JPH06206804A - Man-made gathering-place for fish of sea area cleaning type and structure of man-made gathering-place for fish - Google Patents
Man-made gathering-place for fish of sea area cleaning type and structure of man-made gathering-place for fishInfo
- Publication number
- JPH06206804A JPH06206804A JP5018185A JP1818593A JPH06206804A JP H06206804 A JPH06206804 A JP H06206804A JP 5018185 A JP5018185 A JP 5018185A JP 1818593 A JP1818593 A JP 1818593A JP H06206804 A JPH06206804 A JP H06206804A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- fish reef
- filled
- fish
- seawater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
- Y02A40/81—Aquaculture, e.g. of fish
Landscapes
- Artificial Fish Reefs (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、沿岸海域浄化や栽培漁
業等に好適な、海域浄化式魚礁ないし魚礁構造物に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sea area purification type fish reef or fish reef structure suitable for purification of coastal sea areas, cultivation and fisheries.
【0002】[0002]
【従来の技術】近年、我が国の漁業は世界各国の200カ
イリ設定によって、従来の遠洋にて捕獲する漁業から近
海での育てる漁業への転換を余儀なくされている。この
ような状況にあって、従来、海中にコンクリート魚礁あ
るいは鉄鋼製魚礁を沈めたり、コンクリート魚礁の表面
に鉄化合物を塗布した魚礁を沈めたりして、魚を集め、
捕獲する方法が試みられてきた。また骨材として普通使
用されている砕石を用いてセメントを配合し、連続した
空隙を有するように成型,構造化した魚礁構造物も使用
されている。2. Description of the Related Art In recent years, fisheries in Japan have been forced to switch from conventional fisheries caught in the open ocean to fisheries raised in the near sea by setting 200 nautical miles around the world. In such a situation, conventionally, by sinking a concrete fish reef or a steel fish reef into the sea, or by sinking a fish reef coated with an iron compound on the surface of a concrete fish reef, collecting fish,
Methods of capturing have been tried. In addition, a fish reef structure is also used in which cement is mixed with crushed stone that is commonly used as an aggregate, and molded and structured so as to have continuous voids.
【0003】[0003]
【発明が解決しようとする課題】近年、海洋汚染の増加
は世界的な傾向にあるが、国土を海に囲まれ、かつウォ
ーターフロント開発が盛んに行なわれている我が国にお
いては、海洋汚染は著しい。中でも東京湾,大阪湾およ
び瀬戸内海等の閉鎖性海域において汚染が著しく、それ
に伴い沿岸海域の自然環境が乱され、水質汚濁と汚染が
進行し、海洋生物の種類とその量が急減してその再生産
も危ぶまれている。このように、海洋汚染の激しい我が
国においては、微生物の繁殖が少なく、したがって浄化
作用が乏しい従来の方法では、海洋の水質向上を期待す
ることができない。すなわち従来のコンクリート魚礁
は、海藻類の発育に長時間を要し、かつコンクリートは
石灰質であるため、発生した海藻がコンクリートから離
脱しやすいという欠点がある。In recent years, the increase in marine pollution has been a global trend, but in Japan, where the country is surrounded by the sea and waterfront development is actively carried out, marine pollution is remarkable. . Above all, pollution is remarkable in closed sea areas such as Tokyo Bay, Osaka Bay, and the Seto Inland Sea, and the natural environment of the coastal sea area is disturbed accordingly, water pollution and pollution progress, and the type and amount of marine organisms decrease sharply. Reproduction is also at stake. As described above, in Japan where ocean pollution is severe, it is not possible to expect improvement of water quality in the ocean by the conventional method in which the proliferation of microorganisms is small and the purification action is poor. That is, the conventional concrete fish reef has a drawback that it takes a long time for the growth of seaweed and the concrete is calcareous, so that the generated seaweed easily separates from the concrete.
【0004】また鉄鋼製魚礁では、鉄イオン生成に長時
間を要し、速効性がない。さらに、コンクリート魚礁の
表面に鉄化合物を塗布した魚礁では、鉄化合物の塗布コ
ストが高く、かつ耐久性に欠けるなどの問題がある。な
お近年、磯焼という現象が日本全国で広がりつつあり、
特に北海道の日本海側の岩盤はサンゴ藻(主成分CaC
O3)に覆われ、海藻の全くない不毛の砂漠地帯が広が
っている。このため、コンブなどの胞子が着床しても、
サンゴ藻の表面のCaCO3が剥離してしまい、結局胞子
が着生できず、したがって今後日本沿岸での漁獲量が激
減するのではないかと心配されている。本発明はこのよ
うな従来の問題点を解消し、従来よりもはるかに高い魚
類の蝟集効果を発揮する新規な魚礁ないし魚礁構造物を
提供することを目的とする。Further, in iron and steel fish reefs, it takes a long time to produce iron ions and is not fast-acting. Furthermore, a fish reef in which an iron compound is applied to the surface of a concrete fish reef has problems such as high application cost of the iron compound and lack of durability. In addition, in recent years, the phenomenon called Isoyaki is spreading all over Japan,
Especially, the bedrock on the Sea of Japan side of Hokkaido has coral algae (main component is CaC).
It is covered with O 3 ) and is a barren desert area without seaweed. Therefore, even if spores such as kelp land,
It is feared that the CaCO 3 on the surface of the coral alga will be exfoliated, and eventually the spores will not be able to settle, so that the catch on the coast of Japan will decrease drastically in the future. An object of the present invention is to provide a novel fish reef or fish reef structure which solves the above-mentioned conventional problems and exhibits a much higher fish collecting effect than ever before.
【0005】[0005]
【課題を解決するための手段】上述の目的を達成するた
め、本発明の請求項1に記載の海域浄化式魚礁構造物
は、セメントに酸化鉄と発泡基材とが混入されて連続し
た空隙を有するように形成された気泡コンクリート製ブ
ロックをそなえ、同ブロックに中空部が形成されるとと
もに、同中空部が上記魚礁本体の表面に開口する開口部
をそなえていることを特徴としている。In order to achieve the above-mentioned object, a sea area purification type fish reef structure according to claim 1 of the present invention has a continuous void in which iron oxide and a foaming base material are mixed in cement. And a hollow portion is formed in the block, and the hollow portion has an opening opening to the surface of the fish reef body.
【0006】また、同請求項2に記載の海域浄化式魚礁
構造物は、請求項1に記載の海域浄化式魚礁構造物にお
いて、上記中空部に鉄を充填された鉄充填型魚礁構造
物、あるいは上記中空部に鉄と鉄に比べて電位の高い金
属との混合物とを充填された混合金属充填型魚礁構造物
であることを特徴としている。The sea area purification type fish reef structure according to claim 2 is the sea area purification type fish reef structure according to claim 1, wherein the hollow portion is filled with iron. Alternatively, it is a mixed metal-filled fish reef structure in which the hollow portion is filled with iron and a mixture of a metal having a higher electric potential than iron.
【0007】さらに同請求項3に記載の海域浄化式魚礁
は、請求項2に記載の鉄充填型魚礁構造物が海中に3個
並設され、中央に位置する上記鉄充填型魚礁構造物とそ
の左右に配設された上記鉄充填型魚礁構造物との電気極
性を一定周期毎に変更すべく、上記各鉄充填型魚礁構造
物に直流電源が接続され、あるいは請求項2に記載の鉄
充填型魚礁構造物が海中に設置される一方同鉄充填型魚
礁構造物の左右両側に鉄に比べて電位の高い金属が配設
されて、同両金属と上記鉄充填型魚礁構造物との間が電
気的に接続されていることを特徴としている。Further, in the sea area purification type fish reef according to claim 3, three iron-filled fish reef structures according to claim 2 are arranged side by side in the sea, and the iron-filled fish reef structure is located in the center. The DC power source is connected to each of the iron-filled fish reef structures in order to change the electric polarity with the iron-filled fish reef structures arranged on the left and right of the iron-filled fish reef structure, or the iron according to claim 2. While the filling type fish reef structure is installed in the sea, a metal having a higher electric potential than that of iron is arranged on the left and right sides of the iron filling type fish reef structure, and the metal and the iron filling type fish reef structure are The feature is that the spaces are electrically connected.
【0008】[0008]
【作用】ここで、本発明の原理ないし作用について説明
する。酸化鉄と発泡基材とをセメントに配合し、成型,
構造化した気泡コンクリートの内部は、表面積の大きい
連続した空隙を有している。そこで、このような気泡コ
ンクリートに、任意の個所に(複数個)の中空部を設け
て魚礁構造物を形成し、これを海水に浸漬すると、この
魚礁構造物内を海水が自由に出入りし、流入する海水と
ともに多くの酸素が供給されて空隙内を好気性雰囲気に
維持することができる。したがって、海水中に生息する
微生物が上記の中空部、空隙の内部および気泡コンクリ
ートの表面に大量に付着繁殖して、生物皮膜層が形成さ
れる。そしてこの生物皮膜層が海水中の有機物を分解
し、無機化を進行させると同時に、海藻類および微生物
の増殖を促進し、その結果生物環境が改善される。Now, the principle and operation of the present invention will be described. Mixing iron oxide and foaming base material into cement, molding,
The interior of structured cellular concrete has continuous voids with a large surface area. Therefore, such aerated concrete is provided with (a plurality of) hollow portions at arbitrary places to form a fish reef structure, and when this is immersed in sea water, sea water freely flows in and out of the fish reef structure, A large amount of oxygen is supplied together with the inflowing seawater, so that the inside of the void can be maintained in an aerobic atmosphere. Therefore, a large amount of microorganisms inhabiting seawater adhere to and propagate on the hollow portion, the inside of the voids, and the surface of the aerated concrete to form a biofilm layer. The biofilm layer decomposes organic matter in seawater to promote mineralization, and at the same time promotes the growth of seaweeds and microorganisms, resulting in improvement of the biological environment.
【0009】なお、骨材として用いた酸化鉄への海藻類
の付着量は、骨材として普通の砕石を用いた場合に比べ
はるかに多いことは、従来から良く知られている事項で
ある。また、気泡コンクリートの表面は凹凸が多く、酸
化鉄表面には藻類が大量に繁茂し群落を形成するため、
酸化鉄を配合しない気泡コンクリートに比べ微生物の繁
殖がさらに促進され、海域の浄化作用が一段と加速され
る。さらに、酸化鉄と発泡基材とにセメントを配合して
成型,構造化した気泡コンクリート製ブロック(魚礁本
体)の内部は、表面積の大きい連続した空隙を有してい
るため、海水に浸漬すると気泡コンクリート内を海水が
自由に流入,通過し、流入する海水とともに多くの酸素
が供給されて空隙内が好気性雰囲気に維持され、海水中
の栄養塩を吸収した珪藻およびプランクトンは空隙内お
よび気泡コンクリート表面に大量に付着,繁殖し、珪藻
およびプランクトンをえさとする小魚が集まってくる。It is well known that the amount of seaweed adhered to iron oxide used as an aggregate is much larger than that when ordinary crushed stone is used as an aggregate. In addition, the surface of aerated concrete has many irregularities, and a large amount of algae grows on the iron oxide surface to form a community,
Compared with aerated concrete that does not contain iron oxide, the growth of microorganisms is further promoted and the purification action in the sea area is further accelerated. Furthermore, since the inside of the cellular concrete block (fish reef body) molded and structured by mixing cement into iron oxide and a foaming base material has continuous voids with a large surface area, when immersed in seawater, bubbles will form. Seawater freely flows in and through the concrete, a large amount of oxygen is supplied together with the inflowing seawater, the aerobic atmosphere is maintained in the voids, and diatoms and plankton that have absorbed nutrient salts in the seawater are in the voids and aerated concrete. A large number of small fish, which attach to the surface and breed, and collect diatoms and plankton, gather.
【0010】海藻類の酸化鉄表面への付着性が良好であ
ることは従来より知られており、凹凸の多い気泡コンク
リート製魚礁本体の酸化鉄表面には、海水中の栄養塩を
吸収した海藻類が大量に繁茂して群落となり、小魚をえ
さとする魚が増殖した海藻類の群落に集まってくる。上
述のような作用を有する魚礁本体の任意の個所に設けら
れた(複数個)の中空部に任意の形状の鉄を充填して海
水に浸漬すると、鉄表面には電位を異にする部分が混存
して局部電池を形成し、局部電池の陽極部からは腐食電
流が流出し、鉄は鉄イオンとなって溶出する。It has been known that the adhesion of seaweed to the surface of iron oxide is good, and the surface of iron oxide of the aerated concrete fish reef body with many irregularities has a seaweed that has absorbed nutrient salts in seawater. A large number of species flourish into a community and gather in a community of seaweeds in which fish, including small fish, proliferate. When the hollow parts (plurality) provided in any part of the fish reef body having the above-mentioned action are filled with iron of any shape and immersed in seawater, there are parts on the iron surface with different potentials. A local battery is formed by mixing them, and a corrosion current flows out from the anode of the local battery, and iron is eluted as iron ions.
【0011】ここで電極部での反応は[数1],[数
2]式で示される。Here, the reaction at the electrode portion is expressed by the equations [1] and [2].
【数1】 陽極部 : Fe → Fe2++2e- [Number 1] anode part: Fe → Fe 2+ + 2e -
【数2】 陰極部 : 1/2・O2+H2O+2e- → 2
OH- 海水中ではさらに陰極部で生じたOH-と陽極部のFe2+
とが結合して[数3]式のように、水酸化第一鉄を生成
する。[Equation 2] Cathode part: 1/2 · O 2 + H 2 O + 2e − → 2
OH - OH produced by the addition cathode unit in seawater - and the anode of Fe 2+
And are combined to produce ferrous hydroxide as in the formula [3].
【数3】 Fe2++2OH- → Fe(OH)2 水酸化第一鉄は、水中の酸素のため、[数4]式のよう
に、不溶性の水酸化第二鉄となって沈殿するが、沈殿直
後のFe(OH)3は[数5]式のように、Fe(OH)2 +と
平衡して存在する。[Equation 3] Fe 2+ + 2OH − → Fe (OH) 2 ferrous hydroxide precipitates as insoluble ferric hydroxide due to the oxygen in water, as shown in [Equation 4]. Immediately after the precipitation, Fe (OH) 3 exists in equilibrium with Fe (OH) 2 + as in the formula [5].
【数4】 2Fe(OH)2+1/2・O2+H2O → 2Fe(O
H)3 [Equation 4] 2Fe (OH) 2 + 1/2 · O 2 + H 2 O → 2Fe (O
H) 3
【数5】 [Equation 5]
【0012】上述の反応により生じたFeイオンおよび
Fe(OH)2 +は珪藻,プランクトンおよび海藻類を増殖
するための必須成分である。このため気泡コンクリート
製魚礁本体の中空部に充填した鉄から溶出したFeイオ
ンおよびFe(OH)2 +が、連続した空隙部を介して気泡
コンクリート表面から海中に流出することにより、気泡
コンクリートの表面での珪藻,プランクトンの繁殖が促
進される。また、凹凸の多い気泡コンクリート製魚礁本
体の酸化鉄表面では、付着した海藻類の成長が加速され
る結果、豊富な珪藻,プランクトンなどのえさを求めて
小魚が集まり、それらをえさとする魚が海藻類の近くに
大量に集まってくる。Fe ions and Fe (OH) 2 + generated by the above reaction are essential components for growing diatoms, plankton and seaweeds. Therefore, the Fe ions and Fe (OH) 2 + eluted from the iron filled in the hollow part of the aerated concrete fish reef body flow out from the aerated concrete surface into the sea through the continuous voids, so that the aerated concrete surface Breeding of diatoms and plankton is promoted. Also, on the iron oxide surface of the aerated concrete reef body with many irregularities, the growth of adhering seaweed is accelerated, and as a result, small fish gather in search of food such as abundant diatoms, plankton, etc. Are gathered in large numbers near seaweeds.
【0013】次に、気泡コンクリート製魚礁本体の中空
部に鉄(海水中の電位−0.6〜−0.7VVSSCE)と鉄に
比べ電位の高い金属、例えばグラファイト(海水中の電
位+0.2〜0.3VVSSCE),活性炭等との混合物を充填
して海水に浸漬すると、電位の高いグラファイトから電
位の低い鉄に電流が流れて電池を形成し、鉄は陽極とな
り、[数1]式と同じくFeイオンとなって溶出し、グ
ラファイトは陰極となり、[数2]式のようにOH-を
生成する。鉄と鉄に比べて電位の高い金属の混合物とを
充填した場合では、鉄のみを充填した場合に比較して、
溶出するFeイオン量が加速的に増加するため、珪藻,
プランクトンの繁殖,海藻類の増殖はさらに向上し、間
接的に蝟集効果は鉄のみを充填した場合に比較しさらに
高まる。なお陽極となる鉄からのFeイオンの溶出量
は、陰極となるグラファイトの面積が大きいほど大きく
なるので、グラファイトの面積(すなわち重量)を変え
ることによって、Feイオンの溶出量を調節できる。Next, iron (potential in seawater: −0.6 to −0.7 V VS SCE) and a metal having a higher potential than iron, for example, graphite (potential in seawater +0.2 to 0.3V VS SCE), when mixed with activated carbon and soaked in seawater, current flows from graphite with high potential to iron with low potential to form a battery. Similarly, it becomes Fe ions and elutes, and graphite becomes a cathode, and OH − is generated as in the formula [2]. In the case of filling with iron and a mixture of metals having a higher potential than iron, compared with the case of filling with iron alone,
Since the amount of Fe ions eluted increases at an accelerated rate,
Plankton's reproduction and seaweed's growth are further improved, and indirectly, the collection effect is further increased as compared with the case where only iron is added. The amount of Fe ions eluted from the iron serving as the anode increases as the area of the graphite serving as the cathode increases. Therefore, the amount of Fe ions eluted can be adjusted by changing the area (that is, weight) of the graphite.
【0014】上記のような作用を有する魚礁本体の任意
の個所に設けた(複数個)の中空部に、任意の形状の鉄
を充填した鉄充填型魚礁構造物を海中に浸漬し、その左
右両側にこれと同じ構造の鉄充填型魚礁構造物を配置
し、例えば波力,風力,太陽光などのローカルエネルギ
ーによって、一定周期毎に電極の極性を変えながら直流
電圧を加えると、直流電圧の正電極に接続された魚礁構
造物の方から電流が流出し、流出した電流は中間に配置
された魚礁構造物に流入し、当該魚礁内を通過して直流
電圧の負電極に接続された魚礁構造物に流入する。この
ため、正電極の魚礁構造物では、上述の[数1]式と同
様に、Feがイオンとなり海水中に溶出する。An iron-filled fish reef structure filled with iron of an arbitrary shape is immersed in the sea in (a plurality of) hollow portions provided at arbitrary locations of the fish reef body having the above-mentioned action, and the left and right sides of the structure are immersed. An iron-filled fish reef structure with the same structure as this is placed on both sides, and if a DC voltage is applied while changing the polarity of the electrodes at regular intervals by local energy such as wave power, wind power, or sunlight, A current flows out from the fish reef structure connected to the positive electrode, and the outflowing current flows into the fish reef structure located in the middle, passes through the fish reef and is connected to the negative electrode of the DC voltage. Inflow into the structure. Therefore, in the fish reef structure of the positive electrode, Fe becomes ions and elutes in seawater, as in the above-mentioned [Formula 1].
【0015】一方、正負両極の中間に配置された魚礁で
は、正電極からの電流が流入し、当該魚礁内を通過して
再び海水中に流出するとき、[数1]式に示すように、
FeがFeイオンとして溶出する。一方負電極に接続され
た魚礁構造物では、上述の[数2]式と同様に、OH-
が発生する。海水中では、さらに負電極で生じたOH-
と正電極で生じたFe2+とが結合して、上述[数3]式
と同様に、Fe(OH)2を生成する。さらに海水中の酸素
により、上述の[数4]式と同様に不溶性のFe(OH)3
となって沈殿するが、沈殿直後のFe(OH)3は、上述の
[数5]式と同様にFe(OH)2 +と平衡して存在する。On the other hand, in the fish reef located between the positive and negative poles, when the current from the positive electrode flows in, passes through the fish reef and flows out into the seawater again, as shown in the formula [1],
Fe elutes as Fe ions. On the one hand reef structure that is connected to the negative electrode, similarly to Equation 2 formula above, OH -
Occurs. In seawater, OH − generated at the negative electrode
Fe 2+ generated at the positive electrode are combined with each other to generate Fe (OH) 2 in the same manner as in the above [Formula 3]. Furthermore, due to the oxygen in seawater, insoluble Fe (OH) 3 as in the above formula [4]
However, Fe (OH) 3 immediately after the precipitation exists in equilibrium with Fe (OH) 2 + , as in the above-mentioned [Equation 5].
【0016】次に上述の正電極に接続した魚礁構造物を
負電極に、そして負電極に接続した魚礁構造物を正電極
に、というように、それらの極性を切り変えると、上述
とは逆の方向に電流が流れ、正負両極では上述と同じ反
応を生ずる。したがって、一定周期毎に魚礁構造物の極
性を変えることにより、複数個の魚礁から連続的に、F
eイオンを溶出させることができる。さらに加える電圧
を変えることによって、溶出するFeイオンの濃度を調
整することができる。次に、魚礁本体の任意の個所に設
けた(複数個)の中空部に任意の形状の鉄を充填した鉄
充填型魚礁構造物を海中に浸漬し、その左右両側に鉄に
比べ電位の高い任意の形状の金属、例えばグラファイト
を配置し、両金属と鉄充填型魚礁構造物とを導線にて接
続すると、電位の高いグラファイトから電位の低い鉄に
電流が流れて電池を形成し、鉄は陽極となり、[数1]
式と同じくFeイオンとして溶出し、グラファイトは陰
極となり、[数2]式のようにOH-を生成する。Next, by switching the polarities of the fish reef structure connected to the positive electrode to the negative electrode, the fish reef structure connected to the negative electrode to the positive electrode, and the like, the reverse of the above is obtained. A current flows in the direction of, and the same reaction as described above occurs at the positive and negative polarities. Therefore, by changing the polarities of the fish reef structure at regular intervals, the F
e-ions can be eluted. By further changing the applied voltage, the concentration of eluted Fe ions can be adjusted. Next, the iron-filled fish reef structure in which iron of any shape is filled in the hollow part (plurality) provided in any part of the fish reef main body is immersed in the sea, and the potential on both sides is higher than that of iron. When a metal having an arbitrary shape, for example, graphite is placed, and both metals and the iron-filled fish reef structure are connected by a conductive wire, a current flows from the graphite having a high potential to the iron having a low potential to form a battery. It becomes an anode, and [Number 1]
As in the formula, it elutes as Fe ions, graphite becomes the cathode, and OH − is generated as in the formula [2].
【0017】[0017]
【実施例】以下、図面により本発明の実施例としての海
域浄化式魚礁構造物について説明する。図1(a)〜(d)は
いずれも第1実施例の魚礁構造物の斜視図、図2,図3
は図第2実施例および第3実施例の模式斜視図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A sea area purification type fish reef structure as an embodiment of the present invention will be described below with reference to the drawings. 1 (a) to 1 (d) are perspective views of the fish reef structure of the first embodiment, FIG. 2 and FIG.
FIG. 3 is a schematic perspective view of the second and third embodiments of FIG.
【0018】まず、第1実施例を説明する。図1(a)に
おいて、気泡コンクリート製の魚礁構造物(以下「魚礁
本体」と呼ぶこともある)1は、酸化鉄と発泡基材にセ
メントおよび水とを配合して、150mmφ×300mHの気泡コ
ンクリート製ブロックとして成型され、成型後その中心
部に90mmφ×300mmHの中空部2が設けられて、形成され
ている。なおこのようにして形成された魚礁本体は、成
型後48時間空中養生しその後7日間水中養生(25℃)し
て、後述の実験に供された。図1(b)の魚礁構造物は、
図1(a)の魚礁本体1の中空部2に、粒状の鉄3と棒状
の鉄筋とが充填されて、構成されている。図1(c)の魚
礁構造物は、図1(a)の魚礁本体1の中空部2に、粒状
の鉄3(あるいは棒状の鉄筋)がグラファイト4と共に
重量比1:1で充填されて、構成されている。図1(d)
は、図1(a)〜(c)に示した各魚礁構造物の中空部2の上
下を、コンクリート製のふた5で密閉して構成された魚
礁構造物を示している。First, the first embodiment will be described. In Fig. 1 (a), a fish reef structure made of aerated concrete (sometimes referred to as "fish reef body" below) 1 is a mixture of iron oxide, a foaming base material, and cement and water, and has bubbles of 150 mmφ x 300 mH. It is molded as a concrete block, and after molding, a hollow part 2 of 90 mmφ × 300 mmH is provided in the center part thereof to be formed. The fish reef body thus formed was cured in air for 48 hours after molding and then cured in water (25 ° C.) for 7 days, and then used in the experiment described below. The fish reef structure in Figure 1 (b) is
The hollow portion 2 of the fish reef body 1 of FIG. 1 (a) is filled with granular iron 3 and rod-shaped reinforcing bars. In the fish reef structure of FIG. 1 (c), granular iron 3 (or rod-shaped rebar) is filled in a hollow portion 2 of the fish reef main body 1 of FIG. 1 (a) together with graphite 4 at a weight ratio of 1: 1. It is configured. Figure 1 (d)
1 shows a fish reef structure constructed by sealing a hollow part 2 of each fish reef structure shown in FIGS. 1A to 1C with a lid 5 made of concrete.
【0019】これらの魚礁構造物について、次のような
実験を行なった。なお実験において、魚礁構造物A〜E
は次の[表1]に示すとおりの構造のものを言う。なお
魚礁構造物A〜Eを、以下[A],[B]……[E]と
略称することもある。The following experiments were conducted on these fish reef structures. In the experiment, fish reef structures AE
Means a structure as shown in the following [Table 1]. The fish reef structures A to E may be abbreviated as [A], [B] ... [E] below.
【表1】 [Table 1]
【0020】試験実施要領は下記のとおりである。 魚礁構造物A〜Eをそれぞれ別々に50lのポリバケツ
に入れ、清水に浸漬し、1日に1回水を入れかえて魚礁
構造物のアルカリ洗浄を3日間行なった。その結果各魚
礁構造物A〜Eの3日後のpHは、8.7〜9.0であった。 次に、上記の清水の代わりに海水を入れ3日間浸漬し
たのち、魚礁構造物を引上げ、海水を混合してサンプリ
ングを行ない、各魚礁構造物A〜Eのそれぞれから溶出
したFeイオン(Fe2+とFe(OH)3の合計)の濃度分析
を行なった。その結果、Feイオン濃度は、[A]で1.4
mg/l,[B],[C]で330mg/l,[D],[E]では85
0mg/lであった。 次に、上記の海水を新しい海水と入れかえた後、各
魚礁構造物に種糸を巻き付けた後、50lのポリバケツの
底部に海中からポンプで海水を入れオーバーフローさせ
ながら、各魚礁構造物A〜Eの浸漬試験を3ケ月間行な
い、3ケ月後における各魚礁構造物A〜Eの表面および
バケツ内面に付着した珪藻の付着状況を目視で調査し
た。The test procedure is as follows. Each of the fish reef structures A to E was separately put in a 50 l poly bucket, immersed in fresh water, and water was replaced once a day to carry out alkaline cleaning of the fish reef structures for 3 days. As a result, the pH of each fish reef structure A to E after 3 days was 8.7 to 9.0. Next, instead of the above-mentioned fresh water, seawater was added and immersed for 3 days, and then the fish reef structure was pulled up and mixed with sea water for sampling, and Fe ions (Fe 2) eluted from each of the fish reef structures A to E were extracted. The total concentration of + and Fe (OH) 3 was analyzed. As a result, the Fe ion concentration was 1.4 at [A].
mg / l, 330 mg / l for [B] and [C], 85 for [D] and [E]
It was 0 mg / l. Next, after replacing the above seawater with new seawater, winding a seed thread around each fish reef structure, and then pouring seawater into the bottom of the 50 l poly bucket from the sea by a pump to overflow each fish reef structure A to E. The immersion test was performed for 3 months, and the adhesion state of diatoms adhering to the surface of each fish reef structure A to E and the inner surface of the bucket after 3 months was visually inspected.
【0021】その結果[A](無充填)の場合は、魚礁
構造物の表面およびバケツ内面には珪藻がわずかに付着
する程度であった。[B],[C](粒状と棒状Fe充
填)では、魚礁構造物の表面,バケツ内面への珪藻付着
は[A]に比べはるかに多かった。また[C]の方が
[B]より珪藻付着が多くみられた。[D],[E](粒
状Fe+グラファイト,棒状鉄筋+グラファイト)の場
合、[B],[C]に比べ珪藻付着量はさらに増加し、
Feイオンが増加すると珪藻類が著しく繁殖することが
目視ではっきり確認することができた。また、強いて比
較すると[E]の方が[D]より多くの珪藻付着がみら
れた。As a result, in the case of [A] (unfilled), the diatom was slightly attached to the surface of the fish reef structure and the inner surface of the bucket. With [B] and [C] (granular and rod-shaped Fe filling), the diatom adhesion on the surface of the fish reef structure and the inner surface of the bucket was much higher than that of [A]. In addition, [C] showed more diatom adhesion than [B]. In the case of [D] and [E] (granular Fe + graphite, rod-shaped rebar + graphite), the diatom adhesion amount is further increased as compared with [B] and [C].
It could be clearly confirmed by visual observation that the diatoms proliferate remarkably when Fe ions increase. Further, when compared strongly, [E] showed more diatom adhesion than [D].
【0022】このことは、この第1実施例のものでは、
さきの[作用]の項の前段で述べたように、気泡コンク
リートの多数の凹凸が微生物等の付着性を良好にすると
ともに、魚礁構造物からイオンFe2+およびイオンFe
(OH)2 +が発生し、これらが魚礁構造物の表面等に付着
した生物の成長を促進させていることを示している。な
お、付着した生物の種類としては、細菌類,微小生物な
どが中空部および表面に、海藻類が付着していた。この
ことから、酸化鉄を配合し、連続した空隙を有しかつ中
空部を設けた気泡コンクリートは、海洋での水質浄化の
みならず、河川,湖沼等の淡水中においても同じく顕著
な効果が期待できるということも、判明した。This means that in the first embodiment,
As mentioned in the preceding section of the previous [action], along with a number of irregularities in the cellular concrete is to improve the adherence of such microorganisms, ions Fe 2+ and ions Fe from reef structure
It indicates that (OH) 2 + is generated, and these promote the growth of organisms attached to the surface of the fish reef structure. As the types of attached organisms, seaweeds were attached to the hollow part and the surface of bacteria, microbes and the like. From this, it is expected that aerated concrete mixed with iron oxide and having a continuous void and a hollow portion will not only purify water in the ocean but also have a remarkable effect in fresh water such as rivers and lakes. It turns out that you can.
【0023】次に、第2実施例を説明する。図2におい
て、符号1は酸化鉄と発泡基材にセメントおよび水とを
配合して、150mmφ×300mmHの気泡コンクリート製ブロ
ックとして形成された魚礁本体を示しており、この魚礁
本体1の成型後、その中心部に90mmφ×300mmHの中空部
2が形成されている。そしてこのようにして製作された
3個の魚礁本体を48時間空中養生、7日間水中養生(25
℃)して、次の実験を行なった。符号Fは、魚礁本体1
の中空部2に粒状の鉄3を充填して形成された魚礁構造
物を示し、また符号HおよびGは、魚礁本体1の中空部
2に棒状の鉄筋6を充填して形成された魚礁構造物を示
している。なお以下、魚礁構造物F,G,Hを、[F],
[G],[H]と略称することもある。Next, a second embodiment will be described. In FIG. 2, reference numeral 1 indicates a fish reef main body formed by mixing iron oxide, a foaming base material with cement and water, and formed as a block of aerated concrete of 150 mmφ × 300 mmH. A hollow portion 2 of 90 mmφ × 300 mmH is formed in the center thereof. And the three fish reef bodies produced in this way were cured in air for 48 hours and underwater for 7 days (25
Then, the next experiment was conducted. Reference numeral F indicates the fish reef body 1
Shows a fish reef structure formed by filling the hollow portion 2 of the fish reef with granular iron 3, and reference numerals H and G indicate a fish reef structure formed by filling the hollow portion 2 of the fish reef main body 1 with rod-shaped reinforcing bars 6. Showing the thing. In addition, the fish reef structures F, G, and H are [F],
It may be abbreviated as [G] or [H].
【0024】そして、図2に示すように、[F]の左右
に[G]および[H]を配置して各鉄筋6に接続された
両導線7間に直流電源8を接続して[H],[G]間に0.
5Vの直流電圧を加えた。このように各魚礁構造物F,
G,Hを配置した後、これを260lのポリ容器内に設置
し、ポンプで海水を入れオーバーフローさせながら3ケ
月間浸漬し、[F],[G],[H]の表面に付着した珪藻
の付着状況を目視で調査した。参考のため、中空部に何
も充填していない魚礁本体について上記とを同じ要領で
浸漬し珪藻の付着状況を調べた。その結果、中空部に何
も充填していないものの表面には珪藻がわずかに付着す
る程度であった。一方、魚礁構造物F〜Hの表面には多
量の珪藻が付着しており、Feイオンの増加により珪藻
が著しく繁殖することが目視により確認できた。なお符
号9は電流の流れ方向を示し、また符号10a,10b,10c
はそれぞれ電圧の極性を変えたときの導線,直流電源,
電流を示している。Then, as shown in FIG. 2, [G] and [H] are arranged on the left and right sides of [F], and a DC power source 8 is connected between both conductors 7 connected to each rebar 6 [H]. ], [G] between 0.
A DC voltage of 5V was applied. In this way, each fish reef structure F,
After arranging G and H, place this in a 260 l poly container, soak the seawater with a pump and let it soak for 3 months while overflowing, and then attach the diatom to the surface of [F], [G], and [H]. The state of adhesion was visually inspected. For reference, the fish reef body in which the hollow part was not filled with anything was immersed in the same manner as above, and the adhesion state of diatom was examined. As a result, although the hollow part was not filled with anything, diatom was slightly attached to the surface. On the other hand, a large amount of diatom was attached to the surface of the fish reef structures F to H, and it was visually confirmed that the diatom remarkably propagated due to an increase in Fe ions. Reference numeral 9 indicates the direction of current flow, and reference numerals 10a, 10b, 10c.
Are the conductors, DC power supply, and
It shows the current.
【0025】次に第3実施例を説明する。図3におい
て、符号11は魚礁本体を示しており、この魚礁本体11に
ついても第2実施例の場合と同様の方法で成型し、かつ
養生を行なった後、次の実験を行なった。すなわち、魚
礁本体11の中空部12に棒状の鉄筋13を充填して魚礁構造
物J(以下[J]と略称することもある)を形成し、
[J]の左右にグラファイト14をそれぞれ配置して、鉄
筋13および両グラファイト14を導線15で接続した。魚礁
構造物Jおよびグラファイト14,14を、200lのポリ容
器内にこの状態で配置し、第2実施例の場合と同様の実
験を行なった。参考のため、中空部に何も充填していな
い魚礁本体について上記とを同じ要領で浸漬し珪藻の付
着状況を調べた。その結果、中空部に何も充填していな
いものの表面には珪藻がわずかに付着する程度であっ
た。一方、魚礁構造物Jの表面には多量の珪藻が付着し
ており、Feイオンの増加により珪藻が著しく繁殖するこ
とが目視により確認できた。なお、図3中の符号16は電
流の流れ方向を示している。上述の第2実施例および第
3実施例における各実験結果は、さきに[作用]の項の
中段および後段で述べたとおりの作用が行なわれている
ことを示している。Next, a third embodiment will be described. In FIG. 3, reference numeral 11 indicates a fish reef main body, and this fish reef main body 11 was molded and cured in the same manner as in the case of the second embodiment, and then the following experiment was conducted. That is, the hollow portion 12 of the fish reef main body 11 is filled with the rod-shaped reinforcing bar 13 to form a fish reef structure J (hereinafter sometimes abbreviated as [J]),
Graphites 14 were arranged on the left and right sides of [J], and the reinforcing bar 13 and both graphites 14 were connected by a lead wire 15. Fish reef structure J and graphite 14 and 14 were placed in a 200 l poly container in this state, and the same experiment as in the case of the second embodiment was conducted. For reference, the fish reef body in which the hollow part was not filled with anything was immersed in the same manner as above, and the adhesion state of diatom was examined. As a result, although the hollow part was not filled with anything, diatom was slightly attached to the surface. On the other hand, a large amount of diatom was attached to the surface of the fish reef structure J, and it was visually confirmed that the diatom remarkably propagated due to the increase of Fe ions. The reference numeral 16 in FIG. 3 indicates the direction of current flow. The respective experimental results in the above-mentioned second and third embodiments show that the action as described in the middle stage and the latter stage of the [action] section is performed.
【0026】[0026]
【発明の効果】以上詳述したように、本発明の海域浄化
式魚礁および魚礁構造物によれば、次のような効果ない
し利点が得られる。 (1) 魚礁構造物が、酸化鉄に発泡基材とセメントとを配
合して成型構造化した気泡コンクリートで形成されてい
るため、内部に連続した空隙を有しており、しかも任意
の個所に中空部が設けられているため、海水との接触面
積が拡大して好気性雰囲気となり、微生物が大量に繁殖
しやすく、かつ表面の凹凸部での海藻胞子の着床が容易
なため、有機物の微生物による分解作用が促進されて、
顕著な海洋浄化効果を発揮する。 (2) 気泡コンクリートは内部に連続した空隙を有するた
め海水との接触面積が拡大され、さらに充填物の鉄から
溶出する鉄イオンが珪藻,プランクトンの繁殖作用を促
進し、かつ表面の凹凸部が海藻胞子の着床性を向上させ
ており、これらの諸効果によって一連の食物連鎖反応を
促進させ、これによって従来にはみられない魚貝類の蝟
集効果を発揮し、低コスト,耐久性の大きい魚礁を提供
することができる。As described in detail above, according to the sea area purification type fish reef and the fish reef structure of the present invention, the following effects and advantages are obtained. (1) The fish reef structure has a continuous void inside because it is made of aerated concrete that is formed and structured by mixing iron oxide with a foaming base material and cement, and at any desired location. Since the hollow part is provided, the contact area with seawater is expanded to become an aerobic atmosphere, microorganisms are easily proliferated in large amounts, and seaweed spores are easily implanted on the surface irregularities, so that organic matter The decomposition action by microorganisms is promoted,
It exerts a remarkable marine purification effect. (2) Since aerated concrete has continuous voids inside, the contact area with seawater is expanded, and the iron ions eluted from the iron in the filler promote the breeding action of diatoms and plankton, and the uneven surface Improving the implantation ability of seaweed spores, promoting a series of food chain reactions by these various effects, thereby exhibiting the gathering effect of fish and shellfish that has not been seen in the past, low cost, great durability A fish reef can be provided.
【0027】(3) 魚礁本体の任意の個所に設けられた中
空部に鉄を充填して海水に浸漬することにより、鉄表面
に電位を異にする部分が混有して局部電池を形成し、局
部電池の陽極部から腐食電流が流出するとともに鉄イオ
ンが溶出して、海藻類に吸収され海藻の繁殖を促す効果
が発生する。 (4) 気泡コンクリート製魚礁本体の中空部に鉄(海水中
の電位−0.6〜−0.7VVSSCE)と鉄に比べ電位の高い
金属、例えばグラファイト(海水中の電位+0.2〜0.3V
VSSCE),活性炭等との混合物を充填して海水に浸漬
することにより、電位の高いグラファイトから電位の低
い鉄に電流が流れて電池を形成し、鉄は陽極となり、上
記(3)と同じくFeイオンとなって溶出し、グラファイト
は陰極となり、OH-を生成する。鉄と鉄に比べて電位
の高い金属の混合物とを充填した場合では、鉄のみを充
填した場合に比較して、溶出するFeイオン量が加速的
に増加するため、珪藻,プランクトンの繁殖,海藻類の
増殖はさらに向上し、間接的に蝟集効果は鉄のみを充填
した場合に比較しさらに高まる。(3) By filling a hollow portion provided at an arbitrary part of the fish reef body with iron and immersing it in seawater, a portion having different potentials on the iron surface is mixed to form a local battery. The corrosion current flows out from the anode part of the local battery, and the iron ions are eluted and absorbed by the seaweed to promote the growth of the seaweed. (4) Iron (potential in seawater −0.6 to −0.7V VS SCE) and a metal with a higher potential than iron, such as graphite (potential +0.2 to 0.3V in seawater), in the hollow part of the aerated concrete fish reef body.
VS SCE), activated carbon, etc. are filled and soaked in seawater, a current flows from graphite with high potential to iron with low potential to form a battery, and iron becomes an anode, which is the same as (3) above. It becomes Fe ions and elutes, and graphite becomes a cathode and produces OH − . When iron and a mixture of metals having a higher potential than iron are filled, the amount of Fe ions to be eluted increases more rapidly than when only iron is filled. Therefore, diatom, plankton breeding, seaweed The growth of the species is further improved, and indirectly, the collecting effect is further enhanced as compared with the case where only iron is filled.
【0028】(5) 魚礁本体の任意の個所に設けた(複数
個)の中空部に、任意の形状の鉄を充填した鉄充填型魚
礁構造物を海中に浸漬し、その左右両側にこれと同じ構
造の鉄充填型魚礁構造物を配置し、一定周期毎に電極の
極性を変えながら直流電圧を加えることにより、直流電
圧の正電極に接続された魚礁構造物の方から電流が流出
し、流出した電流は中間に配置された魚礁構造物に流入
し、当該魚礁内を通過して直流電圧の負電極に接続され
た魚礁構造物に流入する。このため、正電極の魚礁構造
物では、上記(3)と同様に、Feがイオンとなり海水中に
溶出する。一方、正負両極の中間に配置された魚礁で
は、正電極からの電流が流入し、当該魚礁内を通過して
再び海水中に流出するとき、上記(3)のように、FeがF
eイオンとして溶出する。一方負電極に接続された魚礁
構造物では、上記(4)と同様に、OH-が発生する。海水
中では、さらに負電極で生じたOH-と正電極で生じた
Fe2+とが結合してFe(OH)2が生成され、これが海水
中の酸素により、不溶性のFe(OH)3となって沈殿する
が、沈殿直後のFe(OH)3は、Fe(OH)2 +と平衡して
存在する。さらに正電極に接続した魚礁構造物を負電極
に、そして負電極に接続した魚礁構造物を正電極に、と
いうように、それらの極性を切り変えることにより、上
述とは逆の方向に電流が流れ、正負両極では上述と同じ
反応を生ずる。したがって、一定周期毎に魚礁構造物の
極性を変えることにより、複数個の魚礁から連続的に、
Feイオンを溶出させることができる。(5) An iron-filled fish reef structure filled with iron of an arbitrary shape is immersed in the sea in (a plurality of) hollow portions provided at arbitrary points of the fish reef body, and the By placing iron-filled fish reef structures of the same structure and applying a DC voltage while changing the polarity of the electrodes at regular intervals, a current flows out from the fish reef structure connected to the positive electrode of the DC voltage. The outflowing current flows into the fish reef structure arranged in the middle, passes through the fish reef and flows into the fish reef structure connected to the negative electrode of the DC voltage. Therefore, in the fish reef structure of the positive electrode, Fe becomes ions and elutes in seawater as in the above (3). On the other hand, in the fish reef located between the positive and negative poles, when the current from the positive electrode flows in, passes through the reef, and flows out again into the seawater, Fe becomes F
Elute as e-ion. On the other hand, in the fish reef structure connected to the negative electrode, OH − is generated as in (4) above. In seawater, OH − generated at the negative electrode and Fe 2+ generated at the positive electrode are further combined to generate Fe (OH) 2 , which is converted into insoluble Fe (OH) 3 by oxygen in seawater. However, Fe (OH) 3 immediately after the precipitation exists in equilibrium with Fe (OH) 2 + . Further, by switching the polarities of the fish reef structure connected to the positive electrode to the negative electrode, the fish reef structure connected to the negative electrode to the positive electrode, and the like, a current flows in the opposite direction to the above. The same reaction as described above occurs in both the positive and negative polarities. Therefore, by changing the polarity of the fish reef structure at regular intervals, it is possible to continuously
Fe ions can be eluted.
【図面の簡単な説明】[Brief description of drawings]
【図1】(a) 本発明の第1実施例としての海域浄化式魚
礁構造物の斜視図。 (b) 同第1実施例としての海域浄化式魚礁構造物の斜視
図。 (c) 同第1実施例としての海域浄化式魚礁構造物の斜視
図。 (d) 同第1実施例としての海域浄化式魚礁構造物の斜視
図。FIG. 1 (a) is a perspective view of a sea area purification type fish reef structure as a first embodiment of the present invention. (b) A perspective view of a sea area purification type fish reef structure as the first embodiment. (c) A perspective view of a sea area purification type fish reef structure as the first embodiment. (d) A perspective view of a sea area purification type fish reef structure as the first embodiment.
【図2】同第2実施例としての海域浄化式魚礁の模式斜
視図。FIG. 2 is a schematic perspective view of a sea area purification type fish reef as the second embodiment.
【図3】同第3実施例としての海域浄化式魚礁の模式斜
視図。FIG. 3 is a schematic perspective view of a sea area purification type fish reef as the third embodiment.
1,11 魚礁構造物(魚礁本体) 2,12 中空部 3,13 鉄 4.14 グラファイト 5 ふた 6 鉄筋 7,15 導線 8 直流電源 1,11 Fish reef structure (fish reef main body) 2,12 Hollow part 3,13 Iron 4.14 Graphite 5 Lid 6 Rebar 7,15 Conductor 8 DC power supply
フロントページの続き (72)発明者 本村 勇 長崎市深堀町5丁目717番1号 三菱重工 業株式会社長崎研究所内 (72)発明者 葛西 宏直 長崎市深堀町5丁目717番1号 三菱重工 業株式会社長崎研究所内 (72)発明者 平部 頴達 長崎県西彼杵郡伊王島町大字沖ノ島8番地 2 西日本タンカーサービス株式会社内 (72)発明者 山口 正人 長崎県長崎市大橋町22−14 三基興業株式 会社内 (72)発明者 富山 由美 長崎県長崎市大橋町22−14 三基興業株式 会社内Front page continuation (72) Inventor Isamu Motomura 5-717-1, Fukahori-cho, Nagasaki-shi Nagasaki Research Institute, Mitsubishi Heavy Industries, Ltd. (72) Inventor Hironao Kasai 5-717-1, Fukahori-cho, Nagasaki-shi Mitsubishi Heavy Industries Ltd. Company Nagasaki Research Institute (72) Inventor Sada Hirabe 8 Okinoshima, Ooshima, Iojima-cho, Nishisonogi-gun, Nagasaki 2 West Nippon Tanker Service Co., Ltd. (72) Masato Yamaguchi 22-14 Ohashi-cho, Nagasaki-shi, Nagasaki In-company (72) Inventor Yumi Toyama 22-14 Ohashi-cho, Nagasaki-shi, Nagasaki Sanki Kogyo Co., Ltd.
Claims (3)
れて連続した空隙を有するように形成された気泡コンク
リート製ブロックをそなえ、同ブロックに中空部が形成
されるとともに、同中空部が上記ブロックの表面に開口
する開口部をそなえていることを特徴とする、海域浄化
式魚礁構造物。1. A cement concrete block is formed by mixing iron oxide and a foaming base material into cement so as to have continuous voids. A hollow portion is formed in the block and the hollow portion is formed. A sea area purification type fish reef structure characterized by having an opening opening on the surface of the block.
において、上記中空部に鉄を充填された鉄充填型魚礁構
造物、あるいは上記中空部に鉄と鉄に比べて電位の高い
金属との混合物とを充填された混合金属充填型魚礁構造
物。2. The sea area purification type fish reef structure according to claim 1, wherein the hollow portion is filled with iron, the iron filling type fish reef structure, or the hollow portion has a higher potential than iron and iron. A mixed metal-filled fish reef structure filled with a mixture of and.
海中に3個並設され、中央に位置する上記鉄充填型魚礁
構造物とその左右に配設された上記鉄充填型魚礁構造物
との電気極性を一定周期毎に変更すべく、上記各鉄充填
型魚礁構造物に直流電源が接続され、あるいは請求項2
に記載の鉄充填型魚礁構造物が海中に設置される一方同
鉄充填型魚礁構造物の左右両側に鉄に比べて電位の高い
金属が配設されて、同両金属と上記鉄充填型魚礁構造物
との間が電気的に接続されていることを特徴とする、海
域浄化式魚礁。3. The iron-filled fish reef structure according to claim 2, wherein three iron-filled fish reef structures are arranged side by side in the sea, and the iron-filled fish reef structure is located in the center and the iron-filled fish reefs are arranged on the left and right sides of the iron-filled fish reef structure. A DC power source is connected to each of the iron-filled fish reef structures in order to change the electric polarity with the structure at regular intervals, or
While the iron-filled fish reef structure described in 1. is installed in the sea, a metal having a higher electric potential than iron is disposed on the left and right sides of the iron-filled fish reef structure. An ocean purification fish reef characterized by being electrically connected to a structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5018185A JPH06206804A (en) | 1993-01-08 | 1993-01-08 | Man-made gathering-place for fish of sea area cleaning type and structure of man-made gathering-place for fish |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5018185A JPH06206804A (en) | 1993-01-08 | 1993-01-08 | Man-made gathering-place for fish of sea area cleaning type and structure of man-made gathering-place for fish |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06206804A true JPH06206804A (en) | 1994-07-26 |
Family
ID=11964558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5018185A Withdrawn JPH06206804A (en) | 1993-01-08 | 1993-01-08 | Man-made gathering-place for fish of sea area cleaning type and structure of man-made gathering-place for fish |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06206804A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005019116A1 (en) * | 2003-08-22 | 2005-03-03 | Kido, Toshihiro | Method for producing water containing metal ion and water treatment method using said production method, and tool for producing water containing metal ion and water treatment device using said production tool |
JP2007268511A (en) * | 2006-03-10 | 2007-10-18 | Mikio Sugimoto | Iron ion eluting body |
JP2009297622A (en) * | 2008-06-11 | 2009-12-24 | Ishii Shoji Kk | Water cleaning material |
JP2010172829A (en) * | 2009-01-29 | 2010-08-12 | Institute Of National Colleges Of Technology Japan | Removing method and removing apparatus for phosphorus in human waste drainage |
JP2011050934A (en) * | 2009-09-04 | 2011-03-17 | Nihon Technical Development Center Co Ltd | Solid matter for water purification and marine resource growth |
JP2011255249A (en) * | 2010-06-04 | 2011-12-22 | Akira Kojima | Method for cleaning environmental water |
CN113229194A (en) * | 2021-02-05 | 2021-08-10 | 贵州工程应用技术学院 | Three-dimensional freshwater fish germplasm resource protection reef |
-
1993
- 1993-01-08 JP JP5018185A patent/JPH06206804A/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005019116A1 (en) * | 2003-08-22 | 2005-03-03 | Kido, Toshihiro | Method for producing water containing metal ion and water treatment method using said production method, and tool for producing water containing metal ion and water treatment device using said production tool |
EP1674428A1 (en) * | 2003-08-22 | 2006-06-28 | Kido, Toshihiro | Method for producing water containing metal ion and water treatment method using said production method, and tool for producing water containing metal ion and water treatment device using said production tool |
EP1674428A4 (en) * | 2003-08-22 | 2010-02-17 | Kido Toshihiro | Method for producing water containing metal ion and water treatment method using said production method, and tool for producing water containing metal ion and water treatment device using said production tool |
JP2007268511A (en) * | 2006-03-10 | 2007-10-18 | Mikio Sugimoto | Iron ion eluting body |
JP2009297622A (en) * | 2008-06-11 | 2009-12-24 | Ishii Shoji Kk | Water cleaning material |
JP4556038B2 (en) * | 2008-06-11 | 2010-10-06 | 石井商事株式会社 | Water purification material |
JP2010172829A (en) * | 2009-01-29 | 2010-08-12 | Institute Of National Colleges Of Technology Japan | Removing method and removing apparatus for phosphorus in human waste drainage |
JP4572302B2 (en) * | 2009-01-29 | 2010-11-04 | 独立行政法人国立高等専門学校機構 | Method and apparatus for removing phosphorus in human wastewater |
JP2011050934A (en) * | 2009-09-04 | 2011-03-17 | Nihon Technical Development Center Co Ltd | Solid matter for water purification and marine resource growth |
JP2011255249A (en) * | 2010-06-04 | 2011-12-22 | Akira Kojima | Method for cleaning environmental water |
CN113229194A (en) * | 2021-02-05 | 2021-08-10 | 贵州工程应用技术学院 | Three-dimensional freshwater fish germplasm resource protection reef |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5543034A (en) | Method of enhancing the growth of aquatic organisms, and structures created thereby | |
JP4489043B2 (en) | Water area environmental conservation material and water area environmental conservation method | |
CN100336750C (en) | Eutrophication waters comprehensive treatment method | |
JP2005034140A (en) | Environmental preservation material for water area and method for preservation | |
CN111977818A (en) | Comprehensive treatment method for black and odorous water body of urban river | |
JPH06206804A (en) | Man-made gathering-place for fish of sea area cleaning type and structure of man-made gathering-place for fish | |
JP2008154471A (en) | Artificial coral-implanting reef | |
Schuhmacher et al. | Integrated electrochemical and biogenic deposition of hard material—a nature-like colonization substrate | |
JP6776080B2 (en) | Bottom sediment improvement material and bottom sediment improvement method | |
KR20190070152A (en) | Method for Management of Fish-raising Farm Using Nano-bubble and Micro-bubble | |
JP4904791B2 (en) | Artificial submarine base for aquatic animal settlement / growth or farmland bottom purification | |
EP0809605B1 (en) | Method for utilising tyres to clean and/or fertilise water | |
CN207040566U (en) | A kind of ecological fish shelter | |
US20120037512A1 (en) | Electrodes for electrolysis of water | |
JP6151825B1 (en) | Seabed improver 3 that promotes binding of radioactive pollutants and heavy metal substances in seawater | |
CN110451654A (en) | " three objects " auto purification stereo ecological system | |
Lenzi | For an Effective and Sustainable Management of Non-Tydal Lagoon Environments to Counteract the Eutrophication Effects | |
JP2018143907A (en) | Water quality improvement method and shellfish growth promotion method | |
CN1546399A (en) | Device for inhibiting propagation of algaes | |
JP3765552B2 (en) | Water reforming method using blast furnace slag | |
JPH1043782A (en) | Improving method for water by ionized cement | |
US6241887B1 (en) | Method for utilizing tyres to clean and/or fertilize water | |
JP2001225098A (en) | Method for cleaning water and apparatus for it | |
CN111202015A (en) | Plankton proliferation material, plankton proliferation device, and plankton proliferation method | |
JP2005111416A (en) | Method and apparatus for water purification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000404 |