an upper limit of 42 mg / L. In this case, the circulation amount was set to zero.
  • the nitrate nitrogen removal device shown in Fig. 5 was used.
  • Otsuka Chemical's OK—F—2 is mixed with tap water to make human wastewater adjusted to a nitrate nitrogen concentration of 50 mg ZL for 12 hours at a wastewater temperature of 5 ° C and a drainage rate of 1 L / hr.
  • the nitrate nitrogen concentration at the outlet of the treatment tank was examined 12 hours later when the water was passed and the circulation rate was set to 10 L / hr or 0.When the circulation rate was 0, it was 5 mg ZL. In the case of L / hr, it was 2 mg / L.
  • Example 3 The same experiment as in Example 3 was performed. Adjust the nitrate nitrogen concentration to 5 O mg / L.
  • the artificial wastewater was drained at a drain temperature of 5 ° C and a drainage rate of 50 mL / min , with 1 hour of continuous water flow and 1 hour of stop time alternately repeated three times, and the outlet of each tank after the third drainage
  • the nitrate nitrogen concentration was examined.
  • the feed rate of the drainage metering pump leading to the treatment tank was set to be 400 mLZhr.
  • the nitrate nitrogen concentration of the wastewater discharged from the treatment tank after the third drainage was 3 mgZL (circulation volume 0) and lmg / L (circulation volume 40 L / hr).
  • Sulfur and limestone powder were melt-mixed at a ratio of 1: 1 (weight ratio) and crushed to obtain a denitrifying material.
  • a denitrification material in which sulfur oxidizing and denitrifying bacteria were established at room temperature was obtained by a conventional method.
  • An equal amount of the denitrifying material on which the sulfur oxidizing and denitrifying bacteria are fixed and the denitrifying material before fixing are mixed and added to the culture medium adjusted to a nitrate nitrogen concentration of 200 mg / L with a nitric acid reamer. , Culture, and colonization.
  • the culture medium was maintained at a water temperature of 5 ° C, and when the nitrate nitrogen concentration reached 1 Otng / L or less, a nitrate rim was added so that the nitrate nitrogen concentration became 200 mg / L. After culturing for months, a low-temperature denitrifying material was obtained.
  • a rectangular parallelepiped treatment tank having a capacity of 100 L was filled with 40 kg of a low-temperature denitrifying agent, and wastewater of about 100 mg L of nitrate nitrogen was treated.
  • the wastewater is passed through the inlet line 5 at a flow rate of 6 L / hr, circulated at a circulation rate of 120 L / hr or 0, and maintained at a water temperature of 5 ° C or 30 ° C. And the denitrification performance at high temperature was measured.
  • Table 1 shows the results of measurement of the nitrate nitrogen concentration of the wastewater and treated water from the start of the test to the 10th day, and Table 1 shows the average values for the 10th day.
  • two denitrifying materials (autotrophic sulfur oxidative denitrification; bacteria attached to a molten mixture of sulfur and limestone) were placed in a processing tank 11 (capacity: 200 L).
  • 100 kg of artificial wastewater filled with solution fertilizer for solution cultivation (OK-F1 manufactured by Otsuka Chemical Co., Ltd.) and adjusted to a nitrate ion concentration of about 200 mg / L, at a temperature of 20 ° C and a flow rate of 70 ° C
  • a denitrification treatment was performed by pouring at 0 L / S.
  • the circulation volume was set at 700 000 L / day or 0.
  • air bubble removal means opening / closing the valves 24 and 25 and stopping the operation of the pump 26 according to the denitrification rate of nitrate nitrogen in the treated wastewater. Is configured to be controlled.
  • the nitrate nitrogen concentration of monitoring device 23 was set to 10 mg / L (denitrification rate 95%).
  • the denitrification treatment was continued while continuously measuring the change in the concentration of nitrate nitrogen in the treated water.
  • the nitrate nitrogen concentration of the treated water was 5 mg / L or less (denitrification rate 97.5%), but started to increase gradually from about 2 weeks after the start of treatment, and on the 23rd day (circulation volume 0)
  • the air bubble removal means was activated.
  • the wastewater in the treatment tank 11 moves to the storage tank 21 and the treatment tank 11 is emptied.
  • the wastewater in the storage tank 21 returns to the treatment tank 11 and the wastewater is continuously introduced into the treatment tank 11 to be removed. It was confirmed that the nitrogen treatment was restarted.
  • the denitrification material in the packed layer 62 is the same as the denitrification material to be filled in the treatment tank 11, but has aerobic sulfur-oxidizing bacteria attached thereto.
  • the wastewater that has passed through the dissolved oxygen removal tank 61 enters the treatment tank 11 ', passes through the denitrification material packed bed 2, and is denitrified by aerobic sulfur-oxidizing bacteria.
  • the wastewater that has passed through the packed bed 2 is discharged from the outlet line, but part of it is circulated through the pump 4 and the pipe 3.
  • the denitrifying material As the denitrifying material, a granular material obtained by mixing 100 parts by weight of limestone powder and 120 parts by weight of sulfur powder and compression-molding the mixture at 65 kg / cm 2 was used.
  • a new SC material without sulfur-oxidizing bacteria was added to 10 parts by weight of denitrifying material with Thiobacillus denitrificans, which is a facultative anaerobic sulfur-oxidizing bacterium.
  • the denitrification material in the dissolved oxygen removal tank 61 which was filled with a mixture of 90 parts by weight, was subjected to aerobic treatment in advance to convert sulfur-oxidizing bacteria into aerobic sulfur-oxidizing bacteria, and denitrification of the treated layer 11.
  • the material is of facultative anaerobic sulfur oxidizing bacteria Used as is.
  • the final treated water was 0.3 rag / 1 of dissolved oxygen, 0.4 mg / l of nitrate nitrogen (circulation amount 0) or 0.2 rag 8 (circulation amount 5 00 L / day), and the denitrification rate was 99.6% or 99.8%.
  • the final treated water had a denitrification rate of 9 4.
  • Table 2 shows the results of measuring the nitrate ion concentration in the artificial wastewater and the hydrogen sulfide gas concentration in the closed vessel on the 5th day after the start of the test.
  • Iron 10 Nitrate ion concentration 1.8 2 .1 2 .2 2 .0 2 .6 2 .2 degree (mg / 1)
  • Examples 11 to 13 and Comparative Examples 4 to 6 Sulfur Z calcium carbonate / iron oxide was integrated by the heating and quenching method with the composition shown in Table 2, and the mixture was crushed to obtain 5 to 10 mm ⁇ .
  • a commercially available sulfur-oxidizing bacterium (DSM807) was inoculated into 200 g of the nitriding material, and then made into glass containing 200 ml of artificial drainage adjusted to a nitric acid concentration of 50 mg / 1. It was stored in a closed container (400 Oml) and a denitrification test was performed by a batch test. The denitrification test was carried out by keeping the container sealed and maintaining the average water temperature at 20 ° C.
  • Table 3 shows the results of measuring the concentration of ion nitrate in the wastewater and the concentration of hydrogen sulfide gas in the sealed container on the 5th day after the start of the test. It was confirmed that iron oxide coexisting in the same particle suppressed the generation of hydrogen sulfide without lowering the denitrification performance in the specific surface area and the coexistence ratio. On the other hand, a large amount of hydrogen sulfide was generated in the case of no addition. Even if iron oxide has a small specific surface area, the prevention of hydrogen sulfide generation is not sufficient, and if the amount of iron oxide added is large, hydrogen sulfide generation can be prevented, but it is good in terms of denitrification efficiency. I could not tell. Table 3
  • Hydrous iron oxide loess, specific surface area: 4 O mVg
  • Magunetai DOO Fe 3 0 4, the specific surface area; 8 0 m 2 / g
  • Iron sulfide F e S, specific surface area: 8 m 2 / g
  • Iron Fe, specific surface area; 1 raVg Industrial applicability
  • stable nitric oxide performance is always exhibited, and efficient nitric acid utilizing the characteristics of the removal method using sulfur-oxidizing bacteria to the maximum.
  • a nitrogen removal is performed.
  • the nitrate-nitrogen denitrification material of the present invention is excellent when low-nitrate nitrogen in water has a low concentration. However, it can prevent the outflow and death of sulfur-oxidizing bacteria, and can prevent the generation of hydrogen sulfide, which is likely to be generated at low concentrations of nitrate nitrogen and dissolved oxygen in water.

Abstract

A method of removing nitrate nitrogen in drain water by using sulfur-oxidizing bacteria under the presence of denitrifying material formed of sulfur and calcium components and a device used for the method, the method comprising the steps of passing the drain water containing the nitrate nitrogen through the denitrifying material-filled layer in a drain water processing chamber having the denitrifying material-filled layer and returning at least a part of the treated drain water passed through the filled layer to the inlet side of the filled layer or to the intermediate layer of the filled layer; the device comprising a circulating pump for circulating at least a part of the drain water passed through the filled layer in the drain water treating chamber to the inlet side of the filled layer or to the intermediate layer, wherein a denitrifying material formed of calcium carbonate and sulfur may be combined with iron oxide.

Description

明 細 書 硝酸性窒素の除去方法及びそれに使用する装置  Description Nitrate nitrogen removal method and equipment used for it
技術分野 本発明は排水中の硝酸性窒素を、 微生物を使用して除去する方法及びそ れに使用される除去装置に関するものである。 背景技術 近年、 排水中の硝酸イオン濃度問題が深刻化しており、 生物学的処理法 を用いた種々の処理システムが考案されている。 特に、 近年の過剰施肥状 態により畑地、 茶畑、 果樹園、 牧草地等の農地からの排水が高濃度の硝酸 性窒素を含有し、 問題となっている。 また、 浄化槽等の家庭排水中に含ま れる硝酸性窒素も、 湖沼の富栄養化問題の一つとして取り上げられている。 TECHNICAL FIELD The present invention relates to a method for removing nitrate nitrogen in wastewater using microorganisms, and a removal device used for the method. BACKGROUND ART In recent years, the problem of nitrate ion concentration in wastewater has become more serious, and various treatment systems using biological treatment methods have been devised. In particular, wastewater from agricultural lands such as upland fields, tea fields, orchards, pastures, etc. contains high concentrations of nitrate nitrogen due to excessive fertilization in recent years, which is a problem. In addition, nitrate nitrogen contained in domestic wastewater such as septic tanks has been taken up as one of the problems of eutrophication of lakes.
この処理方法と して、 メタノ一ルゃ汚泥中の有機炭素源を水素供与体と して脱窒する従属栄養性脱窒技術が知られているが、 この技術は基質当た りの脱窒率が低いことに加え、 脱窒後は過剰な水素供与体を外部へ排出し ないように、 別途除去する必要があるため、 多くの処理設備や装置が必要 となる。  As this treatment method, there is known a heterotrophic denitrification technique in which an organic carbon source in methanol sludge is used as a hydrogen donor for denitrification. In addition to the low rate, after denitrification, excess hydrogen donors need to be removed separately so as not to be discharged outside, so many treatment facilities and equipment are required.
これに対し、 硫黄酸化脱窒細菌を用いた硝酸性窒素処理システムは、 メ タノールゃ有機炭素源を添加する必要がないため、 供給に必要な設備や、 脱窒後の 2次処理設備などが不要であり、 注目されている。 On the other hand, a nitrate nitrogen treatment system using sulfur oxidizing and denitrifying bacteria does not require the addition of a methanol / organic carbon source. It does not require secondary treatment facilities after denitrification, and is attracting attention.
特に、 W02000八 8694 号公報、 特開平 1 1 一 2 8 5 3 7 7号公報ゃ特開 2 0 0 1— 1 0 4 9 9 3号公報、 特開 2 0 0 1— 9 3 9 9 7号公報などの 硫黄と炭酸カルシウム系成分からなる無機質材料の溶融混合物を固体栄養 と し、 独立栄養性硫黄酸化細菌を用いた方式は、 ポンプ、 攪拌装置などの 電源を必要と しないため、 メンテナンスが容易で、 脱窒処理にかかるコス トの面で優れた効果を示している。  In particular, W02000-8869, Japanese Patent Application Laid-Open No. 11-2857377, Japanese Patent Application Laid-Open No. 2001-10949, Japanese Patent Application Laid-Open No. In the system using solid-nutrition of a molten mixture of sulfur and calcium carbonate-based components as described in Japanese Patent Publication No. It is easy and has an excellent effect on the cost of denitrification.
しかしながら、 上記技術は微生物の働きを利用するものであるため、 排 水の温度、 水量、 汚染物の濃度等の変化に追随することが困難であった。 例えば、 一般的に硫黄酸化細菌は 1 5 °C以下の低温での活動が鈍く、 季節 により処理能力の変動等が生じ、 十分に脱窒処理が行われないことがあつ たり、 それを避けるために余裕を持った処理設備の導入が必要となったり するものであった。 また、 極めて低濃度となるまで、 脱窒しょう とすると、 脱窒速度が低下したり、 更に、 環境によっては硫化水素が発生するなどの 問題も見出された。 発明の開示 したがって、 本発明の目的は、 常に安定した脱窒性能を示し、 排水の発 生現場付近で、 特に動力源等を必要とせず、 メンテナンスが容易であると いう硫黄酸化細菌を利用した装置の特徴を最大限活かした効率よい除去装 置を提供することにある。 本発明の他の目的は、 上記問題点を解決する硝 酸性窒素の除去方法を提供することにある。 本発明は、 硫黄とカルシウム系成分からなる脱窒材の充填層を有する排 水処理槽内で、 硝酸性窒素を含む排水を脱窒材の充填層を通過させて硫黄 酸化細菌を使用して排水中の硝酸性窒素を除去すること、 充填層を通過し た処理排水の少なく とも一部を充填層の入り 口側又は充填層の中間層に戻 すことからなる硝酸性窒素の除去方法である。 However, since the above technology utilizes the action of microorganisms, it has been difficult to follow changes in the temperature, amount of water, concentration of contaminants, and the like of the wastewater. For example, sulfur-oxidizing bacteria generally have low activity at low temperatures below 15 ° C, and their processing capacity fluctuates depending on the season. In some cases, it was necessary to introduce more processing equipment. In addition, when denitrification was attempted until the concentration became extremely low, problems such as a reduction in the denitrification rate and the generation of hydrogen sulfide in some environments were found. DISCLOSURE OF THE INVENTION Accordingly, an object of the present invention was to use sulfur-oxidizing bacteria that always exhibit stable denitrification performance, and do not require a power source, etc., and are easy to maintain near a wastewater generation site. An object of the present invention is to provide an efficient removal apparatus that makes full use of the features of the apparatus. Another object of the present invention is to provide a method for removing nitric acid nitrogen which solves the above problems. The present invention uses a sulfur-oxidizing bacterium by passing a wastewater containing nitrate nitrogen through a denitrification material packed bed in a wastewater treatment tank having a denitrification packed bed composed of sulfur and calcium-based components. A nitrate nitrogen removal method that consists of removing nitrate nitrogen from the wastewater and returning at least part of the treated wastewater that has passed through the packed bed to the inlet side of the packed bed or to the middle layer of the packed bed. is there.
また、 本発明は、 硫黄とカルシウム系成分からなる脱窒材が充填された 充填層を有する排水処理槽内で硫黄酸化細菌を使用して硝酸性窒素を除去 する装置において、 この排水処理槽内の充填層を通過した排水の少なく と も一部を充填層の入口側又は中間層に循環させるための循環ポンプを有す る硝酸性窒素除去装置である。  Further, the present invention relates to an apparatus for removing nitrate nitrogen using a sulfur-oxidizing bacterium in a wastewater treatment tank having a packed bed filled with a denitrifying agent comprising sulfur and calcium-based components. This is a nitrate nitrogen removal device having a circulation pump for circulating at least a part of the wastewater that has passed through the packed bed to the inlet side of the packed bed or to the intermediate bed.
更に、 本発明は、 硫黄酸化細菌を使用して水中における硝酸性窒素の脱 窒処理に使用される脱窒材であって、 この脱窒材組成が炭酸カルシウム及 び硫黄及び酸化鉄の共存体からなり、 共存する酸化鉄の含有量が 1 〜 2 0 wt % , かつ該酸化鉄の比表面積が 0 . l m 2 /g 以上であり、 硫化水素の発 生を抑制できる脱窒材である。 以下、 本発明を詳細に説明する。 Further, the present invention relates to a denitrification material used for denitrification of nitrate nitrogen in water using a sulfur-oxidizing bacterium, wherein the composition of the denitrification material is calcium carbonate and a coexistence of sulfur and iron oxide. It is a denitrifying material which has a content of coexisting iron oxide of 1 to 20 wt% and a specific surface area of 0.1 lm 2 / g or more, and can suppress generation of hydrogen sulfide. Hereinafter, the present invention will be described in detail.
硝酸性窒素を含む排水は、 硝酸イオン及び亜硝酸イオンから選択される 少なく とも 1種を含む排水であり、 排水と略称する場合がある。 排水には、 工場排水、 生活排水、 農業排水等がある。 また、 本発明は、 排水の温度、 量、 汚染物濃度が、 時間、 季節等により大きい差があるものに対し有効で ある。 例えば、 1 0 °C以下となる場合がある排水に対し有効であり、 かか る排水には冬場の生活排水、 農業排水等が多く該当する。  The wastewater containing nitrate nitrogen is wastewater containing at least one selected from nitrate ions and nitrite ions, and may be abbreviated as wastewater. Wastewater includes industrial wastewater, domestic wastewater, and agricultural wastewater. Further, the present invention is effective for wastewater whose temperature, amount, and contaminant concentration have large differences in time, season, and the like. For example, it is effective for wastewater that can be 10 ° C or less, and such wastewater includes domestic wastewater and agricultural wastewater in winter.
硫黄とカルシウム系成分からなる脱窒材は、 上記刊行物に記載されたよ うな溶融硫黄中に炭酸カルシウム粉末が分散された材料やこれに無機繊維 や多孔材料やイオン交換性物質等が配合された材料が挙げられる。 Denitrifying materials consisting of sulfur and calcium components are described in the above publication. Examples of such materials include a material in which calcium carbonate powder is dispersed in molten sulfur and a material in which inorganic fibers, a porous material, an ion-exchange substance, and the like are mixed.
カルシウム系成分とは特に限定されるものではないが、 炭酸カルシウム が好ましい。 また、 脱窒材に占める硫黄とカルシウム系成分の比率も特に 限定させるものではないが、 硫黄含有量が 3 0〜 9 0重量%であることが 好ましく、 より望ましくは 4 0〜 8 0重量%が好ましく、 更に望ましくは 5 0〜 7 0重量%であることがよい。 脱窒材中に占める硫黄含有量が 3 0 重量%未満であると、 材料が脆くて壌れやすくなるために実用的でなく、 また 9 0重量%を越えると水処理後の p Hが 5以下になる可能性がある。 脱窒材の製造方法は限定されないが、 好ましくは石灰石粉等のカルシゥ ム系成分と単体硫黄とを約 1 : 2〜 2 : 1 の割合で混合し、 これを加熱し て硫黄を溶融させたのち、 これを冷却固化して一体化し、 所定の粒度に粉 砕することにより得る方法である。 この際、 必要により無機繊維、 多孔材 料等が配合される。 硫黄と、 炭酸カルシウム系成分及びその他の添加材の 割合は、 これらの混合物を溶融、 冷却固化した際、 所定の強度を有する一 体化物が得られるかで決められ、 硫黄の割合が大きいほど強度の点では優 れるが、 脱窒細菌の栄養源が片寄るので上記範囲とされる。 したがって、 無機繊維、 多孔材料等が配合される場合は、 炭酸カルシウム系成分の一部 を無機繊維、 多孔材料等に置換するように配合することがよい。 鉱物繊維 を配合する場合は、 炭酸カルシウム系成分の 1 / 1 0〜 1 / 2の範囲がよい また、 鉱物繊維としては、 ロックウール、 スラグウール、 グラスウールな どが好ましく挙げられる。  Although the calcium component is not particularly limited, calcium carbonate is preferred. Also, the ratio of sulfur and calcium-based components in the denitrification material is not particularly limited, but the sulfur content is preferably 30 to 90% by weight, more preferably 40 to 80% by weight. And more preferably 50 to 70% by weight. If the sulfur content in the denitrification material is less than 30% by weight, the material becomes brittle and easily friable, which is not practical. If it exceeds 90% by weight, the pH after water treatment becomes 5%. It can be: The method for producing the denitrification material is not limited, but preferably, a calcium-based component such as limestone powder and elemental sulfur are mixed at a ratio of about 1: 2 to 2: 1, and heated to melt the sulfur. After that, it is obtained by cooling, solidifying, integrating and pulverizing to a predetermined particle size. At this time, inorganic fibers, porous materials, and the like are blended as necessary. The ratio of sulfur to calcium carbonate-based components and other additives is determined by the fact that when these mixtures are melted, cooled, and solidified, an integrated product having a predetermined strength is obtained. However, the nutrient source of the denitrifying bacteria is biased, so it is within the above range. Therefore, when an inorganic fiber, a porous material, or the like is blended, it is preferred to blend such that a part of the calcium carbonate-based component is replaced with the inorganic fiber, the porous material, or the like. When a mineral fiber is blended, the ratio is preferably in the range of 1/10 to 1/2 of the calcium carbonate-based component. Examples of the mineral fiber include rock wool, slag wool, and glass wool.
硫化水素が発生しゃすい環境で使用する場合、 脱窒材は組成がカルシゥ ム系成分び硫黄及び酸化鉄の共存体からなり、 共存する酸化鉄の含有量が l 2 0 wt%、 かつ該酸化鉄の比表面積が 0. lm2/g 以上であり、 硫化 水素の発生を抑制できるものであることが望ましい。 When used in an environment where hydrogen sulfide is generated, the denitrification material is composed of a calcium-based component and a co-existing mixture of sulfur and iron oxide, and the content of co-existing iron oxide is low. It is preferable that the iron oxide has a specific surface area of 0.1 lm 2 / g or more and that the generation of hydrogen sulfide can be suppressed.
ここで、 用いられるカルシウム系成分び硫黄は、 前記と同様のものでよ い。 酸化鉄は、 排水中の硝酸が低濃度で低溶存酸素時に発生しやすい硫化 水素の発生を防止するために共存させる。 酸化鉄と しては、 その形態によ り 2価鉄と 3価鉄又はその混合体がある。 具体的には、 F e O F e 203 F e 304 F e O OH (含水酸化鉄) などであるが、 使用する上では、 天 然に存在する鉄鉱石 (F e 23や F e 304を主成分) 、 黄土や鉱山排水等 から発生した赤鲭などの結晶又は非晶質の含水酸化鉄、 ベンガラ (F e 2 03) 、 製鉄所から発生する転炉ダス ト (F e 23 を主成分) 等が挙げら れる。 この場合、 酸化鉄は、 発生する硫化水素を即座に捕捉することが必 要であるために比表面積が 0. l mVg以上、 好ましくは 1 1 0 0 m2/ g とすることがよい。 共存させる酸化鉄の量は、 脱窒材中の 1 2 0 wt% 好ましくは、 2 ~ 1 5 wt%である。 Here, the calcium component and sulfur used may be the same as described above. Iron oxide coexists to prevent the generation of hydrogen sulfide, which is likely to be generated when nitric acid in wastewater is low in concentration and dissolved oxygen is low. As the iron oxide, there are ferrous iron and trivalent iron or a mixture thereof depending on the form. Specifically, although such F e OF e 2 0 3 F e 3 0 4 F e O OH ( iron oxide hydroxide), in order to use, Ya iron ore (F e 23 present in natural F e 3 0 4 main components), crystalline or amorphous hydrous iron oxide such as red鲭generated from loess and mining waste water, red iron oxide (F e 2 0 3), converter Dust generated from ironworks (Mainly Fe 23 ). In this case, the iron oxide has a specific surface area in order to capture the hydrogen sulfide generated in real is required is 0. l MVG above, preferably be 1 1 0 0 m 2 / g . The amount of coexisting iron oxide is 120 wt% in the denitrification material, preferably 2 to 15 wt%.
この酸化鉄含有脱窒材は、 炭酸塩及び硫黄及び酸化鉄の共存体からなる ため、 それぞれが同じ処理装置内に存在しており、 かつ脱窒反応及び硫化 水素の捕捉が行えるような適度な接触が保たれておれば同一粒子内に存在 する必要はなくばらばらに存在してもよい。 しかし、 脱窒反応及び硫化水 素の捕捉効率という面からそれぞれの成分が同一粒子内に一体化して存在 する粒子が好ましい。 脱窒材がそれぞれの成分の単独粒子と して充填する 場合は、 直径 0. 5 5 Oram 程度の単独粒とすることがよい。 それぞれの 成分が同一粒子内に一体化して存在する粒子の場合は、 これらを微粉砕し た後、 混合し、 溶融又はプレス成形法により一体化し、 これを更に直径 1 5 0 に造粒した粒状物であることがよい。 硫黄酸化細菌は、 嫌気性条件下で、 前記脱窒材の存在下に、 脱窒する微 生物である。 脱窒材の内部又は表面周辺に脱窒菌を繁殖させるためには、 脱窒材の存在下、 硝酸性窒素及び脱窒菌含む排水又は土壌分散水で訓養す ることにより達成される。 しかし、 硝酸性窒素及び脱窒菌含む排水を処理 する場合は、 処理中に脱窒菌が繁殖するので訓養は必ずしも必要ではない。 脱窒菌は硝酸性窒素及び脱窒材を主な栄養源として生育し、 硝酸性窒素は 窒素ガスにまで分解される。 Since this iron oxide-containing denitrifying material is composed of a coexistent of carbonate, sulfur and iron oxide, each is present in the same processing apparatus and has an appropriate amount such that the denitrification reaction and the capture of hydrogen sulfide can be performed. As long as the contact is maintained, they need not be present in the same particle, and may be present separately. However, particles in which the respective components are integrated into the same particle are preferable in terms of the denitrification reaction and the efficiency of capturing hydrogen sulfide. When the denitrifying material is filled as a single particle of each component, it is preferable to use a single particle having a diameter of about 0.55 Oram. In the case of particles in which each component is integrated into the same particle, these are finely pulverized, mixed, integrated by melting or press molding, and further granulated to a diameter of 150. Good thing. Sulfur-oxidizing bacteria are microorganisms that denitrify under anaerobic conditions in the presence of the denitrifying agent. Propagation of denitrifying bacteria inside or around the surface of the denitrifying material is achieved by training with drainage or soil dispersion water containing nitrate nitrogen and denitrifying bacteria in the presence of the denitrifying material. However, when treating wastewater containing nitrate nitrogen and denitrifying bacteria, training is not necessary because denitrifying bacteria grow during treatment. Denitrifying bacteria grow using nitrate nitrogen and denitrifier as main nutrients, and nitrate nitrogen is decomposed into nitrogen gas.
硫黄酸化細菌としては、 一般的に自然界に存在する独立栄養性硫黄酸化 細菌である硫黄酸化脱室菌 ( Thiobac i l lus deni tri f i cans ) などでよく、. 脱窒材中の硫黄分及び炭酸分を栄養分の一部と して生育し、 硝酸性窒素を 窒素ガスにまで分解しうるものであれば制限をうけない。  The sulfur-oxidizing bacteria may be, for example, sulfur-oxidizing dechambered bacteria (Thiobacil lus deni trifi cans), which are autotrophic sulfur-oxidizing bacteria generally found in nature. Sulfur and carbon content in denitrification materials There is no restriction as long as it grows as a nutrient and can decompose nitrate nitrogen to nitrogen gas.
自然界に存在するこのよ うな硫黄酸化細菌は、 1 5 °C以下の低温では活 動が大幅に低下する。 この低下を防止するためには、 硫黄酸化細菌を脱窒 材に定着させる際、 まず自然界に存在する硫黄酸化細菌又はこれを含む土 壌と脱窒材を、 硝酸性窒素を含む培地中で接触させて、 1〜 1 0 °Cの温度 下で所定期間培養し、 脱窒材表面及び空隙に菌を培養、 繁殖させ、 定着さ せることが好ましい。 ここで、 培養方法は硝酸性窒素を含む培地であって、 上記の温度に保持されていればよく、 他の微量成分等が存在することもで きる。 1〜 1 0 °Cでの培養期間は、 菌の定着が行える期間であればよいが、 2 日間以上、 好ましくは 1 0 日間以上、 より好ましくは 1ヶ月間程度の培 養期間とすることもよい。 なお、 低温条件での排水処理に脱窒材を使用し ない場合は、 1 5〜 4 0 °C程度での培養温度が採用できる。 また、 培養中 は、 培地中の硝酸性窒素濃度が低下した都度、 硝酸性窒素を添加し、 溶存 酸素の低い条件を保持することが好ましい。 溶存酸素が高い場合は、 硫黄 酸化細菌が溶存酸素を消費し、 脱窒を行わないため、 嫌気状態を保持する ことが好ましい。 The activity of these naturally occurring sulfur-oxidizing bacteria at temperatures as low as 15 ° C or less is significantly reduced. To prevent this decrease, when the sulfur-oxidizing bacteria are established on the denitrifying agent, first contact the naturally occurring sulfur-oxidizing bacteria or soil containing the same with the denitrifying agent in a medium containing nitrate nitrogen. Then, it is preferable that the cells be cultured at a temperature of 1 to 10 ° C. for a predetermined period, and the bacteria be cultured, propagated, and fixed on the surface and voids of the denitrification material. Here, the cultivation method is a medium containing nitrate nitrogen, as long as it is maintained at the above temperature, and other trace components and the like may be present. The culture period at 1 to 10 ° C may be a period during which the bacteria can be established, but may be a culture period of 2 days or more, preferably 10 days or more, more preferably about 1 month. Good. If no denitrification material is used for wastewater treatment under low temperature conditions, a culture temperature of about 15 to 40 ° C can be adopted. During the cultivation, it is preferable that nitrate nitrogen is added each time the concentration of nitrate nitrogen in the culture medium decreases, and the condition of low dissolved oxygen is maintained. If dissolved oxygen is high, sulfur It is preferable to maintain an anaerobic state because oxidizing bacteria consume dissolved oxygen and do not perform denitrification.
排水処理槽は、 上記脱窒材が充填された槽であり、 処理槽と略称するこ とがある。 処理槽の形状には限定はないが、 脱窒材の充填層を排水が流通 して行く形式のものが有利である。 処理槽は複数あってもよく、 その場合 は直列につなげても、 並列に配置してもよい。 排水処理装置は、 1又はそ れ以上の処理槽とポンプ、 その他の設備から構成される。  The wastewater treatment tank is a tank filled with the above-mentioned denitrification material, and may be abbreviated as a treatment tank. There is no limitation on the shape of the treatment tank, but a type in which wastewater flows through the packed bed of denitrification material is advantageous. A plurality of treatment tanks may be provided, in which case they may be connected in series or arranged in parallel. Wastewater treatment equipment consists of one or more treatment tanks, pumps and other equipment.
排水は、 処理槽に供給されて、 脱窒材の充填層を通過する際に、 硫黄酸 化細菌の作用を受けて、 脱窒が行われ、 排出される。 この場合、 脱窒率の 向上を図るため、 本発明の方法では、 充填層を通過した排水の少なく とも 一部を、 循環させる。 ここで、 循環させる方法と しては、 充填層が一層の 場合は、 充填層を通過する前の排水に、 通過した排水の少なく とも一部を 戻したり、 処理槽又は充填層が複数ある場合は、 下流側の排水の少なく と も一部を、 処理槽又は充填層が 1又は 2以上前の上流側の排水に戻す方法 がある。 また、 処理すべき排水を、 充填層を通過した処理排水と混合し、 これを充填層の入り 口側に循環させてもよい。 循環量は排水の性状、 供給 される排水量等によって変化するが、 供給される排水流量の 2〜 5 0 0倍、 好ましくは 1 0〜 1 0 0倍である。 また、 充填層容積 (複数ある場合は合 計容積) の 2〜 1 5 0 0倍/ hr、 好ましくは 2〜 1 5 0 0倍/ hr である。 このような量を循環させることにより、 充填層を通過する排水の流速が増 大し、 脱窒材表面付近で脱窒反応が完了することなく、 脱窒材の内部でも 脱窒反応が進行することになり、 脱窒反応が広範囲に行われ、 結果と して 処理速度が増大する。 更に、 脱窒反応が進行すると脱窒材表面に気泡が付 着し、 排水と脱窒材の接触が不良となるが、 排水の流速が十分であれば気 泡が除去されやすくなり、 結果と して処理速度が増大する。 一方、 充填層 に充填された脱窒材は徐々に消費されてその量が減少するので、 脱窒材を 追加しない場合は、 循環量を減らしていく ことができる。 充填層を入れ換 えせず長期間使用する場合は、 初期の循環量を増やすことがよい。 The wastewater is supplied to the treatment tank and is denitrified by the action of sulfur-oxidizing bacteria when passing through the packed bed of denitrifying material and discharged. In this case, in order to improve the denitrification rate, in the method of the present invention, at least a part of the wastewater that has passed through the packed bed is circulated. Here, as a method of circulating, when there is one packed bed, at least a part of the passed wastewater is returned to the wastewater before passing through the packed bed, or when there are multiple treatment tanks or packed beds There is a method in which at least part of the downstream wastewater is returned to the upstream wastewater one or more times before the treatment tank or packed bed. Also, the wastewater to be treated may be mixed with the treated wastewater that has passed through the packed bed, and circulated to the inlet side of the packed bed. The amount of circulation varies depending on the properties of the wastewater, the amount of wastewater supplied, and the like, and is 2 to 500 times, preferably 10 to 100 times the amount of wastewater supplied. Further, it is 2 to 150 times / hr, preferably 2 to 150 times / hr of the packed bed volume (the total volume if there are a plurality). By circulating such an amount, the flow velocity of the wastewater passing through the packed bed increases, and the denitrification reaction proceeds inside the denitrification material without completing the denitrification reaction near the surface of the denitrification material. As a result, the denitrification reaction takes place over a wide range, and as a result, the processing speed increases. Furthermore, as the denitrification reaction progresses, air bubbles adhere to the surface of the denitrification material, causing poor contact between the wastewater and the denitrification material. Bubbles are more easily removed, resulting in increased processing speed. On the other hand, the amount of the denitrification material filled in the packed bed is gradually consumed and its amount decreases, so the circulation amount can be reduced if no denitrification material is added. If the packed bed is to be used for a long time without replacement, the initial circulation volume should be increased.
このため、 本発明の硝酸性窒素除去装置は、 排水を槽内で循環させるた めの循環ポンプを有し、 この循環ポンプは吸入側が排水の流れの下流側 (充填層通過後の流れ) に接続しており、 吐出側が排水の流れの上流側 (充填層通過前の流れ又は充填層の中間層) に接続している。 図面の簡単な説明 図 1〜図 7は本発明の硝酸性窒素除去装置の模式図を示す。 図 1〜図 4 は循環ポンプを有する硝酸性窒素除去装置であり、 図 5は予備槽を有する 硝酸性窒素除去装置であり、 図 6は脱気手段を設けた硝酸性窒素除去装置 であり、 図 7は脱溶存酸素手段を設けた硝酸性窒素除去装置である。 発明を実施するための最良の形態 以下、 本発明を、 図面を参照して説明する。 図 1において、 硝酸性窒素 除去装置 1 は、 処理槽 11 及び脱窒材充填層 2、 循環ポンプ 4等から構成 されている。 処理槽 1 1 は内部に脱窒材充填層 2 を有しており、 充填層 2 の上部には上層水相 9を、 下部には下層水相 8が存在する。 排水は入り 口 ライン 5 から処理槽 1 1 に導入され、 上層水相 9 と混合され入り 口ライン 5の沂く に配置された循環ポンプ 4により管 3を通って、 下層水相 8に送 られる。 下層水相 8は、 それにより上昇して充填槽 2を通過して、 上層水 相 9に達する。 ここで、 入り 口ライン 5 と反対側に設けた出口ライン 6付 近の上層水相 9に達した排水は、 出口ライン 6から処理水と して排出され る。 一方、 循環ポンプ 4付近の上層水相 9に達した排水は、 再度循環ボン プ 4により、 下層水相 8に送られ、 循環される。 なお、 充填層 2の下部は、 排水を通過させるが、 脱窒材は通過させない多孔板 7を有する構造となつ ている。 For this reason, the nitrate nitrogen removing apparatus of the present invention has a circulation pump for circulating the wastewater in the tank, and the circulation pump has a suction side located downstream of the flow of the wastewater (flow after passing through the packed bed). The discharge side is connected to the upstream side of the drainage flow (the flow before passing through the packed bed or the middle layer of the packed bed). BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 7 are schematic views of a nitrate nitrogen removing apparatus of the present invention. 1 to 4 show a nitrate nitrogen removal device having a circulation pump, FIG. 5 shows a nitrate nitrogen removal device having a preliminary tank, and FIG. 6 shows a nitrate nitrogen removal device provided with a deaeration means. Fig. 7 shows a nitrate nitrogen removal device provided with a dissolved oxygen means. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described with reference to the drawings. In FIG. 1, a nitrate nitrogen removing device 1 is composed of a treatment tank 11, a denitrification material packed bed 2, a circulation pump 4, and the like. The treatment tank 11 has a denitrification material-filled layer 2 inside, and an upper aqueous phase 9 exists above the packed layer 2 and a lower aqueous phase 8 exists below. The wastewater is introduced into the treatment tank 11 from the inlet line 5, mixed with the upper aqueous phase 9, and sent to the lower aqueous phase 8 through the pipe 3 by the circulation pump 4 arranged in the inlet line 5. Can be The lower aqueous phase 8 thereby rises and passes through the filling tank 2 to reach the upper aqueous phase 9. Here, the wastewater that has reached the upper aqueous phase 9 near the outlet line 6 provided on the opposite side of the inlet line 5 is discharged from the outlet line 6 as treated water. On the other hand, the wastewater that has reached the upper aqueous phase 9 near the circulation pump 4 is again sent to the lower aqueous phase 8 by the circulation pump 4 and circulated. The lower part of the packed bed 2 has a perforated plate 7 that allows drainage to pass through but does not allow denitrification material to pass through.
図 2は別の態様を示すものであり、 入り 口ライン 5が充填槽 2の下部に ある例である。 図 3は更に別の態様を示すものであり、 入り 口ライン 5は 充填槽 2 の上部にあるが、 仕切り板 10 を設けた例であり、 入り 口ライン 5 から装入された排水は仕切り板 10 で区切られた充填層 2 を通過し、 そ の後出口 6ライン側の充填層 2を通過して上層水相 9に達する。 図 2 、 3 において、 その他の符合は図 1 と同じ意味を有する。 れらの例は、 充填 槽 2を通過しない排水が通過した排水と混合して出口ライン 6から排出さ れることを防止する。  FIG. 2 shows another embodiment, in which the inlet line 5 is located below the filling tank 2. Fig. 3 shows yet another embodiment, in which the inlet line 5 is located above the filling tank 2 but is provided with a partition plate 10, and the drainage charged from the inlet line 5 is the partition plate. It passes through the packed bed 2 separated by 10 and then passes through the packed bed 2 on the exit 6 line side to reach the upper aqueous phase 9. In FIGS. 2 and 3, other symbols have the same meaning as in FIG. These examples prevent the wastewater that does not pass through the filling tank 2 from mixing with the wastewater that has passed and being discharged from the outlet line 6.
また、 図 4は更に別の態様を示すものであり、 処理槽を 2つ連結した装 置である。 第一の処理槽 41 の入り 口ライン 5 から導入された排水は、 図 FIG. 4 shows still another embodiment, in which two treatment tanks are connected. The wastewater introduced from the inlet line 5 of the first treatment tank 41 is
1の例と同様にポンプ 4により循環され、 充填層と接触し、 上層水相 9に 達し、 連結ライン 43から流出して第二の処理槽 42 へ導入される。 第二の 処理槽 42に導入された排水は、 第一の処理槽 41 と同様にポンプ 4により 循環され、 充填層と接触し、 上層水相 9に達し、 出口ライン 6から処理水 と して排出される。 図 2〜図 4において、 図 1 と同一の符合は同一ものを 意味する。 As in the case of the first example, the water is circulated by the pump 4, comes into contact with the packed bed, reaches the upper aqueous phase 9, flows out from the connection line 43, and is introduced into the second treatment tank 42. The wastewater introduced into the second treatment tank 42 is circulated by the pump 4 similarly to the first treatment tank 41, contacts the packed bed, reaches the upper aqueous phase 9, and is treated as treated water from the outlet line 6. Is discharged. 2 to 4, the same reference numerals as those in FIG. 1 indicate the same components.
図 5は、 装入される排水が低温のときに適した硝酸性窒素除去装置の例 を示す。 硝酸性窒素除去装置 1は、 予備槽 16の中に処理槽 1 1が配置され た構成となっている。 排水は入り 口ライン 5 から予備槽 16 に装入され、 そこで滞留し、 定量ポンプ 15で処理槽 1 1 に装入される。 処理槽 1 1 は内 部に脱窒材を充填した充填層 2 を有しており、 底部でポンプ 15 と接続し、 上部で出口ライン 6と接続している。 ここで、 充填層 2の上部には、 充填 層を通過した排水の一部がパイプ 3 及び循環ポンプ 4 .により、 予備槽 16 に循環する構造となっている。 また、 処理槽 1 1は予備槽 16の内部に配置 されており、 予備槽 16 には排水 14が貯蔵されている。 予備槽 16の外側 はバンドヒータ 13 が取りつけられ、 設定温度に保持されるようになって いる。 排水は入り 口ライン 5 から予備槽 16 に流入し、 所定温度にされた のち、 定量ポンプ 15により処理槽 1 1の底部から導入され、 脱窒材の充填 層 2 と接触しながら上昇し、 その間に脱窒菌により作用を受け、 脱窒され、 生じたガスはガス抜き口ライン 12 から排出され、 処理水は出口ライン 6 から流出する。 この装置では、 排水は一旦、 予備槽 16 に入り、 そこで所 定温度に十分に達してから処理槽 1 1 に入るため、 処理層にある脱窒材の 内部又は周辺に生存する脱窒菌の活動が極端に落ちるような問題が生じな い。 したがって、 この装置は、 装入する排水が 1 0 °C未満の低温であって も、 脱窒菌の活動が極端に落ちることなく、 高い脱窒率の維持が可能であ る。 Fig. 5 shows an example of a nitrate nitrogen removal device that is suitable when the wastewater to be charged is at low temperature. Is shown. The nitrate nitrogen removal device 1 has a configuration in which a treatment tank 11 is disposed in a preliminary tank 16. The wastewater is charged from the inlet line 5 into the preliminary tank 16, where it stays, and is charged into the treatment tank 11 by the metering pump 15. The treatment tank 11 has a packed bed 2 filled with a denitrifying agent inside, and is connected to the pump 15 at the bottom and to the outlet line 6 at the top. Here, at the upper part of the packed bed 2, a part of the drainage that has passed through the packed bed is circulated to the preliminary tank 16 by the pipe 3 and the circulation pump 4. Further, the treatment tank 11 is disposed inside the spare tank 16, and the wastewater 14 is stored in the spare tank 16. A band heater 13 is attached to the outside of the preliminary tank 16 so as to keep the temperature at a set value. The wastewater flows into the preparatory tank 16 from the inlet line 5, is heated to a predetermined temperature, is introduced from the bottom of the treatment tank 11 by the metering pump 15, and rises while contacting the denitrification material packed bed 2. The gas is denitrified by the action of the denitrifying bacteria, and the generated gas is discharged from the gas vent line 12 and the treated water flows out of the outlet line 6. In this device, the wastewater enters the preparatory tank 16 once, reaches a predetermined temperature sufficiently, and then enters the treatment tank 11, so that the activity of the denitrifying bacteria living inside or around the denitrification material in the treatment layer is reduced. There is no problem of extreme drop. Therefore, this device can maintain a high denitrification rate even if the wastewater to be charged is at a low temperature of less than 10 ° C, without the activity of the denitrifying bacteria dropping extremely.
なお、 処理槽 1 1は予備槽 16中に配置せず、 独立に設けてもよいが、 予 備槽 16中に配置することにより処理槽 11を最適温度に制御することが簡 便となる。 また、 予備槽中の排水を処理槽加熱用の熱媒と して利用でき、 処理槽全体を均一加熱できるために、 バンドヒーター等の使用に比べて効 率良い加熱が可能となる。 また、 逆に脱窒菌が死滅するような高温の排水 が予備槽 16 中に流入する場合は、 予備槽は冷却装置を有することができ る。 The processing tank 11 may not be disposed in the preparatory tank 16 and may be provided independently. However, by disposing the processing tank 11 in the preparatory tank 16, it is easy to control the processing tank 11 to an optimum temperature. In addition, the wastewater in the preliminary tank can be used as a heat medium for heating the processing tank, and the entire processing tank can be uniformly heated, so that more efficient heating can be performed than using a band heater or the like. Conversely, high-temperature wastewater that can kill the denitrifying bacteria If the gas flows into the reserve tank 16, the reserve tank may have a cooling device.
また、 予備槽は排水のス トックタンクとできるために、 例えば間欠的な 流れ特徴を有する排水処理においても、 予備層から脱窒材を充填した処理 槽 11 へ排水を流す際に定量ポンプで連続通水制御することによって、 処 理槽中への流入量を定量連続通水することが可能となる。  In addition, since the reserve tank can be used as a stock tank for wastewater, for example, in wastewater treatment with intermittent flow characteristics, a constant volume pump is used to continuously discharge wastewater from the reserve layer to the treatment tank 11 filled with denitrification material. By controlling the flow of water, it is possible to continuously flow a constant amount of water into the treatment tank.
排水処理に必要な脱窒材の量は排水流量に依存するために、 例えば 1 日 当たりの排水量は同じであっても、 1 日に連続して排水される場合と数度 に分けた排水の場合では、 後者の場合は時間当たりの流量が大きく変化し、 ある時間に着目すると多量の排水処理を行う必要が生ずるために、 連続定 量通水の場合に比較して多量の脱窒材が必要となり、 装置も過大になると いう欠点が生ずる。 従って、 前記の予備槽をス トツクタンクと して、 且つ 予備槽から定量ポンプにて一定量の連続通水量にて硫黄とカルシウム系成 分からなる脱窒材を充填した槽へ処理排水を流す方法は、 設備のコンパク ト化という点で多大な効果を発揮する。  Since the amount of denitrification materials required for wastewater treatment depends on the amount of wastewater flow, for example, even if the amount of wastewater per day is the same, the amount of wastewater that is discharged continuously for one day and the amount of wastewater divided into several In the latter case, the flow rate per hour greatly changes, and a large amount of wastewater treatment must be performed at a certain time. And the disadvantage that the equipment becomes too large. Therefore, a method of flowing the treated wastewater into a tank filled with a denitrifying material composed of sulfur and calcium components with the above-mentioned reserve tank as a stock tank and a constant amount of continuous water flow from the reserve tank with a constant amount pump is used. It is very effective in terms of compacting equipment.
ところで、 脱窒菌の生育環境は、 脱窒菌の種類、 由来等によっても異な るが、 通常 3 0 °C前後が最適であるとされている。 したがって、 処理槽へ 装入する排水の温度は 1 0 〜 5 0 °C、 好ましくは 1 5 〜 4 0 °C、 更に好ま しくは 2 0 〜 4 0 °Cとすることがよい。 特に、 予備槽 16 に流入する排水 が 1 5 °C未満のときは、 それより も 1 0 °C以上高い温度であって、 1 5 〜 4 0 °Cの間の所定温度になるようにヒータ 13 で調整することが好ましい。 処理槽ゃ予備槽の形状は特に制限するものではないが、 実用的な形状性 から円筒形や直方体形状が好ましい。 またこれらの槽は一つである必要は 無く、 処理目的や要求される処理能力、 設置スペース等に応じて 2つ以上 の槽を組合せることも可能である。 例えば 1つの予備槽に複数の処理槽を 設置する方法も効率的な方法といえる。 予備槽の大きさは、 処理槽容積のBy the way, the growth environment of the denitrifying bacteria varies depending on the type, origin, etc. of the denitrifying bacteria, but it is generally said that the optimum temperature is around 30 ° C. Therefore, the temperature of the wastewater charged into the treatment tank is preferably from 10 to 50 ° C, more preferably from 15 to 40 ° C, and still more preferably from 20 to 40 ° C. In particular, when the wastewater flowing into the preliminary tank 16 is lower than 15 ° C, the heater is set to a temperature higher than that by 10 ° C or more and a predetermined temperature between 15 ° C and 40 ° C. It is preferable to adjust at 13. The shapes of the treatment tank and the preliminary tank are not particularly limited, but a cylindrical shape or a rectangular parallelepiped shape is preferable from a practical shape. The number of these tanks does not need to be one, but two or more depending on the processing purpose, required processing capacity, installation space, etc. It is also possible to combine tanks. For example, installing multiple treatment tanks in one spare tank is also an efficient method. The size of the spare tank is
0 . 5 〜 5倍量、 好ましくは 1 〜 3倍量であることがよい。 The amount is 0.5 to 5 times, preferably 1 to 3 times.
また、 循環ポンプ 4により排水を循環させることは、 予備槽及ぴ排水処 理槽内の水温を一定にするためにも有効である。  Also, circulating the wastewater by the circulation pump 4 is effective for keeping the water temperature in the preparatory tank and the wastewater treatment tank constant.
図 6は、 使用中に脱窒率が低下したとき、 これを回復するのに適した装 置を示すものであり、 処理槽 1 1 の下部に通ずる入り 口ライン 5、 上部に 出口ライン 6を備え、 槽内に脱窒材の充填層を有している。 入り 口ライン 5 からは充填層の下部に導入された排水は、 充填層を通過して上部に達し、 一部は出口ライン 6から処理水と して排出され、 一部は管 3及びポンプ 4 を経由して処理層下部に循環されるようになっている。 処理槽 1 1 と一時 的に排水を貯蔵する貯槽 21は、 配管 22で連結されており、 排水出口ライ ン 6 に備えたモニタリング装置 23 によって、 処理水の硝酸性窒素濃度を 測定するとともに、 測定された硝酸性窒素濃度から計算される脱窒率が所 定以下になったら、 弁 24及び 25 の開閉とポンプ 26 の運転を制御するよ うに構成されている。  Fig. 6 shows a device suitable for recovering from a decrease in the denitrification rate during use.Inlet line 5 leads to the lower part of treatment tank 11 and outlet line 6 at the upper part. The tank has a bed of denitrification material. From the inlet line 5, the wastewater introduced into the lower part of the packed bed passes through the packed bed and reaches the upper part, part of which is discharged as treated water from the outlet line 6, and part of which is pipe 3 and pump 4. And is circulated to the lower part of the treatment layer via the The treatment tank 11 and a storage tank 21 for temporarily storing wastewater are connected by a pipe 22.The monitoring device 23 provided at the wastewater outlet line 6 measures the concentration of nitrate nitrogen in the treated water. When the denitrification rate calculated from the measured nitrate nitrogen concentration falls below a predetermined value, the valves 24 and 25 are opened and closed and the operation of the pump 26 is controlled.
処理槽 1 1 内では、 硝酸イオンが窒素ガスに常時変換されており、 発生 窒素ガスによる気泡が脱窒材の粒子間に徐々に蓄積する。 このよ うな気泡 の蓄積によって、 排水と脱窒材との接触が妨げられ、 脱窒効率が次第に低 下する。 モニタ リ ング装置 23 で処理槽 1から出た処理済排水の硝酸性窒 素濃度を測定し、 処理水の脱窒率が設定値以下に下がったとき、 モニタリ ング装置 23 に内蔵された切替システム (図示せず) が作動するように構 成されている。 この切替システムは、 弁 24 を閉じて排水流入を停止し、 次いで弁 25を開き、 ポンプ 26を駆動して処理槽 1 1内の排水を貯槽 21 へ 一時的に移動させ、 処理槽 1 1 内を空にする。 この操作で脱窒材の粒子間 に存在する気泡を破壌し、 窒素ガスを放出させる。 In the treatment tank 11, nitrate ions are constantly converted to nitrogen gas, and bubbles generated by the generated nitrogen gas gradually accumulate between the particles of the denitrifying material. Such accumulation of air bubbles prevents the contact between the wastewater and the denitrification material, and the denitrification efficiency gradually decreases. The monitoring device 23 measures the nitrate nitrogen concentration of the treated wastewater discharged from the treatment tank 1, and when the denitrification rate of the treated water falls below the set value, the switching system built into the monitoring device 23 (Not shown) are configured to operate. In this switching system, the valve 24 is closed to stop the inflow of wastewater, and then the valve 25 is opened, and the pump 26 is driven to drive the wastewater in the treatment tank 11 to the storage tank 21. Move it temporarily to empty the processing tank 1 1. This operation breaks bubbles existing between the particles of the denitrifying agent and releases nitrogen gas.
切替システムの作動は、 規制値以上の硝酸性窒素濃度となったときだけ でなく、 脱窒処理開始当初の脱窒率 (初期値) に対し、 測定時の脱窒率 The switching system operates not only when the nitrate nitrogen concentration exceeds the regulation value, but also when the denitrification rate at the start of the denitrification treatment (initial value) is lower than the denitrification rate at the time of measurement.
(測定値) が 5〜 3 0 %下がったときに行い、 気泡の除去をすることもよ い。 ここで、 循環用ポンプ 4による循環は排水が充填層を通過する流速を 高めて、 気泡の流し出し、 気泡の蓄積防止にも寄与する。 (Measured value) drops by 5 to 30%, and it is also possible to remove bubbles. Here, the circulation by the circulation pump 4 increases the flow velocity of the drainage passing through the packed bed, and also serves to prevent bubbles from flowing out and accumulating bubbles.
気泡除去処理が終了した後、 ポンプ 26を駆動して貯槽 21の排水を処理 槽 1 1 へ戻し、 次いで弁 25 を閉じ、 弁 24 を開いて脱窒処理を再開する。 この操作で、 一旦空になった処理槽 1 1 に排水が送り込まれ、 残った気泡 を押し流すものと考えられる。 また、 脱窒材の表面に付着した汚泥等の除 去も期待できる。  After the air bubble removal processing is completed, the pump 26 is driven to return the wastewater from the storage tank 21 to the processing tank 11, and then the valve 25 is closed and the valve 24 is opened to restart the denitrification processing. By this operation, it is considered that the wastewater is sent to the treatment tank 11 once emptied, and the remaining air bubbles are pushed away. In addition, removal of sludge and the like attached to the surface of the denitrification material can be expected.
モユタ リング装置 23 は、 硝酸イオンセンサー測定、 比色計測定、 自動 排水サンプリングによる G P C分析など、 硝酸性窒素が簡易に測定できる 機器を用いればよい。  The monitoring device 23 may be a device that can easily measure nitrate nitrogen, such as nitrate ion sensor measurement, colorimeter measurement, and GPC analysis by automatic drainage sampling.
また、 気泡除去の方法と しては、 上記形態に限定されるものではなく、 次のような様々な実施形態を含むものである。  Further, the method of removing bubbles is not limited to the above-described embodiment, but includes various embodiments as follows.
例えば、 排水入口と排水出口に弁をポンプを設けておき、 モニタリング 装置によって測定した脱窒率が所定値を超えたら、 両方の弁を閉じ、 循環 ポンプ 4を駆動させ、 全量を循環させる。 この操作によって、 処理槽内の 排水は循環され、 脱窒資材の粒子間に蓄積された気泡が除去される。 排水 の循環は、 脱窒処理時の排水の流れと同じ方向で流速を増加するか、 又は 逆流 (脱窒処理時の排水の流れと反対) させると、 効率よく気泡除去がで きる。 その他、 処理槽内を減圧にしたり、 処理槽内に超音波等により振動を与 えたり、 処理槽内に空気などを吹き込んだり して、 気泡を除去するように してもよい。 For example, pumps are provided at the drain inlet and drain outlet, and when the denitrification rate measured by the monitoring device exceeds a predetermined value, both valves are closed and the circulation pump 4 is driven to circulate the entire amount. By this operation, the wastewater in the treatment tank is circulated, and the air bubbles accumulated between the particles of the denitrification material are removed. Effluent can be removed efficiently by increasing the flow velocity in the same direction as the flow of wastewater during denitrification or by making it flow backward (opposite to the flow of wastewater during denitrification). In addition, air bubbles may be removed by reducing the pressure in the processing tank, applying vibration to the processing tank by ultrasonic waves, or blowing air or the like into the processing tank.
また、 前記のモニタリング装置に代えて、 予め定めた間隔でもって、 気 泡除去処理を作動/停止させるタイマ一装置を用いることもできる。 予め 定めた間隔は、 通常 7 日〜 6力月の範囲がよく、 装入する排水の硝酸性窒 素濃度が高い場合は短期間とし、 低い場合は長期間とすることがよい。  In addition, instead of the monitoring device, a timer device that activates / stops the bubble removal processing at a predetermined interval can be used. The predetermined interval is usually in the range of 7 days to 6 months, and should be short if the concentration of nitrate in the wastewater to be charged is high, and long if it is low.
溶存酸素の高い排水の脱窒をより効率的に行う場合は、 溶存酸素の高い 排水の流入部分の近在に溶存酸素低下手段を設けることがよく、—より好ま しくは装置内で処理水が大気に接する部分に溶存酸素低下手段を設けるこ とがよい。  In order to more efficiently denitrify wastewater with high dissolved oxygen, it is preferable to provide a means for reducing dissolved oxygen in the vicinity of the inflow part of wastewater with high dissolved oxygen, and more preferably, to reduce the amount of treated water in the device. It is preferable to provide a means for reducing dissolved oxygen at the part in contact with the atmosphere.
溶存酸素低下手段と しては、 加熱、 酸素不含ガスによる脱気、 還元剤の 添加、 好気性微生物による処理、 例えば好気性硫黄酸化細菌による処理な どがある。  Means for reducing dissolved oxygen include heating, deaeration with an oxygen-free gas, addition of a reducing agent, treatment with aerobic microorganisms, such as treatment with aerobic sulfur-oxidizing bacteria.
溶存酸素低下手段と しては、 加熱、 窒素ガスなど酸素ガスを含まないガ スによる曝気、 溶存酸素と反応する亜硫酸塩等の還元剤の添加、 好気性微 生物による処理などがある。 好気性微生物による処理としては、 好気性硫 黄酸化細菌、 単体硫黄、 硫黄酸化細菌用炭素源及び排水中和剤を備えた溶 存酸素低下資材を使用することが有利である。  Means for reducing dissolved oxygen include heating, aeration with gas that does not contain oxygen gas such as nitrogen gas, addition of a reducing agent such as sulfite that reacts with dissolved oxygen, and treatment with aerobic microorganisms. As treatment with aerobic microorganisms, it is advantageous to use a dissolved oxygen-lowering material provided with aerobic sulfur-oxidizing bacteria, elemental sulfur, a carbon source for sulfur-oxidizing bacteria, and a wastewater neutralizer.
図 7は溶存酸素が多い排水の処理に適した装置の一例を示すものであり、 溶存酸素除去槽 62 と処理槽 11を有している。 排水は入り 口ライン 5から 溶存酸素除去槽 62に入り、 脱窒材を充填した充填層 62を通過する。 この 充填層 62の脱窒材は、 処理槽 1 1 に充填する脱窒材と同じであってもよい が、 好気性硫黄酸化細菌が付着していることがよい。 したがって、 この充 填層 62を通過した排水中の溶存酸素が減少する。 充填層 62を通過した排 水は溶存酸素除去槽 61 の上部から連結管 63 を経由して処理槽 1 1 の下部 に入り、 脱窒材を充填した充填層 2を通過し、 謙気性硫黄酸化細菌により 脱窒が行われる。 充填層 2を通過した排水は出口ライン 6から排出される が、 一部はポンプ 4及び管 3を経由して処理槽 11下部に循環される。 FIG. 7 shows an example of an apparatus suitable for treating wastewater containing a large amount of dissolved oxygen. The apparatus has a dissolved oxygen removal tank 62 and a treatment tank 11. Drainage enters the dissolved oxygen removal tank 62 from the inlet line 5 and passes through the packed bed 62 filled with denitrification material. The denitrification material of the packed layer 62 may be the same as the denitrification material filled in the treatment tank 11, but it is preferable that aerobic sulfur-oxidizing bacteria adhere. Therefore, this charge The dissolved oxygen in the wastewater that has passed through the bed 62 decreases. The wastewater that has passed through the packed bed 62 enters the lower part of the treatment tank 11 from the upper part of the dissolved oxygen removal tank 61 via the connecting pipe 63, passes through the packed bed 2 filled with denitrification material, and undergoes humid sulfur oxidation. Denitrification is performed by bacteria. The wastewater that has passed through the packed bed 2 is discharged from the outlet line 6, but part of the wastewater is circulated to the lower part of the treatment tank 11 via the pump 4 and the pipe 3.
図 1〜 7の硝酸性窒素除去装置は、 硫化水素が発生する恐れがある状況 下でも使用可能である。 この場合、 脱窒材として炭酸カルシウム塩及び硫 黄及び酸化鉄の共存体からなり、 共存する酸化鉄の含有量が 1〜 2 0 wt % s かつ該酸化鉄の比表面積が 0 . l m V g以上であり、 硫化水素の発生を抑 制できるものを使用することがよい。 また、 脱窒材が硫黄及びカルシウム 系成分の他に硫化水素の発生を抑制するに有効な量の酸化鉄を共存させた 脱窒材を使用し、 特開 2002- 159993号公報に記載された処理装置を使用す ることも有利である。 すなわち、 独立栄養性硫黄酸化脱窒細菌による脱窒 方法を適用するもので、 粒状又は塊状の硫黄含有濾材による濾材床を槽内 に備えると共に、 被処理水を槽内に送り込む給水配管系を濾材床より下方 の槽下部に配設し、 且つ、 濾材床による処理水を槽外に送り出す排水配管 系を濾材床より上方の槽上部に配設し、 被処理水を濾材床の下方から上方 に向けて流動させる上向流方式の水処理槽として構成されていて、 且つ、 脱窒材が硫黄及びカルシウム系成分の他に硫化水素の発生を抑制するに有 効な量の酸化鉄を共存させた脱窒材からなることが好ましい。 実施例 図 1に示す硝酸性窒素除去装置 1を用いて、 排水を循環しながら、 硝酸 性窒素を処理した。 先ず、 入口ライン 5 より装置内に流入した排水を所定 液面 (出口 6高さ) まで充満させる。 その後、 循環ポンプ 4を稼動させ、 パイプ 3を通じて、 上層水 9を上方から下方へ循環させ、 下部の四方出口 より流出する。 その流出した排水は、 開口穴を有する底板上に充填された 脱窒材充填層 2に均等に侵入して、 脱窒に供される。 入口ライン 5 より流 入した排水に流量に対応する量の脱窒された処理水が出口ライン 6 より排 出される。 The nitrate nitrogen removal equipment of Figs. 1 to 7 can be used even in situations where hydrogen sulfide may be generated. In this case, the denitrifying agent is composed of a coexistent of calcium carbonate, sulfuric acid and iron oxide. The content of the coexisting iron oxide is 1 to 20 wt% s and the specific surface area of the iron oxide is 0.1 lm Vg. As described above, it is preferable to use a material capable of suppressing the generation of hydrogen sulfide. Further, a denitrification material using a denitrification material in which an effective amount of iron oxide for suppressing the generation of hydrogen sulfide in addition to sulfur and calcium-based components is used is described in JP-A-2002-159993. It is also advantageous to use processing equipment. That is, a method of applying a denitrification method using autotrophic sulfur oxidizing and denitrifying bacteria is applied.A filter medium bed made of granular or massive sulfur-containing filter medium is provided in the tank, and a water supply piping system for feeding the water to be treated into the tank is provided with a filter medium. A drainage pipe system is installed in the lower part of the tank below the floor, and the drainage pipe system that sends out the treated water from the filter medium bed to the outside of the tank is installed in the upper part of the tank above the filter medium bed, and the water to be treated is raised from below the filter medium bed to above. It is configured as a water treatment tank of the upward flow type that flows toward the water, and the denitrifying agent coexists with an effective amount of iron oxide to suppress the generation of hydrogen sulfide in addition to sulfur and calcium components. Preferably, it is made of a denitrifying material. Example Using the nitrate nitrogen removal device 1 shown in Fig. 1, nitrate nitrogen was treated while circulating waste water. First, the wastewater that has flowed into the device from the inlet line 5 is filled up to the specified liquid level (the height of the outlet 6). Thereafter, the circulation pump 4 is operated, and the upper water 9 is circulated from above to below through the pipe 3, and flows out from the lower four-way outlet. The drained water uniformly penetrates into the denitrification material-filled layer 2 filled on the bottom plate having an opening and is subjected to denitrification. The amount of denitrified treated water corresponding to the flow rate is discharged from the outlet line 6 to the wastewater flowing from the inlet line 5.
本実施例においては、 容量 1 0 0 Lの直方体処理槽に、 脱窒材と して粒 径 5〜 2 0 m mの硫黄 · 炭酸カルシウム混合組成物 4 O k g (嵩密度 1 . 2 ) を充填し、 硝酸性窒素約 2 0 0 m g Z Lの被処理水 (養液栽培排水) 9を処理した。 脱窒材は、 硫黄と石灰石分を 1 : 1 (重量比) で溶融混合 し、 粉砕したものを使用し、 これに常温で硫黄酸化脱窒細菌を定着させて 得た。 排水は、 入口ライン 5より流量 6 L/hr で通水し、 循環量 1 2 0 0 L/hrで循環させた。 水温は 2 5 °Cに維持した。  In the present example, a rectangular parallelepiped treatment tank having a capacity of 100 L was filled with a sulfur-calcium carbonate mixed composition 4 O kg (bulk density 1.2) having a particle diameter of 5 to 20 mm as a denitrifying agent. Then, treated water (nutrient solution cultivation wastewater) 9 containing about 200 mg ZL of nitrate nitrogen was treated. The denitrification material was obtained by melting and mixing sulfur and limestone in a ratio of 1: 1 (weight ratio), and then pulverized, and obtained by fixing sulfur oxidizing and denitrifying bacteria at room temperature. The wastewater was passed through the inlet line 5 at a flow rate of 6 L / hr and circulated at a circulation rate of 1200 L / hr. Water temperature was maintained at 25 ° C.
硝酸性窒素除去処理状況の経時変化を確認したところ、 脱窒材の粒子間 に窒素ガスの著しい停滞もなく、 脱窒処理開始後 3 0 0 を経過しても処 理水中に残存する硝酸性窒素濃度は 1 O m g / L以下に留まり優れた脱窒 効果を維持した。  As a result of confirming the change over time in the nitrate nitrogen removal treatment status, there was no significant stagnation of nitrogen gas between the particles of the denitrification material, and the nitric acid remaining in the treated water even after 300 days from the start of the denitrification treatment. The nitrogen concentration remained below 1 Omg / L and maintained an excellent denitrification effect.
実施例 2 Example 2
処理槽内部に硫黄 5 0重量部と炭酸カルシウム 5 0重量部からなる硫黄 溶融混合物を径 5〜 2 0 m mの範囲の粒にした無機材料からなる脱窒材を 3 k g充填した。 この脱窒材は、 ネギ畑から採取した土に含まれる脱窒菌 で、 3週間培養した。 図 5に示す硝酸性窒素除去装置を使用した。 処理槽は、 直径 1 0 c m、 長さ 7 0 c mの円筒であり、 予備槽 16 の槽容積'を約 2 0 L、 処理槽の槽 容積を約 5 Lとし、 予備槽及び処理槽は 30°C設定と した。 排水は、 大塚 化学製 O K_ F— 2を水道水に混合することによって硝酸性窒素濃度 2 0 0 m g / Lに調製した人工排水を使用した。 この人工排水を排水温度 1 0 °Cで、 4 0 0 m L / hr で、 3 間の連続通水して処理槽の出口から排 出される処理排水の硝酸性窒素 (N03値) 濃度変化の経時変化を調べた。 なお、 循環量は 1 0 0 L/hr 又は 0と した。 循環量 0の場合、 その濃度の 下限値は 3 m g /L、 上限値 7 m g Z Lであった。 1 0 0 L/hr の場合、 その濃度の下限値は 1 m g / L、 上限値 3 m g ZLであった。 The treatment tank was filled with 3 kg of a denitrifier made of an inorganic material obtained by granulating a sulfur molten mixture composed of 50 parts by weight of sulfur and 50 parts by weight of calcium carbonate into particles having a diameter of 5 to 20 mm. This denitrifying material was cultured for three weeks with denitrifying bacteria contained in soil collected from a leek field. The nitrate nitrogen removal device shown in Fig. 5 was used. The treatment tank is a cylinder with a diameter of 10 cm and a length of 70 cm, the capacity of the spare tank 16 is about 20 L, the capacity of the treatment tank is about 5 L, and the capacity of the spare tank and the treatment tank is 30 L. ° C setting. As the wastewater, artificial wastewater adjusted to a nitrate nitrogen concentration of 200 mg / L by mixing Otsuka Chemical's OK_F-2 into tap water was used. The concentration of nitrate nitrogen (N0 3 value) changes in the treated wastewater discharged from the outlet of the treatment tank through continuous water flow for 3 times at a wastewater temperature of 100 ° C at a temperature of 100 ° C / 100 ° C. Was examined over time. The amount of circulation was 100 L / hr or 0. When the circulating amount was 0, the lower limit of the concentration was 3 mg / L and the upper limit was 7 mg ZL. At 100 L / hr, the lower limit of the concentration was 1 mg / L and the upper limit was 3 mg ZL.
一方、 予備槽を有しない硝酸性窒素除去装置で同様な条件で処理した場 合は、 排水温度 1 0°Cの排水が処理槽の入口にそのままの温度で装入され るため、 出口から排出される処理排水の硝酸性窒素濃度は、 下限値 2 5 m g Z Lであり、 上限値 4 2 m g / Lであった。 この場合、 循環量は 0と し た。  On the other hand, if the treatment is performed under similar conditions using a nitrate nitrogen removal device without a preparatory tank, the wastewater with a wastewater temperature of 10 ° C will be charged to the inlet of the processing tank at the same temperature, and will be discharged from the outlet. The nitrate nitrogen concentration of the treated wastewater was a lower limit of 25 mg ZL and an upper limit of 42 mg / L. In this case, the circulation amount was set to zero.
実施例 3 Example 3
図 5に示す硝酸性窒素除去装置を使用した。 大塚化学製 OK— F— 2を 水道水に混合することによって硝酸性窒素濃度 5 0 m g Z Lに調製した人 ェ排水を、 排水温度 5 °C、 排水速度 1 L/h rで、 1 2時間連続通水し、 循環量 1 0 L/h r又は 0 と した際の 1 2時間後の処理槽出口の硝酸性窒 素濃度を調べたところ、 循環量 0の場合、 5 m g ZLであり、 1 0 L/h rの場合、 2m g/Lであった。  The nitrate nitrogen removal device shown in Fig. 5 was used. Otsuka Chemical's OK—F—2 is mixed with tap water to make human wastewater adjusted to a nitrate nitrogen concentration of 50 mg ZL for 12 hours at a wastewater temperature of 5 ° C and a drainage rate of 1 L / hr. The nitrate nitrogen concentration at the outlet of the treatment tank was examined 12 hours later when the water was passed and the circulation rate was set to 10 L / hr or 0.When the circulation rate was 0, it was 5 mg ZL. In the case of L / hr, it was 2 mg / L.
実施例 4 Example 4
実施例 3 と同様な実験を行った。 硝酸性窒素濃度 5 O m g /Lに調製し た人工排水を、 排水温度 5°C、 排水速度 5 0 mL/min で、 1時間の連続 通水と 1時間の停止時間を交互に 3回繰り返し、 3回目排水後の各槽の出 口硝酸性窒素濃度を調べた。 この際、 処理槽に通ずる排水定量ポンプの供 給速度を 4 0 0 mLZhr となるようにセッ トした。 この結果、 3回目排 水後の処理槽から排出された排水の硝酸性窒素濃度は、 3m gZL (循環 量 0 ) 及び l m g/L (循環量 40 L/hr) であった。 The same experiment as in Example 3 was performed. Adjust the nitrate nitrogen concentration to 5 O mg / L. The artificial wastewater was drained at a drain temperature of 5 ° C and a drainage rate of 50 mL / min , with 1 hour of continuous water flow and 1 hour of stop time alternately repeated three times, and the outlet of each tank after the third drainage The nitrate nitrogen concentration was examined. At this time, the feed rate of the drainage metering pump leading to the treatment tank was set to be 400 mLZhr. As a result, the nitrate nitrogen concentration of the wastewater discharged from the treatment tank after the third drainage was 3 mgZL (circulation volume 0) and lmg / L (circulation volume 40 L / hr).
実施例 5 ' Example 5 '
硫黄と石灰石粉を 1 : 1 (重量比) で溶融混合し、 これを碎いて脱窒材 を得た。 これに常法により、 常温で硫黄酸化脱窒細菌を定着させた脱窒材 を得た。 硫黄酸化脱窒細菌を定着させた脱窒材と定着させる前の脱窒材と を等量混合し、 硝酸力リ ゥムで硝酸性窒素濃度 2 0 0 mg/L に調整した培 地に加え、 培養、 定着を行った。 培地は 5 °Cの水温で保持し、 硝酸性窒素 濃度が 1 Otng/L 以下に達した時点で硝酸力リ ゥムを硝酸性窒素濃度 2 0 0 mg/L となるように添加し、 1 ヶ月間培養して低温-脱窒材を得た。  Sulfur and limestone powder were melt-mixed at a ratio of 1: 1 (weight ratio) and crushed to obtain a denitrifying material. A denitrification material in which sulfur oxidizing and denitrifying bacteria were established at room temperature was obtained by a conventional method. An equal amount of the denitrifying material on which the sulfur oxidizing and denitrifying bacteria are fixed and the denitrifying material before fixing are mixed and added to the culture medium adjusted to a nitrate nitrogen concentration of 200 mg / L with a nitric acid reamer. , Culture, and colonization. The culture medium was maintained at a water temperature of 5 ° C, and when the nitrate nitrogen concentration reached 1 Otng / L or less, a nitrate rim was added so that the nitrate nitrogen concentration became 200 mg / L. After culturing for months, a low-temperature denitrifying material was obtained.
本実施例においては、 容量 1 0 0 Lの直方体処理槽に、 低温-脱窒材 4 0 k gを充填し、 硝酸性窒素約 1 0 0 m g Lの排水を処理した。 排水は、 入口ライン 5より流量 6 L/hr で通水し、 循環量 1 2 0 L/hr 又は 0で 循環させ、 水温 5°C又は 3 0°Cに保持し、 低温脱窒材の低温と高温での脱 窒性能を測定した。  In this example, a rectangular parallelepiped treatment tank having a capacity of 100 L was filled with 40 kg of a low-temperature denitrifying agent, and wastewater of about 100 mg L of nitrate nitrogen was treated. The wastewater is passed through the inlet line 5 at a flow rate of 6 L / hr, circulated at a circulation rate of 120 L / hr or 0, and maintained at a water temperature of 5 ° C or 30 ° C. And the denitrification performance at high temperature was measured.
試験開始〜 1 0 日までの排水と処理水の硝酸性窒素濃度測定結果を、 表 1に 1 0 日間の平均値を示す。  Table 1 shows the results of measurement of the nitrate nitrogen concentration of the wastewater and treated water from the start of the test to the 10th day, and Table 1 shows the average values for the 10th day.
なお、 培地を 2 0 °Cの水温で保持した他は同様にして、 2 0 °C-脱窒材 を得た。 これを、 上記と同様にして、 この脱窒材の低温と高温での脱窒性 能を測定した。 表 1に 1 0 日間の平均値を示す。 2 0 °C-脱窒材を用いる と、 3 0 °C場合は、 処理水の硝酸性窒素濃度は平均 0 . 4 mg/L の低濃度 まで処理することが可能で、 脱窒率は 9 9 . 6 °/0を示す結果であつたが、 水温 5 °Cの場合は、 処理水の硝酸性窒素濃度は平均 6 3 . 9 rag/L までしか 処理することができず、 脱窒率は 4 1 . 4 %を示す結果であった。 Note that a 20 ° C-denitrification material was obtained in the same manner except that the medium was maintained at a water temperature of 20 ° C. The denitrification performance of this denitrification material at low and high temperatures was measured in the same manner as above. Table 1 shows the average values for 10 days. 20 ° C- Use denitrification material At 30 ° C, it is possible to treat the treated water with a nitrate nitrogen concentration as low as 0.4 mg / L on average, and the denitrification rate is 99.6 ° / 0 . However, when the water temperature was 5 ° C, the nitrate nitrogen concentration of the treated water could only be treated to an average of 63.9 rag / L, and the denitrification rate was 41.4%. there were.
表 1  table 1
Figure imgf000021_0001
実施例 6
Figure imgf000021_0001
Example 6
図 6に示す処理装置を用い、 処理槽 11 (容積 2 0 0 L) に、 脱窒材 (硫 黄と石灰石の溶融混合物に独立栄養系硫黄酸化脱窒.細菌を付着させたもの ) を 2 0 0 kg充填し、 溶液栽培用肥料 (大塚化学製 O K— F 1 ) を溶解し て硝酸イオン濃度約 2 0 0 mg/Lに調整した人工排水を、 排水温度 2 0 °C、 流量 7 0 0 L/ Sで流し込んで脱窒処理を実施した。 循環量は 7 0 0 0 L/日 又は 0 とした。  Using the processing apparatus shown in Fig. 6, two denitrifying materials (autotrophic sulfur oxidative denitrification; bacteria attached to a molten mixture of sulfur and limestone) were placed in a processing tank 11 (capacity: 200 L). 100 kg of artificial wastewater filled with solution fertilizer for solution cultivation (OK-F1 manufactured by Otsuka Chemical Co., Ltd.) and adjusted to a nitrate ion concentration of about 200 mg / L, at a temperature of 20 ° C and a flow rate of 70 ° C A denitrification treatment was performed by pouring at 0 L / S. The circulation volume was set at 700 000 L / day or 0.
モニタリ ング装置 23と して、 硝酸イオンセンサーとパソコンを用い、 処 理排水の硝酸性窒素の脱窒率に応じて、 気泡除去手段 (弁 24と弁 25の開閉 及びポンプ 26の運転 Z停止) を制御するように構成した。  Using a nitrate ion sensor and a personal computer as the monitoring device 23, air bubble removal means (opening / closing the valves 24 and 25 and stopping the operation of the pump 26) according to the denitrification rate of nitrate nitrogen in the treated wastewater. Is configured to be controlled.
モニタリング装置 23の硝酸性窒素濃度を 1 0 mg/L (脱窒率 9 5 % ) に設 定し、 処理水の硝酸性窒素濃度の変化を連続測定しながら脱窒処理を継続 した。 処理水の硝酸性窒素濃度は 5 mg/L以下 (脱窒率 9 7. 5 %) であつ たが、 処理開始 2週間頃から徐々に増加し始め、 2 3 日 目 (循環量 0 ) 及 び 5 0 日 目 (循環量 7 0 0 0 L/ ) に気泡除去手段が作動した。 この時、 処理槽 11内の排水が貯槽 21へ移動して処理槽 11は空になり、 その後、 貯槽 21の排水が処理槽 11に戻るとともに処理槽 11に排水が連続的に導入され、 脱窒処理が再開されたことを確認した。 The nitrate nitrogen concentration of monitoring device 23 was set to 10 mg / L (denitrification rate 95%). The denitrification treatment was continued while continuously measuring the change in the concentration of nitrate nitrogen in the treated water. The nitrate nitrogen concentration of the treated water was 5 mg / L or less (denitrification rate 97.5%), but started to increase gradually from about 2 weeks after the start of treatment, and on the 23rd day (circulation volume 0) On the 50th and 50th days (circulation volume of 700 L /), the air bubble removal means was activated. At this time, the wastewater in the treatment tank 11 moves to the storage tank 21 and the treatment tank 11 is emptied. After that, the wastewater in the storage tank 21 returns to the treatment tank 11 and the wastewater is continuously introduced into the treatment tank 11 to be removed. It was confirmed that the nitrogen treatment was restarted.
実施例 7 Example 7
図 7に示す装置を用い、 溶存酸素 4. 5 rag八、 硝酸性窒素 1 0 4. 1 mg/ 1である排水の硝酸性窒素除去試験を実施した。  Using the apparatus shown in FIG. 7, a wastewater nitrate removal test of 4.5 rag of dissolved oxygen and 104.1 mg / l of nitrate nitrogen was conducted.
排水は入り 口ライン 5から溶存酸素除去槽 61に入り、 脱窒材を充填した 充填層 62を通過する。 この充填層 62の脱窒材は、 処理槽 11に充填する脱窒 材と同じであるが、 好気性硫黄酸化細菌が付着している。 溶存酸素除去槽 61を通過した排水は処理槽 11'に入り、 脱窒材充填層 2を通過し、 好気性硫 黄酸化細菌により脱窒が行われる。 充填層 2を通過した排水は出口ライ ン から排出されるが、 一部はポンプ 4及び管 3を経由して循環される。  Drainage enters the dissolved oxygen removal tank 61 from the inlet line 5 and passes through the packed bed 62 filled with denitrification material. The denitrification material in the packed layer 62 is the same as the denitrification material to be filled in the treatment tank 11, but has aerobic sulfur-oxidizing bacteria attached thereto. The wastewater that has passed through the dissolved oxygen removal tank 61 enters the treatment tank 11 ', passes through the denitrification material packed bed 2, and is denitrified by aerobic sulfur-oxidizing bacteria. The wastewater that has passed through the packed bed 2 is discharged from the outlet line, but part of it is circulated through the pump 4 and the pipe 3.
脱窒材と しては、 石灰石粉末 1 0 0重量部と硫黄粉末 1 2 0重量部を混 合し、 6 5 0 kg/cm2で圧縮成形して得られた粒状物を使用した。 充填層 2 及び 62の脱窒材には、 通性嫌気性硫黄酸化細菌である Thiobacillus denit rificansを付着させた脱窒材 1 0重量部に対し、 硫黄酸化細菌を付着させ てない新規 S C材を 9 0重量部の割合で混合したものをそれぞれ充填した 溶存酸素除去槽 61の脱窒材は、 事前に好気化処理して硫黄酸化細菌を好 気性硫黄酸化細菌と し、 処理層 11の脱窒材は、 通性嫌気性硫黄酸化細菌の まま使用した。 As the denitrifying material, a granular material obtained by mixing 100 parts by weight of limestone powder and 120 parts by weight of sulfur powder and compression-molding the mixture at 65 kg / cm 2 was used. For the denitrification material in packed beds 2 and 62, a new SC material without sulfur-oxidizing bacteria was added to 10 parts by weight of denitrifying material with Thiobacillus denitrificans, which is a facultative anaerobic sulfur-oxidizing bacterium. The denitrification material in the dissolved oxygen removal tank 61, which was filled with a mixture of 90 parts by weight, was subjected to aerobic treatment in advance to convert sulfur-oxidizing bacteria into aerobic sulfur-oxidizing bacteria, and denitrification of the treated layer 11. The material is of facultative anaerobic sulfur oxidizing bacteria Used as is.
設定温度を 2 5 °Cと し、 5 L/日の人工排水をポンプで送給し、 循環量を Set the temperature to 25 ° C, pump 5 L / day of artificial drainage by pump, and
5 0 0 L/日又は 0 と したところ、 最終の処理水は、 溶存酸素 0. 3 rag/1, 硝酸性窒素 0. 4mg/l (循環量 0 ) 又は 0. 2 rag八 (循環量 5 0 0 L/日) であり、 脱窒率は 9 9. 6 %又は 9 9. 8 %であった。 When 500 L / day or 0 was set, the final treated water was 0.3 rag / 1 of dissolved oxygen, 0.4 mg / l of nitrate nitrogen (circulation amount 0) or 0.2 rag 8 (circulation amount 5 00 L / day), and the denitrification rate was 99.6% or 99.8%.
なお、 溶存酸素除去槽 61の脱窒材及び処理層 11の脱窒材を、 共に通性嫌 気性硫黄酸化細菌のまま使用した場合は、 最終の処理水は脱窒率が 9 4. If the denitrification material in the dissolved oxygen removal tank 61 and the denitrification material in the treatment layer 11 were both used as facultative anaerobic sulfur-oxidizing bacteria, the final treated water had a denitrification rate of 9 4.
6 % (循環量 0 ) であった。 It was 6% (circulation volume 0).
実施例 8〜 1 0、 比較例 1〜 3 Examples 8 to 10, Comparative Examples 1 to 3
2 0 0 0 mlのガラス製密閉容器に、 硝酸イオン濃度 1 0 0 mg/1の人工 排水 4 0 0 mlを入れ、 希硫酸で p Hを 4. 5に調整した後、 市販の硫黄 酸化細菌 (D S M 8 0 7 ) を植菌した (株) ニッチッ製硫黄炭酸カルシ ゥム系脱窒材 ( S C材、 平均粒径で 5〜 2 0 mm) 4 0 0 g と、 表 2に 示す各種酸化鉄と硫化鉄、 鉄粉を添加し、 バッチ試験による脱窒試験を 行った。 表中の値は、 全体に対する添加材の重量%である。 脱窒試験は 、 容器を密封のうえ平均水温 2 0°Cに保持して行った。  Pour 400 ml of artificial wastewater with a nitrate ion concentration of 100 mg / 1 into a 200 ml glass sealed container, adjust the pH to 4.5 with dilute sulfuric acid, and then use commercially available sulfur-oxidizing bacteria. (DSM807) Inoculated with Nikko Co., Ltd. Sulfuric carbonate-based denitrifying material (SC material, average particle size 5 to 20 mm) 400 g, and various oxidations shown in Table 2 Iron, iron sulfide, and iron powder were added, and a denitrification test was performed by a batch test. The values in the table are% by weight of additives with respect to the whole. The denitrification test was performed while keeping the container at an average water temperature of 20 ° C. with the container sealed.
試験開始後 5 日 目の人工排水の硝酸イオン濃度と、 密閉容器内の硫化 水素ガス濃度を測定した結果を表 2に示した。  Table 2 shows the results of measuring the nitrate ion concentration in the artificial wastewater and the hydrogen sulfide gas concentration in the closed vessel on the 5th day after the start of the test.
酸化鉄は、 脱窒性能を低下させることなく、 硫化水素発生を抑制して いることが認められた。 一方、 無添加、 硫化鉄及び鉄粉を添加したもの は、 脱窒性能は低下せしめていないものの硫化水素発生防止効果は見ら れず、 逆に無添加のものよりも増加していた。  It was found that iron oxide suppressed the generation of hydrogen sulfide without reducing the denitrification performance. On the other hand, the additive-free, iron sulfide and iron powder-added ones did not show any reduction in the denitrification performance, but did not show the effect of preventing hydrogen sulfide generation, and on the contrary, the addition increased.
表 2 実施例 実施例 実施例 比較例 比較例 比較例 Table 2 Example Example Example Comparative example Comparative example Comparative example
6 7 8 1 2 3 含水酸化鉄 2  6 7 8 1 2 3 Hydrous iron oxide 2
マク、、ネタイト 5  Mac, netite 5
へマタイト 8  Hematite 8
硫化鉄 1 0  Iron sulfide 1 0
鉄 1 0 硝酸性イオン濃 1 . 8 2 . 1 2 . 2 2 . 0 2 . 6 2 . 2 度 (mg/1)  Iron 10 Nitrate ion concentration 1.8 2 .1 2 .2 2 .0 2 .6 2 .2 degree (mg / 1)
硫化水素発生量 <0. 2 2 . 6 3 . 5 1 2 0 3 9 0 3 5 0 Amount of hydrogen sulfide generated <0.2.2.6.3.5 1 2 0 3 9 0 3 5 0
(ppm) (ppm)
総合判定 〇 〇 〇 X X X  Overall judgment 〇 〇 〇 X X X
実施例 1 1〜 1 3、 比較例 4〜 6 硫黄 Z炭酸カルシウム/酸化鉄を表 2の配合で加熱一急冷方法によ り 一体化させ、 破碎して得た 5〜 1 0 m m φの脱窒処理材 2 0 0 g に、 市 販の硫黄酸化細菌 (D S M 8 0 7 ) を植菌したのち、 それを硝酸濃度 5 0 mg/ 1に調整した人工排水 2 0 0 0 ml入り のガラス製密閉容器 ( 4 0 0 O m l ) に保存し、 バッチ試験による脱窒試験を行った。 脱窒試験は、 容器を密封のうえ平均水温 2 0 °Cに保持して行った。 試験開始後 5 日 目の排水の硝酸ィオン濃度と、 密閉容器内の硫化水素 ガス濃度を測定した結果を表 3に示した。 同一粒子内に共存する酸化鉄は、 その比表面積及び共存割合において 脱窒性能を低下させることなく 、 硫化水素発生を抑制していることが認 められた。 一方、 無添加のものは、 多量の硫化水素が発生していた。 酸 化鉄でも比表面積の小さいものは硫化水素発生の防止が充分ではなく、 また、 酸化鉄の添加量が多い場合には、 硫化水素発生は防止できるもの の、 脱窒効率の面ではよいとは言えないことがわかった。 表 3 Examples 11 to 13 and Comparative Examples 4 to 6 Sulfur Z calcium carbonate / iron oxide was integrated by the heating and quenching method with the composition shown in Table 2, and the mixture was crushed to obtain 5 to 10 mm φ. A commercially available sulfur-oxidizing bacterium (DSM807) was inoculated into 200 g of the nitriding material, and then made into glass containing 200 ml of artificial drainage adjusted to a nitric acid concentration of 50 mg / 1. It was stored in a closed container (400 Oml) and a denitrification test was performed by a batch test. The denitrification test was carried out by keeping the container sealed and maintaining the average water temperature at 20 ° C. Table 3 shows the results of measuring the concentration of ion nitrate in the wastewater and the concentration of hydrogen sulfide gas in the sealed container on the 5th day after the start of the test. It was confirmed that iron oxide coexisting in the same particle suppressed the generation of hydrogen sulfide without lowering the denitrification performance in the specific surface area and the coexistence ratio. On the other hand, a large amount of hydrogen sulfide was generated in the case of no addition. Even if iron oxide has a small specific surface area, the prevention of hydrogen sulfide generation is not sufficient, and if the amount of iron oxide added is large, hydrogen sulfide generation can be prevented, but it is good in terms of denitrification efficiency. I could not tell. Table 3
Figure imgf000025_0001
使用した酸化鉄等の性状を次に示す。
Figure imgf000025_0001
The properties of the iron oxide and the like used are shown below.
含水酸化鉄 : 黄土、 比表面積 ; 4 O mVg Hydrous iron oxide: loess, specific surface area: 4 O mVg
マグネタイ ト : Fe304、 比表面積 ; 8 0 m2/g Magunetai DOO: Fe 3 0 4, the specific surface area; 8 0 m 2 / g
へマタイ ト : α - Fe203、 比表面積 ; 5 m2/g To Matthew bets: α - Fe 2 0 3, a specific surface area; 5 m 2 / g
へマタイ ト B : - Fe203 比表面積 ; 0 . 0 1 m2/g . To Matthew preparative B: - Fe 2 0 3 specific surface area; 0 0 1 m 2 / g
硫化鉄 : F e S、 比表面積 ; 8 m2/g Iron sulfide: F e S, specific surface area: 8 m 2 / g
鉄 : F e、 比表面積 ; 1 raVg 産業上の利用可能性 本発明によれば、 常に安定した脱窒性能を示し、 硫黄酸化細菌を利用し た除去方法の特徴を最大限活かした効率よい硝酸性窒素除去が行われる。 本発明の硝酸性窒素脱窒処理材は、 水中の低硝酸性窒素が低濃度時におい ても硫黄酸化細菌の流亡、 死滅を防止し、 また水中の硝酸性窒素及び溶存 酸素が低濃度時に発生しやすい硫化水素の発生を防止できる。 Iron: Fe, specific surface area; 1 raVg Industrial applicability According to the present invention, stable nitric oxide performance is always exhibited, and efficient nitric acid utilizing the characteristics of the removal method using sulfur-oxidizing bacteria to the maximum. A nitrogen removal is performed. The nitrate-nitrogen denitrification material of the present invention is excellent when low-nitrate nitrogen in water has a low concentration. However, it can prevent the outflow and death of sulfur-oxidizing bacteria, and can prevent the generation of hydrogen sulfide, which is likely to be generated at low concentrations of nitrate nitrogen and dissolved oxygen in water.

Claims

請 求 の 範 囲 The scope of the claims
( 1 ) 硫黄とカルシウム系成分からなる脱窒材の充填層を有する排水処 理槽内で、 硝酸性窒素を含む排水を脱窒材の充填層を通過させて硫黄酸化 細菌を使用して排水中の硝酸性窒素を除去すること、 充填層を通過した処 理排水の少なく とも一部を充填層の入り 口側又は充填層の中間層に循環す ることを特徴とする硝酸性窒素の除去方法。 (1) In a wastewater treatment tank having a bed of denitrification material composed of sulfur and calcium components, wastewater containing nitrate nitrogen is passed through the bed of denitrification material and drained using sulfur-oxidizing bacteria. Removal of nitrate nitrogen by removing nitrate nitrogen from inside, and circulating at least a part of treated wastewater that has passed through the packed bed to the entrance side of the packed bed or to the middle layer of the packed bed Method.
( 2 ) 排水処理槽の前に、 温度制御手段を備えた予備槽を配置し、 予備 槽に導入する排水の温度が所定温度範囲外のときは、 これを 1 0〜 5 0 °C の間で、 脱窒材の内部又は周辺に生存する硫黄酸化細菌の生育に適切な所 定温度範囲に予備槽で調整する請求の範囲 1記載の硝酸性窒素の除去方法。  (2) A preliminary tank equipped with temperature control means is placed in front of the wastewater treatment tank.If the temperature of the wastewater to be introduced into the preliminary tank is outside the specified temperature range, keep it at 10 to 50 ° C. 2. The method for removing nitrate nitrogen according to claim 1, wherein the temperature is adjusted in the preliminary tank to a predetermined temperature range suitable for the growth of sulfur-oxidizing bacteria living inside or around the denitrification material.
( 3 ) 溶存酸素低下処理したのち、 排水処理槽に排水を導入する請求の 範囲 1記載の排水中の硝酸性窒素除去方法。  (3) The method for removing nitrate nitrogen in wastewater according to claim 1, wherein wastewater is introduced into a wastewater treatment tank after a dissolved oxygen reduction treatment.
( 4 ) 脱窒材に、 硫黄酸化細菌を 1〜 1 ◦ °Cの温度下で 2 3間以上培養 し、 定着させる請求の範囲 1記載の硝酸性窒素の除去方法。  (4) The method for removing nitrate nitrogen according to claim 1, wherein the sulfur-oxidizing bacteria are cultured on the denitrifying material at a temperature of 1 to 1 ° C for 23 or more times and allowed to settle.
( 5 ) 予め定めた間隔又は脱窒率が低下したとき、 脱窒材表面付着気泡 の除去処理を行い、 脱窒活性を回復する請求の範囲 1記載の硝酸性窒素の 除去方法。  (5) The method for removing nitrate nitrogen according to claim 1, wherein when the predetermined interval or the denitrification rate decreases, the denitrification material is subjected to a treatment for removing bubbles attached to the surface of the denitrification material to restore the denitrification activity.
( 6 ) 気泡の除去処理が、 処理槽内排水を排出してー且空にした後排水 を再流入させる方法、 処理槽内を減圧にする方法、 処理槽内に超音波等に より振動を与える方法、 排水の流速増加方法、 排水の逆流循環方法、 処理 槽への空気吹き込み方法又はこれらの組合せである請求の範囲 5記載の硝 酸性窒素除去方法。  (6) The air bubbles are removed by discharging the wastewater in the treatment tank and emptying it, then re-introducing the wastewater, reducing the pressure in the treatment tank, and applying vibration to the treatment tank by ultrasonic waves or the like. 6. The method for removing nitric acid and nitric acid according to claim 5, wherein the method is a method of giving, a method of increasing the flow rate of wastewater, a method of recirculating wastewater, a method of blowing air into a treatment tank, or a combination thereof.
( 7 ) 硫黄とカルシウム系成分からなる脱窒材が充填された充填層を有 する排水処理槽内で硫黄酸化細菌を使用して硝酸性窒素を除去する装置に おいて、 この排水処理槽内の充填層を通過した排水の少なく とも一部を充 填層の入口側又は中間層に循環させるための循環ポンプを有することを特 徴とする硝酸性窒素除去装置。 (7) It has a packed bed filled with a denitrifying material consisting of sulfur and calcium components. In a device that removes nitrate nitrogen using sulfur-oxidizing bacteria in a wastewater treatment tank, at least a part of the wastewater that has passed through the packed bed in this wastewater treatment tank is at the inlet side or in the middle of the packed bed. A nitrate nitrogen removal device characterized by having a circulation pump for circulating through the bed.
( 8 ) 排水処理槽の前に、 温度調整手段を備え、 硝酸性窒素を含む排水 を導入する予備槽を有する請求の範囲 7記載の硝酸性窒素除去装置。  (8) The apparatus for removing nitrate nitrogen according to claim 7, further comprising a temperature control means, and a preliminary tank for introducing wastewater containing nitrate nitrogen, before the wastewater treatment tank.
( 9 ) 脱窒材が充填された排水処理槽が、 予備槽の内部に配置され、 且 つ予備槽中の排水に少なく とも一部が浸かる構造とされた請求の範囲 7記 載の硝酸性窒素除去装置。  (9) The nitric acid according to claim 7, wherein the wastewater treatment tank filled with the denitrification material is arranged inside the reserve tank, and at least a part is immersed in the wastewater in the reserve tank. Nitrogen removal equipment.
( 1 0 ) 排水処理槽が、 温度調整手段を備える請求の範囲 7記載の硝酸 性窒素除去装置。  (10) The apparatus for removing nitrate nitrogen according to claim 7, wherein the wastewater treatment tank includes a temperature adjusting means.
( 1 1 ) 排水処理槽の前に、 溶存酸素低下手段を有する請求の範囲 7記 載の硝酸性窒素除去装置。  (11) The nitrate nitrogen removing apparatus according to claim 7, further comprising a dissolved oxygen reducing means in front of the wastewater treatment tank.
( 1 2 ) 溶存酸素低下手段が、 好気性酸化細菌による処理、 還元剤添加 、 加熱処理及び酸素ガス不含ガスによる曝気から選択される少なく とも 1 つの手段である請求の範囲 1 1記載の硝酸性窒素除去装置。  (12) The nitric acid according to claim 11, wherein the dissolved oxygen lowering means is at least one means selected from treatment with an aerobic oxidizing bacterium, addition of a reducing agent, heat treatment and aeration with a gas containing no oxygen gas. Nitrogen removal equipment.
( 1 3 ) 脱窒材が、 炭酸カルシウム塩及び硫黄及び酸化鉄の共存体から なり、 硫化水素の発生を抑制できるものである請求の範囲 7記載の硝酸性 窒素除去装置。  (13) The apparatus for removing nitrate nitrogen according to claim 7, wherein the denitrifying material is made of a coexistent of calcium carbonate, sulfur and iron oxide, and can suppress generation of hydrogen sulfide.
( 1 4 ) 硫黄酸化細菌を使用して水中における硝酸性窒素の脱窒処理 に使用される脱窒材であって、 この脱窒材組成が炭酸カルシウム塩及び 硫黄及び酸化鉄の共存体からなり、 共存する酸化鉄の含有量が 1〜 2 0 w t %、 かつ該酸化鉄の比表面積が 0. l m2Z g以上であり、 硫化水素 の発生を抑制できることを特徴とする硝酸性窒素脱窒処理材。 (14) A denitrification material used for denitrification of nitrate nitrogen in water using sulfur oxidizing bacteria, wherein the composition of the denitrification material is composed of a calcium carbonate salt and a coexistence of sulfur and iron oxide. A content of coexisting iron oxide of 1 to 20 wt%, a specific surface area of the iron oxide is 0.1 lm 2 Zg or more, and generation of hydrogen sulfide can be suppressed; Processing materials.
PCT/JP2002/010180 2002-09-30 2002-09-30 Method of removing nitrate nitrogen and device used for the method WO2004031084A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/010180 WO2004031084A1 (en) 2002-09-30 2002-09-30 Method of removing nitrate nitrogen and device used for the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/010180 WO2004031084A1 (en) 2002-09-30 2002-09-30 Method of removing nitrate nitrogen and device used for the method

Publications (1)

Publication Number Publication Date
WO2004031084A1 true WO2004031084A1 (en) 2004-04-15

Family

ID=32051277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010180 WO2004031084A1 (en) 2002-09-30 2002-09-30 Method of removing nitrate nitrogen and device used for the method

Country Status (1)

Country Link
WO (1) WO2004031084A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295352A (en) * 2010-06-28 2011-12-28 新日铁化学株式会社 Method for removing nitrate nitrogen and device used in same
CN104860488A (en) * 2015-06-09 2015-08-26 桂林理工大学 Method for self-removal of nitrate in underground water by virtue of rice wine in rural families
CN112876197A (en) * 2021-03-18 2021-06-01 河南绿水青山环保科技有限公司 Sulfur oxidizing bacteria enrichment material, preparation method and denitrification reactor containing sulfur oxidizing bacteria enrichment material
CN112919626A (en) * 2021-01-21 2021-06-08 臻和慧联(常山)环境科技有限公司 Ferrosulfur autoxidation denitrification device and reaction control method
CN114620832A (en) * 2022-04-15 2022-06-14 合肥工业大学 Sulfur-based autotrophic microbial denitrification material and preparation and application methods thereof
CN115028261A (en) * 2022-06-13 2022-09-09 浙江中诚环境研究院有限公司 Sulfur autotrophic denitrification filler and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114388A (en) * 1992-10-01 1994-04-26 Toshiba Corp Biological filtering method
JPH10263594A (en) * 1997-03-25 1998-10-06 Meiwa Kogyo Kk Removing method and device of nitrate ion in waste water
JP2000343097A (en) * 1999-06-07 2000-12-12 Nitchitsu Co Ltd Nitrate nitrogen denitrification substrate and its production
JP2001104993A (en) * 1999-10-01 2001-04-17 Nitchitsu Co Ltd Nitrate nitrogen denitrifying composition and production thereof
JP2002119993A (en) * 2000-10-13 2002-04-23 National Agricultural Research Organization Method and apparatus for treating wastewater
JP2002239593A (en) * 2001-02-20 2002-08-27 Nippon Steel Chem Co Ltd Apparatus for removing nitrate nitrogen in wastewater and method using the same
JP2002273475A (en) * 2001-03-22 2002-09-24 Nippon Steel Chem Co Ltd Device and method for treating nitrate nitrogen in sea water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114388A (en) * 1992-10-01 1994-04-26 Toshiba Corp Biological filtering method
JPH10263594A (en) * 1997-03-25 1998-10-06 Meiwa Kogyo Kk Removing method and device of nitrate ion in waste water
JP2000343097A (en) * 1999-06-07 2000-12-12 Nitchitsu Co Ltd Nitrate nitrogen denitrification substrate and its production
JP2001104993A (en) * 1999-10-01 2001-04-17 Nitchitsu Co Ltd Nitrate nitrogen denitrifying composition and production thereof
JP2002119993A (en) * 2000-10-13 2002-04-23 National Agricultural Research Organization Method and apparatus for treating wastewater
JP2002239593A (en) * 2001-02-20 2002-08-27 Nippon Steel Chem Co Ltd Apparatus for removing nitrate nitrogen in wastewater and method using the same
JP2002273475A (en) * 2001-03-22 2002-09-24 Nippon Steel Chem Co Ltd Device and method for treating nitrate nitrogen in sea water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295352A (en) * 2010-06-28 2011-12-28 新日铁化学株式会社 Method for removing nitrate nitrogen and device used in same
CN104860488A (en) * 2015-06-09 2015-08-26 桂林理工大学 Method for self-removal of nitrate in underground water by virtue of rice wine in rural families
CN112919626A (en) * 2021-01-21 2021-06-08 臻和慧联(常山)环境科技有限公司 Ferrosulfur autoxidation denitrification device and reaction control method
CN112876197A (en) * 2021-03-18 2021-06-01 河南绿水青山环保科技有限公司 Sulfur oxidizing bacteria enrichment material, preparation method and denitrification reactor containing sulfur oxidizing bacteria enrichment material
CN114620832A (en) * 2022-04-15 2022-06-14 合肥工业大学 Sulfur-based autotrophic microbial denitrification material and preparation and application methods thereof
CN115028261A (en) * 2022-06-13 2022-09-09 浙江中诚环境研究院有限公司 Sulfur autotrophic denitrification filler and preparation method thereof

Similar Documents

Publication Publication Date Title
Omil et al. Effect of upward velocity and sulphide concentration on volatile fatty acid degradation in a sulphidogenic granular sludge reactor
US5288407A (en) Denitrification system
US8163181B2 (en) Apparatus and method for treating FGD blowdown or similar liquids
JP5932639B2 (en) Biological nitrogen removal method using anaerobic ammonia oxidation reaction
TWI285190B (en) The closed sulfur circulation system
CN207933226U (en) A kind of industrial wastewater treatment system
CN102557328B (en) Coal gasification wastewater processing method
US20070267346A1 (en) Process for autotrophic perchlorate reduction using elemental sulfur and mollusk shells
Sanz et al. Low temperature treatment of municipal sewage in anaerobic fluidized bed reactors
US20070262019A1 (en) Process for autotrophic denitrification using elemental sulfur and mollusk shells
CN101012087A (en) Method of processing sewage utilizing fluidized bed technique, organism compatibility filling thereof and preparing method of filling
WO2006041128A1 (en) Organic wastewater treatment method and apparatus
TWI429600B (en) A denitrification treatment method and a denitrification treatment apparatus
CN109607971A (en) Acid wastewater in mine ecological treatment system and processing method
JPH08192185A (en) Biologically nitrifying and denitrifying method
JP5773541B2 (en) Biological purification agent of treated water, biological purification system, and biological purification method
CN105621818B (en) A kind of brewed processing method with boiling production waste water of betel nut
CN102295352A (en) Method for removing nitrate nitrogen and device used in same
WO2004031084A1 (en) Method of removing nitrate nitrogen and device used for the method
JP4826982B2 (en) Wastewater treatment method
JP4554833B2 (en) Apparatus and method for removing nitrate nitrogen in waste water
JP5300898B2 (en) Organic wastewater treatment equipment
JP3749617B2 (en) Method of acclimatizing sulfur-oxidizing bacteria and method of removing nitrogen from wastewater using sulfur-oxidizing bacteria
JP4560810B2 (en) Nitrate ion removal equipment
JP4180303B2 (en) Removal method of nitrate nitrogen in waste water

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057005552

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057005552

Country of ref document: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP