JP2002273475A - Device and method for treating nitrate nitrogen in sea water - Google Patents

Device and method for treating nitrate nitrogen in sea water

Info

Publication number
JP2002273475A
JP2002273475A JP2001083434A JP2001083434A JP2002273475A JP 2002273475 A JP2002273475 A JP 2002273475A JP 2001083434 A JP2001083434 A JP 2001083434A JP 2001083434 A JP2001083434 A JP 2001083434A JP 2002273475 A JP2002273475 A JP 2002273475A
Authority
JP
Japan
Prior art keywords
seawater
nitrate nitrogen
tank
denitrifying
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001083434A
Other languages
Japanese (ja)
Other versions
JP4562935B2 (en
Inventor
Toshiaki Miyanaga
俊明 宮永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2001083434A priority Critical patent/JP4562935B2/en
Publication of JP2002273475A publication Critical patent/JP2002273475A/en
Application granted granted Critical
Publication of JP4562935B2 publication Critical patent/JP4562935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To simply and efficiently perform the treatment of nitrate nitrogen in sea water at a low cost and thereby to facilitate a circulation breeding or the like of sea fish in a closed system. SOLUTION: The method of treating nitrate nitrogen in sea water is characterized in that, when the sea water 2 in a water bath 1 is purified in a closed circulating system, a part of the sea water is continuously drawn out of the water bath, at least a part thereof is made to pass through a denitrification device 3 which is packed with inorganic denitrifying materials 4 consisting of sulfur and calcium components and in which denitrifying bacteria are grown to remove the nitrate nitrogen as gaseous nitrogen and then is returned again into the water bath.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水槽中の海水に含
まれる硝酸性窒素の除去方法及び装置に関するものであ
る。更には、海水魚の閉鎖系循環飼育における硝酸性窒
素処理方法に関するものである。
TECHNICAL FIELD The present invention relates to a method and an apparatus for removing nitrate nitrogen contained in seawater in a water tank. Furthermore, the present invention relates to a method for treating nitrate nitrogen in closed circulation breeding of marine fish.

【0002】[0002]

【従来の技術】近年、陸上養殖が注目されており、閉鎖
循環系における硝酸性窒素処理が問題になっている。特
に、海水系の場合、淡水系に比較して非常に硝酸性窒素
処理が難しいために、従来の嫌気槽中で硝酸性窒素含有
排水に直接水素供与体を投入して脱窒を行わせるものを
用いると、低効率ゆえの大規模装置且つ多大な費用がか
かるために、結果的に海水の閉鎖循環系条件での硝酸性
窒素処理対策が不充分な状況であった。
2. Description of the Related Art In recent years, land aquaculture has attracted attention, and nitrate nitrogen treatment in a closed circulation system has become a problem. In particular, in the case of seawater systems, since nitrate nitrogen treatment is extremely difficult compared to freshwater systems, denitrification is performed by directly adding a hydrogen donor to nitrate nitrogen-containing wastewater in a conventional anaerobic tank. However, the use of a large-scale apparatus and a large cost due to low efficiency resulted in insufficient nitrate nitrogen treatment measures under the closed circulation system of seawater.

【0003】WO00/18694号公報には、硫黄とカルシウム
系成分からなる脱窒無機材料を使用した硫黄酸化細菌に
よる安価、且つ効率的な硝酸性窒素処理が提案されてい
る。この方法は、微生物の働きにより脱窒を行うもので
あるため、環境の異なる海水中における硝酸性窒素処理
への適用可能性は疑問があるものであった。
[0003] WO00 / 18694 proposes an inexpensive and efficient nitrate nitrogen treatment by sulfur-oxidizing bacteria using a denitrifying inorganic material composed of sulfur and calcium components. Since this method performs denitrification by the action of microorganisms, its applicability to nitrate nitrogen treatment in seawater in different environments was questionable.

【0004】[0004]

【発明が解決しようとする課題】本発明は、海水槽に対
してコンパクトな容積を有する浄化処理装置にて閉鎖循
環系を維持しながら海水中に含まれる硝酸性窒素を効果
的に除去することを可能とする安価で実用的な海水中硝
酸性窒素の処理方法を提供するものである。
SUMMARY OF THE INVENTION It is an object of the present invention to effectively remove nitrate nitrogen contained in seawater while maintaining a closed circulation system by a purification treatment apparatus having a compact volume with respect to a seawater tank. An inexpensive and practical method for treating nitrate nitrogen in seawater is provided.

【0005】[0005]

【課題を解決するための手段】本発明は、水槽中の海水
を閉鎖循環系で浄化するに当たり、水槽から連続的に海
水の一部を抜き出し、その少なくとも一部を硫黄とカル
シウム系成分からなる脱窒無機材料が充填された脱窒装
置を通過させて硝酸性窒素を除去し、再び水槽に戻すこ
とを特徴とする海水中硝酸性窒素の処理方法である。ま
た、本発明は、 (A)海水を貯槽する水槽、(B)脱窒微生
物が生育している硫黄とカルシウム系成分からなる脱窒
無機材料が充填された脱窒装置及び(C)水槽の海水の一
部を抜き出し、抜き出された海水の少なくとも一部を前
記充填槽を通過させ、水槽に戻す手段を有してなること
を特徴とする海水中の硝酸性窒素の処理装置である。
According to the present invention, in purifying seawater in a water tank by a closed circulation system, a part of the seawater is continuously extracted from the water tank, and at least a part of the water is composed of sulfur and calcium-based components. A method for treating nitrate nitrogen in seawater, comprising removing nitrate nitrogen through a denitrification device filled with a denitrification inorganic material and returning the nitrate nitrogen to a water tank again. Also, the present invention provides (A) a water tank for storing seawater, (B) a denitrification apparatus filled with a denitrification inorganic material composed of sulfur and calcium-based components in which denitrification microorganisms are growing, and (C) a water tank. An apparatus for treating nitrate nitrogen in seawater, comprising means for extracting a part of the seawater, passing at least a part of the extracted seawater through the filling tank, and returning the seawater to the tank.

【0006】本発明は、海水の取入れの困難な陸地等に
設けられた海水魚等の海洋生物を生育するための水槽の
海水を浄化するものである。水槽の海水の浄化ための方
法としては、ろ過、活性炭処理、空気暴気等が一般的で
あるが、硝酸性窒素の除去は一般的に困難であり、海水
の入れ替え等が頻繁に必要となる。通常、海洋生物を入
れる水槽は、浄化するための手段を備えた補助水槽や装
置と接続して、連続的に海水を循環しており、閉鎖循環
系を構成している。本発明の装置は、上記のような閉鎖
循環系の一部に特定の脱窒無機材料が充填された脱窒装
置を設置するものであり、脱窒装置には循環系の全部の
海水が通過してもよく、バイパス路を設け一部のみを通
過させてもよい。
The present invention is to purify seawater in an aquarium for growing marine organisms such as saltwater fish provided on land or the like where seawater intake is difficult. As a method for purifying seawater in an aquarium, filtration, activated carbon treatment, air storm, and the like are common, but removal of nitrate nitrogen is generally difficult, and replacement of seawater is frequently required. . Usually, a water tank for holding marine organisms is connected to an auxiliary water tank or an apparatus provided with a means for purifying the water, and continuously circulates seawater to form a closed circulation system. The device of the present invention is a device in which a denitrification device filled with a specific denitrification inorganic material is installed in a part of the closed circulation system as described above, and all the seawater of the circulation system passes through the denitrification device. Alternatively, a bypass may be provided and only a part of the bypass may be passed.

【0007】海水中における硝酸性窒素処理では、淡水
中の場合と異なり、生物処理方式の脱窒処理環境が大き
く変わるためため、処理する海水の流入量や温度の管理
が重要となる。本発明の硫黄とカルシウム系成分からな
る脱窒無機材料を使用する場合においても、この脱窒無
機材料が充填された充填槽に流入される海水量を適量に
コントロールすることが最良の結果を与えるため望まし
い。
In the nitrate nitrogen treatment in seawater, the environment of the denitrification treatment in the biological treatment system is greatly different from the case of freshwater, so that the management of the inflow rate and temperature of the treated seawater is important. Even in the case of using the denitrifying inorganic material comprising the sulfur and calcium-based components of the present invention, it is best to control the amount of seawater flowing into a filling tank filled with the denitrifying inorganic material to an appropriate amount. Desirable.

【0008】すなわち、脱窒無機材料m(kg)と、処理装
置に流し込む海水量Q(L/day)との関係をm=aQで表
すとき、aは0.05以上、好ましくは0.1以上、よ
り好ましくは0.2以上であることがよい。aの上限値
については、技術上は特に制限を設けるものではない。
aの値が大きければ大きいほど、脱窒無機材料と海水の
接触時間が長くとれるので、硝酸性窒素の脱窒率は向上
するが、aの値が大きくなると使用する脱窒無機材料量
が増えるために、コストアップにつながったり、また装
置の肥大化にもつながり、条件次第では過大設備になる
恐れもあるため、先に述べた海水槽水槽に対する硝酸性
窒素処理槽の大きさを出来るだけコンパクトにするとい
う目的を考えればaの値は2以下が好ましい。なお、a
の値は海水量Qを小さくすることによっても大きな値と
することができるが、処理海水量が減少し、全体として
の硝酸性窒素の脱窒率は向上しない。
That is, when the relationship between the denitrifying inorganic material m (kg) and the amount of seawater Q (L / day) flowing into the treatment apparatus is represented by m = aQ, a is 0.05 or more, preferably 0.1 Above, more preferably 0.2 or more. The upper limit of a is not particularly limited in terms of technology.
The larger the value of a, the longer the contact time between the denitrifying inorganic material and the seawater, so that the denitrification rate of nitrate nitrogen is improved, but the larger the value of a, the larger the amount of the denitrifying inorganic material used As a result, the size of the nitrate nitrogen treatment tank with respect to the seawater tank mentioned above can be reduced as much as possible, since this may lead to an increase in cost and an increase in the size of the equipment, which may lead to excessive equipment depending on the conditions. In consideration of the purpose of the above, the value of a is preferably 2 or less. Note that a
Can be increased by reducing the amount of seawater Q, but the amount of treated seawater decreases, and the overall rate of denitrification of nitrate nitrogen does not improve.

【0009】そこで、水槽及び循環系の予備水槽、配管
等で使用されている海水量M(L)と処理装置に流し込む
海水量Q(L/day)の関係については、技術上は特に制限
を設けるものではない。しかしながら前述のa値同様、
Qのが大きくなるすぎると、使用する硫黄とカルシウム
系成分からなる無機材料量が増えるために、コストアッ
プつながったり、また装置の肥大化にもつながり、条件
次第では過剰設備になる恐れもあるため、先に述べた海
水槽水槽に対する硝酸性窒素処理槽の大きさを出来るだ
けコンパクトにするという目的を考えれば、ひとつの目
安としてQ≦0.3Mが好ましい。また下限値について
も同様で、特に制限を設けるものではないが、海水貯槽
中の海水の硝酸性窒素濃度が極端に高い場合は、Q値が
低すぎると、処理時間が長くなるなどの恐れも生ずるた
め、望ましくは0.01M≦Qであることがよい。これ
を、Q/Mで表せば、一日当たりの海水の回転率とな
り、海水の1%以上、30%以下を1日に処理装置に流
し込むことになる。好ましくは0.05〜0.2/dayの
範囲とすることが有利である。そして、m=aQに、例
えば前記のQ/M≧0.05/dayという式を組み込め
ば、m≧0.05aMとなり、更に、例えば前記のa≧
0.05という式を組み込めば、m≧0.0025Mと
なるから、処理装置に充填する脱窒無機材料量m(kg)
は、海水量M(L)の1/400以上が必要と計算され、ま
たm=aQに前記のQ/M≦0.2/dayという式を組み
込めば、m≦0.2aMとなり、更に、例えば前記のa
≦2という式を組み込めば、m≦0.4Mとなるから、
処理装置に充填する脱窒無機材料量m(kg)は、海水量を
M(L)の2/5以下が必要と計算されるが、好ましくは
0.01〜0.3の範囲である。
[0009] In view of the above, there is no particular limitation in the technical relationship between the amount of seawater M (L) used in the water tank, the spare water tank of the circulation system, the piping, etc. and the amount of seawater Q (L / day) flowing into the treatment apparatus. It is not provided. However, similar to the above a value,
If the value of Q is too large, the amount of the inorganic material composed of sulfur and calcium-based components used increases, leading to an increase in cost and an increase in the size of the apparatus, which may lead to excessive equipment depending on conditions. Considering the purpose of making the size of the nitrate nitrogen treatment tank as small as possible with respect to the seawater tank as described above, one standard is preferably Q ≦ 0.3M. The same applies to the lower limit, and there is no particular limitation. However, when the concentration of nitrate nitrogen in seawater in the seawater storage tank is extremely high, if the Q value is too low, the processing time may be prolonged. Therefore, it is desirable that 0.01M ≦ Q be satisfied. If this is represented by Q / M, it becomes the rate of rotation of seawater per day, and 1% or more and 30% or less of seawater are poured into the processing apparatus in one day. It is advantageous to set the range to preferably 0.05 to 0.2 / day. Then, if m / aQ incorporates, for example, the above formula of Q / M ≧ 0.05 / day, then m ≧ 0.05aM, and further, for example, the above a ≧
If the formula of 0.05 is incorporated, m ≧ 0.0025M, so the amount of denitrifying inorganic material m (kg) to be charged into the processing equipment
Is calculated to be 1/400 or more of the amount of seawater M (L), and if m / aQ incorporates the formula of Q / M ≦ 0.2 / day, then m ≦ 0.2aM. For example, a
If the equation of ≦ 2 is incorporated, m ≦ 0.4M.
It is calculated that the amount m (kg) of the denitrifying inorganic material to be charged into the treatment apparatus is required to be equal to or less than 2/5 of the amount of seawater M (L), but is preferably in the range of 0.01 to 0.3.

【0010】本発明において、処理装置に充填される硫
黄とカルシウム系成分からなる脱窒無機材料は、前記WO
00/18694号公報に記載されたような硫黄とカルシウム系
成分とからなる無機材料を使用することが好ましい。例
えば、溶融した硫黄に炭酸カルシウム又は炭酸カルシウ
ムを含む粉末を分散させ、それを急冷して得られるもの
が挙げられる。硫黄と炭酸カルシウムの比率は広範囲に
変えることができるが、2:1〜3:2の範囲程度が好まし
い。その他、前記WO00/18694号公報に記載されたような
多孔質物質、鉱物繊維等を配合することも有利である。
かかる脱窒無機材料の原料、製造方法、使用条件等は、
前記WO00/18694号公報等(例えば、特願平10−271
920号、特願平11−159158号、特願平11−
226206号、特願平11−2820077号等)の
記載が参照できる。
[0010] In the present invention, the denitrifying inorganic material containing sulfur and calcium-based components to be charged into the treatment apparatus is the above WO
It is preferable to use an inorganic material comprising sulfur and a calcium-based component as described in 00/18694. For example, there can be mentioned those obtained by dispersing calcium carbonate or a powder containing calcium carbonate in molten sulfur and quenching the powder. The ratio of sulfur to calcium carbonate can vary widely, but is preferably in the range of 2: 1 to 3: 2. In addition, it is also advantageous to incorporate a porous substance, mineral fiber, and the like as described in WO00 / 18694.
The raw materials of such a denitrifying inorganic material, production method, use conditions, etc.
WO00 / 18694 and the like (for example, Japanese Patent Application No. 10-271)
920, Japanese Patent Application No. 11-159158, Japanese Patent Application No. 11-159
226206, Japanese Patent Application No. 11-2820077, etc.) can be referred to.

【0011】本発明における硝酸性窒素処理の原理は、
脱窒無機材料と硫黄酸化脱窒細菌等の微生物によるもの
であるため、処理装置の温度は10〜50℃であること
は好ましく、より望ましくは20〜40℃であることが
よい。処理装置の温度が10℃よりも低くなったり、逆
に50℃よりも高くなると、硫黄酸化脱窒細菌等の微生
物の活性が低下するために好ましくない。硫黄酸化脱窒
細菌等の微生物は硫黄を酸化して硫酸イオンとすると共
に硝酸イオンや亜硝酸イオンのような硝酸性窒素を還元
して窒素ガスとして放出する。この際、炭酸イオンも消
費されるが水中の炭酸イオンの他、炭酸カルシウムの有
する炭酸イオンも一部利用され、生成する硫酸イオンは
炭酸カルシウムが中和する。
The principle of the nitrate nitrogen treatment in the present invention is as follows.
The temperature of the treatment device is preferably 10 to 50 ° C, more preferably 20 to 40 ° C, because it is derived from a denitrifying inorganic material and microorganisms such as sulfur oxidizing and denitrifying bacteria. If the temperature of the treatment device is lower than 10 ° C. or higher than 50 ° C., it is not preferable because the activity of microorganisms such as sulfur oxidizing and denitrifying bacteria decreases. Microorganisms such as sulfur oxidizing and denitrifying bacteria oxidize sulfur to sulfate ions and reduce nitrate nitrogen such as nitrate ions and nitrite ions to release them as nitrogen gas. At this time, carbonate ions are also consumed, but in addition to carbonate ions in water, some carbonate ions of calcium carbonate are also used, and the generated sulfate ions are neutralized by calcium carbonate.

【0012】本発明で使用する脱窒無機材料を充填する
処理装置の形状は、槽状であっても、円筒状であっても
差し支えないが、通常は実使用上利便性のよい円筒形状
のものや直方体形状のものが好ましい。これらの処理装
置は1つである必要は無く、目的に応じて複数使用して
もよい。また、複数使用する場合、円筒形と直方体形状
を併用してもよいし、並べ方も並列でもよいし直列でも
よい。例えば、円筒形処理槽を2つ使用してU字管のよ
うにして使用するやり方なども本発明の効果を発揮しや
すい形状である。
The processing apparatus for filling the denitrifying inorganic material used in the present invention may be in the form of a tank or a cylinder, but it is usually in the form of a cylinder having good convenience for practical use. And those having a rectangular parallelepiped shape are preferred. There is no need to use one of these processing apparatuses, and a plurality of processing apparatuses may be used according to the purpose. In the case of using a plurality, a cylindrical shape and a rectangular parallelepiped shape may be used in combination, and the arrangement may be in parallel or in series. For example, a method in which two cylindrical processing tanks are used like a U-shaped pipe using two cylindrical processing tanks is a shape that can easily exert the effects of the present invention.

【0013】また、本発明においては、上記処理装置の
他に、他の目的で使用される浄化装置、例えばろ過装置
や活性炭吸着装置の他、塩分補給装置、温度調整装置、
溶存酸素調整装置などを併設してもよい。例えば、当該
処理装置の前に硝化槽や脱溶存酸素装置を付設したり、
あるいは処理装置の後に消毒槽を付設することも好まし
い態様である。更に、上記処理装置に行く海水と、他の
処理装置に行く海水とに分岐させることも好ましい態様
である。
[0013] In the present invention, in addition to the above-described processing apparatus, a purifying apparatus used for another purpose, such as a filtering apparatus or an activated carbon adsorbing apparatus, a salt replenishing apparatus, a temperature adjusting apparatus,
A dissolved oxygen adjusting device or the like may be provided. For example, a nitrification tank or a dissolved oxygen device may be added in front of the treatment device,
Alternatively, it is also a preferable embodiment to provide a disinfection tank after the processing apparatus. Furthermore, it is also a preferable embodiment to branch into seawater going to the above-mentioned treatment device and seawater going to another treatment device.

【0014】[0014]

【発明の実施の形態】図面を参照して以下に説明する。
図1は本発明の海水槽と処理装置槽の関係を模式的に示
す説明図である。海水槽1からポンプ5によりくみ上げら
れた海水2は、硫黄とカルシウム系成分からなる脱窒無
機材料4を充填した処理装置3を所定の速度で通過し、硝
酸性窒素が除去され。その後、海水槽1に循環される。
なお、処理装置3はバンドヒーター等の温度制御装置に
より、所定温度に設定されている。また、下記の比較例
及び実施例においては、木更津海岸にて採取した海水を
使用した。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
FIG. 1 is an explanatory view schematically showing the relationship between a seawater tank and a processing apparatus tank according to the present invention. The seawater 2 pumped from the seawater tank 1 by the pump 5 passes at a predetermined speed through a treatment device 3 filled with a denitrifying inorganic material 4 composed of sulfur and calcium-based components, and nitrate nitrogen is removed. Then, it is circulated to the seawater tank 1.
The processing device 3 is set to a predetermined temperature by a temperature control device such as a band heater. In the following comparative examples and examples, seawater collected from Kisarazu coast was used.

【0015】[0015]

【実施例】実施例1〜3及び参考例1 長さ600mm×幅300mm×高さ450mmの海水槽に5
0Lの海水を入れて、ンプにて海水槽より1日あたり10
Lの海水をくみ出して、粒形状5mm〜20mm範囲の不定
形状の硫黄50重量部と炭酸カルシウム50重量部を溶
融混合して得られた脱窒無機材料粒子を充填した処理装
置に通水した。処理装置は直径160mm×高さ450mm
の円筒形状とし、脱窒無機材料粒子の充填量を種々変化
させた。処理装置の容積は海水槽の容積の1/8以下で
ある。なお、海水はすべて閉鎖系で循環している。処理
装置の温度は30℃に設定とした。この海水槽に大塚化
学製のOK−F−2を硝酸性窒素濃度100mg/Lとなる
ように投入して、海水貯槽から処理槽へ通過する排水量
を各種変化させて(すなわち、前記式Q=amにおける
a値を種々変化させて)、循環開始後の硝酸性窒素濃度
の経時変化を調べた。結果を表1に示す。
EXAMPLES Examples 1 to 3 and Reference Example 1 5 mm in a seawater tank of 600 mm length x 300 mm width x 450 mm height.
Add 0L of seawater and pump 10 times a day from the seawater tank.
L seawater was extracted and passed through a treatment apparatus filled with denitrifying inorganic material particles obtained by melting and mixing 50 parts by weight of irregularly shaped sulfur and 50 parts by weight of calcium carbonate having a particle size range of 5 mm to 20 mm. Processing device is 160mm in diameter x 450mm in height
And the filling amount of the denitrifying inorganic material particles was variously changed. The volume of the processing device is less than 1/8 of the volume of the seawater tank. All seawater is circulating in a closed system. The temperature of the processing apparatus was set to 30 ° C. Into this seawater tank, OK-F-2 manufactured by Otsuka Chemical Co. was charged so as to have a nitrate nitrogen concentration of 100 mg / L, and the amount of wastewater passing from the seawater storage tank to the treatment tank was changed in various ways (that is, the above formula Q = The value of a in am was changed variously), and the change over time in the nitrate nitrogen concentration after the start of circulation was examined. Table 1 shows the results.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例4〜6及び参考例2 実施例1〜3の装置に準ずる装置を使用して、長さ15
00mm×幅600mm×高さ600mmの海水貯槽水
槽に300Lの海水を入れて、ポンプにて海水貯槽より1
日あたり50Lの海水をくみ出して、粒形状5mm〜2
0mm範囲の不定形状の硫黄50重量部と炭酸カルシウ
ム50重量部からなる溶融混合無機材料粒充填槽に通水
した。処理槽は高さ600mm×幅350mm×長さ4
00mmの直方体形状とし、無機物充填量を種々変化さ
せた。処理槽の容積は海水槽水槽の容積の1/6以下で
ある。その他の条件は実施例1〜3の条件と同じであ
る。この海水貯槽に大塚化学製のOK−F−2を硝酸性
窒素濃度200mg/Lとなるように投入して、海水貯
槽から処理槽に通過する排水量を各種変化させて、循環
開始後の硝酸性窒素濃度の経時変化を調べた。結果を表
2に示す。
Examples 4 to 6 and Reference Example 2 A device having a length of 15
300L of seawater is put into a seawater tank with a size of 00mm x 600mm x 600mm in height.
Extracts 50L of seawater per day, and 5mm-2
Water was passed through a molten mixed inorganic material particle filling tank composed of 50 parts by weight of irregularly shaped sulfur and 50 parts by weight of calcium carbonate in a range of 0 mm. Processing tank is 600mm high x 350mm wide x 4 length
A rectangular parallelepiped shape of 00 mm was used, and the amount of the inorganic substance charged was varied. The capacity of the treatment tank is 1/6 or less of the capacity of the seawater tank. Other conditions are the same as those of Examples 1 to 3. Into this seawater storage tank, OK-F-2 manufactured by Otsuka Chemical Co., Ltd. was charged so as to have a nitrate nitrogen concentration of 200 mg / L, and the amount of wastewater passing from the seawater storage tank to the treatment tank was changed in various ways. The change over time in the nitrogen concentration was examined. Table 2 shows the results.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】本発明によれば、通常、大規模且つ多大
な費用を必要とする海水中の硝酸性窒素処理問題に対し
て、簡便且つ低コスト、効率的な硝酸性窒素処理を実現
できる。従って、当該技術は従来困難とされてきた海水
魚の閉鎖系循環飼育における硝酸性窒素処理方法を容易
且つ効率的に解決できる手法として画期的である。発明
の効果は顕著である。
According to the present invention, a simple, low-cost, and efficient nitrate nitrogen treatment can be realized for the problem of treating nitrate nitrogen in seawater, which is usually large-scale and requires a great deal of cost. . Therefore, this technique is a breakthrough as a technique that can easily and efficiently solve the method of treating nitrate nitrogen in closed circulation breeding of marine fish, which has been difficult in the past. The effect of the invention is remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 海水槽と処理装置槽の関係を示す説明図FIG. 1 is an explanatory diagram showing a relationship between a seawater tank and a processing apparatus tank.

【符号の説明】[Explanation of symbols]

1:海水槽 2:海水 3:処理装置 4:脱窒無機材料 5:ポンプ 1: Seawater tank 2: Seawater 3: Treatment equipment 4: Denitrifying inorganic material 5: Pump

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12M 1/00 C12M 1/00 Z 1/40 1/40 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C12M 1/00 C12M 1/00 Z 1/40 1/40 Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水槽中の海水を閉鎖循環系で浄化するに
当たり、水槽から連続的に海水の一部を抜き出し、その
少なくとも一部を硫黄とカルシウム系成分からなる脱窒
無機材料が充填された脱窒装置を通過させて硝酸性窒素
を除去し、再び水槽に戻すことを特徴とする海水中の硝
酸性窒素の処理方法。
In purifying seawater in a water tank by a closed circulation system, a part of seawater is continuously extracted from the water tank, and at least a part of the seawater is filled with a denitrifying inorganic material composed of sulfur and calcium-based components. A method for treating nitrate nitrogen in seawater, comprising removing nitrate nitrogen through a denitrification device and returning the nitrate nitrogen to a water tank again.
【請求項2】 脱窒装置に充填された脱窒無機材料量m
(kg)と、処理槽に流し込む海水量Q(L/day)との関係を
m=aQで表したとき、aが0.05以上である請求項
1記載の海水中の硝酸性窒素の処理方法。
2. The amount m of the denitrifying inorganic material filled in the denitrification apparatus
The treatment of nitrate nitrogen in seawater according to claim 1, wherein a is equal to or greater than 0.05 when the relationship between (kg) and the amount of seawater Q (L / day) poured into the treatment tank is represented by m = aQ. Method.
【請求項3】 (A)海水を貯槽する水槽、(B)脱窒微生物
が生育している硫黄とカルシウム系成分からなる脱窒無
機材料が充填された脱窒装置及び(C)水槽の海水の一部
を抜き出し、抜き出された海水の少なくとも一部を前記
脱窒装置を通過させ、水槽に戻す手段を有してなること
を特徴とする海水中の硝酸性窒素の処理装置。
(A) a water tank for storing seawater, (B) a denitrification apparatus filled with a denitrification inorganic material composed of sulfur and calcium-based components in which denitrification microorganisms are growing, and (C) seawater in a water tank A means for extracting a part of the seawater, passing at least a part of the extracted seawater through the denitrification device, and returning the seawater to a water tank.
JP2001083434A 2001-03-22 2001-03-22 Apparatus and method for treating nitrate nitrogen in sea water Expired - Fee Related JP4562935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001083434A JP4562935B2 (en) 2001-03-22 2001-03-22 Apparatus and method for treating nitrate nitrogen in sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001083434A JP4562935B2 (en) 2001-03-22 2001-03-22 Apparatus and method for treating nitrate nitrogen in sea water

Publications (2)

Publication Number Publication Date
JP2002273475A true JP2002273475A (en) 2002-09-24
JP4562935B2 JP4562935B2 (en) 2010-10-13

Family

ID=18939243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001083434A Expired - Fee Related JP4562935B2 (en) 2001-03-22 2001-03-22 Apparatus and method for treating nitrate nitrogen in sea water

Country Status (1)

Country Link
JP (1) JP4562935B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031084A1 (en) * 2002-09-30 2004-04-15 Nippon Steel Chemical Co., Ltd. Method of removing nitrate nitrogen and device used for the method
JP2004322023A (en) * 2003-04-28 2004-11-18 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment material and nitrate nitrogen treatment method
JP2013063036A (en) * 2011-09-16 2013-04-11 Clion Co Ltd Method for raising aquatic animals, and method for removing nitrate-nitrogen
KR101342052B1 (en) 2012-07-10 2013-12-18 윤효석 Method for removing nitrates from a solution comprising salt ingredient
WO2018067581A1 (en) * 2016-10-04 2018-04-12 Georgia Aquarium Inc. Removing nitrate from water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07255321A (en) * 1994-03-18 1995-10-09 Chowa Kensui Kyodo Kumiai Suspension removing device and water cleaning device and pisciculture device with no water exchange using these devices
JP2000093997A (en) * 1998-09-25 2000-04-04 Nitchitsu Co Ltd Nitrate nitrogen denitrifying substrate
JP2000279991A (en) * 1999-01-27 2000-10-10 Masao Yano Denitrification/reduction type water cleaning treatment system using facultative anaerobic bacteria
JP2000308900A (en) * 1999-04-26 2000-11-07 Nippon Steel Corp Treatment of ammonia-containing waste water
JP2000343097A (en) * 1999-06-07 2000-12-12 Nitchitsu Co Ltd Nitrate nitrogen denitrification substrate and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07255321A (en) * 1994-03-18 1995-10-09 Chowa Kensui Kyodo Kumiai Suspension removing device and water cleaning device and pisciculture device with no water exchange using these devices
JP2000093997A (en) * 1998-09-25 2000-04-04 Nitchitsu Co Ltd Nitrate nitrogen denitrifying substrate
JP2000279991A (en) * 1999-01-27 2000-10-10 Masao Yano Denitrification/reduction type water cleaning treatment system using facultative anaerobic bacteria
JP2000308900A (en) * 1999-04-26 2000-11-07 Nippon Steel Corp Treatment of ammonia-containing waste water
JP2000343097A (en) * 1999-06-07 2000-12-12 Nitchitsu Co Ltd Nitrate nitrogen denitrification substrate and its production

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031084A1 (en) * 2002-09-30 2004-04-15 Nippon Steel Chemical Co., Ltd. Method of removing nitrate nitrogen and device used for the method
JP2004322023A (en) * 2003-04-28 2004-11-18 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment material and nitrate nitrogen treatment method
JP4493927B2 (en) * 2003-04-28 2010-06-30 新日鐵化学株式会社 Nitrate nitrogen treatment material and nitrate nitrogen treatment method
JP2013063036A (en) * 2011-09-16 2013-04-11 Clion Co Ltd Method for raising aquatic animals, and method for removing nitrate-nitrogen
KR101342052B1 (en) 2012-07-10 2013-12-18 윤효석 Method for removing nitrates from a solution comprising salt ingredient
WO2014010950A1 (en) 2012-07-10 2014-01-16 주식회사 소룩스 Method for removing nitrate from solution comprising salt component
JP2015512771A (en) * 2012-07-10 2015-04-30 ソリュックス ライティング フィクスチャSolux Lighting Fixture Method for removing nitrates from solutions containing salt components
WO2018067581A1 (en) * 2016-10-04 2018-04-12 Georgia Aquarium Inc. Removing nitrate from water
US9994466B2 (en) 2016-10-04 2018-06-12 Georgia Aquarium Inc. Removing nitrate from water
US10550024B2 (en) 2016-10-04 2020-02-04 Georgia Aquarium Inc. Removing nitrate from water
US11040901B2 (en) 2016-10-04 2021-06-22 Georgia Aquarium Inc. Removing nitrate from water

Also Published As

Publication number Publication date
JP4562935B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP2665789B2 (en) Biological purification method of water containing organic substances and derivatives thereof using action and diffusion of aerobic and anaerobic microorganisms, and apparatus for using the same
JP4578278B2 (en) Sewage treatment apparatus and treatment method
JP2002224688A (en) Denitrifying method and denitrifying apparatus
WO2012040943A1 (en) Method and apparatus for synchronously removing heavy metal and nitrate in drinking water
JP2016198058A (en) Purifier and aquarium equipped with the same
JP2002273475A (en) Device and method for treating nitrate nitrogen in sea water
JP4092454B2 (en) Water treatment method
KR100254136B1 (en) Closed recirculating filter system for sea fish culturing facility using bio-submerged filtration and ozone denitrification
RU2155721C2 (en) Method of cleaning contaminated water
JP5612364B2 (en) Environmental water purification method
JP4838872B2 (en) Water treatment apparatus and water treatment method
JP2013063036A (en) Method for raising aquatic animals, and method for removing nitrate-nitrogen
JP2022125959A (en) Water bottom purifier
EP3024319B1 (en) New hybrid biodegradable polymer for efficient nitrogen and phosphate reduction
JP2004033874A (en) Culture tank for marine nitrifying sludge and culture system
JP2004097926A (en) Water treatment method and water treatment equipment
JP4756260B2 (en) Method for treating inorganic nitrogen / phosphorus water with suspension
JPH08323379A (en) Treatment of nitrogen-containing waste water
JP2005238084A (en) Wastewater treatment system and wastewater treatment method
JP2554687B2 (en) Biological nitrogen removal method
JP5558866B2 (en) Water treatment apparatus and water treatment method
JPH03181391A (en) Water treating device for decomposition ammoniacal nitrogen
JPH0929278A (en) Method for treating waste water and device therefor
JP2005177601A (en) Method and apparatus for cleaning water
KR100454335B1 (en) Filtering method for water treatment procss by using magnetite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160806

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees