JP2004074004A - Method of cleaning water in closed water area by using fibrous material - Google Patents

Method of cleaning water in closed water area by using fibrous material Download PDF

Info

Publication number
JP2004074004A
JP2004074004A JP2002237446A JP2002237446A JP2004074004A JP 2004074004 A JP2004074004 A JP 2004074004A JP 2002237446 A JP2002237446 A JP 2002237446A JP 2002237446 A JP2002237446 A JP 2002237446A JP 2004074004 A JP2004074004 A JP 2004074004A
Authority
JP
Japan
Prior art keywords
water
fiber material
fiber
arm
fibrous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002237446A
Other languages
Japanese (ja)
Inventor
Hiroyasu Ogawa
小川 博靖
Masashi Suzuki
鈴木 正史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002237446A priority Critical patent/JP2004074004A/en
Publication of JP2004074004A publication Critical patent/JP2004074004A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and equipment for economically cleaning water in a stopping and staying closed water area of such as a river, a pond, a dam, a lake and a marsh and an inlet by forming a food chain system. <P>SOLUTION: In this method of cleaning water, fibrous material containing acrylic fiber and carbon fiber is immersed in water in the closed water area and is moved preferably at a speed of 1 to 50cm /sec. Further an anode of DC power is connected with the fibrous material and electric current is made to flow therein with voltage at or above water decomposing voltage to decontaminate the water. Further the apparatus for decontaminating the water in the closed water area has a mechanism for rotating a member of an arm 3 at which the fibrous material 4 is provided by a motor 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明は河川、池、ダム、湖沼、入り江等の停留、滞留する閉鎖系水域の水を浄化する方法および装置に関するものである。より詳しくは、移動や置換があまりなく停留・滞留または貯留して、BOD、SSなどの汚染物質が多い状態、特に、水底に汚泥が堆積するなどの水質が悪化した閉鎖系水域に繊維材料を浸漬し、且つ、該水域の水面または/および水中で移動させることにより、該繊維材料に好気性菌や微生物を多量に固着させて水中や水底の汚染物質を低減させるとともに固着した好気性菌や微生物を餌とする小動物や魚などが該繊維材料を棲み処とする藻場を造成して食物連鎖系によって水を浄化する方法および装置に関する。
【0002】
【従来の技術】従来、河川、池、ダム、湖沼等において水が停留、滞留、貯留した汚染物質が多く含まれる閉鎖系水域を浄化する方法として水面に浮島をつくり植物を植えて、植物の根から水中の汚染物質を養分として吸収して水をきれいにする植栽法、貯滞留する水域から取水して槽に入れて空気曝気により溶存酸素濃度を高めて好気性菌や微生物の繁殖、増殖を促進して水を浄化した後、元の水域に戻す曝気浄化法等が行われている。また、近年、ナイロン、ポリ塩化ビニリデン、ポリアクリロニトリル等からなる合成樹脂の繊維状物の単独やその編織・不織布等からなる組織体を水中に浸漬させて、該担体表面にバクテリア、好気性菌、微生物あるいは微小生物を繁殖、増殖させることによって水中の栄養分を消費してBOD、SS成分などを低減する生物膜接触酸化法が提案されている。
【0003】
特に、生物膜接触酸化法に関して、特開平8−266184号公報、特開平8−290191号公報、特開平10−239767号公報、特開平11ー90472号公報、に示されるように、水浄化に使用される生物膜担体として炭素繊維が有効であり、これらの炭素繊維のストランドまたは織物、編物、紐、綱やより特殊な形態に加工した組織体を水中に配置することによって該繊維上により多くの好気性菌や微生物を固着させて水中のBOD、SS成分などを低減して水を浄化できることが公知となっている。
【0004】
【発明が解決しようとする課題】しかしながら、これら公知の方法において、浮島方式は浮島を設置した水面近傍だけが水浄化されるが水底の水や汚泥を含めた水域全体をきれいにすることが難しく、また、冬季には植物が枯れて除去しなければならないという問題があった。また、曝気浄化法は、取水する管の大きさ、取水位置、取水速度に限界があり、設置した取水口近傍の水を浄化できるが、貯滞留水域の全体を浄化するには設備が大掛かりになり、コストがかかるだけでなく人工物との調和を確保できず自然景観を損なうという問題があった。一方、合成繊維や炭素繊維を用いた生物膜接触酸化法は専ら流動する河川や溶存酸素濃度が常に高く維持される池水、湖水などに対しては静置するだけで自然界の好気性菌や微生物が該繊維表面で繁殖し、増殖するために水浄化や藻場を造成して水の浄化は可能であったが、停留・滞留および貯留する水質の悪化した閉鎖系水域に適用した場合、水の移動がないために水中の溶存酸素濃度が低く、また、該繊維組織表面や内部への水の出入りが起こらないために水中の好気性菌や微生物に栄養分が供給されず、それにより好気性菌や微生物が初期に若干固着してもやがて死滅して嫌気性菌が繁殖し、逆に悪臭ガスを発生するという問題があった。このように河川、池、ダム、湖沼、入り江等の水が停留、滞留、貯留して汚染物質が多く含まれる閉鎖系水域の景観を損なわず自然環境を維持して経済的に水浄化する方法や装置がないという問題があった。
【0005】そこで本発明の目的は、前記従来の問題点を解決し、河川、池、ダム、湖沼、入り江等の停留・滞留または貯留する閉鎖系水域において、酸素濃度を高く維持して、水中のBOD、SS成分などの汚染物質を経済的にまた食物連鎖系を形成して水を浄化する方法および装置を提供することにある。
【0006】
【課題を解決する手段】本発明者等は前記目的を達成するために鋭意検討した結果、河川、池、ダム、湖沼、入り江等の停留、滞留または貯留した閉鎖系水域において、特定の繊維材料を水に浸漬して動かすことによって、特に特定の速さで動かすことによって、該繊維材料の単繊維や組織がつくる水中における複雑な形態、水流などが作用して水をよく攪拌し、空気と接触した溶存酸素濃度の高い表層水を水中に移動して水中の溶存酸素濃度を高める一方、水が攪拌されることによって水底の汚染物質が浮遊して水に浸漬した該繊維材料との接触がよくなるだけでなく該繊維材料を構成する単繊維の隙間への水の出入りが容易となるなどにより、溶存酸素と栄養分が安定して供給されるため、該繊維材料に好気性菌や微生物が大量に繁殖して水中の汚染物質を低減できることを見出した。また、空気の微細気泡と該繊維材料が接触するように散気しながら動かすことによって、該繊維材料の単繊維間に酸素をより多く供給して好気性菌や微生物などの該繊維材料への固着を増殖させることができるため、少ない空気量で効果的に閉鎖系水域の水を浄化できることを見出した。さらに、特定の繊維材料を取り付けた部材を回転させて該繊維材料を水中で泳動できるようにした機構を有する装置を用いることにより、自然環境を活かしながら経済的に閉鎖系水域全体を水浄化できることを見出した。また、炭素繊維からなる繊維材料を複数箇所に設置した部材を回転させる機構と該繊維材料に直流を流す機構を有する装置を用いて、該繊維材料に水の分解電圧以上で直流を流しながら移動させることによって、該繊維材料に酸素が供給されて好気性菌や微生物がよく棲みつき増殖して水の浄化を加速できる上に、該繊維材料の移動による水域の攪拌、混合によって水域全体を効果的に水浄化できることを見出し、本発明に至った。
【0007】
すなわち、本発明は河川、池、ダム、湖沼、入り江等の流れの少ない停留または滞留する閉鎖系水域の水を浄化するに当たり、該水中にアクリル繊維、炭素繊維を含む繊維材料を浸漬し移動させることを特徴とする方法である。
【0008】前記方法において、繊維材料を1〜50cm/秒の速さで移動することを特徴とする方法
【0009】前記方法において繊維材料が空気の微細気泡と接触することを特徴とする方法。
【0010】アクリル繊維、炭素繊維を含む繊維材料を有する部材を回転する機構を有する閉鎖系水域を浄化する装置。
【0011】前記方法において、炭素繊維を含む繊維材料に水の分解電圧以上で直流を流して水浄化することを特徴とする。
【0012】前記装置において、炭素繊維を含む繊維材料が直流電源の陽極に接続した装置。
【0013】
【発明の実施の形態】以下、本発明の実施について詳述する。
【0014】
本発明で使用されるアクリル繊維はアクリロニトリル単独またはアクリロニトリル85重量%以上と共単量体からなる単繊維太さ1〜15デニール、強さ2グラム/デニール以上を有するフィラメントまたはステープルの紡績糸などの公知の繊維である。
【0015】
本発明で使用される炭素繊維は、アクリル繊維、ピッチ、メゾフェースピッチ、を酸素などの酸化性ガス雰囲気中、加熱炉などの公知の炉を用いて酸化して得た酸化繊維およびフェノール樹脂繊維を600℃以上の不活性ガス中で焼成して得られるポリアクリロニトリル系(PAN系)、ピッチ系、メゾフェース系、フェノール系の公知の繊維であって、比重が1.5〜1.8、直径が5〜10ミクロンメートル、引張強度が500MPa以上、引張弾性率が50GPa以上、炭素含有量が75重量%以上のものである。
【0016】
本発明における繊維材料はアクリル繊維または/および炭素繊維のストランド、紡績糸および織物、編物、紐、綱や特開平8−266184号公報、特開平8−290191号公報、特開平10−239767号公報、特開平11ー90472号公報などに記載されている公知の形態をしたものおよびフェルト状のもの、不織布などである。
【0017】
本発明におけるストランドは繊維表面および単繊維間に微生物を多く固着させるために、構成する単繊維本数を3,000〜500,000本とすることが好ましい。構成本数が3,000本以下の場合は単繊維間の隙間が少なく好気性菌や微生物の固着が少なくなるために好ましくない。500,000本以上の場合、該ストランドの構成する単繊維の量の割には固着する好気性菌や微生物の固着が少なくなり、また繊維内部まで水の出入りが困難になり嫌気性菌が増殖して臭いの発生原因となるので好ましくない。構成する単繊維本数を3,000〜500,000本にするには3000〜48000本のストランドを束ねて作ることが出来る。
【0018】
本発明の繊維材料における紡績糸は長さ1メートル当たり0.5〜100グラムのものが適当である。0.5グラム未満の場合繊維が弱く、固着する汚泥の重みや水中での運動による摩擦などにより切断し易くなるので好ましくなく、また、100グラム超の場合は糸の内部まで水の浸入が難しくなるので好ましくない。
【0019】
本発明の繊維材料におけるストランド、紡績糸を除くものは前記公知の形態のものを用いることができるが、特に、前記炭素繊維やアクリル繊維を用いてつくった太さ1〜10mmの紐、綱、縄に長さ方向10〜50cm間隔に、それを芯にして横方向に該ストランドまたは該紡績糸が5〜50cmの長さで外側にでている形のもの(以下、フリンジ型という)(図1)、ストランドまたは該紡績糸が長さ方向に平行で、その間隔が1〜30mmである平面状(以下、ノレン型という)(図2)または輪状のもの(以下、吹流し型という)(図3)が、水中で移動させたときに繊維間が広がって揺らぎながら泳ぐように移動して、好気性菌や微生物などの汚泥が大量に固着するので好ましい。また、吹流し型の繊維部分が織物、編み物などであるもの(以下、鯉のぼり型という)は水をよく混合でき、また該繊維材料と水中の汚染物質とがよく接触して、水中で好気性菌や微生物などの汚泥が大量に固着するので好ましい。
【0020】
本発明における繊維材料が織物、編み物、フェルト、不織布など面状の形態のものは該アクリル繊維や炭素繊維を用いた目付け50〜1000グラム/mのものが好ましい。目付けが50グラム/m未満のものは好気性菌や微生物の固着が少なく、水域全体を水浄化するには大面積の繊維材料を用いなければならずコスト的に問題があり、また1000グラム/m超のものは構成する単繊維の隙間が小さくなりすぎて水の出入りが少なくなり好気性菌や微生物が固着しにくくなるので好ましくない。特に、目付100〜500グラム/mのフェルト状のものは、単繊維間に大きな隙間があるため微生物などが棲みつきやすく、水の出入りも容易であるので水浄化に好適である。
【0021】
本発明における該繊維材料の移動は、移動の間に、構成する単繊維の隙間に水が出入りできて、固着する好気性菌や微生物などが増殖することやそれらの該繊維材料からなる汚泥が脱落する具合などを考慮して間欠的または連続的に行う。特に、移動する場合の速さは1〜50cm/秒にすることが好気性菌や微生物の増殖、食物連鎖系の形成には好ましい。1cm/秒未満の場合は単繊維間の隙間に水の出入りが少なく好気性菌や微生物の固着と繁殖の継続が難しくなり、50cm/秒超の場合、固着した汚泥が脱落する傾向となるだけでなく、移動するためのエネルギーを多く消費しコスト的に負担が増大する。該繊維材料の動きや単繊維間の隙間への水の出入りと固着汚泥の脱落、水域の攪拌や水の混合などから、5〜45cm/秒が特に好ましい。また、間欠的に移動する場合における静止時間は溶存酸素の減少により該繊維材料に固着した好気性菌や微生物などが生存できる範囲とし、その時間は水質や汚染の度合いによるが、24時間以下である。
【0022】
本発明における空気の微細気泡は1〜5mmの直径のものが該繊維材料と接触して好気性菌や微生物などの該繊維材料への固着を促進し、増殖させるので好ましい。該微細気泡はスリットを有するエチレンプロピレンジエチレン(以下、EPDMという)製、シリコンゴム製などの公知の散気管や後記するアームに細孔やスリットを設けたものを用いてつくることができる。該散気管やスリットなどからつくられた該微細気泡の半分以上は該繊維材料と接触し、且つ、該繊維材料を移動することが散気するためのエネルギーが少なくて、好気性菌や微生物などの該繊維材料への固着を効果的に促進し、増殖させるので好ましい。
【0023】
本発明における該アクリル繊維または/および炭素繊維からなる繊維材料の移動は、河川、池、ダム、湖沼、入り江等の流れの少ない停留または滞留する閉鎖系水域に、該繊維材料を設置した部材を回転する機構を有する水処理装置を用い、該繊維材料を水中に浸漬して回転移動させて行うことが好ましい。
【0024】
本発明における水処理装置は、例えば、図4に示すような水底に固定する支柱6と、支柱上部に配置したモーター1とそれに接続して回転する回転軸2を有し、繊維材料4を吊り下げた部材であるアーム3を回転軸2に接続した装置、図5示すようなモーター1が回転羽根11と一体になり、アーム3と接続し、繊維材料4を吊り下げた部材であるアーム3を回転軸2とともに回転させるようにした装置、図6に示すようなモーターが水底に固定する支柱6上部とアームに接続してアームが回転するようにした装置などである。さらに、本発明における水処理装置は該繊維材料として炭素繊維を含むものを用いて、図6に示すような互いが接触しないように離して設置した該炭素繊維を含む繊維材料15〜34の奇数番号の繊維材料に電線を介在して直流電源14の陽極を、また、偶数番号の繊維材料に電線を介在して直流電源14の陰極を接続して、陽極に接続した奇数番号を付した繊維材料から酸素を発生させるようにした装置などである。
【0025】
該装置を用いて水浄化する場合は、図4に示すように水面9と水底10の閉鎖系水域の水底10にロープ7と錘8で支えて水底に支柱6を固定してモーター1を水面9の上に位置するように設置して、繊維材料4を吊り下げたアーム3をモーター1で回転して繊維材料4を回転移動する方法、図5に示すようにモーター1で回転羽根11を回転して、その回転力によってアーム3が回転軸2を中心に回転して繊維材料4が移動する方法、図6に示すように回転軸につながったモーターと、アームにつながったモーターで繊維材料15〜34を取り付けたアーム3を回転移動する方法がある。繊維材料を移動するために大きな力が必要な場合は図6に示すように複数台のモーターを用いることが好ましい。さらに、図6のような装置を用いて電流を流す場合の電圧は水の分解電圧以上が必要であるが、高い電圧を用いると微生物などの死滅などに至るので10ボルト以下が好ましい。また、モーターの動力には一般家庭の電力の他、太陽光発電、風力発電、燃料電池などの新エネルギーと言われる電力および、風力を直接回転軸に伝えて回す装置は省エネルギーとして好ましい。
【0026】
本発明の装置を用いて閉鎖水域の水を浄化する場合、必要に応じて図4に示すような装置の繊維材料の量やアームの長さを繊維材料の移動のしやすさ、水中に沈む具合などを考慮して、該アーム3に浮力を持たせるためのブイ5などを取り付けて行うことができる。また、水底の汚泥を効果的に浄化するにはアームは閉鎖系水域の水深に対応した数箇所に分散して設けて該繊維材料を取り付けて回転することが好ましい。さらに、該繊維材料はアームに直接または紐、綱などを介して間接的に繋ぎ、アームの先端から複数箇所に繊維材料が互いに接触しないような間隔をあけて複数個分散して、アームに釣り下がるようにまたは該繊維材量に浮力のあるものを取り付けてアームより立ち上がるように繋いた装置が広範囲の水域を浄化できるので特に好ましい。
【0027】
本発明の装置におけるアームは棒状、パイプ状のものや、円盤状のもので水面に平行に回転する金属製、ポリプロピレンや塩化ビニールなどの合成樹脂製などのものであり該繊維材料の移動に伴う力に耐えるものが好ましい。また、アームの本数は汚染が進んだ状態の閉鎖系水域では複数本が好ましく、さらに、本発明の装置を複数台用いることが好ましい。
【0028】
本発明の装置におけるアームの長さは、貯留や滞留する閉鎖系水域の広さに対して設定するのが好ましいが、長すぎる場合、移動するためのエネルギーが多く必要になり、該繊維を移動する速さが該繊維材料に固着する好気性菌や微生物などの汚泥によって抑制されてくるので、通常、長さ15m以下が好ましい。また、短い場合、浄化できる水域範囲が狭くなり、多数の該回転体等が必要になるので経済的でない。通常は3〜15mの長さが好ましい。
【0029】
本発明の方法および装置における水に浸漬する繊維材料の長さは、該繊維材料の形態や量、移動する速さ、浸漬深さなどにより異なるが、通常、5cm〜水底深さの範囲がより大きな範囲の水域を攪拌し混合して水を浄化できるので好ましい。短い場合は好気性菌や微生物の固着した塊が小さいために、水の該繊維材料内への出入りが低下するので好ましくない、また、長い場合は水との抵抗が大きくなりすぎて、該繊維材料を移動させるためのエネルギーを多く必要とするためコスト的に問題がある。
【0030】
本発明の方法および装置における水に浸漬する該繊維材料の量は、貯留や滞留する閉鎖系水域の汚染の具合、形態、水深、表面積や容量および該繊維材料の形態、移動する速度、浄化までの時間などにより異なるが、通常、水域の水量1mに対して該繊維材料が0.1〜100グラムにすることが水浄化の効果や経済性の点で好ましい。水域の浄化を月や年単位で緩慢に行う場合は該繊維材料の量は少なくし、速く浄化する場合は量を多くすることが好ましい。また、該繊維材料は分散して水に浸漬し移動させることが好ましく、1箇所当たりに用いる量は、閉鎖系水域の大きさ、形状、水深、水質などや用いる該繊維材料の形や種類によって異なるが、通常は5〜100グラム程度が好気性菌や微生物の固着、生態系の確保の点から望ましい。
【0031】
本発明におけるより好ましい装置は、該繊維材料を設置した部材を回転する機構を有する前記装置において、炭素繊維からなる繊維材料の複数個を互いに電気的につながらないような間隔をあけてアームに取り付け、さらに、個々の該炭素繊維を直流電源の陽極または陰極に接続して水の分解電圧以上の電圧をかけることが出来る機構にした装置である。該繊維材料の陽極に接続した側では、該繊維材料およびその近傍に効果的に酸素を発生させて好気性菌や微生物をより多く固着するので効率的に水を浄化でき、また該繊維材料が移動することによって水域全体の溶存酸素濃度を高めることが出来る。また、陰極として該繊維材料や炭素棒など導電性材料を用いるが、該炭素繊維の繊維材料を用いた場合、水中の窒素化合物が還元されて効果的に減少できるので好ましい。水中の該装置に印加する電圧は1箇所の取り付けた該繊維材料の量や長さによって調整されるが、微生物への影響や電圧降下を考慮して、通常、1〜5ボルトが好ましい。
【0032】
本発明によれば、河川、池、ダム、湖沼等の流れの少ない滞留または停留する水域の汚染物質であるBODやSS成分は、浸漬した該繊維材料に固着した好気性菌や微生物によって削減でき、さらにそれらを餌とする魚などが棲みつき食物連鎖系を形成して一層の水浄化が可能となる。また、本発明の方法および装置は少ない使用エネルギーで該繊維材料を移動できるため、太陽光や風力から得られる電力を利用した自然環境に負荷をかけずに水浄化できるという利点がある。
【0033】
【実施例】以下に、実施例により本発明を具体的に説明するが、本発明はその要旨を超えない限り下記実施例に限定されるものではない。なお、特に指定しない限り%は重量%を意味する。なお、BODは生物的酸素要求量、SSは浮遊固形物量、DOは溶存酸素濃度を示す。
【0034】実施例1
表1に示すような水質(BOD、SS、DO)と水底に深さ20cm程度の汚泥が堆積している最長35m、最小幅16m、最大深さ約3mである容積約1600mの楕円形に近い殆ど流出入水のない池のほぼ中央に、図3に示す福流し型繊維材料を炭素繊維とし、それをアームに取り付けた図4に示す装置を水底に固定して水浄化処理した。図4におけるアーム3は長さ5m、太さ5cmのポリ塩化ビニールパイプ製アーム2本がモーター1の回転する回転軸2に角度180°で直結したもので、アーム3の先端に浮力20kgのブイ5を取り付けであり、さらに、先端から25cm間隔で、1本のアーム当たり17個の炭素繊維の吹流し型繊維材料4を取り付けた。用いた炭素繊維の吹流し型繊維材料4は引っ張り強さ3500キロパスカル、引っ張り弾性率235ギガパスカルの太さ7ミクロンメートルである単繊維が24000本束になった長さ50cmの炭素繊維ストランドを、幅約32cmにわたって間隔1cmで並べ、一端を幅方向に直径2mmのステンレス線で各ストランドを連結し固定してノレン型繊維材料をつくり、これを丸めて直径約10cm、長さ方向にストランドが並んだものである。この吹流し型繊維材料のステンレス線のある側を直径5mmのポリプロピレンロープで該アームに間隔50cmになるように取り付けた。炭素繊維の吹流し型繊維材料4を水に浸漬し、炭素繊維の使用量が池水1mに対して約4.8グラムとなるようにした。その後、該アームを回転して、該アームに取り付けた該吹流し型繊維材料4の先端のものの速さが25cm/秒、最も回転軸に近いところのものの速さが5cm/秒として移動させた。この状態で気温15〜25℃にあった初春から初夏にかけて3カ月間連続的に稼動した。その結果、実施後の該吹流し型繊維材料には好気性菌や微生物などがびっしり固着し、また、小さな魚が該繊維材料とその周辺に群れをなして遊泳し、さらに大きな魚も遊泳して食物連鎖系ができていることを認めた。また実施前後の水質、堆積汚泥状況を調べ比較したところ、実施後には水底の汚泥の堆積深さは約13cmにまで減少し、また、表1に示すように、実施後にはDOは高くなり、BOD、SSともに大幅に低下でき、本発明の方法および装置により効果的に水浄化できた。
【0035】実施例2
表1に示すような水質(BOD、SS、DO)と水底に殆ど汚泥のない最長25m、最小幅13m、最大深さ約3mである容積約800mの楕円形に近い殆ど流出入水のない池で、実施例1と同様の炭素繊維の吹流し型繊維材料をアームに取り付けた図4に示す装置を用いて、該アームに取り付けた吹流し型繊維材料の先端の移動速さを0.5cm/秒、最も回転軸に近い所に繋いだものの移動速さを0.1cm/秒になるように調整して、気温18〜35℃にあった初夏から初秋にかけて3カ月間連続的に稼動し、運転前後の水質を調べ比較した。この場合の該繊維材料の水域の容量に対する使用量は池水1mに対して約10グラムであった。その結果、表1に示すように、実施後にはDO、BOD、SSは若干の改善を示した。
【0036】比較例1
実施例2を行った同じ閉鎖系の池を用いて、実施例2を実施後に新たに作製した実施例1と同様の炭素繊維の吹流し型繊維材料をアームに取り付けた図4に示す装置を用いて、該アームに取り付けた吹流し型繊維材料を移動させず静止した状態で、気温15〜28℃にあった初秋から初冬にかけて3カ月間静置し、静置前後の水質を調べ比較した。その結果、表1に示すようにDOは若干低下し、容存酸素量がすくなくなり、BOD、SSは若干上昇して水質が悪化していた。また、該繊維材料に固着した汚泥は黒くなり、一部から悪臭が発生して汚泥が嫌気状態にあり、繊維材料を静置しただけでは水の移動のない閉鎖系水域の池水を浄化出来なかった。
【0037】実施例3
表1に示すような水質(BOD、SS、DO)で水底に深さ20cm程度の汚泥が堆積している最長30m、最小幅25m、最大深さ約3mである容積約2100mのほぼ正方形の貯留用池に、そのほぼ中央に実施例1で用いた図4に示す装置を同様にして水底に固定して、アームの先端の該繊維材料が60cm/秒、最も回転軸に近いところに繋いだ該繊維材料の移動速さを12cm/秒となるよう移動させた。この場合の該繊維材料の水域の容量に対する使用量は池水1mに対して約3.6グラムであった。初春から初夏にかけて稼動して3カ月目に該繊維材料の汚泥固着状態を観察したところ、アームの先端やその内側に繋いだ移動速度が50cm/秒を超える当たりの該繊維材料の固着汚泥は、それよりも内側の遅い速度の該繊維材料の固着汚泥に比べて少ない傾向が認められたが、水質は実施前に比べて向上する傾向が認められた。
【0038】実施例4
表1に示すような水質(BOD、SS、DO)で水底に深さ24cm程度の汚泥が堆積している長辺の長さが15m、短辺長さが10m、最大深さ約3mである容積約450mの長方形の団地貯留池に、実施例1と同じ寸法である図5に示す装置を用いて水処理した。図5に示す装置はモーター1が回転軸に接続したモーター支持棒12に固定されアーム3の端で接続してあり、図1に示すようなアクリル繊維のフリンジ(紡績糸太さ5mm、縦長さ200cm、芯からの横糸長さ10mm、横糸間隔5cm、重量32グラム)を図5に示すフリンジ型繊維材料13の間隔を50cmとして、団地貯水池水1mに対して4.8グラムなるように取り付けた装置で、これを図5に示すように水中に浸漬して、モーター1を回転して回転羽根を回転させてアームを移動させて、フリンジ13の移動速さを、アームの先端に繋いだフリンジ13を35cm/秒、最も回転軸に近いところに繋いだフリンジ13を7cm/秒となるようにして気温15〜25℃で3カ月間該繊維材料を移動した。その結果、アームに繋いだ何れのフリンジ13とも好気性菌や微生物がぬめりを持った状態で付着し、また、水質は実施前に比べてDOは高くなり、BOD、SSは低下し、堆積汚泥の深さは18cmにまで減少でき、本発明の方法および装置が閉鎖系水域の池水を効果的に浄化できた。
【0039】実施例5
実施例1を終了後の池で、実施例1に用いた吹流し型繊維材料の代わりに鯉のぼり型繊維材料15〜34を用いて、これらに耐水性合成樹脂を被覆した電線を接続した図6に示す装置を用いて、奇数番号の繊維材料に直流電源14の陽極を、また、偶数番号の繊維材料に直流電源14の陰極を接続して、3ボルトの電圧で直流電流を流した以外は実施例1と同様にして該繊維材料を回転移動して3ヶ月間水浄化を行った。陽極に接続した炭素繊維の繊維材料からはかすかに酸素の気泡が発生した状態であり、3ヶ月の処理後の水質は表1に示すように、実施前の水質(BOD、SS、DO)はさらに改善し、水底の堆積した汚泥は5cm程度に減少でき、本発明は効果的に閉鎖系水域の水を浄化できることが分かった。
【0040】
表1

Figure 2004074004
【0041】
【発明の効果】
本発明の河川、池、ダム、湖沼等の滞留、停留、貯留する水域の水処理する方法は水域の汚染物質であるBODやSS成分を好気性菌や微生物によって削減でき、さらにそれらを餌とする魚などが棲みつき食物連鎖系を形成して水が綺麗になり、景観を向上できる。また、形成される食物連鎖系によって、魚などが増加しできるので、活きた水域に蘇らせ、悪臭のない生活環境が期待できる。
【図面の簡単な説明】
【図1】フリンジ型繊維材料の概略図
【図2】ノレン型繊維材料の概略図
【図3】吹流し型繊維材料の概略図
【図4】吹流し型繊維材料を取り付けたアームが回転する機構の水処理装置の概略図
【図5】図4のモーターがアームに接続した回転羽根を回転する機構の水処理装置の概略図
【図6】図4と図5を組み合わせた位置にモーターがある回転する機構と直流電源の陽極と陰極が繊維材料と接続した水処理装置の概略図
【符号の説明】
1     モーター
2     回転軸
3     アーム
4、13  繊維材料
5     ブイ
6     支柱
7     支柱支持ロープ
8     錘
9     閉鎖系水域の水面
10    閉鎖系水域の水底
11    回転羽根
12    回転軸に接続した板状モーター支持台
14    直流電源
15、17、19、21、23、25、27、29、31、33
直流電源の陽極に接続した繊維材料
16、18、20、22、24、26、28、30、32、34
直流電源の陰極に接続した繊維材料[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for purifying water in a closed or stagnant water body such as a river, a pond, a dam, a lake or a marsh, and a cove. More specifically, the fiber material is stagnated, retained, or stored without much movement or replacement, and is contaminated with a large amount of pollutants such as BOD and SS, especially when the water quality deteriorates such as accumulation of sludge on the bottom of the water. By immersing and moving on the water surface or / and the water in the water area, a large amount of aerobic bacteria and microorganisms are fixed to the fibrous material to reduce contaminants in the water and the water bottom, and the fixed aerobic bacteria and The present invention relates to a method and apparatus for purifying water by creating a seaweed bed where small animals, fish, and the like that feed on microorganisms inhabit the fiber material, and purify water by a food chain system.
[0002]
2. Description of the Related Art Conventionally, as a method of purifying a closed system water area containing a large amount of pollutants stored, retained, and stored in rivers, ponds, dams, lakes, and the like, floating islands are formed on the water surface and plants are planted. A planting method that absorbs pollutants in water from the roots as nutrients and cleans the water.Produces and grows aerobic bacteria and microorganisms by increasing the dissolved oxygen concentration by taking water from the stagnant water area, putting it in a tank, and increasing the dissolved oxygen concentration by air aeration. Aeration purification methods and the like have been implemented in which water is purified by promoting water purification and then returned to the original water area. In recent years, nylon, polyvinylidene chloride, polyacrylonitrile, or the like, a synthetic resin fibrous material alone or a tissue body made of a woven or nonwoven fabric thereof is immersed in water, and bacteria, aerobic bacteria, A biofilm catalytic oxidation method has been proposed in which nutrients in water are consumed to reduce BOD and SS components by breeding and proliferating microorganisms or microbes.
[0003]
In particular, regarding the biofilm catalytic oxidation method, as shown in JP-A-8-266184, JP-A-8-290191, JP-A-10-239767, and JP-A-11-90472, water purification is performed. Carbon fibers are effective as a biofilm carrier to be used. Strands of these carbon fibers or woven fabrics, knits, strings, ropes or other specially processed structures are placed on the fibers by placing them in water. It is known that water can be purified by fixing BOD and SS components in water by fixing aerobic bacteria and microorganisms.
[0004]
However, in these known methods, the floating island method purifies water only near the water surface where the floating island is installed, but it is difficult to clean the entire water area including the water at the bottom and sludge. In addition, there was a problem that the plants withered in winter and had to be removed. In addition, the aeration purification method has limitations on the size of the intake pipe, the intake position, and the intake speed, and can purify water near the installed intake port.However, it takes a large amount of equipment to purify the entire accumulated water area. In addition to this, there is a problem that not only costs are increased but also harmony with man-made objects cannot be ensured and the natural scenery is damaged. On the other hand, the biofilm catalytic oxidation method using synthetic fiber or carbon fiber is only used for standing rivers and lakes where the dissolved oxygen concentration is always kept high. Although it was possible to purify water by breeding and multiplying on the surface of the fiber and creating water purification and seaweed beds, when applied to closed water bodies where the quality of water to be stopped, retained and stored was deteriorated, water And no nutrients are supplied to the aerobic bacteria and microorganisms in the water because the dissolved oxygen concentration in the water is low because there is no transfer of water, and the water does not enter or exit the surface or inside of the fibrous tissue. Even if bacteria and microorganisms are slightly fixed in the initial stage, there is a problem in that they eventually die and anaerobic bacteria proliferate, and on the contrary, generate odorous gas. In this way, water in rivers, ponds, dams, lakes, marshes, and inlets stops, stays, and accumulates, thereby maintaining the natural environment without damaging the landscape of closed water bodies that contain a lot of pollutants. And the lack of equipment.
Accordingly, an object of the present invention is to solve the above-mentioned conventional problems and to maintain oxygen concentration high in a closed system water area where rivers, ponds, dams, lakes, marshes, coves, and the like are stopped, retained, or stored. It is an object of the present invention to provide a method and an apparatus for purifying water by economically removing contaminants such as BOD and SS components and forming a food chain system.
[0006]
Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above object, and as a result, have found that a specific fiber material is used in a closed, stagnant or stored water system such as a river, a pond, a dam, a lake or a marsh. By immersing in water and moving it, particularly at a specific speed, the monofilaments of the fibrous material and the complex form in water created by the tissue, the water flow, etc. act to mix the water well, While the surface water having a high dissolved oxygen concentration in contact with the fiber material is moved into the water to increase the dissolved oxygen concentration in the water, while the water is agitated, contaminants on the bottom of the water float and the contact with the fiber material immersed in the water is prevented. In addition to improving the water content, the dissolved oxygen and nutrients are supplied stably because the water easily enters and exits the gaps between the single fibers constituting the fiber material. Breed in It was found to be able to reduce the water of pollutants. Also, by moving the fine air bubbles and the fibrous material while diffusing so as to be in contact with each other, more oxygen is supplied between the single fibers of the fibrous material, and aerobic bacteria and microorganisms can be supplied to the fibrous material. It has been found that the water in the closed system water area can be effectively purified with a small amount of air because the adhesion can be multiplied. Furthermore, by using a device having a mechanism for rotating a member to which a specific fiber material is attached so that the fiber material can be electrophoresed in water, it is possible to economically purify the entire closed system water area while utilizing the natural environment. Was found. In addition, using a device having a mechanism for rotating a member in which a fiber material made of carbon fiber is installed at a plurality of locations and a mechanism for flowing a direct current to the fiber material, the fiber material moves while applying a direct current at a decomposition voltage of water or higher. Oxygen is supplied to the fibrous material to allow aerobic bacteria and microorganisms to inhabit and proliferate, thereby accelerating the purification of water. The present inventors have found that water can be purified efficiently, and have reached the present invention.
[0007]
That is, the present invention purifies water in a closed or stagnant water body with a small flow such as a river, a pond, a dam, a lake, a marsh, or a cove, and immerses and moves a fiber material including acrylic fiber and carbon fiber in the water. A method characterized by the following.
In the above method, the fiber material is moved at a speed of 1 to 50 cm / sec.
[0009] A method according to the above method, wherein the fibrous material contacts fine air bubbles.
[0010] An apparatus for purifying a closed water body having a mechanism for rotating a member having a fiber material containing acrylic fiber and carbon fiber.
[0011] The method is characterized in that a direct current is applied to a fiber material containing carbon fibers at a voltage higher than the decomposition voltage of water to purify water.
[0012] In the above apparatus, a fiber material containing carbon fibers is connected to an anode of a DC power supply.
[0013]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail.
[0014]
The acrylic fiber used in the present invention is a single fiber composed of acrylonitrile alone or acrylonitrile 85% by weight or more and a comonomer, a single fiber having a thickness of 1 to 15 denier, and a filament or staple spun yarn having a strength of 2 g / denier or more. It is a known fiber.
[0015]
The carbon fibers used in the present invention are oxidized fibers and phenol resin fibers obtained by oxidizing acrylic fibers, pitch, mesoface pitch, in an oxidizing gas atmosphere such as oxygen using a known furnace such as a heating furnace. Is a known fiber of polyacrylonitrile type (PAN type), pitch type, mesophase type, and phenol type obtained by firing in an inert gas at 600 ° C. or more, having a specific gravity of 1.5 to 1.8 and a diameter of 1.5 to 1.8. Has a tensile strength of 500 MPa or more, a tensile modulus of 50 GPa or more, and a carbon content of 75% by weight or more.
[0016]
The fiber material in the present invention is a strand of acrylic fiber or / and carbon fiber, spun yarn and woven fabric, knit, string, rope, JP-A-8-266184, JP-A-8-290191, and JP-A-10-239767. And those having a known form described in, for example, JP-A-11-90472, felt-like forms, and nonwoven fabrics.
[0017]
In the strand of the present invention, the number of single fibers constituting the strand is preferably 3,000 to 500,000 in order to fix a large amount of microorganisms on the fiber surface and between the single fibers. When the number of constituents is 3,000 or less, it is not preferable because the space between the single fibers is small and the fixation of aerobic bacteria and microorganisms is reduced. In the case of 500,000 or more, the amount of aerobic bacteria and microorganisms that adhere to the strand becomes smaller compared to the amount of the single fiber constituting the strand, and it becomes difficult for water to enter and exit the inside of the fiber, and anaerobic bacteria grow. It is not preferable because it causes odor. In order to make the number of single fibers constituting 3,000 to 500,000, 3000 to 48,000 strands can be bundled.
[0018]
The spun yarn in the fiber material of the present invention is suitably 0.5 to 100 grams per meter in length. If the weight is less than 0.5 gram, the fibers are weak, and it is not preferable because the weight of the fixed sludge and the friction due to the movement in water make it easy to cut. If the weight is more than 100 gram, it is difficult for water to penetrate into the yarn. Is not preferred.
[0019]
Except for strands and spun yarns in the fiber material of the present invention, those in the known form can be used, and in particular, strings, ropes, and ropes having a thickness of 1 to 10 mm made by using the carbon fiber or the acrylic fiber, The rope has a shape in which the strand or the spun yarn extends outward at a length of 5 to 50 cm at a length of 10 to 50 cm in the length direction and at the center thereof (hereinafter referred to as a fringe type) (FIG. 1) A plane (hereinafter referred to as a noren type) in which the strand or the spun yarn is parallel to the length direction and the interval thereof is 1 to 30 mm (FIG. 2) or a ring-shaped (hereinafter referred to as a streamer type) (FIG. 2) The method 3) is preferable because when moved in water, the fibers spread and move like a swim while fluctuating, and a large amount of sludge such as aerobic bacteria and microorganisms adheres. In the case where the fiber portion of the streamer type is a woven or knitted fabric (hereinafter referred to as a carp streamer), water can be mixed well, and the fiber material and the contaminants in the water are in good contact with each other, so that aerobic bacteria can be formed in the water. It is preferable because sludge such as microorganisms and microorganisms adhere in large quantities.
[0020]
When the fiber material in the present invention has a planar form such as a woven fabric, a knitted fabric, a felt, and a nonwoven fabric, the basis weight using the acrylic fiber or the carbon fiber is 50 to 1000 g / m. 2 Are preferred. The basis weight is 50 g / m 2 When the water content is less than 10 g / m, a large amount of fiber material must be used to purify the entire water area, and there is a problem in terms of cost. 2 A super-fine fiber is not preferable because the gap between the constituent single fibers becomes too small, so that water enters and leaves less, and it becomes difficult for aerobic bacteria and microorganisms to adhere. In particular, the basis weight is 100 to 500 g / m. 2 The felt-like material is suitable for water purification because microorganisms and the like easily inhabit because there is a large gap between the single fibers and water can easily enter and exit.
[0021]
In the movement of the fiber material in the present invention, water can enter and leave between the gaps of the constituent single fibers during the movement, and aerobic bacteria and microorganisms to be fixed grow, and sludge made of the fiber material is removed. It is performed intermittently or continuously in consideration of the degree of falling off. In particular, it is preferable that the moving speed be 1 to 50 cm / sec for the growth of aerobic bacteria and microorganisms and the formation of a food chain system. When the flow rate is less than 1 cm / sec, water does not easily enter and leave between the single fibers, and it becomes difficult to adhere and propagate the aerobic bacteria and microorganisms. When the flow rate exceeds 50 cm / sec, the adhered sludge tends to fall off. Rather, it consumes a lot of energy to move and increases the cost. From the viewpoint of the movement of the fibrous material, the flow of water into and out of the gaps between the single fibers and the falling off of the fixed sludge, the stirring of the water area, the mixing of water, etc., it is particularly preferable that the flow rate be 5 to 45 cm / sec. In addition, the resting time in the case of intermittent movement is within a range in which aerobic bacteria and microorganisms fixed to the fiber material can survive due to the decrease in dissolved oxygen, and the time depends on the water quality and the degree of contamination, but is less than 24 hours. is there.
[0022]
Fine air bubbles having a diameter of 1 to 5 mm in the present invention are preferred because they promote contact with the fibrous material to promote fixation of aerobic bacteria and microorganisms to the fibrous material, and proliferate. The microbubbles can be formed by using a well-known air diffuser tube made of ethylene propylene diethylene (hereinafter referred to as EPDM) having a slit, made of silicone rubber, or the like, or having an arm described later provided with pores or slits. More than half of the microbubbles created from the air diffuser or slit are in contact with the fibrous material, and moving the fibrous material has less energy for diffusing, such as aerobic bacteria and microorganisms. This is preferred because it effectively promotes and promotes the adhesion to the fiber material.
[0023]
The movement of the fiber material comprising the acrylic fiber and / or the carbon fiber in the present invention is performed by moving a member in which the fiber material is installed in a closed or stagnant water body with a small flow such as a river, a pond, a dam, a lake, a marsh, or a cove. It is preferable that the fibrous material is immersed in water and rotated and moved using a water treatment device having a rotating mechanism.
[0024]
The water treatment apparatus according to the present invention has, for example, a column 6 fixed to the water bottom as shown in FIG. 4, a motor 1 arranged on the column upper portion, and a rotating shaft 2 connected to the motor and rotating, and suspends the fiber material 4. A device in which an arm 3 as a lowered member is connected to a rotating shaft 2, an arm 3 as a member in which a motor 1 as shown in FIG. 5 is integrated with a rotating blade 11, connected to the arm 3, and suspended a fiber material 4. And a device in which a motor is connected to an upper portion of a support column 6 fixed to the water bottom and an arm so that the arm rotates as shown in FIG. 6, and the like. Further, the water treatment apparatus in the present invention uses a fiber material containing carbon fiber as the fiber material, and the odd number of the fiber materials 15 to 34 containing the carbon fiber, which are set apart from each other so as not to contact each other as shown in FIG. An odd numbered fiber is connected to the anode of the DC power supply 14 by connecting the anode of the DC power supply 14 via an electric wire to the fiber material of the number and the cathode of the DC power supply 14 via an electric wire to the fiber material of the even number. An apparatus for generating oxygen from a material.
[0025]
In the case of purifying water by using the device, as shown in FIG. 4, the rope 1 and the weight 8 support the water surface 9 and the water bottom 10 in the closed water area of the water bottom 10, fix the column 6 to the water bottom, and move the motor 1 to the water surface. 9, a method in which the arm 3 on which the fiber material 4 is suspended is rotated by the motor 1 to rotate and move the fiber material 4, and as shown in FIG. A method in which the fiber material 4 moves by rotating the arm 3 around the rotation axis 2 by the rotation force, and the fiber material is moved by the motor connected to the rotation axis and the motor connected to the arm as shown in FIG. There is a method of rotating and moving the arm 3 to which 15 to 34 are attached. When a large force is required to move the fiber material, it is preferable to use a plurality of motors as shown in FIG. Further, the voltage when passing an electric current using the apparatus as shown in FIG. 6 needs to be higher than the decomposition voltage of water, but if a high voltage is used, microorganisms and the like will be killed. As the power for the motor, in addition to the power of a general household, a device that directly transmits the wind and the wind, which is called new energy such as solar power, wind power, or a fuel cell, to the rotating shaft is preferable as energy saving.
[0026]
When purifying water in a closed water area using the apparatus of the present invention, the amount of the fiber material and the length of the arm of the apparatus as shown in FIG. In consideration of the condition, a buoy 5 for giving buoyancy to the arm 3 can be attached. In order to effectively purify sludge on the bottom of the water, it is preferable that the arms are dispersed and provided at several places corresponding to the water depth of the closed system water area, and the fiber material is attached and rotated. Further, the fiber material is directly connected to the arm or indirectly via a string, a rope, or the like. It is particularly preferable to use a device in which the buoyant material is attached so as to be lowered or attached to the fiber material so as to stand up from the arm, since it can purify a wide range of waters.
[0027]
The arm in the apparatus of the present invention is a rod-shaped, pipe-shaped or disk-shaped arm made of metal rotating parallel to the water surface, made of a synthetic resin such as polypropylene or vinyl chloride, etc., and accompanying the movement of the fiber material. Those that withstand forces are preferred. Further, the number of arms is preferably plural in a closed system water body in a state of advanced contamination, and more preferably, plural devices of the present invention are used.
[0028]
The length of the arm in the device of the present invention is preferably set with respect to the size of the closed water area in which the fibers are stored or stayed. However, if the length is too long, a large amount of energy for moving is required, and the fiber is moved. Usually, the length is preferably 15 m or less, because the speed of the formation is suppressed by sludge such as aerobic bacteria and microorganisms fixed to the fiber material. On the other hand, if it is short, the range of the water area that can be purified is narrowed, and a large number of such rotating bodies are required, which is not economical. Usually, a length of 3 to 15 m is preferable.
[0029]
The length of the fibrous material immersed in water in the method and apparatus of the present invention varies depending on the form and amount of the fibrous material, the moving speed, the immersion depth, and the like. This is preferable because water can be purified by stirring and mixing a large area of water. If the length is short, the mass of aerobic bacteria and microorganisms fixed is small, so that entry and exit of water into the fiber material is unpreferably reduced.If the length is long, the resistance to water becomes too large and the fiber Since a large amount of energy is required to move the material, there is a problem in cost.
[0030]
The amount of the fibrous material immersed in water in the method and apparatus of the present invention may vary depending on the degree of contamination, form, water depth, surface area and volume of the closed and retained water body, and the form of the fibrous material, the speed of movement, and the purification. Although it depends on the time, etc., usually the amount of water in the water area is 1m 3 On the other hand, it is preferable that the fiber material is 0.1 to 100 g in terms of the effect of water purification and economic efficiency. It is preferable to reduce the amount of the fiber material when the water area is slowly purified on a monthly or yearly basis, and to increase the amount when the water area is purified quickly. The fiber material is preferably dispersed and immersed in water and moved, and the amount used per location depends on the size, shape, water depth, water quality, etc. of the closed system water area and the shape and type of the fiber material used. Although different, usually about 5 to 100 grams is desirable from the viewpoint of fixing aerobic bacteria and microorganisms and securing an ecosystem.
[0031]
A more preferable device in the present invention is the device having a mechanism for rotating a member on which the fiber material is installed, wherein a plurality of fiber materials made of carbon fibers are attached to the arm at intervals so as not to electrically connect to each other, Further, the carbon fiber is connected to an anode or a cathode of a DC power supply to apply a voltage higher than a decomposition voltage of water. On the side of the fibrous material connected to the anode, oxygen is effectively generated in the fibrous material and the vicinity thereof to fix more aerobic bacteria and microorganisms, so that water can be purified efficiently. By moving, the dissolved oxygen concentration in the entire water area can be increased. In addition, a conductive material such as a fiber material or a carbon rod is used as the cathode. When a fiber material of the carbon fiber is used, it is preferable because nitrogen compounds in water can be reduced and reduced effectively. The voltage applied to the device in water is adjusted according to the amount and length of the fiber material attached at one place, but is preferably 1 to 5 volts in consideration of the effect on microorganisms and the voltage drop.
[0032]
ADVANTAGE OF THE INVENTION According to this invention, the BOD and SS components which are the pollutants of the water area with low flow, such as rivers, ponds, dams, lakes and marshes, can be reduced by aerobic bacteria and microorganisms fixed to the immersed fiber material. In addition, fish and the like that feed on them can inhabit and form a food chain system, thereby enabling further water purification. In addition, the method and apparatus of the present invention have the advantage that water can be purified without imposing a load on the natural environment using electric power obtained from sunlight or wind power, since the fiber material can be moved with less energy consumption.
[0033]
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist. Unless otherwise specified,% means% by weight. In addition, BOD indicates biological oxygen demand, SS indicates suspended solid content, and DO indicates dissolved oxygen concentration.
Embodiment 1
Water quality (BOD, SS, DO) as shown in Table 1 and sludge with a depth of about 20 cm deposited on the bottom of the water 35 m in length, 16 m in minimum width, and about 1600 m in maximum depth of about 3 m 3 In the center of the pond near the elliptical shape with almost no outflow / inflow water, carbon fiber is used as the flow-through type fiber material shown in FIG. 3, and the device shown in FIG. did. The arm 3 shown in FIG. 4 is composed of two PVC pipe arms of 5 m in length and 5 cm in thickness, which are directly connected to the rotating shaft 2 of the motor 1 at an angle of 180 °. 5 was attached, and 17 pieces of carbon fiber streamer type fiber material 4 per arm were attached at intervals of 25 cm from the tip. The carbon fiber streamer-type fiber material 4 used was a carbon fiber strand having a length of 50 cm and a bundle of 24,000 single fibers having a tensile strength of 3500 kPa and a tensile elasticity of 235 gigapascal and a thickness of 7 μm, and The strands are arranged at a spacing of 1 cm over a width of about 32 cm, and one end is connected and fixed to each strand with a stainless steel wire having a diameter of 2 mm in the width direction to form a noren-type fiber material, which is rolled up to have a diameter of about 10 cm and the strands are arranged in the length direction. It is. The side of the streamer-type fiber material having the stainless steel wire was attached to the arm with a polypropylene rope having a diameter of 5 mm so as to have a spacing of 50 cm. The streamer-type fiber material 4 of carbon fiber is immersed in water, and the amount of carbon fiber used is 1 m in pond water. 3 To about 4.8 grams. Thereafter, the arm was rotated, and the speed of the tip end of the streamer-type fiber material 4 attached to the arm was set to 25 cm / sec, and the speed of the end closest to the rotation axis was set to 5 cm / sec. In this state, it was operated continuously for three months from early spring to early summer when the temperature was 15 to 25 ° C. As a result, aerobic bacteria, microorganisms, and the like adhere to the streamer-type fiber material after the implementation, and small fish swim in groups around the fiber material and swim, and larger fish also swim. It was recognized that a food chain system had been formed. In addition, the water quality before and after the implementation and the state of the accumulated sludge were examined and compared. As a result, the deposition depth of the sludge at the bottom of the water decreased to about 13 cm after the implementation, and as shown in Table 1, the DO increased after the implementation, Both BOD and SS could be significantly reduced, and water could be effectively purified by the method and apparatus of the present invention.
Embodiment 2
Water quality (BOD, SS, DO) as shown in Table 1 and a volume of about 800 m with a maximum length of 25 m, a minimum width of 13 m and a maximum depth of about 3 m with almost no sludge on the water bottom 3 Using a device shown in FIG. 4 in which the same type of carbon fiber streamer type fiber material as in Example 1 was attached to an arm in a pond having almost no outflow / inflow water close to the elliptical shape of the streamer type fiber material attached to the arm, Adjust the moving speed of the tip to 0.5 cm / sec and the moving speed of the one connected to the point closest to the rotation axis to 0.1 cm / sec, and adjust the moving speed to 0.1 cm / sec. The plant was operated continuously for three months, and the water quality before and after the operation was examined and compared. In this case, the usage of the fiber material with respect to the volume of the water area is 1 m of pond water. 3 Was about 10 grams. As a result, as shown in Table 1, DO, BOD, and SS showed some improvement after implementation.
Comparative Example 1
Using the same closed system pond used in Example 2 and using the apparatus shown in FIG. 4 in which the same carbon fiber stream-flow type fiber material as in Example 1 newly prepared after Example 2 was attached to the arm. The streamer-type fiber material attached to the arm was allowed to stand still for three months from early autumn to early winter when the temperature was 15 to 28 ° C. without moving, and the water quality before and after the standing was examined and compared. As a result, as shown in Table 1, DO decreased slightly, the amount of oxygen contained became less, BOD and SS slightly increased, and the water quality deteriorated. In addition, the sludge fixed to the fiber material turns black, a part emits a bad smell and the sludge is in an anaerobic state, and it is not possible to purify pond water in a closed system water area where water does not move just by leaving the fiber material standing still. Was.
Embodiment 3
With a water quality (BOD, SS, DO) as shown in Table 1, sludge with a depth of about 20 cm is deposited on the bottom of the water at a maximum length of 30 m, a minimum width of 25 m, and a maximum depth of about 3 m. 3 In the same manner, the device shown in FIG. 4 used in Example 1 was fixed to the bottom of the water in a substantially square storage pond, and the fiber material at the tip of the arm was 60 cm / sec. The moving speed of the fiber material connected to a close place was moved to 12 cm / sec. In this case, the usage of the fiber material with respect to the volume of the water area is 1 m of pond water. 3 Was about 3.6 grams. Observation of the state of sludge fixation of the fiber material in the third month after operation from early spring to early summer revealed that the fixed sludge of the fiber material per unit at which the moving speed connected to the tip of the arm or the inside thereof exceeded 50 cm / sec, There was a tendency for the amount of water to be lower than that for the fixed sludge of the fibrous material at a slower speed inside, but the water quality tended to be improved as compared to before the operation.
Embodiment 4
In the water quality (BOD, SS, DO) as shown in Table 1, sludge with a depth of about 24 cm is deposited on the bottom of the water, the long side length is 15 m, the short side length is 10 m, and the maximum depth is about 3 m. Capacity about 450m 3 5 was subjected to water treatment using the apparatus shown in FIG. In the apparatus shown in FIG. 5, a motor 1 is fixed to a motor support rod 12 connected to a rotating shaft and is connected at an end of an arm 3. A fringe of an acrylic fiber as shown in FIG. 200 cm, the weft length from the core 10 mm, the weft interval 5 cm, the weight 32 g), and the fringe-type fiber material 13 shown in FIG. 3 The device was immersed in water as shown in FIG. 5 and the arm was moved by rotating the motor 1 to rotate the rotating blades, thereby to The moving speed is set such that the fringe 13 connected to the tip of the arm is 35 cm / sec, and the fringe 13 connected to the position closest to the rotation axis is 7 cm / sec. Moved. As a result, aerobic bacteria and microorganisms adhere to each of the fringes 13 connected to the arm in a slimy state, and the DO becomes higher, the BOD and SS decrease, and the accumulated sludge becomes lower than before the implementation. Can be reduced to 18 cm, and the method and apparatus of the present invention were able to effectively purify pond water in closed water bodies.
Embodiment 5
In the pond after completing Example 1, in place of the streamer-type fiber material used in Example 1, using carp streamer-type fiber materials 15 to 34, electric wires coated with a water-resistant synthetic resin were connected to these, as shown in FIG. Using the apparatus shown, the operation was performed except that the anode of the DC power supply 14 was connected to the odd-numbered fiber material and the cathode of the DC power supply 14 was connected to the even-numbered fiber material, and a DC current was applied at a voltage of 3 volts. The fiber material was rotated and moved for three months to purify water in the same manner as in Example 1. Oxygen bubbles are slightly generated from the carbon fiber fiber material connected to the anode. The water quality after the treatment for 3 months is shown in Table 1, and the water quality (BOD, SS, DO) before the implementation is It was further improved, and the sludge deposited on the bottom of the water could be reduced to about 5 cm, and it was found that the present invention could effectively purify the water in the closed system water area.
[0040]
Table 1
Figure 2004074004
[0041]
【The invention's effect】
The method of the present invention for treating, retaining, stopping, and storing water in rivers, ponds, dams, lakes and marshes can reduce BOD and SS components, which are pollutants in water bodies, by aerobic bacteria and microorganisms, and furthermore, feed them to food. Fish and other fish inhabit and form a food chain so that the water is clean and the landscape can be improved. In addition, fish and the like can be increased by the formed food chain system, so that the living environment can be revived, and a living environment free of foul odors can be expected.
[Brief description of the drawings]
FIG. 1 is a schematic view of a fringe type fiber material.
FIG. 2 is a schematic diagram of a Noren type fiber material.
FIG. 3 is a schematic diagram of a streamer-type fiber material.
FIG. 4 is a schematic diagram of a water treatment apparatus having a mechanism in which an arm to which a streamer-type fiber material is attached rotates.
FIG. 5 is a schematic diagram of a water treatment device having a mechanism in which a motor of FIG. 4 rotates a rotary blade connected to an arm.
FIG. 6 is a schematic diagram of a rotating mechanism having a motor at a position where FIG. 4 and FIG. 5 are combined, and a water treatment apparatus in which an anode and a cathode of a DC power supply are connected to a fiber material;
[Explanation of symbols]
1 motor
2 Rotation axis
3 arm
4,13 Textile materials
5 buoys
6 props
7 prop support rope
8 weight
9 Closed waters
10 Water bottom in closed waters
11 rotating blades
12 Plate motor support connected to rotating shaft
14 DC power supply
15, 17, 19, 21, 23, 25, 27, 29, 31, 33
Textile material connected to anode of DC power supply
16, 18, 20, 22, 24, 26, 28, 30, 32, 34
Textile material connected to cathode of DC power supply

Claims (6)

河川、池、ダム、湖沼、入り江等の流れの少ない滞留または停留する閉鎖系水域を浄化するに当たり、該水中にアクリル繊維、炭素繊維を含む繊維材料を浸漬し移動させることを特徴とする方法。A method for purifying closed or stagnant water bodies with low flow, such as rivers, ponds, dams, lakes, and coves, comprising immersing and moving a fiber material containing acrylic fibers and carbon fibers in the water. 繊維材料を1〜50cm/秒の速さで移動することを特徴とする請求項1に記載の方法The method according to claim 1, wherein the fiber material is moved at a speed of 1 to 50 cm / sec. 繊維材料を空気の微細気泡と接触させることを特徴とする請求項2に記載の方法。3. The method according to claim 2, wherein the fiber material is contacted with fine air bubbles. アクリル繊維、炭素繊維を含む繊維材料を有する部材を回転する機構を有する閉鎖系水域を浄化する装置。An apparatus for purifying a closed water body having a mechanism for rotating a member having a fiber material including acrylic fiber and carbon fiber. 炭素繊維を含む繊維材料に水の分解電圧以上で直流を流して水浄化することを特徴とする請求項1に記載の方法。The method according to claim 1, wherein a direct current is applied to a fiber material containing carbon fibers at a voltage higher than a decomposition voltage of water to purify water. 炭素繊維を含む繊維材料が直流電源の陽極に接続した請求項4に記載の装置。The apparatus according to claim 4, wherein the fiber material containing carbon fibers is connected to an anode of a DC power supply.
JP2002237446A 2002-08-16 2002-08-16 Method of cleaning water in closed water area by using fibrous material Pending JP2004074004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002237446A JP2004074004A (en) 2002-08-16 2002-08-16 Method of cleaning water in closed water area by using fibrous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002237446A JP2004074004A (en) 2002-08-16 2002-08-16 Method of cleaning water in closed water area by using fibrous material

Publications (1)

Publication Number Publication Date
JP2004074004A true JP2004074004A (en) 2004-03-11

Family

ID=32021192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002237446A Pending JP2004074004A (en) 2002-08-16 2002-08-16 Method of cleaning water in closed water area by using fibrous material

Country Status (1)

Country Link
JP (1) JP2004074004A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255249A (en) * 2010-06-04 2011-12-22 Akira Kojima Method for cleaning environmental water
WO2012081484A1 (en) * 2010-12-17 2012-06-21 小松精練株式会社 Water purifier
CN102849845A (en) * 2012-08-27 2013-01-02 北京化工大学 Preparation method and application of biological carbon fiber water treatment filler
JP2013039536A (en) * 2011-08-18 2013-02-28 Mitsubishi Rayon Co Ltd Carrier for microorganism adhesion
JP2013059734A (en) * 2011-09-14 2013-04-04 Mitsubishi Rayon Co Ltd Carrier for deposition of microorganism
CN104229981A (en) * 2014-09-03 2014-12-24 嘉兴安立得建设工程有限公司 Carbon fiber water repair ecological system
CN115403135A (en) * 2022-06-25 2022-11-29 深圳市政水环境技术有限公司 Flexible electrode assembly, anaerobic biological denitrification system and application

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255249A (en) * 2010-06-04 2011-12-22 Akira Kojima Method for cleaning environmental water
WO2012081484A1 (en) * 2010-12-17 2012-06-21 小松精練株式会社 Water purifier
JP2013039536A (en) * 2011-08-18 2013-02-28 Mitsubishi Rayon Co Ltd Carrier for microorganism adhesion
JP2013059734A (en) * 2011-09-14 2013-04-04 Mitsubishi Rayon Co Ltd Carrier for deposition of microorganism
CN102849845A (en) * 2012-08-27 2013-01-02 北京化工大学 Preparation method and application of biological carbon fiber water treatment filler
CN104229981A (en) * 2014-09-03 2014-12-24 嘉兴安立得建设工程有限公司 Carbon fiber water repair ecological system
CN115403135A (en) * 2022-06-25 2022-11-29 深圳市政水环境技术有限公司 Flexible electrode assembly, anaerobic biological denitrification system and application
CN115403135B (en) * 2022-06-25 2024-01-09 深圳市政水环境技术有限公司 Flexible electrode assembly, anaerobic electrobiological denitrification system and application

Similar Documents

Publication Publication Date Title
CN1241843C (en) Magnetic sludge suitable for use in waste water treatment and method for preparing same and method for waste water treatment
US7544286B2 (en) Method and apparatus for enhancing aquatic environments
CN103058383B (en) A kind of multifunctional modular chinampa for contaminated river lake in-situ immobilization
KR101006170B1 (en) Treating facility for small river wate
KR20110102732A (en) Floating type water treatment facility having self-generation fuction
CN102531178A (en) Combination device for treating cultivation wastewater of solar ecological compound purification pond
CN107176687A (en) A kind of three-dimensional partition conbination is biological floating bed and its applies
KR20190009467A (en) Green algae prevention apparatus using sunlight generation and methode thereof
CN104445586A (en) Artificial water weeds for water ecological restoration and application thereof
JP2004074004A (en) Method of cleaning water in closed water area by using fibrous material
CN100554182C (en) A kind of external membrane bioreactor system of sewage disposal and method of disposing of sewage thereof of being used for
CN210261492U (en) Plant floating bed device for repairing urban tidal river black and odorous bottom mud by using microbial fuel cell
WO2020004635A1 (en) Water purification device, aquaculture water purification system, water purification method, and production method for aquatic organism
CN2835232Y (en) Aquatic-weed-like biomembrane carrier filling
CN212356715U (en) Strip-shaped cavernous body biological filler mechanism
JPH1015572A (en) Bacteria immobilizing carrier and conversion of nitrogen compound in liquid by using the same
CN210559981U (en) Equipment for repairing urban tidal river black and odorous bottom mud by using microbial fuel cell
WO2010035800A1 (en) System for water purification and method of increasing dissolved-oxygen concentration in water to be purified
JP2004330156A (en) Fringe pattern biological membrane carrier and biological membrane contact oxidation water cleaning method
CN206173084U (en) Biological carrier of intelligence, intelligent biological carrier subassembly and biofilm reactor thereof
JP2003225690A (en) Water cleaning method and apparatus using fine air bubble and carbon fiber
CN209906462U (en) Energy-saving water purification system
CN209383600U (en) A kind of rotation floating wetland purifier
JP2000176485A (en) Water flow distributing plate and flat water area cleaning device provided with same
JP2564131B2 (en) Surface aeration immersion filter bed water treatment device