JP5612364B2 - Environmental water purification method - Google Patents

Environmental water purification method Download PDF

Info

Publication number
JP5612364B2
JP5612364B2 JP2010128997A JP2010128997A JP5612364B2 JP 5612364 B2 JP5612364 B2 JP 5612364B2 JP 2010128997 A JP2010128997 A JP 2010128997A JP 2010128997 A JP2010128997 A JP 2010128997A JP 5612364 B2 JP5612364 B2 JP 5612364B2
Authority
JP
Japan
Prior art keywords
water
purification
iron
environmental water
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010128997A
Other languages
Japanese (ja)
Other versions
JP2011255249A (en
Inventor
小島 昭
昭 小島
敏明 石井
敏明 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishii Corp
Original Assignee
Ishii Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishii Corp filed Critical Ishii Corp
Priority to JP2010128997A priority Critical patent/JP5612364B2/en
Priority to TW100119542A priority patent/TWI515169B/en
Publication of JP2011255249A publication Critical patent/JP2011255249A/en
Application granted granted Critical
Publication of JP5612364B2 publication Critical patent/JP5612364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、炭素繊維を含む水質浄化材と、炭素材および鉄材の組み合わせになる水質浄化材の2種類の水質浄化材を複合して行う水質の浄化方法に関するものである。   The present invention relates to a water purification method performed by combining two types of water purification materials, a water purification material containing carbon fibers, and a water purification material that is a combination of a carbon material and an iron material.

環境水の水質浄化方法には、種々の方法がある。それらのうち代表的なものとしては、水中に空気を吹き込み曝気する方法や、汚染・汚濁物を分解する菌を投入する方法、化学薬品を投入する方法、水生植物を繁殖させる方法などが挙げられる。しかしながら、これらの方法は、駆動のためのエネルギーを必要としたり、その土地に生息しない菌を導入する、化学薬品による新たな汚染の発生、枯渇した植物の処置などを必要とするなどの問題があり、絶対的な解決策とはなっていないのが実情である。   There are various methods for purifying environmental water. Among them, representative examples include a method of blowing aeration into water, a method of introducing bacteria that decompose pollutants and pollutants, a method of introducing chemicals, and a method of breeding aquatic plants. . However, these methods have problems such as requiring energy for driving, introducing bacteria that do not inhabit the land, generating new pollution by chemicals, treating depleted plants, etc. Yes, the situation is not an absolute solution.

すなわち、これまでのところ、安価で、環境水中に溶解している汚染・汚濁物を除去するためのエネルギーを必要とせず、また化学薬品を使用しないといった水質浄化方法は、見出されていなかった。そのため、環境水の汚染、汚濁の進行を必ずしも止めることができず、深刻な水質汚染を引き起こす場合があった。   In other words, so far, no water purification method has been found that is inexpensive, does not require energy to remove contaminants and contaminants dissolved in environmental water, and does not use chemicals. . For this reason, the progress of pollution and pollution of environmental water cannot always be stopped, and serious water pollution may occur.

このような現状を打破すべく発明者らは鋭意研究を行い、炭素繊維による浄化方法を開発し、これまでにも種々提案してきた。この方法は、主に炭素繊維を用いるもので、環境水中に、炭素繊維を配置すると、水中に生息している菌や微生物がこれに付着し、これらの菌や微生物が水中の汚染・汚濁物を分解し、二酸化炭素、水、および窒素ガスなどの気体状物資に変換する性質を利用して、水質を浄化するものである。
上記した方法は、特に、環境水の透明度の向上、浮遊性懸濁物(以下、SSという)の低減、生物化学的酸素消費量(以下、BODという)および化学的酸素消費量(以下、CODという)の低減などに効果的であった。(特許文献1〜4参照)。
In order to overcome this situation, the inventors have conducted intensive research, developed a purification method using carbon fiber, and have made various proposals so far. This method mainly uses carbon fiber. When carbon fiber is placed in the environmental water, bacteria and microorganisms that live in the water adhere to it, and these bacteria and microorganisms are contaminated and polluted in the water. The water quality is purified by utilizing the property of decomposing it and converting it into gaseous substances such as carbon dioxide, water, and nitrogen gas.
In particular, the above-described method improves the transparency of environmental water, reduces suspended suspension (hereinafter referred to as SS), biochemical oxygen consumption (hereinafter referred to as BOD) and chemical oxygen consumption (hereinafter referred to as COD). Effective). (See Patent Documents 1 to 4).

他方、環境水の中でも河川などでは、工業排水や農薬の使用によって、水中に窒素やリンが多く含まれるようになってきている。これら窒素やリンは、肥料としても大量に農地に散布され、畜産業などからもリンが環境水に流れ込んでいる。ここで、公共下水処理場では、リン等を汚泥中に濃縮することで処理しているが、処理水の中にも一定濃度のリンが残留することは避けられなかった。
特に、湖沼・内湾等の閉鎖性水域となる環境水中での富栄養化問題は依然として残っており、環境水の再生が大きな問題となっている。
On the other hand, in environmental waters, rivers and the like are becoming rich in nitrogen and phosphorus due to the use of industrial wastewater and agricultural chemicals. A large amount of these nitrogen and phosphorus is sprayed on farmland as fertilizer, and phosphorus flows into the environmental water from the livestock industry. Here, in a public sewage treatment plant, it is treated by concentrating phosphorus or the like in sludge, but it is inevitable that a certain concentration of phosphorus remains in the treated water.
In particular, the problem of eutrophication in environmental water that is closed water areas such as lakes and inner bays still remains, and the regeneration of environmental water is a major problem.

この問題に対し、上掲した炭素繊維を用いる方法では、窒素やリンの濃度を減少させて、水質浄化を図ることはできなかった。特に、閉鎖性水域をはじめとする環境水中のリンの除去は、大きな問題となっている。というのは、安全な気体状のリン化合物が存在しないからである。   To solve this problem, the above-described method using carbon fiber cannot reduce the concentration of nitrogen or phosphorus to purify water. In particular, removal of phosphorus in environmental water including closed water areas has become a major problem. This is because there is no safe gaseous phosphorus compound.

また、窒素を含む汚染・汚濁物は、炭素繊維に付着した菌や微生物によって、ある程度は分解可能であるが、そのためには、2種類の菌(好気性菌と嫌気性菌)が棲息できる環境を構築することが不可欠である。分解ができない場合には、環境水中に窒素化合物が蓄積し、逆に環境水の汚染を引き起こすだけでなく、植物プランクトンの異常増殖を引き起こし、アオコやアカシオの発生原因になっている。すなわち、水中に溶解している窒素化合物は、炭素繊維製の水質浄化材のみでは困難であった。   In addition, pollutants and pollutants containing nitrogen can be decomposed to some extent by bacteria and microorganisms attached to the carbon fiber. For this purpose, an environment where two types of bacteria (aerobic bacteria and anaerobic bacteria) can live. It is essential to build When decomposition is not possible, nitrogen compounds accumulate in the environmental water, which not only causes environmental water contamination, but also causes abnormal growth of phytoplankton, leading to the occurrence of blue sea bream and acacio. That is, the nitrogen compound dissolved in water is difficult only with a water purification material made of carbon fiber.

これらの問題に対し、発明者らは、煩雑な工程を経ることなく、水質の浄化ができる方法についてさらに検討を加えた結果、炭素材と鉄材とを接触させることで、水中のリン濃度が激減することを見い出した(特許文献5および6参照)。それと同時に、水中の窒素濃度も減少することを知見した(特許文献7参照)。さらに、これらの発明を発展させることで、環境水中のリンに起因するアオコの発生を防止することにも成功した(特許文献8参照)。   In response to these problems, the inventors have further studied a method for purifying water quality without going through complicated steps, and as a result, the concentration of phosphorus in water is drastically reduced by bringing the carbon material and the iron material into contact with each other. (See Patent Documents 5 and 6). At the same time, it was found that the nitrogen concentration in water also decreased (see Patent Document 7). Furthermore, by developing these inventions, the present inventors have succeeded in preventing the occurrence of water-bloom caused by phosphorus in the environmental water (see Patent Document 8).

特許第3328700号公報Japanese Patent No. 3328700 特許第2954509号公報Japanese Patent No. 2954509 特許第4413879号公報Japanese Patent No. 4413879 特許第4344831号公報Japanese Patent No. 4344831 特願2009−18799号明細書Japanese Patent Application No. 2009-18799 国際出願第2009/065109号明細書International Application No. 2009/065109 国際出願第2009/068634号明細書International Application No. 2009/068634 特願2009−18799号明細書Japanese Patent Application No. 2009-18799

しかしながら、炭素繊維を用いた方法は、汚濁物の除去過程で発生するCOが水に溶解すると炭酸イオンCO 2−となる。炭酸イオンの増加によって、長期間の使用等、その使用条件によっては、COD成分さらにはBOD成分の分解が抑制されるといった問題があった。
また、炭素材と鉄材とを接触させる水質浄化方法では、リンおよび窒素の除去にはきわめて有効であり、CODやSSも低減したが、その効果は限定的であった。
However, in the method using carbon fiber, when CO 2 generated in the process of removing contaminants is dissolved in water, it becomes carbonate ion CO 3 2− . Due to the increase in carbonate ions, there is a problem that decomposition of the COD component and further the BOD component is suppressed depending on the use conditions such as long-term use.
Further, the water purification method in which the carbon material and the iron material are brought into contact is extremely effective for removing phosphorus and nitrogen, and COD and SS are reduced, but the effect is limited.

本発明は、上記の問題を有利に解決するもので、SS、全窒素および全リン濃度の低減化のみならず、CODおよびBODの低減化、特に環境水の汚染の指標として重要なCODの値を、長期間にわたって安定して低減することができる、水質浄化方法を提供することを目的とする。また、地球温暖化の要因とされている二酸化炭素を固定することになり、地球環境の改善にも貢献できる。   The present invention advantageously solves the above problems, and not only reduces the concentration of SS, total nitrogen and total phosphorus, but also reduces the COD and BOD, especially the COD value important as an indicator of environmental water contamination. It is an object of the present invention to provide a water purification method that can stably reduce water over a long period of time. In addition, carbon dioxide, which is a cause of global warming, will be fixed, which can contribute to the improvement of the global environment.

発明者らは、前述したように、炭素繊維のみを用いた水質浄化では、水中のリンや窒素が分解除去できないという問題、および、炭素材と鉄材の組み合わせでは、COD、BODおよびSSの低減効果は低いという問題を解決するために、炭素繊維を用いる方法と炭素材と鉄材とを組み合わせる方法の2種類の浄化法を、同時に用いることを試みた。
その結果、それぞれの浄化法に期待した効果については勿論のこと、炭素材と鉄材とを組み合わせて生成するFe2+イオンにより、炭素繊維を用いる際に問題となっていた溶出CO 2−イオンを適切に捉えることが可能となり、ひいては、予想を遥かに超えたCODの低減効果を達成することが究明されたのである。
本発明は、上記した知見に基づき完成されたものである。
As described above, the inventors have the problem that phosphorus and nitrogen in water cannot be decomposed and removed by water purification using only carbon fibers, and the effect of reducing COD, BOD and SS in the combination of carbon material and iron material. In order to solve the problem that the carbon fiber is low, an attempt was made to simultaneously use two types of purification methods: a method using carbon fiber and a method combining carbon material and iron material.
As a result, not only the expected effects of each purification method, but also the elution of CO 3 2− ions, which has been a problem when using carbon fibers, is caused by Fe 2+ ions generated by combining carbon materials and iron materials. It has been found that it is possible to properly grasp and, in turn, achieve a COD reduction effect far exceeding expectations.
The present invention has been completed based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.環境水の水質を浄化するに際し、炭素繊維を主体とする第1浄化材と炭素材および鉄材の組み合わせになる第2浄化材とを、環境水中に、同時に浸漬し、さらにその際、流水下の上流側から前記第1浄化材と前記第2浄化材とを交互に配置して、該環境水中の汚染・汚濁成分を除去することを特徴とする、環境水の水質浄化方法。
That is, the gist configuration of the present invention is as follows.
1. When purifying the quality of the environmental water, the first purification material mainly composed of carbon fiber and the second purification material, which is a combination of the carbon material and the iron material, are immersed in the environmental water at the same time . A water quality purification method for environmental water, wherein the first purification material and the second purification material are alternately arranged from the upstream side to remove contamination / contamination components in the environmental water.

.前記第1浄化材が、炭素繊維からなることを特徴とする、前記1に記載の環境水の水質浄化方法。 2 . 2. The method for purifying environmental water according to 1, wherein the first purification material is made of carbon fiber.

.前記第2浄化材の炭素材が、炭素繊維製織物または可撓性黒鉛シートであり、一方前記鉄材が、Feを80質量%以上含有するものであることを特徴とする、前記1または2に記載の環境水の水質浄化方法。
3 . In the above 1 or 2 , the carbon material of the second purification material is a carbon fiber woven fabric or a flexible graphite sheet, while the iron material contains 80% by mass or more of Fe. The environmental water purification method described.

本発明によれば、窒素やリンを、効果的に除去できるだけでなく、CODやBOD、SSのいずれをも、長期間にわたり安定して低値に止めることができ、特にリンについては、測定器の検出限界以下まで低減することができる。   According to the present invention, not only nitrogen and phosphorus can be effectively removed, but all of COD, BOD, and SS can be stably kept at a low value over a long period of time. Can be reduced to below the detection limit.

(a),(b)は、第1浄化材と第2浄化材の作用をそれぞれ単独で示した図である。(a), (b) is the figure which each showed the effect | action of the 1st purification material and the 2nd purification material independently. 第1浄化材と第2浄化材の複合作用を示した図である。It is the figure which showed the composite action of the 1st purification material and the 2nd purification material. (a),(b)は、本発明に従う第1浄化材と第2浄化材を、環境水中に配置した様子を示した図である。(a), (b) is the figure which showed a mode that the 1st purification material and 2nd purification material according to this invention were arrange | positioned in environmental water. 本発明に従う水質浄化方法を適用した環境水のCOD値の時間変化を示したグラフである。It is the graph which showed the time change of the COD value of environmental water to which the water quality purification method according to the present invention is applied. 本発明に従う水質浄化方法を適用した環境水の全窒素濃度の時間変化を示したグラフである。It is the graph which showed the time change of the total nitrogen concentration of environmental water to which the water quality purification method according to the present invention is applied. 本発明に従う水質浄化方法を適用した環境水の全リン濃度の時間変化を示したグラフである。It is the graph which showed the time change of the total phosphorus density | concentration of environmental water to which the water quality purification method according to this invention is applied.

以下、本発明を具体的に説明する。
本発明は、炭素繊維の生物親和性を利用し、炭素繊維に付着した菌や微生物の働きによって、環境水中に溶けているCODや、BOD、SSの値を増加させる成分を、二酸化炭素や水などの気体状物資として除去し、他方、リンおよび窒素については、炭素材の電気伝導性を利用して、鉄材との接触により生成するFe2+イオンおよびFe3+イオンを活用することで、水に不溶の物質(リン酸鉄、酸化鉄および窒素ガス)に変換することで除去する方法である。
Hereinafter, the present invention will be specifically described.
The present invention uses the bioaffinity of carbon fiber to increase the COD, BOD, and SS values dissolved in the environmental water by the action of bacteria and microorganisms attached to the carbon fiber. On the other hand, for phosphorus and nitrogen, by utilizing the electrical conductivity of the carbon material, the Fe 2+ ions and the Fe 3+ ions generated by contact with the iron material are utilized, and the water is removed. It is a method of removing by converting into an insoluble substance (iron phosphate, iron oxide and nitrogen gas).

すなわち、本発明は、炭素繊維を主体とした第1浄化材で、菌や微生物を付着させ、水中の炭素、水素、酸素原子を主体とする汚染・汚濁物を分解させると同時に、炭素材に鉄材を接触させた第2浄化材を用いることで、さらにリンや窒素を含む汚染・汚濁物の浄化を可能とするものである。   That is, the present invention is a first purification material mainly composed of carbon fiber, which attaches bacteria and microorganisms and decomposes pollutants and contaminants mainly composed of carbon, hydrogen and oxygen atoms in water, By using the second purifying material in contact with the iron material, it is possible to further purify pollutants and pollutants containing phosphorus and nitrogen.

以下、本発明を由来するに至った経緯について説明する。
汚染・汚濁物中の主成分の一つである炭水化物は、微生物による分解で二酸化炭素を生じる。二酸化炭素は水に溶解することから、水中の炭酸イオン濃度は増加する。炭酸イオンの増加は、菌や微生物の分解速度を抑制することから、水質浄化の速度が低下することになる。ここで、発明者らは、生成した炭酸イオンを別の物質に変化させることで、水質浄化の効果が高められると考えた。
Hereinafter, the background that led to the present invention will be described.
Carbohydrate, which is one of the main components in pollutants and pollutants, produces carbon dioxide when decomposed by microorganisms. Since carbon dioxide dissolves in water, the carbonate ion concentration in water increases. Since the increase in carbonate ions suppresses the decomposition rate of bacteria and microorganisms, the water purification rate decreases. Here, the inventors thought that the effect of water purification can be enhanced by changing the generated carbonate ion to another substance.

そこで、発明者らは、水に溶解した炭酸イオンを水中から取り除くことについて鋭意検討を行った。その結果、炭酸イオンを水中から取り除くには、水の温度を高め、溶解度を低くし、二酸化炭素として取り除く、あるいは、水に不溶性の物質に変化させて取り除くなどが考えられた。しかし、環境水の場合、水温を高めることは、実際的ではない。そこで、水に不溶性の炭酸塩の生成を検討した。その結果、鉄との化合物である炭酸鉄が最適であるとの結論に達した。   Therefore, the inventors have intensively studied about removing carbonate ions dissolved in water from the water. As a result, in order to remove carbonate ions from the water, it was considered that the temperature of the water was increased and the solubility was lowered to remove it as carbon dioxide, or it was changed to a substance insoluble in water and removed. However, in the case of environmental water, increasing the water temperature is not practical. Therefore, the production of water-insoluble carbonate was examined. As a result, it was concluded that iron carbonate, which is a compound with iron, is optimal.

図1および図2に、炭素繊維を主体とする第1浄化材と炭素材および鉄材の組み合わせになる第2浄化材をそれぞれ単独で用いた場合と、複合して用いた場合の作用を比較して示す。
図1(a)に示したとおり、第1浄化材のみの使用では、炭素繊維からCOが生成する。一方、図1(b)に示したとおり、炭素材および鉄材の組み合わせになる第2浄化材からは、Fe2+イオンおよびFe3+イオンが溶け出し、リン酸鉄として環境水中からリンが除去される。
FIG. 1 and FIG. 2 compare the operation when the first purification material mainly composed of carbon fiber and the second purification material, which is a combination of carbon material and iron material, are used alone and in combination. Show.
As shown in FIG. 1 (a), CO 2 is generated from carbon fibers when only the first purification material is used. On the other hand, as shown in FIG. 1 (b), Fe 2+ ions and Fe 3+ ions are dissolved from the second purification material, which is a combination of carbon material and iron material, and phosphorus is removed from the environmental water as iron phosphate. The

また、窒素を含む物質は、好気性菌で分解され亜硝酸、硝酸になる。さらに、分解して窒素ガスに変化させて大気中に放出する。この窒素ガスへの変化は、嫌気性菌の働きでおこる。すなわち、水中に存在する硝酸を分解するには、嫌気状態にすることが必要である。しかしながら、本発明では、炭素材と鉄材とを組み合わせた浄化材と複合することで、硝酸は窒素ガスに変化する。   Moreover, the substance containing nitrogen is decomposed by aerobic bacteria to become nitrous acid and nitric acid. Furthermore, it is decomposed and converted into nitrogen gas and released into the atmosphere. This change to nitrogen gas is caused by the action of anaerobic bacteria. That is, in order to decompose nitric acid present in water, it is necessary to make it anaerobic. However, in the present invention, nitric acid is changed to nitrogen gas by combining with a purifying material in which a carbon material and an iron material are combined.

炭素材と鉄材とを接触させることで、鉄イオンが溶出する。この鉄イオンは、水中のリン酸イオンと反応する。また、炭酸イオンと反応して炭酸鉄となる。さらに、鉄イオンは酸化されて、水酸化鉄をへて酸化鉄へと変化する。鉄イオンが酸化鉄になるためには、酸素が必要となるが、この酸素は水中にある硝酸から授与される。そのため、硝酸は窒素ガスに、鉄は酸化鉄になる。
上記したメカニズムで、水中にある硝酸は窒素ガスに変化し、大気中に放出されることで、水中の全窒素量を減少させることができる。このように二つの浄化材は、相互の長所と短所を補完することができる。
By bringing the carbon material and the iron material into contact with each other, iron ions are eluted. This iron ion reacts with phosphate ions in water. Moreover, it reacts with carbonate ions to become iron carbonate. Furthermore, iron ions are oxidized and converted to iron oxide through iron hydroxide. In order for iron ions to become iron oxide, oxygen is required, and this oxygen is given from nitric acid in water. Therefore, nitric acid becomes nitrogen gas and iron becomes iron oxide.
With the mechanism described above, nitric acid in water is changed to nitrogen gas and released into the atmosphere, whereby the total amount of nitrogen in water can be reduced. In this way, the two purification materials can complement each other's advantages and disadvantages.

ここに、2つの浄化材を同時に用いた場合には、図2に示したとおり、炭素材および鉄材の組み合わせになる第2浄化材から発生したFe2+イオンがCO 2−イオンと反応して、炭酸鉄となり環境水から効果的に除去されるのである。その結果、微生物による汚染・汚濁物の分解速度が速くなり、CODの値が格段に低くなるという、従来に比較して優れた効果が得られるのである。 Here, when two purification materials are used simultaneously, as shown in FIG. 2, Fe 2+ ions generated from the second purification material, which is a combination of a carbon material and an iron material, react with CO 3 2− ions. Thus, it becomes iron carbonate and is effectively removed from the environmental water. As a result, it is possible to obtain an excellent effect as compared with the prior art, in which the degradation rate of contamination / contamination by microorganisms is increased and the COD value is significantly reduced.

また、2つの浄化材を複合して用いた場合には、それぞれの単独使用の場合よりも浄化能力および浄化速度が高まることも併せて見出した。その理由は、水中の汚染・汚濁物を、微生物分解によって生じた分解物として、また前記した補完作用によって、環境水という液体相から別の相(気体相あるいは固体相)に移動することが安定して可能になったためと考えられる。   In addition, it has also been found that when two purification materials are used in combination, the purification ability and the purification speed are increased as compared to the case of using each of them alone. The reason for this is that it is stable to move the water-contaminated / contaminated material from the liquid phase of environmental water to another phase (gas phase or solid phase) as a degradation product caused by microbial degradation and by the complementary action described above. This is thought to be possible.

本発明は、前述したように、炭素繊維を主体とする第1浄化材と炭素材および鉄材の組み合わせになる第2浄化材とを、環境中水に、同時に浸漬して、該環境中水の有害成分を除去することが特徴である。ここに、本発明における除去の対象となる有害成分とは、水中の汚濁物やSS、COD成分、BOD成分、リン含有物、窒素含有物を想定している。
本発明における第1浄化材は、炭素繊維を主体としているが、この主体とは、炭素繊維が50%以上含まれていることを意味している。望ましくは80%以上である。また、残部は従来公知の繊維材として用いられる材料であれば、綿や化学繊維等、特に制限はない。
In the present invention, as described above, the first purification material mainly composed of carbon fiber and the second purification material, which is a combination of the carbon material and the iron material, are immersed in environmental water at the same time, It is characterized by removing harmful components. Here, the harmful components to be removed in the present invention are assumed to be pollutants in water, SS, COD components, BOD components, phosphorus-containing materials, and nitrogen-containing materials.
Although the 1st purification material in this invention has carbon fiber as the main body, this main body means that carbon fiber is contained 50% or more. Desirably, it is 80% or more. Moreover, if the remainder is a material used as a conventionally well-known fiber material, there will be no restriction | limiting in particular, such as cotton and a chemical fiber.

本発明では、第1浄化材と第2浄化材を環境水に浸漬するに際し、第1浄化材と第2浄化材とを交互に配置することが望ましい。特に、流水下では、上流側から第1浄化材と第2浄化材を交互に配置することが望ましい。というのは、このような配置とし、同時に環境水中に浸漬させることにより、第1浄化材で発生したCO 2−イオンを第2浄化材で効率良く反応させることができるからである。
また、第1浄化材と第2浄化材をそれぞれ複数個づつ配置することも可能である。
In the present invention, it is desirable to alternately arrange the first purification material and the second purification material when the first purification material and the second purification material are immersed in environmental water. In particular, under flowing water, it is desirable to alternately arrange the first purification material and the second purification material from the upstream side. This is because CO 3 2− ions generated in the first purification material can be efficiently reacted with the second purification material by adopting such an arrangement and simultaneously immersing in environmental water.
It is also possible to arrange a plurality of first purification materials and a plurality of second purification materials.

本発明に用いる第1浄化材は、前記したように炭素繊維を主体とし、炭素繊維製織物あるいは炭素繊維が分散したもの、ひも状、帯状、ブラシ状、たわし状、ノレン状、ムカデ状、スダレ状、筒状、房状であることが特に望ましい。というのは、菌や微生物が付着しやすいからである。また、上掲した特許文献1〜4に記載の炭素繊維は、いずれも好適に用いることができる。   As described above, the first purification material used in the present invention is mainly composed of carbon fiber, carbon fiber woven fabric or carbon fiber dispersed, string-like, belt-like, brush-like, scuff-like, noren-like, centipede-like, It is particularly desirable that the shape is tubular, tubular or tufted. This is because bacteria and microorganisms are easily attached. In addition, any of the carbon fibers described in Patent Documents 1 to 4 listed above can be suitably used.

本発明に用いる第2浄化材の炭素材としては、従来公知の炭素材を用いることができるが、例えば、上掲した特許文献5〜8に記載された炭素材は、いずれも好適に用いることができる。好ましくは、炭素繊維製織物または可撓性黒鉛シートである。というのは、これらは、鉄材との接触状態を良好に保つことができるため、Fe2+およびFe3+イオンが効率良く生成するからである。 As the carbon material of the second purification material used in the present invention, a conventionally known carbon material can be used. For example, all of the carbon materials described in Patent Documents 5 to 8 listed above are preferably used. Can do. A carbon fiber fabric or a flexible graphite sheet is preferable. This is because these can maintain a good contact state with the iron material, so that Fe 2+ and Fe 3+ ions are efficiently generated.

本発明に用いる第2浄化材の鉄材は、Feを50質量%以上含有していれば良く、残部成分は特に制限されない。また、上掲した特許文献5〜8に記載された鉄材は、いずれも好適に用いることができる。なお、好ましくは、Fe含有量が80質量%以上である合金鉄であり、さらに好ましくはFe含有量が100質量%の金属鉄である。   The iron material of the 2nd purification material used for this invention should just contain Fe 50 mass% or more, and especially a remainder component is not restrict | limited. Moreover, any of the iron materials described in Patent Documents 5 to 8 listed above can be suitably used. In addition, Preferably, it is alloy iron whose Fe content is 80 mass% or more, More preferably, it is metallic iron whose Fe content is 100 mass%.

(実施例1)
汚染汚濁の進んだ池(面積約150m2、深さ40〜70cm)の水の浄化を試みた。この池水の水質の分析結果は、pH:7.34、COD:25.0mg/L、全窒素:1.4mg/L、全リン:0.13mg/Lであり、水質汚染の度合いは大であった。また、この池水の透明度は低く、水中に生育している鯉の姿は全く見えなかった。
この池水を浄化すべく、炭素繊維からなる浄化材(ムカデ形、柿文織物製、長さ60cm)を100本、池底に配置した(比較例1)。1ヶ月後、CODは10mg/L程度まで低下し、透明度は少し向上した。ところが、全窒素は1.4mg/L、全リンは0.13mg/Lで、低下は認められなかった。この程度のCODの変化では、水質が良好になったとは言えない。
Example 1
An attempt was made to purify water in a polluted pond (area: about 150 m 2 , depth 40-70 cm). The analysis results of water quality of this pond water were pH: 7.34, COD: 25.0 mg / L, total nitrogen: 1.4 mg / L, total phosphorus: 0.13 mg / L, and the degree of water pollution was large. Moreover, the transparency of this pond water was low, and the figure of the coral growing in the water was not visible at all.
In order to purify the pond water, 100 purifiers made of carbon fiber (centipede type, made by Wenwei Textile, 60 cm in length) were placed on the bottom of the pond (Comparative Example 1). One month later, the COD decreased to about 10 mg / L, and the transparency was slightly improved. However, total nitrogen was 1.4 mg / L and total phosphorus was 0.13 mg / L, and no decrease was observed. This change in COD cannot be said to have improved the water quality.

そこで、上記した炭素繊維からなる浄化材100本を第1浄化材とし10箇所に配置し、そこに新規に炭素材および鉄材からなる浄化材(「すーぱーぴーとる」(登録商標)、石井商事(株)製、50cm×50cm)を第2浄化材として10枚を10箇所に、図3(a)に示すように、それぞれの集合体として池底に設置した。なお、池水の流入方向と流出方向は、図中、矢印で記載している。
また、本発明では図3(b)に示すように、第1浄化材と第2浄化材とを交互に配置することもでき、同様の効果を発現する。
Therefore, the above-mentioned 100 purification materials made of carbon fiber are placed as 10 first purification materials, and there are newly added purification materials made of carbon material and iron material ("Superpitor" (registered trademark), Ishii). 10 sheets of 50 cm × 50 cm (manufactured by Shoji Co., Ltd.) were used as the second purification material at 10 locations, and as shown in FIG. In addition, the inflow direction and outflow direction of pond water are indicated by arrows in the figure.
Moreover, in this invention, as shown in FIG.3 (b), a 1st purification material and a 2nd purification material can also be arrange | positioned alternately, and the same effect is expressed.

1ヶ月後、池水の透明度は大幅に改善され、鯉の泳ぐ姿が目視で確認できるようになった。水質を分析した結果、CODは3.1mg/Lと設置前の1/7、炭素繊維浄化材のみを用いた場合の1/3にまで低下していた。また、全窒素は、1.02 mg/Lと設置前の5/7に低下し、全リンは、検出限界以下であった。炭素繊維浄化材のみを用いた場合には、全リンおよび全窒素の低下は期待できないが、炭素材および鉄材の組み合わせになる浄化材と併用することで、COD、リン濃度および全窒素濃度も併せて低下することができた。   One month later, the transparency of the pond water was greatly improved, and the figure of the shark swimming can be visually confirmed. As a result of analyzing the water quality, COD was 3.1 mg / L, 1/7 before installation, and 1/3 when only carbon fiber purification material was used. In addition, total nitrogen was 1.02 mg / L, falling to 5/7 before installation, and total phosphorus was below the detection limit. When only carbon fiber purification material is used, the reduction of total phosphorus and total nitrogen cannot be expected, but COD, phosphorus concentration and total nitrogen concentration can be combined with the purification material that is a combination of carbon material and iron material. Could be reduced.

その後、池水の透明度は著しく向上した。4ヶ月後、透視度計((株)テックジャム、標準型、5型)で透明度を測定したところ80°程度であった。CODは0.7mg/Lで、炭素繊維設置時の1/33、炭素繊維/鉄材からなる浄化材を設置後1ヶ月からさらに1/4に低下した。全窒素は、第2浄化材を設置してから1ヶ月後のときとほぼ同じであった。   Since then, the transparency of pond water has improved significantly. After 4 months, when the transparency was measured with a fluorometer (Techjam Co., Ltd., standard type, type 5), it was about 80 °. The COD was 0.7 mg / L, 1/33 at the time of carbon fiber installation, and a further reduction from 1/4 to 1/4 after the installation of the carbon fiber / iron purification material. Total nitrogen was almost the same as one month after the installation of the second purification material.

この池には、汚染・汚濁物が常に供給されている。浄化材を設置する前は、汚濁物や汚染物が蓄積され、水量が増えるときにのみ、汚染・汚濁物が流れ出ることで、CODの値や全窒素は低下した。本発明に従う第1浄化材および第2浄化材を設置してからは、汚濁物が投入されても浄化作用が進行し、ほぼ一定の水質が維持された。
図4〜6に、CODの値、全窒素および全リン濃度の測定結果を、それぞれ時間の変化を横軸に月として、開始時を1月とし、11ヶ月間の測定データを示す。なお、2月が前記した比較例1のデータであり、3月が前記した本発明に従う実施例の1ヶ月後を示している。以降、4〜11月は2ヶ月〜9ヶ月後をそれぞれ順番に示す。従って、前記した4ヶ月後とは、図の6月のデータである。
This pond is always supplied with contamination and pollutants. Before the purification material was installed, the pollutants and pollutants accumulated, and the pollutants and pollutants flowed out only when the amount of water increased, so the COD value and total nitrogen decreased. After the first purification material and the second purification material according to the present invention were installed, the purification action proceeded even when the pollutant was introduced, and a substantially constant water quality was maintained.
FIGS. 4 to 6 show the measurement results of COD values, total nitrogen and total phosphorus concentrations, and the measurement data for 11 months with the time change as the month and the start time as January. In addition, February is the data of the comparative example 1 described above, and March indicates one month after the example according to the present invention described above. From April to November, 2 months to 9 months later are shown in order. Therefore, the above-mentioned 4 months later is the data for June in the figure.

炭素繊維浄化材では、COD成分の低下、透明度の向上、浮遊性懸濁物の炭素繊維浄化材への付着によるSSの減少は、ある程度可能であるが、リン濃度を低下させることはできなかった。一方、第1浄化材と第2浄化材を併用した本発明に従う水質浄化方法では、図4〜6に示したように、COD、全窒素および全リン濃度をそれぞれ大幅に低減することができた。すなわち、CODは図4に示したとおり、本発明に従う水質浄化試験の開始後1ヶ月で5mg/Lを下回り、以降、5mg/L以下を維持した。また、全窒素濃度は図5に示したとおり、本発明に従う水質浄化試験中、0.8〜1.0mg/Lの間を推移した。さらに、全リン濃度は図6に示したとおり、本発明に従う水質浄化試験の開始後1ヶ月で測定器の下限値以下まで低減化し、その後も維持された。   In the carbon fiber purification material, it is possible to reduce the SS by reducing the COD component, improving the transparency, and adhering the suspended suspension to the carbon fiber purification material, but it was not possible to reduce the phosphorus concentration. . On the other hand, in the water purification method according to the present invention in which the first purification material and the second purification material are used in combination, the COD, total nitrogen, and total phosphorus concentrations could be significantly reduced as shown in FIGS. . That is, as shown in FIG. 4, COD was less than 5 mg / L in one month after the start of the water purification test according to the present invention, and thereafter maintained at 5 mg / L or less. In addition, as shown in FIG. 5, the total nitrogen concentration changed between 0.8 and 1.0 mg / L during the water purification test according to the present invention. Furthermore, as shown in FIG. 6, the total phosphorus concentration was reduced to the lower limit value of the measuring instrument within one month after the start of the water purification test according to the present invention, and was maintained thereafter.

上記した結果より、本発明に従う水質浄化方法は、全窒素および全リン濃度の低下のみならず、CODを、測定器の下限値以下まで低減化することができ、9ヶ月間という長期にわたって維持できることが分かる。なお、BODは、実験開始時に、13mg/Lであったものが、炭素繊維のみの第一浄化材を挿入した場合、1月で5mg/Lまで低下した。また、第二浄化材を併用した場合は、BODは1月で1〜2mg/Lとなり、本発明に従う水質浄化方法は、CODの低減効果と同様に、BODに対しても優れた低減効果があることを確認した。   From the above results, the water purification method according to the present invention can reduce not only the total nitrogen and total phosphorus concentrations but also the COD to below the lower limit of the measuring instrument and can maintain it for a long period of 9 months. I understand. The BOD, which was 13 mg / L at the start of the experiment, dropped to 5 mg / L in January when the first purification material containing only carbon fibers was inserted. Further, when the second purification material is used in combination, the BOD is 1 to 2 mg / L in January, and the water purification method according to the present invention has an excellent reduction effect on BOD as well as the reduction effect of COD. I confirmed that there was.

本発明に従う水質浄化方法を用いることにより、環境水中より、リン、COD、窒素等の除去を長期間にわたって安定的かつ効果的に行うことが可能となり、もって自然環境の維持に大きく貢献する。   By using the water purification method according to the present invention, it is possible to stably and effectively remove phosphorus, COD, nitrogen, and the like from environmental water over a long period of time, thereby greatly contributing to the maintenance of the natural environment.

Claims (3)

環境水の水質を浄化するに際し、炭素繊維を主体とする第1浄化材と炭素材および鉄材の組み合わせになる第2浄化材とを、環境水中に、同時に浸漬し、さらにその際、流水下の上流側から前記第1浄化材と前記第2浄化材とを交互に配置して、該環境水中の汚染・汚濁成分を除去することを特徴とする、環境水の水質浄化方法。 When purifying the quality of the environmental water, the first purification material mainly composed of carbon fiber and the second purification material, which is a combination of the carbon material and the iron material, are immersed in the environmental water at the same time . A water quality purification method for environmental water, wherein the first purification material and the second purification material are alternately arranged from the upstream side to remove contamination / contamination components in the environmental water. 前記第1浄化材が、炭素繊維からなることを特徴とする、請求項1に記載の環境水の水質浄化方法。 The method for purifying environmental water according to claim 1, wherein the first purification material is made of carbon fiber. 前記第2浄化材の炭素材が、炭素繊維製織物または可撓性黒鉛シートであり、一方前記鉄材が、Feを80質量%以上含有するものであることを特徴とする、請求項1または2に記載の環境水の水質浄化方法。 Carbon material of the second purification material is a carbon fiber woven fabric or a flexible graphite sheet, whereas the iron, characterized in that those containing Fe over 80 mass%, according to claim 1 or 2 The method for purifying environmental water as described in 1.
JP2010128997A 2010-06-04 2010-06-04 Environmental water purification method Active JP5612364B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010128997A JP5612364B2 (en) 2010-06-04 2010-06-04 Environmental water purification method
TW100119542A TWI515169B (en) 2010-06-04 2011-06-03 Water-purifying method for environmental water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128997A JP5612364B2 (en) 2010-06-04 2010-06-04 Environmental water purification method

Publications (2)

Publication Number Publication Date
JP2011255249A JP2011255249A (en) 2011-12-22
JP5612364B2 true JP5612364B2 (en) 2014-10-22

Family

ID=45472048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010128997A Active JP5612364B2 (en) 2010-06-04 2010-06-04 Environmental water purification method

Country Status (2)

Country Link
JP (1) JP5612364B2 (en)
TW (1) TWI515169B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5370876B1 (en) * 2012-07-30 2013-12-18 石井商事株式会社 Shellfish egg material and shellfish seedling and culture methods using the same
JP6099076B2 (en) * 2012-08-20 2017-03-22 多機能フィルター株式会社 Deodorant biodegradation promoting material and deodorant biodegradation promoting method
CN103663873A (en) * 2013-12-09 2014-03-26 山东华亚环保科技有限公司 Water quality purification method

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119896A (en) * 1986-11-07 1988-05-24 Sumitomo Jukikai Envirotec Kk Method for removing phosphorus in waste water
JPH06206804A (en) * 1993-01-08 1994-07-26 Mitsubishi Heavy Ind Ltd Man-made gathering-place for fish of sea area cleaning type and structure of man-made gathering-place for fish
JP2954509B2 (en) * 1995-02-20 1999-09-27 徳彦 平野 Contact filter media in catalytic oxidation water purifier
JP3653332B2 (en) * 1996-03-21 2005-05-25 日本バイリーン株式会社 Phosphorus removing material and phosphorus removing method using the same
JPH09262579A (en) * 1996-03-28 1997-10-07 Tokyo Seiko Co Ltd Fixing method for carbon fiber for water quality purification
JP3184905B2 (en) * 1997-09-12 2001-07-09 東邦レーヨン株式会社 Biofilm carrier, and water purification device, seaweed bed, water purification method, seaweed bed formation method, feed production method, and fertilizer production method using the biofilm carrier
JP3468725B2 (en) * 1999-08-11 2003-11-17 日本植生株式会社 Water purification material
JP2001047095A (en) * 1999-08-18 2001-02-20 Tokyo Jimu Service Kk Dephosphorization/denitrification/ammonia removal apparatus of sludge on bottom of water
JP3331372B2 (en) * 1999-11-17 2002-10-07 群馬工業高等専門学校長 Carbon fiber artificial algae field and carbon fiber artificial algae field system combining multiple types of carbon fiber artificial algae
JP3328700B2 (en) * 2000-09-20 2002-09-30 群馬工業高等専門学校長 Wastewater purification method
JP2002239577A (en) * 2001-02-16 2002-08-27 Shinki Sangyo Kk Functional coirs, water quality improving material and soil protection material
JP2004074004A (en) * 2002-08-16 2004-03-11 Hiroyasu Ogawa Method of cleaning water in closed water area by using fibrous material
JP2004322047A (en) * 2003-04-28 2004-11-18 Toho Kako Kensetsu Kk Water cleaning method and water cleaning apparatus
EP1674428A4 (en) * 2003-08-22 2010-02-17 Kido Toshihiro Method for producing water containing metal ion and water treatment method using said production method, and tool for producing water containing metal ion and water treatment device using said production tool
JP2005230701A (en) * 2004-02-19 2005-09-02 Jfe Engineering Kk Cleaning material using slag, and method and apparatus for cleaning polluted water by using the cleaning material
JP2006088085A (en) * 2004-09-27 2006-04-06 Toshihiro Kido Water treatment apparatus
JP4413879B2 (en) * 2006-03-09 2010-02-10 独立行政法人国立高等専門学校機構 Water purification material, artificial algae and method for producing them
JP5258171B2 (en) * 2006-03-10 2013-08-07 幹生 杉本 Iron ion eluent
JP4344831B2 (en) * 2007-03-28 2009-10-14 独立行政法人国立高等専門学校機構 Decomposition and removal of bottom mud in environmental water
JP2009195849A (en) * 2008-02-22 2009-09-03 Soen Co Ltd Water purifying structure
JP2009195848A (en) * 2008-02-22 2009-09-03 Soen Co Ltd Water purifying structure
JP4556038B2 (en) * 2008-06-11 2010-10-06 石井商事株式会社 Water purification material
WO2010035800A1 (en) * 2008-09-26 2010-04-01 独立行政法人国立高等専門学校機構 System for water purification and method of increasing dissolved-oxygen concentration in water to be purified
JP4572302B2 (en) * 2009-01-29 2010-11-04 独立行政法人国立高等専門学校機構 Method and apparatus for removing phosphorus in human wastewater
JP4996656B2 (en) * 2009-09-02 2012-08-08 石井商事株式会社 Method for using blue-green suppressing material and blue-water suppressing device
JP2011050934A (en) * 2009-09-04 2011-03-17 Nihon Technical Development Center Co Ltd Solid matter for water purification and marine resource growth
JP2011115728A (en) * 2009-12-04 2011-06-16 Masakazu Kuroda Method of removing nitrogen and phosphorus in water and coloring of water
JP2011153353A (en) * 2010-01-27 2011-08-11 Nakagawa Special Steel Co Inc Iron powder mixture, method for using iron powder mixture, and method for producing iron powder mixture
JP4917655B2 (en) * 2010-03-30 2012-04-18 石井商事株式会社 Water purification material

Also Published As

Publication number Publication date
TW201210954A (en) 2012-03-16
JP2011255249A (en) 2011-12-22
TWI515169B (en) 2016-01-01

Similar Documents

Publication Publication Date Title
Song et al. Performance of a novel hybrid membrane bioreactor for treating saline wastewater from mariculture: Assessment of pollutants removal and membrane filtration performance
Wang et al. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant
OB et al. Bioremediation of polluted wastewater influent: Phosphorus and nitrogen removal
Kimura et al. Nitrate removal by a combination of elemental sulfur-based denitrification and membrane filtration
CN108409080B (en) Sediment in-situ remediation particles and preparation method, use method and application thereof
JP3820180B2 (en) Purification method for contaminated soil
CN102869619B (en) Water treatment method and ultrapure water manufacture method
WO2015118048A1 (en) Reduction of the amount of sulphur compounds in a sulphur compounds contaminated wastewater stream using a granular sludge treatment system
JP5612364B2 (en) Environmental water purification method
KR100403850B1 (en) Nitrogen and phosphorus removal method for advanced livestock wastewater or manure in liquid corrosion method and sludge reduction system
KR100631373B1 (en) Contact oxidation apparatus having maximized removal efficiency of nitrogen and phosphorous and contact oxidation method thereby
JP2006272307A (en) Method and system for purifying water of natural water area or water of water tank in which natural water is put using microbubbles
KR101439728B1 (en) Continuous removal of perchlorate and nitrate using enriched sulfur-oxidizing microorganisms
JP4288198B2 (en) Purification method for contaminated soil
Zhang et al. Simultaneous use of nitrate and calcium peroxide to control sulfide and greenhouse gas emission in sewers
CN115244012A (en) Method for treating water, sediment and/or sludge
KR20140099772A (en) Method and apparatus for continuous removal of perchlorate and nitrate by using halotolerant microorganisms
Saeedi et al. Denitrification of drinking water using a hybrid heterotrophic/autotrophic/BAC bioreactor
JP2011507691A (en) Method to increase the concentration of microbial colonies in the process of removing impurities by anaerobic digestion
Nakamura Water chemical remediation for simultaneous removal of phosphate ion and blue-green algae from anthropogenically eutrophied pond
JP2002346592A (en) Low temperature denitrification material and denitrification method using the same
JP2013208583A (en) Water treatment method, water treatment system, and ultrapure water production method
Yalçın et al. Removal of Dissolved Organic Matter in Drinking Water Using Active Microorganisms (EM)
Rosa et al. Nitrification of saline effluents
Aydoğmuş et al. Removal of Dissolved Organic Matter in Drinking Water Using Active Microorganisms (EM)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140904

R150 Certificate of patent or registration of utility model

Ref document number: 5612364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250