JP2013063036A - Method for raising aquatic animals, and method for removing nitrate-nitrogen - Google Patents

Method for raising aquatic animals, and method for removing nitrate-nitrogen Download PDF

Info

Publication number
JP2013063036A
JP2013063036A JP2011203504A JP2011203504A JP2013063036A JP 2013063036 A JP2013063036 A JP 2013063036A JP 2011203504 A JP2011203504 A JP 2011203504A JP 2011203504 A JP2011203504 A JP 2011203504A JP 2013063036 A JP2013063036 A JP 2013063036A
Authority
JP
Japan
Prior art keywords
water
nitrate nitrogen
aquatic animals
sulfur
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011203504A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hatano
一幸 羽田野
Junji Hamazaki
潤二 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clion Co Ltd
Original Assignee
Clion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clion Co Ltd filed Critical Clion Co Ltd
Priority to JP2011203504A priority Critical patent/JP2013063036A/en
Publication of JP2013063036A publication Critical patent/JP2013063036A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Abstract

PROBLEM TO BE SOLVED: To provide a method for removing nitrate-nitrogen, capable of denitrifying much water containing nitrate-nitrogen while hardly causing a white turbidity phenomenon in water; and to provide a method for raising aquatic animals, capable of reducing the frequency of change of breeding water while hardly causing the white turbidity phenomenon in the breeding water.SOLUTION: Nitrate-nitrogen dissolved in the breeding water W1 in a water tank or pond in which the aquatic animals are bred is removed by bringing the breeding water W1 into contact with a denitrifying material 23 containing sulfur and calcium carbonate. The method for raising the aquatic animals is for raising the aquatic animals in the breeding water W1 to which treatment water W2 after removal of nitrate-nitrogen is returned. The inflow water amount obtained by dividing the cubic volume per day of the breeding water W1 flowing into a treatment tank 21 filled with the denitrifying material 23 in which sulfur-oxidizing bacteria and aerobic microorganisms are grown by the mass of the denitrifying material 23 is at least 50 L/Kg per day, and the concentration of oxygen dissolved in the treatment water W2 flowing out of the treatment tank 21 is at least 3 mg/L.

Description

本発明は、水に溶存している硝酸性窒素を除去する方法、及び飼育水に溶存している硝酸性窒素を除去して水棲動物を飼育する方法に関するものである。   The present invention relates to a method for removing nitrate nitrogen dissolved in water and a method for breeding aquatic animals by removing nitrate nitrogen dissolved in breeding water.

魚類等の水棲動物を飼育する、水族館、観賞魚水槽、活魚水槽、観賞魚池、養殖魚池等においては、水の交換(換水)の回数を少なくするため、砂等を用いたろ過や微生物による浄化等により水の処理が行われている。このうち、残餌や魚類等のふん尿等から発生する窒素成分については、微生物により、アンモニア性窒素、亜硝酸性窒素、硝酸性窒素へと酸化されることで、より安全な窒素形態に変化して処理されている。しかし、溶存酸素の濃度が高い環境では、硝酸性窒素は増え続けることから、動物の適応濃度を何れは超えてしまう。そのため、水棲動物に障害が起こらないよう、水の交換が行われている。   In aquariums, ornamental fish tanks, live fish tanks, ornamental fish ponds, aquaculture fish ponds, etc., where aquatic animals such as fish are bred, filtration using sand etc. or purification by microorganisms is used to reduce the number of water exchanges For example, water is treated. Among these, nitrogen components generated from residual food and manure of fish, etc., are oxidized to ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen by microorganisms to change to a safer nitrogen form. Have been processed. However, in an environment where the concentration of dissolved oxygen is high, nitrate nitrogen continues to increase, which eventually exceeds the animal's adaptive concentration. For this reason, water is exchanged so that no damage is caused to aquatic animals.

ところで、硝酸性窒素を除去する方法としては、嫌気性条件の処理槽にメタノール等の水素供与体を投入して生物脱窒する方法がある。しかし、この方法では、メタノール等の水素供与体を多く使用することから、処理費用が高いものとなっていた。   By the way, as a method of removing nitrate nitrogen, there is a method of biological denitrification by introducing a hydrogen donor such as methanol into a treatment tank under anaerobic conditions. However, since this method uses a large amount of hydrogen donor such as methanol, the processing cost is high.

そこで、処理費用が安い方法として、特許文献1に記載の硫黄と炭酸カルシウムとからなる脱窒材を用い、この脱窒材が充填されている処理槽に流入する水量を少なく(例えば、一日に流入する海水量を脱窒材の重量の約20倍以下)にすることで、処理槽内の溶存酸素量を少なくして嫌気性状態にして硝酸性窒素を除去(脱窒)する方法が特許文献2、3に提案されている。   Therefore, as a method with low processing costs, a denitrification material composed of sulfur and calcium carbonate described in Patent Document 1 is used, and the amount of water flowing into the treatment tank filled with this denitrification material is reduced (for example, one day The amount of seawater that flows into the denitrification material is less than about 20 times the weight of the denitrification material), reducing the amount of dissolved oxygen in the treatment tank to an anaerobic state to remove nitrate nitrogen (denitrification) Patent Documents 2 and 3 propose it.

特許第3430364号公報Japanese Patent No. 3430364 特許第4562935号公報Japanese Patent No. 4562935 特開2002−370097号公報JP 2002-370097 A

新日鐵化学株式会社技術開発本部開発企画部編「硫黄カルシウム剤による脱窒法」化学工業日報社、2004年4月28日、p59−60Nippon Steel Chemical Co., Ltd. Technical Development Division, Development Planning Dept. “Denitrification with Sulfur Calcium Agent”, Chemical Industry Daily, April 28, 2004, p59-60

しかし、特許文献2、3の方法は、脱窒処理された水に白濁現象が生じることがあった(表1の比較例2、3参照)。その上、硫化水素を発生することがあり、水棲動物を弱らせたり、死滅させたりするおそれがあった。また、単位時間当りに脱窒処理される水の量が少ないことから、多くの脱窒材及び大きな処理槽が必要となっていた。特に、魚類等の水棲動物を飼育している水槽等の水の脱窒処理に用いる場合には、硝酸性窒素が増えないよう、日々の給餌量に見合うだけの脱窒処理をする能力が最低限求められているが、特許文献2、3の方法では、脱窒処理される水の量が少ないことから、脱窒処理しきれないおそれがあった。   However, the methods of Patent Documents 2 and 3 sometimes cause white turbidity in the denitrified water (see Comparative Examples 2 and 3 in Table 1). In addition, hydrogen sulfide may be generated, which may weaken or kill aquatic animals. In addition, since the amount of water to be denitrified per unit time is small, many denitrifying materials and a large treatment tank are required. In particular, when used for denitrification of water in aquariums where fish and other aquatic animals are bred, the ability to perform denitrification to meet the daily feeding amount is the lowest so that nitrate nitrogen does not increase. Although limited, the methods of Patent Documents 2 and 3 have a risk that the denitrification treatment cannot be performed because the amount of water to be denitrified is small.

そこで、本発明は、水に白濁現象が生じ難く、硝酸性窒素を含む多くの水を脱窒処理(溶存している硝酸性窒素を窒素ガスにして水から除去する処理)できる硝酸性窒素の除去方法、及び飼育水に白濁現象が生じ難く、飼育水の交換回数を少なくできる水棲動物の飼育方法を提供することを目的とする。   Therefore, the present invention is not likely to cause white turbidity in water, and it is possible to denitrify a large amount of water containing nitrate nitrogen (treatment to remove dissolved nitrate nitrogen from the water using nitrogen gas). It is an object of the present invention to provide a removal method and a method for raising aquatic animals that is less likely to cause white turbidity in the breeding water and can reduce the number of times the breeding water is exchanged.

硫黄と炭酸カルシウムとを含む脱窒材を用いた硝酸性窒素の脱窒は、硫黄酸化細菌によって行われることから、硫黄酸化細菌が硝酸性窒素の酸素を取り込むよう、雰囲気を嫌気性状態にする、即ち、処理される水を嫌気性(溶存酸素濃度1mg/L未満)にすることが好ましいとされている(非特許文献1)。そのため、魚類等の水棲動物を飼育している水槽等の水を脱窒処理する場合には、従来は、脱窒材が充填されている処理槽へ流入する水の量を少なくしたり、処理槽へ流入する前に水を嫌気性にする等して、処理槽内が嫌気性状態になるようにしていた。   Since denitrification of nitrate nitrogen using a denitrification material containing sulfur and calcium carbonate is performed by sulfur-oxidizing bacteria, the atmosphere is made anaerobic so that the sulfur-oxidizing bacteria can take in nitrogenous oxygen. That is, it is considered preferable to make the water to be treated anaerobic (dissolved oxygen concentration of less than 1 mg / L) (Non-patent Document 1). For this reason, when denitrifying water in aquariums where fish and other aquatic animals are bred, conventionally, the amount of water flowing into the treatment tank filled with denitrifying material is reduced or treated. Before flowing into the tank, the inside of the treatment tank was made anaerobic by making the water anaerobic.

しかし、本発明の発明者らは、脱窒材が充填された処理槽内の水の溶存酸素濃度を低くして、処理槽内の雰囲気を嫌気性状態にすることが、白濁現象を生じさせる原因であると推測した。   However, the inventors of the present invention reduce the dissolved oxygen concentration of the water in the treatment tank filled with the denitrification material to make the atmosphere in the treatment tank anaerobic, which causes a cloudiness phenomenon. I guessed it was the cause.

そこで、本発明の発明者らは、処理される水を好気性(溶存酸素濃度を3mg/L以上)にしたまま処理槽に流入させて、硫黄酸化細菌と好気性微生物とを共存させることで、白濁現象が生じないことを見出した。   Therefore, the inventors of the present invention allow the water to be treated to flow into the treatment tank with aerobic (dissolved oxygen concentration of 3 mg / L or more) and allow sulfur-oxidizing bacteria and aerobic microorganisms to coexist. And found that the cloudiness phenomenon does not occur.

また、処理槽内の雰囲気を好気性状態にすることから、多くの水を処理槽に流入させることができ、多くの水を脱窒処理できることを見出した。   Moreover, since the atmosphere in a processing tank is made into an aerobic state, it discovered that much water could be flowed into a processing tank and could denitrify much water.

上記課題を解決するために、本発明の第1の硝酸性窒素の除去方法は、硝酸性窒素が溶存している水を硫黄と炭酸カルシウムとを含んでなる脱窒材に接触させて前記硝酸性窒素を除去する硝酸性窒素の除去方法であって、硫黄酸化細菌と好気性微生物とを生息させている前記脱窒材が充填されている処理槽から流出する、硝酸性窒素が除去された水の溶存酸素濃度を3mg/L以上にすることを特徴とする。   In order to solve the above-mentioned problem, the first method for removing nitrate nitrogen according to the present invention is to bring the water in which nitrate nitrogen is dissolved into contact with a denitrification material containing sulfur and calcium carbonate, thereby A method for removing nitrate nitrogen, which removes nitrate nitrogen from the treatment tank filled with the denitrification material inhabiting sulfur-oxidizing bacteria and aerobic microorganisms. The dissolved oxygen concentration of water is 3 mg / L or more.

また、本発明の第2の硝酸性窒素の除去方法は、硝酸性窒素が溶存している水を硫黄と炭酸カルシウムとを含んでなる脱窒材に接触させて前記硝酸性窒素を除去する硝酸性窒素の除去方法であって、硫黄酸化細菌と好気性微生物とを生息させている前記脱窒材が充填されている処理槽に流入する前記水の一日分の体積を前記脱窒材の質量で割った流入水量が50L/Kg日以上であることを特徴とする。   The second method for removing nitrate nitrogen according to the present invention is to remove nitrate nitrogen by bringing water in which nitrate nitrogen is dissolved into contact with a denitrification material containing sulfur and calcium carbonate. A method for removing oxidative nitrogen, wherein a daily volume of water flowing into a treatment tank filled with the denitrifying material inhabiting sulfur-oxidizing bacteria and aerobic microorganisms is The amount of influent water divided by mass is 50 L / Kg days or more.

さらに、本発明の第3の硝酸性窒素の除去方法は、硝酸性窒素が溶存している水を硫黄と炭酸カルシウムとを含んでなる脱窒材に接触させて前記硝酸性窒素を除去する硝酸性窒素の除去方法であって、硫黄酸化細菌と好気性微生物とを生息させている前記脱窒材が充填されている処理槽に流入する前記水の一日分の体積を前記脱窒材の質量で割った流入水量が50L/Kg日以上であり、前記処理槽から流出する、硝酸性窒素が除去された水の溶存酸素濃度を3mg/L以上にすることを特徴とする。   Furthermore, in the third method for removing nitrate nitrogen according to the present invention, the nitrate nitrogen is removed by bringing water in which nitrate nitrogen is dissolved into contact with a denitrification material containing sulfur and calcium carbonate. A method for removing oxidative nitrogen, wherein a daily volume of water flowing into a treatment tank filled with the denitrifying material inhabiting sulfur-oxidizing bacteria and aerobic microorganisms is The amount of inflow water divided by mass is 50 L / Kg days or more, and the dissolved oxygen concentration of water from which nitrate nitrogen has been removed flowing out of the treatment tank is 3 mg / L or more.

上記課題を解決するために、本発明の第1の水棲動物の飼育方法は、水棲動物を飼育している水槽又は池の飼育水を、硫黄と炭酸カルシウムとを含んでなる脱窒材に接触させて、前記飼育水に溶存している硝酸性窒素を除去し、前記除去後の処理水を戻した前記飼育水の中で前記水棲動物を飼育する水棲動物の飼育方法であって、硫黄酸化細菌と好気性微生物とを生息させている前記脱窒材が充填されている処理槽から流出する前記処理水の溶存酸素濃度を3mg/L以上にすることを特徴とする。   In order to solve the above-mentioned problems, the first method for raising aquatic animals according to the present invention is to contact the dewatering material comprising sulfur and calcium carbonate with the breeding water of the aquarium or pond breeding the aquatic animals. A method for raising aquatic animals that removes nitrate nitrogen dissolved in the breeding water and breeds the aquatic animals in the breeding water after returning the treated water after the removal. The dissolved oxygen concentration of the treated water flowing out of the treatment tank filled with the denitrification material inhabiting bacteria and aerobic microorganisms is 3 mg / L or more.

また、本発明の第2の水棲動物の飼育方法は、水棲動物を飼育している水槽又は池の飼育水を、硫黄と炭酸カルシウムとを含んでなる脱窒材に接触させて、前記飼育水に溶存している硝酸性窒素を除去し、前記除去後の処理水を戻した前記飼育水の中で前記水棲動物を飼育する水棲動物の飼育方法であって、硫黄酸化細菌と好気性微生物とを生息させている前記脱窒材が充填されている処理槽に流入する前記飼育水の一日分の体積を前記脱窒材の質量で割った流入水量が50L/Kg日以上であることを特徴とする。   The second aquatic animal breeding method of the present invention is a method of bringing the breeding water of a tank or pond breeding aquatic animals into contact with a denitrification material containing sulfur and calcium carbonate. A method for raising aquatic animals in the breeding water from which the nitrate nitrogen dissolved in the water has been removed and the treated water after the removal has been returned, comprising sulfur-oxidizing bacteria and aerobic microorganisms The amount of inflow water divided by the mass of the denitrification material divided by the mass of the denitrification material is 50 L / Kg days or more. Features.

さらに、本発明の第3の水棲動物の飼育方法は、水棲動物を飼育している水槽又は池の飼育水を、硫黄と炭酸カルシウムとを含んでなる脱窒材に接触させて、前記飼育水に溶存している硝酸性窒素を除去し、前記除去後の処理水を戻した前記飼育水の中で前記水棲動物を飼育する水棲動物の飼育方法であって、硫黄酸化細菌と好気性微生物とを生息させている前記脱窒材が充填されている処理槽に流入する前記飼育水の一日分の体積を前記脱窒材の質量で割った流入水量が50L/Kg日以上であり、前記処理槽から流出する前記処理水の溶存酸素濃度を3mg/L以上にすることを特徴とする。   Further, according to the third method for raising aquatic animals of the present invention, the breeding water is obtained by bringing the breeding water of a tank or pond breeding aquatic animals into contact with a denitrification material containing sulfur and calcium carbonate. A method for raising aquatic animals in the breeding water from which the nitrate nitrogen dissolved in the water has been removed and the treated water after the removal has been returned, comprising sulfur-oxidizing bacteria and aerobic microorganisms The amount of inflow water obtained by dividing the daily volume of the breeding water flowing into the treatment tank filled with the denitrification material inhabiting by the mass of the denitrification material is 50 L / Kg days or more, The dissolved oxygen concentration of the treated water flowing out from the treatment tank is 3 mg / L or more.

本発明の硝酸性窒素の除去方法及び水棲動物の飼育方法の各要素の態様を以下に例示する。   Embodiments of each element of the nitrate nitrogen removal method and the aquatic animal breeding method of the present invention are exemplified below.

1.脱窒材
脱窒材は、特に限定されないが、硫黄の含有量が炭酸カルシウムの含有量より少ないことが好ましい。これは、処理槽内の雰囲気が嫌気性状態になったときに、硫酸イオンが有機物と反応して硫化水素を発生する危険性があり、その硫化水素により、水棲動物が死滅するおそれがあるからである。硫黄の含有量と炭酸カルシウムの含有量との質量比(硫黄:炭酸カルシウム)は、特に限定されないが、上記理由により、30〜49.9:70〜50.1が好ましく、40〜49:60〜51がより好ましい。
1. Denitrification Material The denitrification material is not particularly limited, but it is preferable that the sulfur content is smaller than the calcium carbonate content. This is because when the atmosphere in the treatment tank becomes anaerobic, there is a risk that sulfate ions react with organic substances to generate hydrogen sulfide, which may kill aquatic animals. It is. The mass ratio between the sulfur content and the calcium carbonate content (sulfur: calcium carbonate) is not particularly limited, but is preferably 30 to 49.9: 70 to 50.1, and preferably 40 to 49:60 for the above reasons. -51 is more preferable.

脱窒材の粒度は、特に限定されないが、5〜200mmであることが好ましい。これは、5mm未満では、脱窒材間の隙間が狭くなるため、水中を浮遊する固形物や有機物等が嵌り込むことにより、又は、脱窒材の表面に生息する微生物により、目詰まりを生じ易くなり、脱窒処理の効率が低下するとともに、局所的な嫌気性状態が生じ易くなって硫化水素が発生し易くなる。一方、200mmを超えると、表面積が小さくなり、脱窒処理の効率が低下する。硫黄酸化細菌と好気性微生物とが共存し易くなり、脱窒処理の効率が高くなることから、10〜50mmであることがより好ましい。   The particle size of the denitrification material is not particularly limited, but is preferably 5 to 200 mm. If it is less than 5 mm, the gap between the denitrifying materials becomes narrow, so clogging occurs due to the solid matter or organic matter floating in the water or by microorganisms living on the surface of the denitrifying material. As a result, the efficiency of the denitrification process is reduced, and a local anaerobic state is easily generated, and hydrogen sulfide is easily generated. On the other hand, when it exceeds 200 mm, the surface area becomes small, and the efficiency of the denitrification treatment decreases. The sulfur-oxidizing bacteria and aerobic microorganisms are likely to coexist and the efficiency of the denitrification treatment is increased, so that the thickness is more preferably 10 to 50 mm.

2.処理水(硝酸性窒素が除去された水)
処理水の溶存酸素濃度を3mg/L以上にすることで、処理槽内の雰囲気が好気性状態になり、脱窒材に生息している好気性微生物を活性化する。これにより、水に白濁現象が生じないようにできる。好ましくは、5mg/L以上である。処理水の溶存酸素濃度の上限は、特に限定されないが、敢えて言うならば、8mg/L以下が例示できる。なお、処理水の溶存酸素濃度は、処理槽から流出した処理水を温度や圧力を操作することなく測定した値である。
2. Treated water (water from which nitrate nitrogen has been removed)
By making the dissolved oxygen concentration of treated water 3 mg / L or more, the atmosphere in the treatment tank becomes an aerobic state, and aerobic microorganisms living in the denitrification material are activated. As a result, the cloudiness phenomenon can be prevented from occurring in the water. Preferably, it is 5 mg / L or more. Although the upper limit of the dissolved oxygen concentration of treated water is not specifically limited, If dare to say, 8 mg / L or less can be illustrated. The dissolved oxygen concentration of the treated water is a value obtained by measuring the treated water flowing out of the treatment tank without manipulating the temperature and pressure.

3.流入水量
流入水量が50L/Kg日以上であることで、処理槽内の雰囲気を好気性状態にでき、脱窒材に生息している好気性微生物を活性化する。これにより、水に白濁現象が生じないようにできる。また、多くの水の脱窒処理が行えることから、処理槽に充填する脱窒材の量を少なくでき、処理槽を小さくすることができる。脱窒材の量が同じであれば、従来に比べて脱窒処理する水の量を多くすることができる。流入水量の上限は、特に限定されないが、敢えて言うならば、10000L/Kg日以下が例示できる。
3. Inflowing water amount When the inflowing water amount is 50 L / Kg or more, the atmosphere in the treatment tank can be brought into an aerobic state, and aerobic microorganisms living in the denitrification material are activated. As a result, the cloudiness phenomenon can be prevented from occurring in the water. In addition, since a large amount of water can be denitrified, the amount of the denitrification material filled in the treatment tank can be reduced, and the treatment tank can be made smaller. If the amount of the denitrification material is the same, the amount of water to be denitrified can be increased compared to the conventional case. The upper limit of the inflow water amount is not particularly limited, but daringly, it can be exemplified by 10,000 L / Kg days or less.

4.飼育水(硝酸性窒素が溶存している水)
飼育水は、特に限定されないが、海水であってもよいし、淡水であってもよい。また、処理槽に流入する前に溶存酸素濃度を高める操作をしなくてもよいことから、好気性(溶存酸素濃度が3mg/L以上)のものであることが好ましく、水棲動物が飼育し易いことから、溶存酸素濃度が5mg/L以上のものであることがより好ましい。溶存酸素濃度の上限は、特に限定されないが、敢えて言うならば、8mg/L以下が例示できる。また、飼育水の温度は、特に限定されないが、水族館等で水棲動物を飼育している水槽の水温、例えば、15〜30℃が挙げられる。
4). Breeding water (water in which nitrate nitrogen is dissolved)
Breeding water is not particularly limited, but it may be seawater or fresh water. In addition, since it is not necessary to increase the dissolved oxygen concentration before flowing into the treatment tank, it is preferably aerobic (dissolved oxygen concentration of 3 mg / L or more), and aquatic animals are easy to breed. Therefore, it is more preferable that the dissolved oxygen concentration is 5 mg / L or more. Although the upper limit of dissolved oxygen concentration is not specifically limited, If dare to say, 8 mg / L or less can be illustrated. Moreover, although the temperature of breeding water is not specifically limited, The water temperature of the water tank which breeds the aquatic animal in an aquarium etc., for example, 15-30 degreeC is mentioned.

飼育水の量は、特に限定されないが、入れ替えを行わず繰り返し使用する場合には、発生する硝酸性窒素の量にも因るが、処理槽に一日に流入する水の量の10倍以下であることが好ましい。10倍を超えると、発生した分の硝酸性窒素が処理できなくなるおそれがある。   The amount of breeding water is not particularly limited, but when it is used repeatedly without replacement, it depends on the amount of nitrate nitrogen generated, but it is 10 times or less the amount of water flowing into the treatment tank a day. It is preferable that If it exceeds 10 times, the generated nitrate nitrogen may not be treated.

5.水棲動物
水棲動物としては、特に限定されないが、魚、海獣、貝、タコ、イカ、カニ、エビ、ヒトデ、サンゴ、ハナギンチャク、イソギンチャク等が例示できる。
5. Aquatic animals Aquatic animals are not particularly limited, and examples include fish, sea animals, shellfish, octopus, squid, crab, shrimp, starfish, coral, hanaginaku, sea anemone and the like.

本発明によれば、水に白濁現象が生じ難く、硝酸性窒素を含む多くの水を脱窒処理できる硝酸性窒素の除去方法、及び飼育水に白濁現象が生じ難く、飼育水の交換回数を少なくできる水棲動物の飼育方法を提供することができる。   According to the present invention, it is difficult to cause white turbidity in water, a method for removing nitrate nitrogen that can denitrify a large amount of water containing nitrate nitrogen, and white turbidity in breeding water hardly occurs. It is possible to provide a method for raising aquatic animals that can be reduced.

脱窒能力試験の試験設備の図である。It is a figure of the test equipment of a denitrification capability test. 飼育試験の試験設備の図である。It is a figure of the test equipment of a breeding test. 飼育試験に用いた処理槽の断面図である。It is sectional drawing of the processing tank used for the breeding test.

1)硫黄酸化細菌及び好気性微生物の馴化
硫黄酸化細菌と好気性微生物とが表層に生息している脱窒材を得るために、硫黄酸化細菌及び好気性微生物の馴化を脱窒材へ行った。
この硫黄酸化細菌及び好気性微生物の馴化が行われた脱窒材を、後述する実施例及び比較例の脱窒材として用いた。
1) Acclimatization of sulfur-oxidizing bacteria and aerobic microorganisms In order to obtain a denitrification material in which sulfur-oxidizing bacteria and aerobic microorganisms live on the surface, acclimatization of sulfur-oxidizing bacteria and aerobic microorganisms was performed on the denitrification material. .
The denitrification material in which the sulfur-oxidizing bacteria and aerobic microorganisms were conditioned was used as a denitrification material in Examples and Comparative Examples described later.

海水、脱窒材及び活性汚泥には次のものを用いた。
海水には、水族館において、魚介類や哺乳類等の海洋動物を飼育している水槽から採取した、硝酸性窒素濃度が56.6mg/Lのものを用いた。
脱窒材には、硫黄と炭酸カルシウムとの質量比(硫黄:炭酸カルシウム)が45:55、粒度が10〜50mm、見かけ比重が1.35Kg/Lのものを用いた。
活性汚泥には、下水処理場のばっき槽に浮遊しているものを用いた。
The following were used for seawater, denitrification material and activated sludge.
As the seawater, one having a nitrate nitrogen concentration of 56.6 mg / L, which was collected from an aquarium where marine animals such as seafood and mammals were raised in an aquarium, was used.
As the denitrification material, one having a mass ratio of sulfur to calcium carbonate (sulfur: calcium carbonate) of 45:55, a particle size of 10 to 50 mm, and an apparent specific gravity of 1.35 Kg / L was used.
The activated sludge used was suspended in the wastewater treatment plant.

脱窒材への硫黄酸化細菌及び好気性微生物の馴化は、次のように行った。
10L(容量)のポリ容器に、10Kgの脱窒材を充填した後、100mLの活性汚泥を上から脱窒材に振り掛けた。
その後、約150Lの海水(硝酸性窒素濃度が56.6mg/L)が入れられた水槽(W450mm×L900mm×H450mm)から、ポンプを用いて、海水を6L/minの流量でポリ容器に常時通水した(なお、海水は、ポリ容器内の脱窒材充填層を上向流で通水され、ポリ容器から溢れ出たものを水槽へと戻し、循環させた)。
そして、海水の硝酸性窒素濃度が1mg/L以下になるまで(5日目に硝酸性窒素濃度が1mg/L以下になった)通水を続けた。
Acclimation of sulfur-oxidizing bacteria and aerobic microorganisms to the denitrification material was performed as follows.
After filling a 10 L (capacity) plastic container with 10 kg of denitrification material, 100 mL of activated sludge was sprinkled on the denitrification material from above.
After that, from a water tank (W450mm x L900mm x H450mm) containing about 150L of seawater (nitric nitrogen concentration 56.6mg / L), seawater is constantly passed through a plastic container at a flow rate of 6L / min using a pump. Water was added (Note that seawater was passed through the denitrifying material packed bed in the plastic container in an upward flow, and the overflowed water from the plastic container was returned to the water tank and circulated).
And the water flow was continued until the nitrate nitrogen concentration of seawater became 1 mg / L or less (the nitrate nitrogen concentration became 1 mg / L or less on the fifth day).

その後、全ての海水(約150L)を硝酸性窒素濃度が56.6mg/Lのものに入れ替えた後、再度、ポリ容器への通水(流量が6L/min)をし、この海水の硝酸性窒素濃度が1mg/L以下になるまで通水を続けた。
そして、海水の入れ替えを三回繰り返すことで、約450Lの海水(硝酸性窒素濃度が56.6mg/L)をその硝酸性窒素濃度が1mg/Lになるまでポリ容器に通水して、脱窒材への硫黄酸化細菌及び好気性微生物の馴化を行った。
Thereafter, all the seawater (about 150 L) was replaced with one having a nitrate nitrogen concentration of 56.6 mg / L, and water was again passed through the plastic container (the flow rate was 6 L / min). The water flow was continued until the nitrogen concentration became 1 mg / L or less.
Then, by repeating the replacement of the seawater three times, about 450 L of seawater (nitrate nitrogen concentration of 56.6 mg / L) was passed through the plastic container until the nitrate nitrogen concentration reached 1 mg / L, and the water was removed. Acclimatization of sulfur-oxidizing bacteria and aerobic microorganisms to nitrogenous materials was performed.

2)脱窒能力試験
上記、硫黄酸化細菌及び好気性微生物の馴化を行うことにより、硫黄酸化細菌と好気性微生物とが表層に生息している脱窒材を用い、この脱窒材が充填されている処理槽に流入する海水の量(流入水量)を変えた3種類の実施例と3種類の比較例とにより、それぞれの脱窒能力と水の白濁状態とを評価し、その結果を表1に示す。また、それぞれの流入水量及び溶存酸素濃度も表1に示す。
2) Denitrification ability test By acclimating the above-mentioned sulfur-oxidizing bacteria and aerobic microorganisms, a denitrifying material in which sulfur-oxidizing bacteria and aerobic microorganisms live on the surface layer is used, and this denitrifying material is filled. The denitrification ability and water turbidity of each of the three types of examples and the three types of comparative examples with different amounts of seawater flowing into the treatment tank (inflow water amount) were evaluated, and the results are shown in the table. It is shown in 1. Table 1 also shows the amounts of inflow water and the dissolved oxygen concentration.

Figure 2013063036
Figure 2013063036

海水には、水族館において、魚介類や哺乳類等の海洋動物を飼育している水槽から採取した、硝酸性窒素濃度が約40〜70mg/Lのものを用いた。   As the seawater, one having a nitrate nitrogen concentration of about 40 to 70 mg / L collected from an aquarium where sea animals such as seafood and mammals are raised in an aquarium was used.

試験方法
硫黄酸化細菌と好気性微生物とが表層に生息している10Kgの脱窒材13を、側面上部に処理水出口12が穿設された10L(容量)のポリ容器11に充填した。このポリ容器11が処理槽である。
そして、図1に示すように、約150Lの海水W1が入れられた水槽10(W450mm×L900mm×H450mm)内に、水槽10内の海水W1がポリ容器11内に直接流入しないようにするとともに、処理水出口12から溢れ出た海水が水槽10に戻るよう、処理水出口12が水面より上方に位置するようにして、ポリ容器11を配設した。
吸入ホース16の先端部を水槽10内の海水W1中に入れた、送水能力が6L/minのポンプ15により海水W1を汲み上げてポリ容器11内に入れた。
Test Method 10 Kg of denitrification material 13 in which sulfur-oxidizing bacteria and aerobic microorganisms live on the surface layer was filled into a 10 L (capacity) plastic container 11 having a treated water outlet 12 drilled at the upper side. This plastic container 11 is a processing tank.
And as shown in FIG. 1, while preventing the seawater W1 in the water tank 10 from flowing directly into the plastic container 11 in the water tank 10 (W450 mm × L900 mm × H450 mm) in which about 150 L of seawater W1 is placed, The poly container 11 was disposed so that the treated water outlet 12 was positioned above the water surface so that the seawater overflowing from the treated water outlet 12 returned to the water tank 10.
The tip end of the suction hose 16 was put in the seawater W1 in the water tank 10 and the seawater W1 was pumped up by the pump 15 having a water supply capacity of 6 L / min and put in the plastic container 11.

そして、ポンプ15を間欠運転(5分間の運転と2〜360分間の停止とが1サイクル)することで、水槽10内の海水W1をポリ容器11内に送るとともに、脱窒処理されて溶存している硝酸性窒素が除去された処理海水W2を処理水出口12から溢れ出させて海水W1へと戻し、海水W1の脱窒処理を行った。ポンプ15の停止時間を変えることで、ポリ容器11に流入する海水の一日分の量(体積)を変え、この一日分の海水の体積をポリ容器に充填された脱窒材の質量で割った値である流入水量を変えた。なお、試験中は、エアレーションにより、海水W1に酸素を供給した。また、海水に対して温度調整を行わなかったことから、海水W1及びW2の温度は室温(約25℃)であった。   Then, the pump 15 is intermittently operated (5 minutes of operation and 2 to 360 minutes of stoppage is one cycle), so that the seawater W1 in the water tank 10 is sent into the plastic container 11 and denitrified and dissolved. The treated seawater W2 from which the nitrate nitrogen was removed overflowed from the treated water outlet 12 and returned to the seawater W1 to denitrify the seawater W1. By changing the stop time of the pump 15, the daily amount (volume) of the seawater flowing into the plastic container 11 is changed, and the daily seawater volume is calculated by the mass of the denitrification material filled in the plastic container. The amount of influent water, which is the divided value, was changed. During the test, oxygen was supplied to the seawater W1 by aeration. Moreover, since temperature adjustment was not performed with respect to seawater, the temperature of seawater W1 and W2 was room temperature (about 25 degreeC).

評価
脱窒能力
試験開始時及び試験開始3日後の水槽10内の海水W1の硝酸性窒素濃度を測定した。そして、試験開始3日後の測定値を基に、◎:5mg/L以下、○:5〜20mg/L、△:20mg/L超と評価した。
Evaluation Denitrification ability The nitrate nitrogen concentration of the seawater W1 in the water tank 10 at the start of the test and 3 days after the start of the test was measured. And based on the measured value 3 days after the start of the test, it was evaluated that ◎: 5 mg / L or less, ◯: 5 to 20 mg / L, Δ: more than 20 mg / L.

白濁状態
試験開始3日後の水槽10内の海水W1の白濁現象の程度を目視で判断し、白濁がない場合をなしと、白濁が少しある場合を少しと、白濁が濃い場合を濃いと評価した。
The cloudiness state The degree of cloudiness of the seawater W1 in the aquarium 10 three days after the start of the test was judged visually, and it was evaluated as dark when there was no cloudiness, when there was little cloudiness, and when the cloudiness was dark. .

溶存酸素濃度
試験開始3日後における2〜360分間の停止後にポンプを運転した直後の処理水出口12の海水を、温度及び圧力を操作することなく、測定した。
Dissolved oxygen concentration Seawater at the treated water outlet 12 immediately after the pump was operated after stopping for 2 to 360 minutes three days after the start of the test was measured without operating the temperature and pressure.

表1に示すように、実施例は、3日後には、硝酸性窒素濃度が3.2mg/L以下であり、脱窒する能力が高かった。溶存酸素濃度が3.5mg/L以上であり、白濁現象が生じなかった。流入水量が66.5L/Kg日以上と大きいことから、硝酸性窒素の脱窒処理される海水の量を多くできた。一方、比較例は、3日後には、硝酸性窒素濃度が7.6mg/L以上であり、脱窒する能力が十分ではなかった。溶存酸素濃度が2.2mg/L以下であり、白濁現象が生じた。これは、流入水量が34.6L/Kg日以下と小さいことから、ポリ容器内に海水が滞留する時間が長くなってしまった。そのため、脱窒菌による酸素消費が高くなり、海水の溶存酸素濃度が低くなって、白濁状態になりやすくなったと考えられる。   As shown in Table 1, in Example, the nitrate nitrogen concentration was 3.2 mg / L or less after 3 days, and the ability to denitrify was high. The dissolved oxygen concentration was 3.5 mg / L or more, and no white turbidity occurred. Since the amount of inflow water was as large as 66.5 L / Kg day or more, the amount of seawater subjected to denitrification of nitrate nitrogen could be increased. On the other hand, in the comparative example, the nitrate nitrogen concentration was 7.6 mg / L or more after 3 days, and the ability to denitrify was not sufficient. The dissolved oxygen concentration was 2.2 mg / L or less, and white turbidity occurred. This is because the amount of inflow water is as small as 34.6 L / Kg day or less, and the time for seawater to stay in the plastic container has become longer. For this reason, it is considered that oxygen consumption by denitrifying bacteria is increased, the dissolved oxygen concentration of seawater is decreased, and a cloudy state is likely to occur.

3)飼育試験
水棲動物を飼育している水槽の飼育水に本発明の実施例の硝酸性窒素の除去方法を用いて、溶存している硝酸性窒素の除去を行った。具体的には、次にように行った。
3) Rearing test Dissolved nitrate nitrogen was removed from the rearing water of the aquarium where aquatic animals were raised using the method for removing nitrate nitrogen of the example of the present invention. Specifically, it was performed as follows.

図2に示すように、円筒状の水槽20(直径:1000mm、水深600mm)に入れられた約570Lの海水W1を、32Kgの珊瑚レキ22(ろ過材)が充填された処理槽21(W800mm×L450mm×H450mm)に流下させるとともに、処理槽21内の海水W1を、ポンプ25により、水槽20に汲み上げることで、水槽20と処理槽21との間で海水W1を循環させた。なお、水槽20内の海水W1には、エアレーションにより、酸素を供給した。   As shown in FIG. 2, about 570 L of seawater W1 placed in a cylindrical water tank 20 (diameter: 1000 mm, water depth 600 mm) is treated with a treatment tank 21 (W800 mm × W) filled with 32 kg of dredge 22 (filter material). L450 mm × H450 mm), and the seawater W1 in the treatment tank 21 was pumped into the water tank 20 by the pump 25, thereby circulating the seawater W1 between the water tank 20 and the treatment tank 21. Note that oxygen was supplied to the seawater W1 in the water tank 20 by aeration.

この循環を詳述すると、所定の容量を超えた分の水槽20内の海水W1は下降管27内を流下する。そして、図3のaに示すように、処理槽21内に放出され、上方から珊瑚レキ22に掛けられて、ろ過処理等が行われる。その後、処理槽21内に溜まった海水W1は、処理槽21の底付近からポンプ25により20L/minの流量で汲み上げられ、上昇管28内を通って上方へと送られ、上方から水槽20内へと吐出される。   If this circulation is explained in full detail, the seawater W1 in the aquarium 20 exceeding the predetermined capacity will flow down in the downcomer 27. And as shown to a of FIG. 3, it discharge | releases in the processing tank 21, and is hung on the scissors 22 from upper direction, and a filtration process etc. are performed. Thereafter, the seawater W1 accumulated in the treatment tank 21 is pumped up from the vicinity of the bottom of the treatment tank 21 by the pump 25 at a flow rate of 20 L / min, sent upward through the riser pipe 28, and from above into the water tank 20 Is discharged.

そして、10日間循環させた後、ポンプ25による海水W1の循環を続けたまま、イヌザメ(TL(全長)60cm、BW(体重)850g、オス)1尾を水槽20に入れて飼育を開始した。なお、この日が飼育開始日(飼育日数0日)である。餌として、シシャモや甘エビを10〜15g/日給餌した。
飼育開始から32日目(飼育日数32日)に、サンゴトラザメ(TL(全長)45cm、BW(体重)400g)1尾とルリスズメ(TL(全長)25mm、BW(体重)1g)20尾とを水槽20に入れ、飼育開始から33日目(飼育日数33日)に、ヒメハナギンチャク2個体を水槽20に入れて飼育した。餌として、シシャモや冷凍エビを20〜30g/日と、ルリ用フレークを0.5〜1g/日と給餌した。
なお、海水の温度は、25〜26℃を保つよう、ヒーター・クーラー26で調整した。
Then, after circulating for 10 days, while continuing the circulation of the seawater W1 by the pump 25, one dog shark (TL (full length) 60 cm, BW (weight) 850 g, male) was placed in the aquarium 20 and breeding was started. This day is the breeding start date (the number of breeding days is 0). As food, shishamo and sweet shrimp were fed at 10 to 15 g / day.
On the 32nd day from the start of breeding (32 days of breeding), 1 coral shark (TL (full length) 45 cm, BW (body weight) 400 g) and 1 squirrel (TL (full length) 25 mm, BW (body weight) 1 g) 20 fish In the aquarium 20, on the 33rd day from the start of breeding (33 days of breeding), two Himehanaginachaku individuals were placed in the aquarium 20 for breeding. As food, shishamo and frozen shrimp were fed at 20-30 g / day, and ruri flakes were fed at 0.5-1 g / day.
In addition, the temperature of seawater was adjusted with the heater cooler 26 so that 25-26 degreeC might be maintained.

この期間の海水中の各成分の濃度を表2に示す。なお、それぞれの濃度の測定は、上昇管28の吐出口で、温度及び圧力を操作することなく、行った。
この期間は、飼育日数が増えることで、硝酸性窒素濃度は上昇し、硝酸性窒素が蓄積された。また、残渣や水棲動物(イヌザメ、サンゴトラザメ、ルリスズメ、ヒメハナギンチャク)からのふん尿による窒素は、処理槽21で全て硝酸性窒素に硝化されていた。そのため、水槽の海水W1は常に透明度が高く、有機物も処理槽21に生息する好気性微生物によって除去できていた。
Table 2 shows the concentration of each component in the seawater during this period. Each concentration was measured at the discharge port of the ascending pipe 28 without operating the temperature and pressure.
During this period, as the number of breeding days increased, the nitrate nitrogen concentration increased and nitrate nitrogen was accumulated. Further, nitrogen from manure from the residue and aquatic animals (dog sharks, coral sharks, luris sharks, chicks) was all nitrified to nitrate nitrogen in the treatment tank 21. Therefore, the seawater W1 in the aquarium was always highly transparent, and organic matter could be removed by aerobic microorganisms that live in the treatment tank 21.

Figure 2013063036
Figure 2013063036

次に、上記の飼育を継続したまま(従って、飼育条件等は変更していない)、処理槽21の珊瑚レキ22の上に、1)の馴化により、硫黄酸化細菌と好気性微生物とが表層に生息している脱窒材23を10Kg入れた網袋24(5mmメッシュ)を置いて、処理槽21に脱窒材23を充填し、海水W1の硝酸性窒素の除去を行った。これが本発明の実施例の水棲動物の飼育方法である。このときの流入水量は、10Kgの脱窒材が充填された処理槽21に20L/minの流量で海水W1が流入され、循環されていることから、2880L/Kg日であった。なお、処理槽21の珊瑚レキ22の上に網袋24を置いた日が、脱窒処理開始日(脱窒日数0日)である。   Next, while the above breeding is continued (and therefore the breeding conditions and the like are not changed), the sulfur-oxidizing bacteria and the aerobic microorganisms are surfaced by acclimatizing 1) on the straw 22 of the treatment tank 21. A net bag 24 (5 mm mesh) containing 10 kg of the denitrification material 23 inhabiting the seawater was placed, the treatment tank 21 was filled with the denitrification material 23, and nitrate nitrogen of the seawater W1 was removed. This is the aquatic animal breeding method of the embodiment of the present invention. The amount of inflow water at this time was 2880 L / Kg days because seawater W1 was introduced into the treatment tank 21 filled with 10 Kg of denitrification material at a flow rate of 20 L / min and circulated. Note that the day when the net bag 24 is placed on the reed 22 of the treatment tank 21 is the denitrification start date (the number of denitrification days is 0).

この循環を詳述すると、所定の容量を超えた分の水槽20内の海水W1は下降管27内を流下する。そして、図3のbに示すように、海水W1は、処理槽21内に放出され、上方から脱窒材23に掛けられて、脱窒処理された後、珊瑚レキ22でろ過処理等が行われ、溶存している硝酸性窒素が除去された処理海水W2になる。その後、処理槽21内に溜まった処理海水W2は、処理槽21の底付近からポンプ25により20L/minの流量で汲み上げられ、上昇管28内を通って上方へと送られ、上方から水槽20内へと吐出されて、海水W1に戻された。   If this circulation is explained in full detail, the seawater W1 in the aquarium 20 exceeding the predetermined capacity will flow down in the downcomer 27. Then, as shown in FIG. 3b, the seawater W1 is discharged into the treatment tank 21 and hung on the denitrification material 23 from above and denitrified. It becomes the treated seawater W2 from which the dissolved nitrate nitrogen has been removed. Thereafter, the treated seawater W2 accumulated in the treatment tank 21 is pumped up from the vicinity of the bottom of the treatment tank 21 by a pump 25 at a flow rate of 20 L / min, is sent upward through the riser 28, and the water tank 20 from above. It was discharged into the sea and returned to the seawater W1.

この期間の海水中の各成分の濃度を表3に示す。なお、それぞれの濃度の測定は、上昇管28の吐出口で、温度及び圧力を操作することなく、行った。
処理槽21に脱窒材23を設けることで硝酸性窒素の除去が進み、脱窒日数9日には、硝酸性窒素の濃度が1mg/L程度となった。そして、それ以後、硝酸性窒素濃度が上昇することはなく、同レベル(約1mg/L前後)を推移し、白濁現象も生じなかった。また、水棲動物も餌喰も良く、健康に飼育できた。
Table 3 shows the concentration of each component in the seawater during this period. Each concentration was measured at the discharge port of the ascending pipe 28 without operating the temperature and pressure.
By removing the denitrification material 23 in the treatment tank 21, the removal of nitrate nitrogen progressed, and the concentration of nitrate nitrogen became about 1 mg / L on the 9th day of denitrification. After that, the nitrate nitrogen concentration did not increase, remained at the same level (about 1 mg / L), and no cloudiness phenomenon occurred. In addition, aquatic animals and prey were good and we were able to keep them healthy.

Figure 2013063036
Figure 2013063036

以上より、本実施例の水棲動物の飼育方法によれば、溶存酸素濃度が5.8mg/L以上の高い状態で水槽20に入れられた海水W1の硝酸性窒素を除去でき、水槽20で飼っている水棲動物を安全に飼育できた。また、海水W1に硝酸性窒素の増加蓄積がなく、換水を減らすこともできた。さらに、従来行われていた、処理層内の溶存酸素濃度を低位に嫌気性条件を維持管理することと、水棲動物に影響する硫化水素の発生を抑制すること等をしなくてよくなった。   From the above, according to the aquatic animal breeding method of the present embodiment, nitrate nitrogen of seawater W1 placed in the aquarium 20 in a state where the dissolved oxygen concentration is 5.8 mg / L or higher can be removed. The aquatic animals that have been able to be raised safely. Moreover, there was no increase accumulation of nitrate nitrogen in seawater W1, and it was also possible to reduce water exchange. Furthermore, it has become unnecessary to maintain and manage anaerobic conditions with a low dissolved oxygen concentration in the treatment layer and to suppress generation of hydrogen sulfide that affects aquatic animals.

なお、本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。   In addition, this invention is not limited to the said Example, In the range which does not deviate from the meaning of invention, it can change suitably and can be actualized.

10 水槽
11 ポリ容器
13 脱窒材
20 水槽
21 処理槽
23 脱窒材
W1 海水
W2 処理海水
DESCRIPTION OF SYMBOLS 10 Water tank 11 Plastic container 13 Denitrification material 20 Water tank 21 Treatment tank 23 Denitrification material W1 Seawater W2 Processed seawater

Claims (10)

水棲動物を飼育している水槽(20)又は池の飼育水(W1)を、硫黄と炭酸カルシウムとを含んでなる脱窒材(23)に接触させて、前記飼育水(W1)に溶存している硝酸性窒素を除去し、前記除去後の処理水(W2)を戻した前記飼育水(W1)の中で前記水棲動物を飼育する水棲動物の飼育方法であって、
硫黄酸化細菌と好気性微生物とを生息させている前記脱窒材(23)が充填されている処理槽(21)から流出する前記処理水(W2)の溶存酸素濃度を3mg/L以上にすることを特徴とする水棲動物の飼育方法。
The aquarium (20) in which aquatic animals are bred or the pond breeding water (W1) is brought into contact with a denitrification material (23) containing sulfur and calcium carbonate, and dissolved in the breeding water (W1). A method for raising aquatic animals, wherein the aquatic animals are bred in the breeding water (W1) from which the nitrate nitrogen is removed and the treated water (W2) after the removal is returned,
The dissolved oxygen concentration of the treated water (W2) flowing out from the treatment tank (21) filled with the denitrification material (23) inhabiting sulfur-oxidizing bacteria and aerobic microorganisms is set to 3 mg / L or more. A method for raising aquatic animals characterized by the above.
水棲動物を飼育している水槽(20)又は池の飼育水(W1)を、硫黄と炭酸カルシウムとを含んでなる脱窒材(23)に接触させて、前記飼育水(W1)に溶存している硝酸性窒素を除去し、前記除去後の処理水(W2)を戻した前記飼育水(W1)の中で前記水棲動物を飼育する水棲動物の飼育方法であって、
硫黄酸化細菌と好気性微生物とを生息させている前記脱窒材(23)が充填されている処理槽(21)に流入する前記飼育水(W1)の一日分の体積を前記脱窒材(23)の質量で割った流入水量が50L/Kg日以上であることを特徴とする水棲動物の飼育方法。
The aquarium (20) in which aquatic animals are bred or the pond breeding water (W1) is brought into contact with a denitrification material (23) containing sulfur and calcium carbonate, and dissolved in the breeding water (W1). A method for raising aquatic animals, wherein the aquatic animals are bred in the breeding water (W1) from which the nitrate nitrogen is removed and the treated water (W2) after the removal is returned,
The daily volume of the breeding water (W1) flowing into the treatment tank (21) filled with the denitrification material (23) inhabiting sulfur-oxidizing bacteria and aerobic microorganisms is used as the denitrification material. The method for raising aquatic animals, wherein the amount of influent water divided by the mass of (23) is 50 L / Kg days or more.
水棲動物を飼育している水槽(20)又は池の飼育水(W1)を、硫黄と炭酸カルシウムとを含んでなる脱窒材(23)に接触させて、前記飼育水(W1)に溶存している硝酸性窒素を除去し、前記除去後の処理水(W2)を戻した前記飼育水(W1)の中で前記水棲動物を飼育する水棲動物の飼育方法であって、
硫黄酸化細菌と好気性微生物とを生息させている前記脱窒材(23)が充填されている処理槽(21)に流入する前記飼育水(W1)の一日分の体積を前記脱窒材(23)の質量で割った流入水量が50L/Kg日以上であり、
前記処理槽(21)から流出する前記処理水(W2)の溶存酸素濃度を3mg/L以上にすることを特徴とする水棲動物の飼育方法。
The aquarium (20) in which aquatic animals are bred or the pond breeding water (W1) is brought into contact with a denitrification material (23) containing sulfur and calcium carbonate, and dissolved in the breeding water (W1). A method for raising aquatic animals, wherein the aquatic animals are bred in the breeding water (W1) from which the nitrate nitrogen is removed and the treated water (W2) after the removal is returned,
The daily volume of the breeding water (W1) flowing into the treatment tank (21) filled with the denitrification material (23) inhabiting sulfur-oxidizing bacteria and aerobic microorganisms is used as the denitrification material. The amount of influent water divided by the mass of (23) is 50 L / Kg days or more,
A method for raising aquatic animals, wherein the dissolved oxygen concentration of the treated water (W2) flowing out of the treatment tank (21) is 3 mg / L or more.
前記脱窒材(23)は、前記硫黄の含有量が前記炭酸カルシウムの含有量より少ない請求項1〜3のいずれか一項に記載の水棲動物の飼育方法。   The method for raising aquatic animals according to any one of claims 1 to 3, wherein the denitrification material (23) has a content of sulfur less than a content of the calcium carbonate. 前記脱窒材(23)は、粒度が5〜200mmである請求項1〜4のいずれか一項に記載の水棲動物の飼育方法。   The method for raising aquatic animals according to any one of claims 1 to 4, wherein the denitrification material (23) has a particle size of 5 to 200 mm. 硝酸性窒素が溶存している水(W1)を硫黄と炭酸カルシウムとを含んでなる脱窒材(13、23)に接触させて前記硝酸性窒素を除去する硝酸性窒素の除去方法であって、
硫黄酸化細菌と好気性微生物とを生息させている前記脱窒材(13、23)が充填されている処理槽(11、21)から流出する、前記硝酸性窒素が除去された水(W2)の溶存酸素濃度を3mg/L以上にすることを特徴とする硝酸性窒素の除去方法。
A method of removing nitrate nitrogen, wherein water (W1) in which nitrate nitrogen is dissolved is brought into contact with a denitrification material (13, 23) containing sulfur and calcium carbonate to remove the nitrate nitrogen. ,
Water (W2) from which the nitrate nitrogen has been removed flowing out of the treatment tank (11, 21) filled with the denitrification material (13, 23) inhabiting sulfur-oxidizing bacteria and aerobic microorganisms A method for removing nitrate nitrogen, wherein the dissolved oxygen concentration of the solution is 3 mg / L or more.
硝酸性窒素が溶存している水(W1)を硫黄と炭酸カルシウムとを含んでなる脱窒材(13、23)に接触させて前記硝酸性窒素を除去する硝酸性窒素の除去方法であって、
硫黄酸化細菌と好気性微生物とを生息させている前記脱窒材(13、23)が充填されている処理槽(11、21)に流入する前記水(W1)の一日分の体積を前記脱窒材(13、23)の質量で割った流入水量が50L/Kg日以上であることを特徴とする硝酸性窒素の除去方法。
A method of removing nitrate nitrogen, wherein water (W1) in which nitrate nitrogen is dissolved is brought into contact with a denitrification material (13, 23) containing sulfur and calcium carbonate to remove the nitrate nitrogen. ,
The daily volume of the water (W1) flowing into the treatment tank (11, 21) filled with the denitrifying material (13, 23) inhabiting sulfur-oxidizing bacteria and aerobic microorganisms is A method for removing nitrate nitrogen, wherein the amount of inflow water divided by the mass of the denitrification material (13, 23) is 50 L / Kg days or more.
硝酸性窒素が溶存している水(W1)を硫黄と炭酸カルシウムとを含んでなる脱窒材(13、23)に接触させて前記硝酸性窒素を除去する硝酸性窒素の除去方法であって、
硫黄酸化細菌と好気性微生物とを生息させている前記脱窒材(13、23)が充填されている処理槽(11、21)に流入する前記水(W1)の一日分の体積を前記脱窒材(13、23)の質量で割った流入水量が50L/Kg日以上であり、
前記処理槽(11、21)から流出する、前記硝酸性窒素が除去された水(W2)の溶存酸素濃度を3mg/L以上にすることを特徴とする硝酸性窒素の除去方法。
A method of removing nitrate nitrogen, wherein water (W1) in which nitrate nitrogen is dissolved is brought into contact with a denitrification material (13, 23) containing sulfur and calcium carbonate to remove the nitrate nitrogen. ,
The daily volume of the water (W1) flowing into the treatment tank (11, 21) filled with the denitrifying material (13, 23) inhabiting sulfur-oxidizing bacteria and aerobic microorganisms is The amount of influent water divided by the mass of the denitrification material (13, 23) is 50 L / Kg days or more,
A method for removing nitrate nitrogen, wherein the dissolved oxygen concentration of water (W2) from which the nitrate nitrogen has been removed flowing out of the treatment tank (11, 21) is 3 mg / L or more.
前記脱窒材(13、23)は、前記硫黄の含有量が前記炭酸カルシウムの含有量より少ない請求項6〜8のいずれか一項に記載の硝酸性窒素の除去方法。   The method for removing nitrate nitrogen according to any one of claims 6 to 8, wherein the denitrification material (13, 23) has a content of sulfur less than a content of calcium carbonate. 前記脱窒材(13、23)は、粒度が5〜200mmである請求項6〜9のいずれか一項に記載の硝酸性窒素の除去方法。   The method for removing nitrate nitrogen according to any one of claims 6 to 9, wherein the denitrification material (13, 23) has a particle size of 5 to 200 mm.
JP2011203504A 2011-09-16 2011-09-16 Method for raising aquatic animals, and method for removing nitrate-nitrogen Pending JP2013063036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011203504A JP2013063036A (en) 2011-09-16 2011-09-16 Method for raising aquatic animals, and method for removing nitrate-nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011203504A JP2013063036A (en) 2011-09-16 2011-09-16 Method for raising aquatic animals, and method for removing nitrate-nitrogen

Publications (1)

Publication Number Publication Date
JP2013063036A true JP2013063036A (en) 2013-04-11

Family

ID=48187187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011203504A Pending JP2013063036A (en) 2011-09-16 2011-09-16 Method for raising aquatic animals, and method for removing nitrate-nitrogen

Country Status (1)

Country Link
JP (1) JP2013063036A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110296A1 (en) * 2015-12-22 2017-06-29 国立大学法人東京海洋大学 Denitrification device and aquatic organism rearing system
JPWO2018155436A1 (en) * 2017-02-24 2019-12-12 株式会社カネカ Denitrification treatment method and denitrification treatment apparatus
WO2020004635A1 (en) * 2018-06-29 2020-01-02 三菱ケミカル株式会社 Water purification device, aquaculture water purification system, water purification method, and production method for aquatic organism
JP7477973B2 (en) 2017-02-24 2024-05-02 株式会社カネカ Denitrification method and denitrification treatment device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273475A (en) * 2001-03-22 2002-09-24 Nippon Steel Chem Co Ltd Device and method for treating nitrate nitrogen in sea water
JP2002346592A (en) * 2001-05-28 2002-12-03 Nippon Steel Chem Co Ltd Low temperature denitrification material and denitrification method using the same
JP2003340488A (en) * 2002-05-29 2003-12-02 Matsushita Electric Ind Co Ltd Identification system and denitrification method
JP2008005764A (en) * 2006-06-29 2008-01-17 Iris Ohyama Inc Apparatus for purifying water tank and system for purifying treatment of water tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273475A (en) * 2001-03-22 2002-09-24 Nippon Steel Chem Co Ltd Device and method for treating nitrate nitrogen in sea water
JP2002346592A (en) * 2001-05-28 2002-12-03 Nippon Steel Chem Co Ltd Low temperature denitrification material and denitrification method using the same
JP2003340488A (en) * 2002-05-29 2003-12-02 Matsushita Electric Ind Co Ltd Identification system and denitrification method
JP2008005764A (en) * 2006-06-29 2008-01-17 Iris Ohyama Inc Apparatus for purifying water tank and system for purifying treatment of water tank

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110296A1 (en) * 2015-12-22 2017-06-29 国立大学法人東京海洋大学 Denitrification device and aquatic organism rearing system
CN108430216A (en) * 2015-12-22 2018-08-21 国立大学法人东京海洋大学 Denitrification device and aquatile feeding system
US20190014754A1 (en) * 2015-12-22 2019-01-17 National University Corp. Tokyo University Of Marine Science And Technology Denitrifying device and aquatic organism breeding system
CN108430216B (en) * 2015-12-22 2022-04-12 国立大学法人东京海洋大学 Denitrification device and aquatic organism feeding system
JPWO2018155436A1 (en) * 2017-02-24 2019-12-12 株式会社カネカ Denitrification treatment method and denitrification treatment apparatus
JP7477973B2 (en) 2017-02-24 2024-05-02 株式会社カネカ Denitrification method and denitrification treatment device
WO2020004635A1 (en) * 2018-06-29 2020-01-02 三菱ケミカル株式会社 Water purification device, aquaculture water purification system, water purification method, and production method for aquatic organism
JPWO2020004635A1 (en) * 2018-06-29 2021-08-02 三菱ケミカル株式会社 Water purification equipment, aquaculture water purification system, water purification method and aquatic organism production method

Similar Documents

Publication Publication Date Title
JP6480015B2 (en) Denitrification device and aquatic animal breeding system
JP5847376B2 (en) Closed circulation culture method for seafood
JP6100301B2 (en) Purification device and aquarium equipped with the same
JP6129709B2 (en) Water purification system for aquarium
CN104773901A (en) Biological treatment method of circulating culture water body
CN111919812A (en) Indoor domestication and cultivation device and method for wild juvenile tuna of yellow fin
KR101156215B1 (en) A recirculating aquaculture system
JP6860764B2 (en) Aquaculture method and aquaculture equipment
CN113526785A (en) One-pond one-dam fresh water pond culture tail water treatment system
JP2020005523A (en) Modification method of culture tank, and cultivation method
JP2013063036A (en) Method for raising aquatic animals, and method for removing nitrate-nitrogen
US20060196440A1 (en) Hatchery system and method
Uemoto et al. Biological filter capable of simultaneous nitrification and denitrification for Aquatic Habitat in International Space Station
JP2013247949A (en) Water treating device
JP2015061513A (en) Completely closed circulation type land breeding system for abalones and land breeding method for abalones using the same
JP4562935B2 (en) Apparatus and method for treating nitrate nitrogen in sea water
JP2007307538A (en) Removal method of inorganic nutritive salts in water
JP2002034385A (en) Overland culture method by circulating culture water and apparatus therefor
JP2020039334A (en) Culture apparatus
JP6560515B2 (en) Waste water treatment equipment
JPH0440842A (en) Filtration device
CN212488028U (en) Indoor domestication and cultivation device for wild juvenile tunas of yellow fin tunas
CN210519833U (en) Circulating type culture system
KR200314696Y1 (en) Water Treatment System For Breeding or Storing Of Fish, Shellfish, etc.
JP2000157100A (en) Device for treating water for producing and breeding fry of fishes or the like and method for treating water

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151013