JPWO2018155436A1 - Denitrification treatment method and denitrification treatment apparatus - Google Patents

Denitrification treatment method and denitrification treatment apparatus Download PDF

Info

Publication number
JPWO2018155436A1
JPWO2018155436A1 JP2019501341A JP2019501341A JPWO2018155436A1 JP WO2018155436 A1 JPWO2018155436 A1 JP WO2018155436A1 JP 2019501341 A JP2019501341 A JP 2019501341A JP 2019501341 A JP2019501341 A JP 2019501341A JP WO2018155436 A1 JPWO2018155436 A1 JP WO2018155436A1
Authority
JP
Japan
Prior art keywords
denitrification
liquid
treatment
container
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019501341A
Other languages
Japanese (ja)
Other versions
JP7477973B2 (en
Inventor
昌輝 滝田
昌輝 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2018155436A1 publication Critical patent/JPWO2018155436A1/en
Priority to JP2024023617A priority Critical patent/JP2024050967A/en
Application granted granted Critical
Publication of JP7477973B2 publication Critical patent/JP7477973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

生物学的処理における脱窒処理の作業性の向上を図ると共に、硝酸態窒素および/または亜硝酸態窒素除去を迅速かつ良好に長期間にわたって安定的に実現する脱窒処理方法を提供する。硝酸態窒素及び/又は亜硝酸態窒素を含む処理対象液を連続的に脱窒処理する方法であって、生分解性ポリマーを含む充填材が充填された容器内に前記処理対象液を通液させることで生物学的に前記脱窒処理を行う工程を含み、前記容器における前記処理対象液の平均滞留時間が10時間以下であり、かつ前記処理対象液がリン化合物を含有することを特徴とする脱窒処理方法。Provided is a denitrification treatment method capable of improving the workability of denitrification treatment in biological treatment and realizing removal of nitrate nitrogen and / or nitrite nitrogen quickly, satisfactorily and stably over a long period of time. A method for continuously denitrifying a treatment liquid containing nitrate nitrogen and / or nitrite nitrogen, wherein the treatment liquid is passed through a container filled with a filler containing a biodegradable polymer. The step of biologically performing the denitrification treatment by causing the solution to be treated in the container to have an average residence time of 10 hours or less, and the solution to be treated contains a phosphorus compound. Denitrification treatment method.

Description

本発明は、硝酸態窒素及び/又は亜硝酸態窒素(以下、窒素化合物とも言う)を含有する汚染水から連続的に窒素化合物を処理する方法およびその装置に関する。   The present invention relates to a method and apparatus for treating nitrogen compounds continuously from contaminated water containing nitrate nitrogen and / or nitrite nitrogen (hereinafter also referred to as nitrogen compounds).

人間活動と環境の調和を図るためには、人間活動によって発生する汚濁物質をできるだけ減らすこと、発生した汚濁物質を無害化処理することが必要である。汚濁対象物質の1つに硝酸態窒素、亜硝酸態窒素が挙げられる。   In order to harmonize human activities with the environment, it is necessary to reduce as much as possible the pollutants generated by human activities and to detoxify the generated pollutants. One of the pollutants is nitrate nitrogen and nitrite nitrogen.

この硝酸態窒素の処理方法の1つとして生物学的処理方法があり、その代表例が活性汚泥処理を用いた脱窒処理である。これは、嫌気状態で脱窒菌を用いて、硝酸態窒素、および/または亜硝酸態窒素を窒素ガスにまで還元させて無害化する処理方法である(脱窒反応)。この脱窒反応は、硝酸態窒素を電子受容体とする硝酸呼吸菌の作用を利用したものであり、これにより、硝酸態窒素は、亜硝酸、一酸化窒素、一酸化二窒素を経て窒素まで還元され、その結果、処理対象液中の各種窒素化合物は、窒素ガスとして大気中に放散されて除去される。   One of the methods for treating nitrate nitrogen is a biological treatment method, and a typical example is denitrification treatment using activated sludge treatment. This is a treatment method in which nitrate nitrogen and / or nitrite nitrogen is reduced to nitrogen gas and detoxified using denitrifying bacteria in an anaerobic state (denitrification reaction). This denitrification reaction utilizes the action of nitrate-respiring bacteria that use nitrate nitrogen as an electron acceptor. As a result, nitrate nitrogen passes through nitrous acid, nitrogen monoxide, and dinitrogen monoxide to nitrogen. As a result, various nitrogen compounds in the liquid to be treated are removed by being diffused into the atmosphere as nitrogen gas.

この脱窒反応には、電子供与体が必須であり、従来はメタノールや酢酸を利用するなど安価な液体状の電子供与体が使用されてきたが、残存する硝酸態窒素に応じて適切な量の電子供与体を添加する必要があり、そのコントロールが非常に難しい。よって、過剰量を添加し、後段の処理で残存したメタノールを除去する方法が採用されているが、残存メタノールの影響、例えば養殖設備などへの適用を考えた場合、魚体への影響が懸念されるため、確実に残存電子供与体の除去を実施するために、設備費が膨れ上がる結果となっている。   For this denitrification reaction, an electron donor is essential, and conventionally, an inexpensive liquid electron donor such as methanol or acetic acid has been used. However, an appropriate amount is used depending on the remaining nitrate nitrogen. It is necessary to add an electron donor, which is very difficult to control. Therefore, a method is adopted in which an excess amount is added and the methanol remaining in the subsequent treatment is removed, but there is a concern about the effect of the residual methanol, for example, on the fishery equipment when considering application to aquaculture equipment, etc. Therefore, in order to surely remove the residual electron donor, the equipment cost is increased.

このような問題を回避するために、生分解性固形物質を電子供与体として用いる方法が挙げられている。この例として、ウッドチップや高級脂肪酸、生分解性ポリマーなどが挙げられており、電子供与体の徐放性を利用し、前述の課題の解決が試みられている。   In order to avoid such a problem, a method using a biodegradable solid substance as an electron donor is mentioned. Examples of this include wood chips, higher fatty acids, biodegradable polymers, and the like, and attempts have been made to solve the above-mentioned problems using the sustained release properties of electron donors.

例えば、特許文献1においては、生分解性固形電子供与体として、分子量等の物性を改変して加水分解性を高めた固体状ポリ乳酸(以降、PLAと記載)を用いた固相脱窒法の提案がなされている。この改変されたPLAは、乳酸を供給できる程度の加水分解性が付与され、加水分解に伴って放出される乳酸の徐放速度を調整することが可能と述べられている。また、例えば、特許文献2には、生分解性固形電子供与体として、生分解性ポリマーの1種である微生物産生ポリエステルをを用いた脱窒法が提案されている。これによると、一般的な活性汚泥処理にて、生分解性ポリマーを添加・共存させることで、処理対象液中に含まれる有機物が不足した際の菌に起こる菌の活性低下、特に脱窒能の低下を抑制することが可能と述べられている。   For example, in Patent Document 1, as a biodegradable solid electron donor, a solid-phase denitrification method using solid polylactic acid (hereinafter referred to as PLA) having improved hydrolyzability by modifying physical properties such as molecular weight. Proposals have been made. This modified PLA is said to be hydrolyzable to the extent that lactic acid can be supplied, and to adjust the rate of sustained release of lactic acid released with hydrolysis. In addition, for example, Patent Document 2 proposes a denitrification method using a microorganism-produced polyester which is a kind of biodegradable polymer as a biodegradable solid electron donor. According to this, by adding and coexisting a biodegradable polymer in general activated sludge treatment, the activity of bacteria that occurs when the organic matter contained in the liquid to be treated is insufficient, especially denitrification ability It is stated that it is possible to suppress the decrease in the above.

特開2011−104551号公報JP 2011-104551 A 特開2000−153293号公報JP 2000-153293 A

しかしながら、一般にPLAは生分解性がきわめて悪く、そのままでは脱窒処理の基質としては適さないという問題点があった。例えば、特許文献1においては、加水分解性を高めた固体状PLAを用いた固相脱窒法の提案がなされており、加水分解に伴って放出される乳酸の徐放速度を調整することが可能と述べられているが、加水分解の持続性に課題があった。   However, PLA is generally very poorly biodegradable, and has a problem that it is not suitable as a substrate for denitrification treatment as it is. For example, Patent Document 1 proposes a solid-phase denitrification method using solid PLA with improved hydrolyzability, and it is possible to adjust the sustained release rate of lactic acid released with hydrolysis. However, there was a problem with the sustainability of hydrolysis.

また、特許文献2においては、通常の活性汚泥処理において、電子供与体として微生物産生ポリエステルを添加し、菌の活性を維持させる方法が提案されているが、依然として脱窒処理効率は不十分であり、また、処理の安定性に課題があった。   Patent Document 2 proposes a method in which microorganism-produced polyester is added as an electron donor in normal activated sludge treatment to maintain the activity of bacteria, but the denitrification treatment efficiency is still insufficient. In addition, there was a problem in the stability of processing.

一般的に脱窒処理の前段で、アンモニア態窒素を硝酸態窒素および亜硝酸態窒素にまで酸化する硝化処理が実施されることが多いが、この硝化反応は好気条件下で実施する必要があることから、その後段の脱窒処理の処理対象液は、酸素を多く含んだ好気状態であることが多い。よって、速やかに脱窒反応を進行させるためには、処理対象液中の酸素を除去し嫌気状態にする必要がある。そこで、一般的には、酸素低減処理として、酸素供給を遮断し静置させるが、酸素低減に必要な十分な時間を確保するために、槽の容量が大きくなってしまうという課題があった。   In general, a nitrification treatment that oxidizes ammonia nitrogen to nitrate nitrogen and nitrite nitrogen is often carried out before the denitrification treatment, but this nitrification reaction must be carried out under aerobic conditions. For this reason, the liquid to be treated in the subsequent denitrification treatment is often in an aerobic state containing a large amount of oxygen. Therefore, in order to advance the denitrification reaction promptly, it is necessary to remove oxygen in the liquid to be treated and make it anaerobic. Therefore, in general, as the oxygen reduction treatment, the oxygen supply is shut off and allowed to stand, but there is a problem that the capacity of the tank becomes large in order to secure a sufficient time necessary for oxygen reduction.

本発明は、上記問題点に鑑みて行われたものであり、生物学的処理における脱窒処理の作業性の向上を図ると共に、硝酸態窒素および/または亜硝酸態窒素除去を迅速かつ良好に長期間にわたって安定的に実現する脱窒処理方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and improves the workability of denitrification treatment in biological treatment, and removes nitrate nitrogen and / or nitrite nitrogen quickly and satisfactorily. It is an object of the present invention to provide a denitrification method that can be stably realized over a long period of time.

本発明者らは上記目的を達成するために鋭意研究を重ねた結果、固形の電子供与体を用いた連続式脱窒方法において、処理対象液にリン化合物を共存させること及び、処理対象液の平均滞留時間を10時間以下に設定することで、脱窒能力を格段に高めることができると同時に比較的活性が低下しやすい中温領域以下でも問題なく脱窒できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the inventors of the present invention have made a phosphorus compound coexist in a liquid to be treated in a continuous denitrification method using a solid electron donor, By setting the average residence time to 10 hours or less, the denitrification ability can be remarkably increased, and at the same time, it is found that denitrification can be performed without any problems even in the middle temperature range where the activity is relatively low, and the present invention is completed. It came.

すなわち、本発明は、例えば以下の発明を提供する。   That is, the present invention provides the following inventions, for example.

[1]硝酸態窒素及び/又は亜硝酸態窒素を含む処理対象液を連続的に脱窒処理する方法であって、
生分解性ポリマーを含む充填材が充填された容器内に前記処理対象液を通液させることで生物学的に前記脱窒処理を行う工程を含み、前記容器における前記処理対象液の平均滞留時間が10時間以下であり、かつ前記処理対象液がリン化合物を含有することを特徴とする脱窒処理方法。
[1] A method for continuously denitrifying a liquid to be treated containing nitrate nitrogen and / or nitrite nitrogen,
Including a step of biologically performing the denitrification treatment by passing the treatment target liquid through a container filled with a filler containing a biodegradable polymer, and an average residence time of the treatment target liquid in the container For 10 hours or less, and the liquid to be treated contains a phosphorus compound.

[2]前記容器を通液後の液の溶存酸素濃度が5mg/L以下である、[1]に記載の脱窒処理方法。   [2] The denitrification method according to [1], wherein the solution after passing through the container has a dissolved oxygen concentration of 5 mg / L or less.

[3]前記生分解性ポリマーが脂肪族ポリエステルである、[1]又は[2]に記載の脱窒処理方法。   [3] The denitrification treatment method according to [1] or [2], wherein the biodegradable polymer is an aliphatic polyester.

[4]前記脂肪族ポリエステルがポリ(3−ヒドロキシアルカノエート)である、[3]に記載の脱窒処理方法。   [4] The denitrification method according to [3], wherein the aliphatic polyester is poly (3-hydroxyalkanoate).

[5]前記容器は、前記充填材が前記容器の容量(100vol%)に対して30vol%以上の充填度で充填された容器である、[1]〜[4]のいずれか1つに記載の脱窒処理方法。   [5] The container according to any one of [1] to [4], wherein the container is a container in which the filler is filled with a filling degree of 30 vol% or more with respect to the capacity (100 vol%) of the container. Denitrification treatment method.

[6]硝酸態窒素及び/又は亜硝酸態窒素を含む処理対象液を連続的に脱窒処理する装置であって、
内部を通液させることによって前記処理対象液を生物学的に脱窒処理する脱窒処理部を備え、前記脱窒処理部は生分解性ポリマーを含む充填材が充填されており、
前記脱窒処理部の出口における液の溶存酸素濃度を監視して、当該溶存酸素濃度が5mg/L以下に維持されるように前記脱窒処理部の入口における前記処理対象液の流量を制御する機構を備えることを特徴とする、脱窒処理装置。
[6] An apparatus for continuously denitrifying a liquid to be treated containing nitrate nitrogen and / or nitrite nitrogen,
A denitrification treatment unit that biologically denitrifies the liquid to be treated by passing the solution through the interior; the denitrification treatment unit is filled with a filler containing a biodegradable polymer;
The dissolved oxygen concentration of the liquid at the outlet of the denitrification processing unit is monitored, and the flow rate of the processing target liquid at the inlet of the denitrification processing unit is controlled so that the dissolved oxygen concentration is maintained at 5 mg / L or less. A denitrification processing apparatus comprising a mechanism.

本発明は上記構成を有するため、窒素化合物の除去を迅速かつ安定的に実現できる。   Since this invention has the said structure, removal of a nitrogen compound can be implement | achieved rapidly and stably.

本発明の方法又は装置における脱窒処理部の一例を示す概略図である。It is the schematic which shows an example of the denitrification process part in the method or apparatus of this invention. 本発明の方法又は装置における脱窒処理部内の溶存酸素濃度の分布のイメージを示す図である。It is a figure which shows the image of distribution of the dissolved oxygen concentration in the denitrification process part in the method or apparatus of this invention. 実施例で作製及び使用した脱窒処理装置の概略図である。It is the schematic of the denitrification processing apparatus produced and used in the Example.

一般的に窒素化合物の1種である硝酸態窒素、もしくは亜硝酸態窒素を生物学的に処理するためには、嫌気状態で脱窒菌を用いて、硝酸態窒素もしくは亜硝酸態窒素を窒素ガスまで還元させる方法が用いられる。この脱窒反応は、硝酸態窒素を電子受容体とする硝酸呼吸菌の作用を利用したものであり、これにより、硝酸態窒素は、亜硝酸、一酸化窒素、一酸化二窒素を経て窒素まで還元され、その結果、処理対象液中の各種窒素化合物は、窒素ガスとして大気中に放散されて除去される。   In order to biologically treat nitrate nitrogen or nitrite nitrogen, which is a kind of nitrogen compound, in general, denitrifying bacteria are used in anaerobic condition, and nitrate nitrogen or nitrite nitrogen is converted to nitrogen gas. The method of reducing to is used. This denitrification reaction utilizes the action of nitrate-respiring bacteria that use nitrate nitrogen as an electron acceptor. As a result, nitrate nitrogen passes through nitrous acid, nitrogen monoxide, and dinitrogen monoxide to nitrogen. As a result, various nitrogen compounds in the liquid to be treated are removed by being diffused into the atmosphere as nitrogen gas.

この脱窒反応には電子供与体が必要であるが、本発明では、固形の電子供与体として生分解性ポリマーを用いる。生分解性ポリマーを用いることで、微生物が必要に応じて生分解性ポリマーを分解し、その分解物を電子供与体として利用することで脱窒反応を進めることが可能となる。このように生分解性樹脂を用いることで、メタノールのような液体の電子供与体の添加が不要となり、従来まで困難であったその濃度コントロールも不要となり不要な設備を削減することができる。   This denitrification reaction requires an electron donor, but in the present invention, a biodegradable polymer is used as a solid electron donor. By using the biodegradable polymer, it becomes possible for the microorganism to decompose the biodegradable polymer as necessary, and to proceed the denitrification reaction by using the decomposed product as an electron donor. By using the biodegradable resin in this way, it is unnecessary to add a liquid electron donor such as methanol, and the concentration control, which has been difficult until now, is also unnecessary, and unnecessary facilities can be reduced.

<脱窒処理方法>
本発明の脱窒処理方法は、硝酸態窒素及び/又は亜硝酸態窒素(硝酸態窒素及び亜硝酸態窒素のいずれか一方又は両方)を含む液である処理対象液を連続的に脱窒処理する方法であって、生分解性ポリマーを含む充填材が充填された容器内に前記処理対象液を通液させることで生物学的に脱窒処理を行う工程(「脱窒処理工程」と称する場合がある)を必須の工程として含む方法である。
<Denitrification treatment method>
The denitrification treatment method of the present invention continuously denitrifies a liquid to be treated, which is a liquid containing nitrate nitrogen and / or nitrite nitrogen (any one or both of nitrate nitrogen and nitrite nitrogen). And a biological denitrification process by passing the liquid to be treated through a container filled with a biodegradable polymer-containing filler (referred to as a “denitrification process”). In some cases) as an essential step.

[脱窒処理工程]
上記脱窒処理工程においては、生分解性ポリマーを含む充填材が充填された容器を用いる。当該容器内に処理対象液を通液させることにより、生物学的な脱窒処理を進行させることができる。前記充填材は、1種の生分解性ポリマーのみからなるものであってもよいし、2種以上の生分解性ポリマーを含むか、または、1種以上の生分解性ポリマーと他の成分(例えば、添加剤等)とを含む組成物からなるものであってもよい。
[Denitrification process]
In the denitrification process, a container filled with a filler containing a biodegradable polymer is used. Biological denitrification treatment can proceed by passing the liquid to be treated through the vessel. The filler may consist of only one kind of biodegradable polymer, or may contain two or more kinds of biodegradable polymers, or one or more kinds of biodegradable polymers and other components ( For example, it may consist of a composition containing additives and the like.

<生分解性ポリマー>
本発明において用いる生分解性ポリマーは、生分解性を有するポリマーであれば適用可能であるが、好ましくは生分解性ポリエステル、より好ましくは脂肪族ポリエステルである。
<Biodegradable polymer>
The biodegradable polymer used in the present invention is applicable as long as it is a biodegradable polymer, but is preferably a biodegradable polyester, more preferably an aliphatic polyester.

脂肪族ポリエステルとしては、例えば、ポリヒドロキシアルカノエート(以降PHAと略す)、およびポリアルキレンジカルボキシレートなどが挙げられ、脂肪族ポリエステル以外の生分解性ポリエステルとしては、例えば、ポリブチレンアジペート−co−テレフタレートが挙げられる。   Examples of the aliphatic polyester include polyhydroxyalkanoate (hereinafter abbreviated as PHA) and polyalkylene dicarboxylate. Examples of the biodegradable polyester other than the aliphatic polyester include polybutylene adipate-co-. A terephthalate is mentioned.

前記PHAとは、ヒドロキシアルカン酸をモノマーユニットとするポリエステルを指す。具体的には、ポリグリコール酸、ポリ乳酸(以降PLAと略す)、ポリ−3−ヒドロキシアルカノエート(以降P3HAと略す)、ポリ−4−ヒドロキシアルカノエート等が挙げられる。このうち、窒素化合物の除去速度が速いため、PLA、P3HAが好ましく、P3HAがより好ましい。また、処理対象である汚染水が海水などの塩濃度が高い水に由来する場合は、海水生分解性の観点から、P3HAが最も好ましい。   The PHA refers to a polyester having a hydroxyalkanoic acid as a monomer unit. Specific examples include polyglycolic acid, polylactic acid (hereinafter abbreviated as PLA), poly-3-hydroxyalkanoate (hereinafter abbreviated as P3HA), poly-4-hydroxyalkanoate and the like. Among these, PLA and P3HA are preferable and P3HA is more preferable because the removal rate of the nitrogen compound is fast. In addition, when the contaminated water to be treated is derived from water having a high salt concentration such as seawater, P3HA is most preferable from the viewpoint of seawater biodegradability.

前記P3HAとは、3−ヒドロキシアルカン酸を主要モノマーユニットとする重合体(「ポリ(3−ヒドロキシアルカノエート)」と称する)である。3−ヒドロキシアルカン酸モノマーユニットとしては特に限定されないが、例えば、3−ヒドロキシブチレート、3−ヒドロキシプロピオネート、3−ヒドロキシバレレート、3−ヒドロキシヘキサノエート、3−ヒドロキシヘプタノエート、3−ヒドロキシオクタノエートなどのモノマーユニットが挙げられる。また、これらの重合体は、単独重合体でも、2種以上のモノマーユニットを含む共重合体でも良い。P3HAが共重合体の場合には、2種類以上の3−ヒドロキシアルカン酸を共重合させたものであってもよいし、1種又は2種以上の3−ヒドロキシアルカン酸に対し、4−ヒドロキシブチレート等の4−ヒドロキシアルカン酸を共重合させたものであってもよい。   The P3HA is a polymer having 3-hydroxyalkanoic acid as a main monomer unit (referred to as “poly (3-hydroxyalkanoate)”). The 3-hydroxyalkanoic acid monomer unit is not particularly limited. For example, 3-hydroxybutyrate, 3-hydroxypropionate, 3-hydroxyvalerate, 3-hydroxyhexanoate, 3-hydroxyheptanoate, 3 -Monomer units such as hydroxyoctanoate. These polymers may be homopolymers or copolymers containing two or more monomer units. When P3HA is a copolymer, it may be a copolymer of two or more types of 3-hydroxyalkanoic acid, or 4-hydroxy with respect to one or more types of 3-hydroxyalkanoic acid. It may be a copolymer of 4-hydroxyalkanoic acid such as butyrate.

中でも、3−ヒドロキシブチレートをモノマーユニットとして含む重合体が供給の観点から好ましく、その具体例としては、ポリ−3−ヒドロキシブチレート単独重合体や、ポリ−3−ヒドロキシブチレート共重合体であるポリ−3−ヒドロキシブチレート−co−3−ヒドロキシヘキサノエート(PHBH)やポリ−3−ヒドロキシブチレート−co−3−ヒドロキシバレレート(PHBV)、ポリ−3−ヒドロキシブチレート−co−4−ヒドロキシブチレートなどが挙げられる。P3HAを使用する場合、1種類のP3HAのみを使用してもよいし、複種類のP3HAを併用してもよい。もちろん、他の生分解性ポリマーや生分解性ポリエステル、生分解性脂肪族ポリエステルとの併用も可能である。   Among them, a polymer containing 3-hydroxybutyrate as a monomer unit is preferable from the viewpoint of supply, and specific examples thereof include poly-3-hydroxybutyrate homopolymer and poly-3-hydroxybutyrate copolymer. Some poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (PHBH), poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV), poly-3-hydroxybutyrate-co- 4-hydroxybutyrate etc. are mentioned. When using P3HA, only one type of P3HA may be used, or multiple types of P3HA may be used in combination. Of course, other biodegradable polymers, biodegradable polyesters, and biodegradable aliphatic polyesters can be used in combination.

前記ポリアルキレンジカルボキシレートとは、脂肪族ジオール(又はその誘導体)と脂肪族ジカルボン酸(又はその誘導体)の重縮合体を指す。具体的には、ポリブチレンサクシネート(以降PBSと略す)、ポリエチレンサクシネート、ポリ(ブチレンサクシネート−co−ブチレンアジペート)等が挙げられる。   The polyalkylene dicarboxylate refers to a polycondensate of an aliphatic diol (or a derivative thereof) and an aliphatic dicarboxylic acid (or a derivative thereof). Specific examples include polybutylene succinate (hereinafter abbreviated as PBS), polyethylene succinate, poly (butylene succinate-co-butylene adipate), and the like.

本発明で用いる生分解性ポリマーとしては、窒素化合物の処理速度の観点から、P3HA、PBS、PLAがより好ましく、P3HA、PBSがさらに好ましく、P3HAが特に好ましい。また、処理対象である汚染水が海水などの塩濃度が高い水に由来する場合は、海水生分解性の観点から、P3HAが最も好ましい。   As the biodegradable polymer used in the present invention, P3HA, PBS and PLA are more preferable, P3HA and PBS are more preferable, and P3HA is particularly preferable from the viewpoint of the processing speed of the nitrogen compound. In addition, when the contaminated water to be treated is derived from water having a high salt concentration such as seawater, P3HA is most preferable from the viewpoint of seawater biodegradability.

本発明において生分解性ポリマーは、1種類のみを使用してもよいし、複種類を併用してもよい。また、各生分解性ポリマーの成型体を混合して充填材として使用してもよいし、予め各生分解性ポリマーを混合・成型させた成型体を充填材として使用してもよい。   In the present invention, only one type of biodegradable polymer may be used, or multiple types may be used in combination. Moreover, the molded body of each biodegradable polymer may be mixed and used as a filler, or a molded body obtained by mixing and molding each biodegradable polymer in advance may be used as the filler.

本発明で用いる生分解性ポリマーを含む充填材の形状は通液を阻害しない固形状であれば特に制限はなく、粉末状、ペレット状、球状、シート状、コイル状、ひも状、網状のいずれであっても良い。ただし処理効果と作業効率を上げるために、表面積が広く、ある程度の物理的耐性を有し、取り扱いが容易であれば、形態には制限されない。使用に際しては、各形態のものを単独で用いても良く、複数の形態のものを混合して用いても良い。   The shape of the filler containing the biodegradable polymer used in the present invention is not particularly limited as long as it is a solid that does not impede liquid flow, and any of powder, pellet, sphere, sheet, coil, string, and net It may be. However, in order to increase the treatment effect and work efficiency, the form is not limited as long as it has a large surface area, a certain degree of physical resistance, and easy handling. In use, each form may be used alone, or a plurality of forms may be mixed and used.

脱窒処理工程において使用する上記容器は、その内部に処理対象液を通液させることによって該処理対象液を生物学的に脱窒処理するものであればよく、その形状等は特に限定されない。上記容器は、上記処理対象液の入口と出口とを有するが、当該入口及び出口の位置も特に限定されない。内部において処理対象液を生分解性ポリマーを含む充填材と接触させて生物学的な脱窒処理を進行させることができるような容器であればよい。例えば、図1で表されるようなカラム状の容器が使用できる。   The vessel used in the denitrification treatment step only needs to biologically denitrify the treatment target liquid by passing the treatment target liquid through the inside thereof, and the shape and the like are not particularly limited. Although the said container has the inlet and outlet of the said process target liquid, the position of the said inlet and outlet is not specifically limited. What is necessary is just to be a container which can be made to contact biologically denitrification processing by making a process target liquid contact with the filler containing a biodegradable polymer inside. For example, a columnar container as shown in FIG. 1 can be used.

本発明における脱窒処理工程においては、上記容器内で、処理対象液を生分解性ポリマーを含む充填材に接触させる必要がある。処理対象液を充填材に接触させる方法としては、処理対象液に直接充填材を添加する方法や充填材が充填されたカラム状構造を有する装置を用いることが考えられるが、処理対象液と充填材の接触頻度を考えると、図1に示すような容器に生分解性ポリマーを含む充填材を充填させた装置(カラム様の脱窒処理部)を用いることが好ましい。   In the denitrification process in the present invention, it is necessary to bring the liquid to be treated into contact with the filler containing the biodegradable polymer in the container. As a method for bringing the liquid to be treated into contact with the filler, it is conceivable to use a method in which the filler is directly added to the liquid to be treated or an apparatus having a columnar structure filled with the filler. Considering the contact frequency of the material, it is preferable to use an apparatus (column-like denitrification processing section) in which a container as shown in FIG. 1 is filled with a filler containing a biodegradable polymer.

上記容器における生分解性ポリマーを含む充填材の充填度(充填率)は、特に限定されないが、反応容積あたりの処理速度の観点から、容器の容量(100vol%)に対して30vol%以上が好ましく、より好ましくは40vol%以上、さらに好ましくは50%以上である。一方、充填度の上限は、90vol%以下が好ましく、より好ましくは80%以下である。充填度を90vol%以下とすることにより、生分解性ポリマーに付着する微生物又はバイオフィルムによる閉塞が抑制され、より効率的に脱窒反応を進行させることができる傾向がある。   The filling degree (filling rate) of the filler containing the biodegradable polymer in the container is not particularly limited, but is preferably 30 vol% or more with respect to the capacity of the container (100 vol%) from the viewpoint of the processing speed per reaction volume. More preferably, it is 40 vol% or more, and still more preferably 50% or more. On the other hand, the upper limit of the degree of filling is preferably 90 vol% or less, more preferably 80% or less. By setting the filling degree to 90 vol% or less, there is a tendency that blockage by microorganisms or biofilm attached to the biodegradable polymer is suppressed and the denitrification reaction can proceed more efficiently.

上記容器における生分解性ポリマーを含む充填材の充填度を30vol%以上とすることで、処理対象液中に存在する溶存酸素濃度を速やかに低減させるのに効果がある。つまり、本発明では、容器(脱窒処理部)内に導入された処理対象液中の溶存酸素は生分解性ポリマーに付着した微生物によって、生分解性ポリマーの資化と共に速やかに消費され、容器内は嫌気状態に移行する。よって、例えば図2で示すように、容器下部に設けた入口より処理対象液を流入させ、容器上部に設けた出口から排出させる場合、容器内下部は好気状態であるが、容器内上部は嫌気状態となる。以上により、脱窒反応が速やかに進む環境を迅速に整えることを可能とし、連続的な脱窒処理を可能としている。   By setting the filling degree of the filler containing the biodegradable polymer in the container to 30 vol% or more, it is effective to quickly reduce the concentration of dissolved oxygen present in the liquid to be treated. That is, in the present invention, dissolved oxygen in the treatment target liquid introduced into the container (denitrification processing unit) is quickly consumed by the microorganisms attached to the biodegradable polymer together with the utilization of the biodegradable polymer. The inside shifts to an anaerobic state. Therefore, for example, as shown in FIG. 2, when the liquid to be treated is introduced from the inlet provided in the lower part of the container and discharged from the outlet provided in the upper part of the container, the lower part in the container is in an aerobic state, but the upper part in the container is Become anaerobic. As described above, it is possible to quickly prepare an environment where the denitrification reaction proceeds promptly, and continuous denitrification treatment is possible.

もちろん、容器内で生物学的な脱窒反応を進行させるために、本方法を実施する前(後述の本装置を本格的に稼動させる前)に予め、容器内に微生物を繁殖させておく必要があることは言うまでもない。この繁殖方法・馴養方法については特に限定されないが、多くの場合、容器内を処理対象液で満たしておくことで、時間とともに環境中に存在する微生物が繁殖し、安定運転可能な状態となる。もちろん、立ち上げの時間を早めるために、活性汚泥中の汚泥を添加することも可能である。   Of course, in order to advance the biological denitrification reaction in the container, it is necessary to propagate microorganisms in the container in advance before carrying out this method (before operating the apparatus described later in full scale). It goes without saying that there is. Although there are no particular limitations on the breeding method and the acclimatization method, in many cases, by filling the container with the liquid to be treated, microorganisms existing in the environment over time will be propagated and become stable. Of course, it is also possible to add sludge in activated sludge in order to speed up the start-up time.

本発明の脱窒処理方法においては、上述のように内部に微生物を繁殖させた上記容器(生分解性ポリマーを含む充填材を充填した容器)を用いることで、簡便に連続的に脱窒させることが可能となる。なお、上記容器の容量については、発生する処理対象負荷に応じて決定されるため、特に限定されない。また、上記容器の材質についても、処理対象液の種類によるため特に限定されないが、処理対象液が海水であれば、塩による腐食を防止するために、金属製であればSUS製が好ましく、耐加重の観点で特に問題なければ塩ビ製などが安価なので用いやすい。   In the denitrification method of the present invention, the above-mentioned container (a container filled with a filler containing a biodegradable polymer) in which microorganisms are propagated as described above is used for simple and continuous denitrification. It becomes possible. In addition, about the capacity | capacitance of the said container, since it determines according to the process target load to generate | occur | produce, it does not specifically limit. Also, the material of the container is not particularly limited because it depends on the type of the liquid to be treated. However, if the liquid to be treated is seawater, it is preferably made of SUS if it is made of metal in order to prevent corrosion due to salt. If there is no particular problem in terms of weight, PVC is easy to use because it is inexpensive.

また、本発明により安定的かつ高い能力で窒素化合物を除去するためには、処理対象液中のリン化合物の存在が重要である。即ち、本発明の方法又は装置における処理対象液はリン化合物を含有する。処理対象液中にリン化合物が存在することで、脱窒の効率が飛躍的に向上する。特に低温〜中温領域での効果は顕著であり、リン化合物の非存在下であれば、ほとんど脱窒反応が起きないケースでもリン化合物が存在することで、反応率を格段に向上させることが可能である。本発明において、リン化合物とは、オルトリン酸態リンに代表される無機態リンとリン脂質などに代表される有機態リンの総称である。   Further, in order to remove nitrogen compounds stably and with high ability according to the present invention, the presence of phosphorus compounds in the liquid to be treated is important. That is, the liquid to be treated in the method or apparatus of the present invention contains a phosphorus compound. The presence of a phosphorus compound in the liquid to be treated greatly improves the denitrification efficiency. The effect is particularly remarkable in the low to medium temperature range, and in the absence of phosphorus compounds, the presence of phosphorus compounds can greatly improve the reaction rate even in cases where almost no denitrification occurs. It is. In the present invention, the phosphorus compound is a general term for inorganic phosphorus typified by orthophosphoric phosphorus and organic phosphorus typified by phospholipid.

基本的には、処理対象液中に好ましくは0.5mg/L以上(より好ましくは1.0mg/L以上、さらに好ましくは2.0mg/L以上)の濃度でリン化合物が含まれていると、本発明の方法及び装置において脱窒能力を最大限に発揮させることができる。リン化合物の濃度が十分でなければ、上記容器(脱窒処理部)出口の溶存酸素濃度が高位すなわち概ね5mg/L超となり、脱窒処理の効率が低下する傾向がある。もし、リン化合物の濃度が不十分と判断されれば、処理対象液にリン化合物を添加することで対応できる。その際のリン化合物の形態は特に限定されず、水溶性のリン化合物、例えばリン酸、および/またはその塩がコストの面から好適に使用される。処理対象液に含まれるリン化合物の濃度の上限は特に限定されないが、コストおよび環境負荷の観点で、10mg/L以下が好ましく、より好ましくは5mg/L以下である。なお、本発明におけるリン化合物の濃度は、総リン表記(T−P)としており、酸加水分解−吸光度法で定量できる。また、簡易的に測定したい場合、HACH社製のリン定量キット(例えばTNT845など)が操作の簡便性などからも好適に利用できる。   Basically, the treatment target liquid preferably contains a phosphorus compound at a concentration of 0.5 mg / L or more (more preferably 1.0 mg / L or more, further preferably 2.0 mg / L or more). In the method and apparatus of the present invention, the denitrification ability can be maximized. If the concentration of the phosphorus compound is not sufficient, the dissolved oxygen concentration at the outlet of the container (denitrification treatment unit) becomes high, that is, generally exceeds 5 mg / L, and the efficiency of the denitrification treatment tends to decrease. If it is determined that the concentration of the phosphorus compound is insufficient, it can be dealt with by adding the phosphorus compound to the liquid to be treated. The form of the phosphorus compound at that time is not particularly limited, and a water-soluble phosphorus compound such as phosphoric acid and / or a salt thereof is preferably used from the viewpoint of cost. Although the upper limit of the density | concentration of the phosphorus compound contained in a process target liquid is not specifically limited, From a viewpoint of cost and environmental impact, 10 mg / L or less is preferable, More preferably, it is 5 mg / L or less. In addition, the density | concentration of the phosphorus compound in this invention is made into the total phosphorus description (TP), and can be quantified by the acid hydrolysis-absorbance method. In addition, when a simple measurement is desired, a phosphorus quantification kit (for example, TNT845) manufactured by HACH can be suitably used from the viewpoint of simplicity of operation.

また、本発明においては、装置内の処理対象液の平均滞留時間は、脱窒反応率(1−(装置出口の窒素化合物濃度)/(装置入口の窒素化合物濃度))に影響するため極めて重要なファクターである。本発明者は、リン化合物の非存在下であれば、脱窒効率が顕著に高い滞留時間が存在しないが、一方で、リン化合物の存在下であれば、滞留時間に応じて脱窒の反応率が劇的に変化するため、特に脱窒効率が顕著に高い滞留時間が存在することを見出した。本発明における上記平均滞留時間は10時間以下であり、リン化合物の存在下での平均滞留時間は正味の窒素化合物除去量の観点から、好ましくは5時間以下、より好ましくは4時間以下、さらにより好ましくは3時間以下である。しかしながら前述したように、基本的に平均滞留時間が短くなればなるほど脱窒反応率が低下するため、その下限は、好ましくは15分以上、より好ましくは30分以上、さらにより好ましくは1時間以上である。   In the present invention, the average residence time of the liquid to be treated in the apparatus is extremely important because it affects the denitrification reaction rate (1- (nitrogen compound concentration at the apparatus outlet) / (nitrogen compound concentration at the apparatus inlet)). Factor. The present inventor does not have a residence time in which the denitrification efficiency is remarkably high in the absence of the phosphorus compound, but on the other hand, in the presence of the phosphorus compound, the denitrification reaction depends on the residence time. It has been found that there is a residence time that is particularly high in denitrification efficiency, since the rate changes dramatically. In the present invention, the average residence time is 10 hours or less, and the average residence time in the presence of the phosphorus compound is preferably 5 hours or less, more preferably 4 hours or less, and even more preferably from the viewpoint of the net nitrogen compound removal amount. Preferably it is 3 hours or less. However, as described above, the lower the average residence time, the lower the denitrification reaction rate. Therefore, the lower limit is preferably 15 minutes or more, more preferably 30 minutes or more, and even more preferably 1 hour or more. It is.

本発明において、平均滞留時間は、処理部(生分解性ポリマーを含む充填材の充填部)の容積を単位時間当たりの体積流量で除した値と定義する。   In the present invention, the average residence time is defined as a value obtained by dividing the volume of the treatment part (filling part of the filler containing the biodegradable polymer) by the volume flow rate per unit time.

本発明の脱窒処理方法においては、上記容器に流入させる処理対象液(上記容器の入口付近の処理対象液)の溶存酸素濃度は、特に限定されない。   In the denitrification processing method of the present invention, the dissolved oxygen concentration of the processing target liquid (processing target liquid near the inlet of the container) to be introduced into the container is not particularly limited.

本発明の脱窒処理方法においては、上記容器を通液後の液(上記容器の出口付近の処理済みの液)の溶存酸素濃度は、特に限定されないが、5mg/L以下に維持されることが好ましく、より好ましくは3.5mg/L以下、さらに好ましくは1mg/L以下、さらに好ましくは0.5mg/L以下、さらに好ましくは0.1mg/L以下に維持される。溶存酸素濃度の下限は特に限定されず、例えば、0mg/Lであってもよい。上記溶存酸素濃度を5mg/L以下とすることにより、容器内の脱窒環境が整い、脱窒反応が効率よく進む傾向がある。上記溶存酸素濃度は、後述するように上記容器への処理対象液の流量を制御することや、処理対象液中のリン化合物の濃度を調節することで、所望の範囲に維持することができる。   In the denitrification method of the present invention, the dissolved oxygen concentration of the liquid after passing through the container (the processed liquid near the outlet of the container) is not particularly limited, but should be maintained at 5 mg / L or less. More preferably, it is 3.5 mg / L or less, More preferably, it is 1 mg / L or less, More preferably, it is 0.5 mg / L or less, More preferably, it is maintained at 0.1 mg / L or less. The lower limit of the dissolved oxygen concentration is not particularly limited, and may be 0 mg / L, for example. By setting the dissolved oxygen concentration to 5 mg / L or less, the denitrification environment in the container is prepared, and the denitrification reaction tends to proceed efficiently. The dissolved oxygen concentration can be maintained in a desired range by controlling the flow rate of the liquid to be treated into the container as described later, or by adjusting the concentration of the phosphorus compound in the liquid to be treated.

本発明の脱窒処理方法は、上述の脱窒処理工程を有するものであれば特に限定されず、その他の工程を有するものであってもよい。その他の工程の例としては、例えば、処理対象液のpHを調整するpH中和工程やストレーナやサイクロンなどにより固形分を除去する工程が挙げられる。   The denitrification treatment method of the present invention is not particularly limited as long as it has the above-described denitrification treatment step, and may have other steps. Examples of other processes include, for example, a pH neutralization process that adjusts the pH of the liquid to be treated, and a process that removes solids using a strainer, a cyclone, or the like.

<脱窒処理装置>
本発明の脱窒処理装置は、硝酸態窒素及び/又は亜硝酸態窒素を含む処理対象液を連続的に脱窒処理する装置であって、下記の脱窒処理部と流量制御機構とを必須の構成として有する装置である。
<Denitrification equipment>
The denitrification apparatus of the present invention is an apparatus for continuously denitrifying a liquid to be treated containing nitrate nitrogen and / or nitrite nitrogen, and the following denitrification processing unit and flow control mechanism are essential. It is an apparatus which has as a structure of.

脱窒処理部:内部を通液させることによって処理対象液を生物学的に脱窒処理する部分
流量制御機構:脱窒処理部の出口における液の溶存酸素濃度を監視して、当該溶存酸素濃度が5mg/L以下(より好ましくは3.5mg/L以下、さらに好ましくは1mg/L以下、さらに好ましくは0.5mg/L以下、さらに好ましくは0.1mg/L以下)に維持されるように脱窒処理部の入口における処理対象液の流量(脱窒処理部への流入量)を制御する機構
本発明の脱窒処理装置における脱窒処理部としては、例えば、上述の生分解性ポリマーを含む充填材を充填した容器が挙げられる。
Denitrification treatment part: A part that biologically denitrifies the liquid to be treated by letting the inside flow. Flow control mechanism: Monitors the dissolved oxygen concentration of the liquid at the outlet of the denitrification treatment part, and the dissolved oxygen concentration. Is maintained at 5 mg / L or less (more preferably 3.5 mg / L or less, more preferably 1 mg / L or less, further preferably 0.5 mg / L or less, more preferably 0.1 mg / L or less). Mechanism for controlling the flow rate of the liquid to be treated at the inlet of the denitrification treatment unit (inflow amount to the denitrification treatment unit) As the denitrification treatment unit in the denitrification treatment apparatus of the present invention, for example, the biodegradable polymer described above is used. Examples include a container filled with the filler.

<設備構成>
以上を鑑みて、本発明の脱窒処理装置における流量制御機構について説明する。本方法を利用した脱窒処理装置の能力を最大限に活用するためには、上述したカラム構造を有する脱窒処理部に一定流量で処理対象液を送液するシステムが必要で、脱窒処理部出口で処理水(脱窒処理部で処理後の液)の溶存酸素濃度を監視し、当該溶存酸素濃度が5mg/L以下に維持されるように流量を可変できるシステムが望ましい。こうすることで、脱窒処理部内の嫌気状態、即ち脱窒環境をモニターすることができるとともに、溶存酸素濃度の情報に基づいて流量を制御することで、脱窒環境を最適な状態に保つことができる。もちろん、溶存酸素濃度のモニターはオンラインで分析しても良いし、オフラインで分析しても良い。重要なのは、溶存酸素濃度をもとに適宜流量を制御することであるから、自動で流量を制御しても良いし、手動で流量を制御する方法でも良い。
<Equipment configuration>
In view of the above, the flow control mechanism in the denitrification apparatus of the present invention will be described. In order to make full use of the capacity of the denitrification treatment apparatus using this method, a system for sending the liquid to be treated at a constant flow rate to the denitrification treatment part having the column structure described above is required. A system that can monitor the dissolved oxygen concentration of the treated water (liquid after treatment in the denitrification treatment unit) at the part outlet and can change the flow rate so that the dissolved oxygen concentration is maintained at 5 mg / L or less is desirable. By doing so, the anaerobic state in the denitrification processing unit, that is, the denitrification environment can be monitored, and the flow rate is controlled based on the dissolved oxygen concentration information to maintain the denitrification environment in an optimum state. Can do. Of course, the dissolved oxygen concentration monitor may be analyzed online or may be analyzed offline. What is important is that the flow rate is appropriately controlled based on the dissolved oxygen concentration. Therefore, the flow rate may be controlled automatically, or the flow rate may be controlled manually.

流量制御の機構は、例えば、脱窒処理部出口の溶存酸素濃度が設定値よりも10%増加すれば、脱窒処理部入口の流量を10%低減させるというフィードバックによる制御が好ましい。それでもなお、脱窒処理部出口の溶存酸素濃度が設定値以上であれば、さらに10%ずつ低減させ、最終的に脱窒処理部出口の溶存酸素濃度が設定値以下になるまで同じ操作を繰り返す。勿論、例えば、脱窒処理部出口の溶存酸素濃度が設定値よりも10%低下すれば、脱窒処理部入口の流量を10%増加させる制御を組み入れることも、装置の能力を最大限に活用するためには、好ましい。但し、脱窒処理部の滞留時間があるため、脱窒処理部の溶存酸素濃度の応答が遅いことに留意する必要がある。勿論、フィードバック制御のみでは、対応できない場合を考慮し、フィードフォワード制御を組み入れても良い。   The flow rate control mechanism is preferably feedback control that, for example, if the dissolved oxygen concentration at the denitrification unit outlet increases by 10% from the set value, the flow rate at the denitrification unit inlet is reduced by 10%. Still, if the dissolved oxygen concentration at the denitrification treatment unit outlet is equal to or higher than the set value, it is further reduced by 10%, and the same operation is repeated until the dissolved oxygen concentration at the denitrification treatment unit outlet finally becomes less than the set value. . Of course, for example, if the dissolved oxygen concentration at the denitrification processing unit outlet is 10% lower than the set value, the control of increasing the flow rate at the denitrification processing unit inlet by 10% can be incorporated to make maximum use of the capacity of the apparatus. In order to do so, it is preferable. However, it is necessary to note that the response of the dissolved oxygen concentration in the denitrification unit is slow because of the residence time of the denitrification unit. Of course, feed forward control may be incorporated in consideration of the case where only feedback control is not possible.

なお、脱窒処理部出口の溶存酸素濃度が脱窒処理部入口の流量を低減してもなかなか下がらない場合は、原水(処理対象液)中のリン化合物濃度が不足しているケースが多い。よって、その際は上述した濃度になるように、リン化合物を添加することが好ましい。添加方法は、脱窒処理部へ処理対象液を流入させる直前に混合していても良いし、事前に処理対象液に混合させておいても良い。もちろん、脱窒処理装置内にリン化合物を添加する設備を設け、処理対象液中のリン濃度をモニターしながら間欠的及び/又は連続的に添加できるようなシステムを構築しても良い。   In addition, when the dissolved oxygen concentration at the denitrification processing unit outlet does not decrease easily even if the flow rate at the denitrification processing unit inlet is reduced, the phosphorus compound concentration in the raw water (treatment target liquid) is often insufficient. Therefore, in this case, it is preferable to add a phosphorus compound so that the concentration described above is obtained. The addition method may be mixed immediately before the liquid to be treated flows into the denitrification processing unit, or may be mixed in advance with the liquid to be treated. Of course, it is also possible to provide a system for adding a phosphorus compound in the denitrification processing apparatus and construct a system that can be added intermittently and / or continuously while monitoring the phosphorus concentration in the liquid to be processed.

本発明の脱窒処理方法、及び本発明の脱窒処理装置を活用することで、窒素化合物処理で課題を抱えている下水処理分野や水族館・観賞魚用水槽、養殖の飼育水中の窒素化合物除去に適用できる。   By utilizing the denitrification treatment method of the present invention and the denitrification treatment apparatus of the present invention, the removal of nitrogen compounds in the sewage treatment field, aquarium, aquarium fish tank, and aquaculture breeding water that have problems in nitrogen compound treatment Applicable to.

以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、実施例において「%」は重量基準である。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In the examples, “%” is based on weight.

実施例1[常温(34℃)での脱窒処理]
<脱窒処理装置の組み立て>
容器(1L)にKANEKA Biopolymer PHBHを充填率60vol%の密度で充填して脱窒処理部を作製し、図2に示すように脱窒処理部の出口付近のpHとDOを測定するための器具(pH計4、DO計5)を設置し、さらに、脱窒処理部の入口と出口に配管を設置して、図3に示される脱窒処理装置を製造した。
Example 1 [Denitrification treatment at room temperature (34 ° C.)]
<Assembly of denitrification equipment>
A device for measuring pH and DO near the outlet of the denitrification unit as shown in FIG. 2 by preparing a denitrification unit by filling the container (1 L) with KANEKA Biopolymer PHBH at a density of 60 vol%. (PH meter 4 and DO meter 5) were installed, and further, piping was installed at the inlet and outlet of the denitrification treatment unit to produce the denitrification treatment device shown in FIG.

<菌の馴養操作>
組み立てた装置における脱窒処理部の内部を、窒素源として0.1%硫酸アンモニウム、硝酸ナトリウムを約10mM含む無機塩培地で満たし、34℃で1〜3ヶ月間回分培養し、複合微生物群集を馴養させた。
<Adapting operation of bacteria>
The inside of the denitrification section in the assembled apparatus is filled with an inorganic salt medium containing about 10 mM of 0.1% ammonium sulfate and sodium nitrate as a nitrogen source, and cultured at 34 ° C. for 1 to 3 months to acclimate the complex microbial community. I let you.

<処理対象液(実験用模擬排水)の作製>
10mM硝酸ナトリウムを蒸留水に溶解させ、その後、全リン濃度が0.5mg/Lになるようにリン酸を添加し、さらに、水酸化ナトリウムもしくは塩酸でpHを7に調整して、処理対象液を作製した。
<Preparation of liquid to be treated (simulated waste water for experiment)>
10 mM sodium nitrate is dissolved in distilled water, phosphoric acid is added so that the total phosphorus concentration is 0.5 mg / L, and the pH is adjusted to 7 with sodium hydroxide or hydrochloric acid. Was made.

<分析方法>
アンモニア態窒素、亜硝酸態窒素、硝酸態窒素、リンの濃度の測定には、HACH社製 DR6000及び対応試薬(TNT832、TNT835、TNT840、843)を用いた。
<Analysis method>
For measurement of ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, and phosphorus concentrations, DR6000 manufactured by HACH and corresponding reagents (TNT832, TNT835, TNT840, 843) were used.

<脱窒処理>
上記で作製した模擬排水を上述の馴養済脱窒処理装置における脱窒処理部に通水させた。脱窒処理部における平均滞留時間が表1に示すように1.3時間となるように模擬排水の流量をコントロールした。なお、装置温度は、内温が34℃になるようにコントロールした。
<Denitrification treatment>
The simulated waste water produced above was passed through the denitrification treatment section in the above-mentioned acclimatized denitrification treatment apparatus. As shown in Table 1, the flow rate of the simulated waste water was controlled so that the average residence time in the denitrification treatment unit was 1.3 hours. The apparatus temperature was controlled so that the internal temperature was 34 ° C.

脱窒処理を実施している間、脱窒処理部出口の液をサンプリングし、アンモニア態窒素、亜硝酸態窒素、及び硝酸態窒素の濃度を分析した。得られたアンモニア態窒素、亜硝酸態窒素、硝酸態窒素の濃度の総和を全窒素濃度とし、正味の窒素除去量を(正味の窒素除去量[mg/h])=(入口全窒素濃度[mg/L]−出口全窒素濃度[mg/L])×(流量[L/h])として算出した。結果を表1に示す。   During the denitrification process, the liquid at the exit of the denitrification process unit was sampled, and the concentrations of ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen were analyzed. The total concentration of ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen thus obtained was defined as the total nitrogen concentration, and the net nitrogen removal amount was (net nitrogen removal amount [mg / h]) = (total inlet nitrogen concentration [ mg / L] −total outlet nitrogen concentration [mg / L]) × (flow rate [L / h]). The results are shown in Table 1.

実施例2〜4
脱窒処理部における平均滞留時間を表1に示すように変更したこと以外は実施例1と同様にして、脱窒処理を実施した。結果を表1に示す。
Examples 2-4
A denitrification treatment was performed in the same manner as in Example 1 except that the average residence time in the denitrification treatment section was changed as shown in Table 1. The results are shown in Table 1.

実施例5[中温(24℃)での脱窒処理]
装置内温を24℃に変更したこと以外は実施例1と同様に脱窒処理を行った。結果を表1に示す。
Example 5 [Denitrification treatment at medium temperature (24 ° C.)]
Denitrification treatment was performed in the same manner as in Example 1 except that the internal temperature of the apparatus was changed to 24 ° C. The results are shown in Table 1.

実施例6、7
装置内温を24℃に変更し、脱窒処理部における平均滞留時間を表1に示すように変更したこと以外は実施例1と同様にして、脱窒処理を実施した。結果を表1に示す。
Examples 6 and 7
The denitrification treatment was performed in the same manner as in Example 1 except that the internal temperature of the apparatus was changed to 24 ° C. and the average residence time in the denitrification treatment section was changed as shown in Table 1. The results are shown in Table 1.

比較例1[常温(34℃)での脱窒処理]
処理対象液にリン酸を添加しなかったこと以外は実施例1と同様にして、脱窒処理を行った。結果を表1に示す。
Comparative Example 1 [Denitrification at normal temperature (34 ° C.)]
A denitrification treatment was performed in the same manner as in Example 1 except that phosphoric acid was not added to the treatment target solution. The results are shown in Table 1.

比較例2〜5
脱窒処理部における平均滞留時間を表1に示すように変更したこと以外は比較例1と同様にして、脱窒処理を実施した。結果を表1に示す。
Comparative Examples 2-5
A denitrification treatment was performed in the same manner as in Comparative Example 1 except that the average residence time in the denitrification treatment section was changed as shown in Table 1. The results are shown in Table 1.

比較例6
脱窒処理部における平均滞留時間を表1に示すように変更したこと以外は実施例1と同様にして、脱窒処理を実施した。結果を表1に示す。
Comparative Example 6
A denitrification treatment was performed in the same manner as in Example 1 except that the average residence time in the denitrification treatment section was changed as shown in Table 1. The results are shown in Table 1.

比較例7[中温(24℃)での脱窒実験]
処理対象液にリン酸を添加せず、装置内温を24℃に変更し、脱窒処理部における平均滞留時間を表1に示すように変更したこと以外は実施例1と同様にして、脱窒処理を実施した。結果を表1に示す。
Comparative Example 7 [Denitrification Experiment at Medium Temperature (24 ° C.)]
In the same manner as in Example 1, except that phosphoric acid was not added to the liquid to be treated, the internal temperature was changed to 24 ° C., and the average residence time in the denitrification treatment part was changed as shown in Table 1. Nitrogen treatment was performed. The results are shown in Table 1.

比較例8〜10
脱窒処理部における平均滞留時間を表1に示すように変更したこと以外は比較例7と同様にして、脱窒処理を実施した。結果を表1に示す。
Comparative Examples 8-10
A denitrification treatment was carried out in the same manner as in Comparative Example 7 except that the average residence time in the denitrification treatment section was changed as shown in Table 1. The results are shown in Table 1.

比較例11
脱窒処理部における平均滞留時間を表1に示すように変更したこと以外は実施例5と同様にして、脱窒処理を実施した。結果を表1に示す。
Comparative Example 11
A denitrification treatment was carried out in the same manner as in Example 5 except that the average residence time in the denitrification treatment section was changed as shown in Table 1. The results are shown in Table 1.

表1では、脱窒処理部出口で測定した処理液の溶存酸素濃度についても記載した。ただし、「−」との表示は溶存酸素濃度を測定していないことを示す。   Table 1 also describes the dissolved oxygen concentration of the treatment liquid measured at the denitrification treatment unit outlet. However, the display of “−” indicates that the dissolved oxygen concentration is not measured.

Figure 2018155436
Figure 2018155436

表1より、処理対象液がリン化合物を含有し、かつ処理対象液の平均滞留時間を10時間以下とした実施例1〜7では、時間当たりの窒素化合物除去量が高く、脱窒能力が格段に優れていることが分かる。なかでも、実施例5〜7は、比較的脱窒活性が低下しやすい中温(24℃)領域で実施したものであるが、優れた脱窒能力を示した。   From Table 1, in Examples 1 to 7 in which the liquid to be treated contains a phosphorus compound and the average residence time of the liquid to be treated is 10 hours or less, the nitrogen compound removal amount per hour is high and the denitrification ability is remarkably high. It turns out that it is excellent in. Especially, although Examples 5-7 were implemented in the intermediate temperature (24 degreeC) area | region where denitrification activity tends to fall comparatively, the outstanding denitrification capability was shown.

一方、処理対象液がリン化合物を含有しなかったり、処理対象液の平均滞留時間が10時間を超えた比較例1〜11では、時間当たりの窒素化合物除去量が実施例1〜7よりも大幅に低く、脱窒能力に劣っていることが分かる。   On the other hand, in Comparative Examples 1 to 11 in which the liquid to be treated did not contain a phosphorus compound or the average residence time of the liquid to be treated exceeded 10 hours, the nitrogen compound removal amount per hour was significantly larger than in Examples 1 to 7. It can be seen that the denitrification ability is low.

1 生分解性ポリマーを含む充填材
2 入口
3 出口
4 pH計
5 DO計(溶存酸素濃度計)
6 水槽
7 処理水液貯槽
1 Filler containing biodegradable polymer 2 Inlet 3 Outlet 4 pH meter 5 DO meter (dissolved oxygen concentration meter)
6 Water tank 7 Treated water storage tank

Claims (6)

硝酸態窒素及び/又は亜硝酸態窒素を含む処理対象液を連続的に脱窒処理する方法であって、
生分解性ポリマーを含む充填材が充填された容器内に前記処理対象液を通液させることで生物学的に前記脱窒処理を行う工程を含み、前記容器における前記処理対象液の平均滞留時間が10時間以下であり、かつ前記処理対象液がリン化合物を含有することを特徴とする脱窒処理方法。
A method of continuously denitrifying a liquid to be treated containing nitrate nitrogen and / or nitrite nitrogen,
Including a step of biologically performing the denitrification treatment by passing the treatment target liquid through a container filled with a filler containing a biodegradable polymer, and an average residence time of the treatment target liquid in the container For 10 hours or less, and the liquid to be treated contains a phosphorus compound.
前記容器を通液後の液の溶存酸素濃度が5mg/L以下である、請求項1に記載の脱窒処理方法。   The denitrification method according to claim 1, wherein a dissolved oxygen concentration of the liquid after passing through the container is 5 mg / L or less. 前記生分解性ポリマーが脂肪族ポリエステルである、請求項1又は2に記載の脱窒処理方法。   The denitrification method according to claim 1 or 2, wherein the biodegradable polymer is an aliphatic polyester. 前記脂肪族ポリエステルがポリ(3−ヒドロキシアルカノエート)である、請求項3に記載の脱窒処理方法。   The denitrification method according to claim 3, wherein the aliphatic polyester is poly (3-hydroxyalkanoate). 前記容器は、前記充填材が前記容器の容量(100vol%)に対して30vol%以上の充填度で充填された容器である、請求項1〜4のいずれか1項に記載の脱窒処理方法。   The denitrification method according to any one of claims 1 to 4, wherein the container is a container in which the filler is filled at a filling degree of 30 vol% or more with respect to the capacity (100 vol%) of the container. . 硝酸態窒素及び/又は亜硝酸態窒素を含む処理対象液を連続的に脱窒処理する装置であって、
内部を通液させることによって前記処理対象液を生物学的に脱窒処理する脱窒処理部を備え、前記脱窒処理部は生分解性ポリマーを含む充填材が充填されており、
前記脱窒処理部の出口における液の溶存酸素濃度を監視して、当該溶存酸素濃度が5mg/L以下に維持されるように前記脱窒処理部の入口における前記処理対象液の流量を制御する機構を備えることを特徴とする、脱窒処理装置。

An apparatus for continuously denitrifying a liquid to be treated containing nitrate nitrogen and / or nitrite nitrogen,
A denitrification treatment unit that biologically denitrifies the liquid to be treated by passing the solution through the interior; the denitrification treatment unit is filled with a filler containing a biodegradable polymer;
The dissolved oxygen concentration of the liquid at the outlet of the denitrification processing unit is monitored, and the flow rate of the processing target liquid at the inlet of the denitrification processing unit is controlled so that the dissolved oxygen concentration is maintained at 5 mg / L or less. A denitrification processing apparatus comprising a mechanism.

JP2019501341A 2017-02-24 2018-02-20 Denitrification method and denitrification treatment device Active JP7477973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024023617A JP2024050967A (en) 2017-02-24 2024-02-20 Denitrification method and denitrification treatment device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017033620 2017-02-24
JP2017033620 2017-02-24
PCT/JP2018/005993 WO2018155436A1 (en) 2017-02-24 2018-02-20 Denitrification method and denitrification apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024023617A Division JP2024050967A (en) 2017-02-24 2024-02-20 Denitrification method and denitrification treatment device

Publications (2)

Publication Number Publication Date
JPWO2018155436A1 true JPWO2018155436A1 (en) 2019-12-12
JP7477973B2 JP7477973B2 (en) 2024-05-02

Family

ID=

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000153293A (en) * 1998-11-17 2000-06-06 Hitachi Chemical Techno-Plant Co Ltd Treatment of waste water containing organic matter and nitrogen compound, and water treating device using the same
JP2002136991A (en) * 2000-11-07 2002-05-14 Taisei Corp Denitrification treatment method
JP2002346594A (en) * 2001-05-25 2002-12-03 Taiho Ind Co Ltd Molded object for immobilizing denitrifying bacterium
JP2007000763A (en) * 2005-06-23 2007-01-11 Univ Osaka Sangyo Apparatus for purifying drainage containing phosphorus and nitrogen, its purification method, and soil to be used by filling in soil contact treatment tank of its purification method
JP2007105627A (en) * 2005-10-13 2007-04-26 Mitsubishi Heavy Ind Ltd Method for treating nitrate-containing waste liquid and device therefor
JP2011104551A (en) * 2009-11-19 2011-06-02 Toyohashi Univ Of Technology Electron donor supplying agent, method for producing electron donor supplying agent and environment clarifying method using the same
JP2011177619A (en) * 2010-02-26 2011-09-15 Taisei Corp Water treatment apparatus and water treatment method
JP2013063036A (en) * 2011-09-16 2013-04-11 Clion Co Ltd Method for raising aquatic animals, and method for removing nitrate-nitrogen
JP2014132831A (en) * 2011-04-29 2014-07-24 Kaneka Corp Water purification method and liquid for water purification
WO2017073304A1 (en) * 2015-10-28 2017-05-04 株式会社カネカ Nitrogen removal method, nitrification-reaction promoting agent for water treatment, and water treatment method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000153293A (en) * 1998-11-17 2000-06-06 Hitachi Chemical Techno-Plant Co Ltd Treatment of waste water containing organic matter and nitrogen compound, and water treating device using the same
JP2002136991A (en) * 2000-11-07 2002-05-14 Taisei Corp Denitrification treatment method
JP2002346594A (en) * 2001-05-25 2002-12-03 Taiho Ind Co Ltd Molded object for immobilizing denitrifying bacterium
JP2007000763A (en) * 2005-06-23 2007-01-11 Univ Osaka Sangyo Apparatus for purifying drainage containing phosphorus and nitrogen, its purification method, and soil to be used by filling in soil contact treatment tank of its purification method
JP2007105627A (en) * 2005-10-13 2007-04-26 Mitsubishi Heavy Ind Ltd Method for treating nitrate-containing waste liquid and device therefor
JP2011104551A (en) * 2009-11-19 2011-06-02 Toyohashi Univ Of Technology Electron donor supplying agent, method for producing electron donor supplying agent and environment clarifying method using the same
JP2011177619A (en) * 2010-02-26 2011-09-15 Taisei Corp Water treatment apparatus and water treatment method
JP2014132831A (en) * 2011-04-29 2014-07-24 Kaneka Corp Water purification method and liquid for water purification
JP2013063036A (en) * 2011-09-16 2013-04-11 Clion Co Ltd Method for raising aquatic animals, and method for removing nitrate-nitrogen
WO2017073304A1 (en) * 2015-10-28 2017-05-04 株式会社カネカ Nitrogen removal method, nitrification-reaction promoting agent for water treatment, and water treatment method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SHEN, ZHIQIANG: "Biological denitrification using cross-linked starch/PCL blends as solid carbon source and biofilm c", BIORESOURCE TECHNOLOGY, vol. 102, JPN6022051774, 2011, pages 8835 - 8838, XP028276279, ISSN: 0005049355, DOI: 10.1016/j.biortech.2011.06.090 *
WO, WEIZHONG ET AL.: "Biological denitrification with a novel biodegradable polymer as carbon source and biofilm carrier", BIORESOURCE TECHNOLOGY, JPN6023017099, 2012, pages 136 - 140, XP028504886, ISSN: 0005049356, DOI: 10.1016/j.biortech.2012.04.066 *
渡邉淳 ET AL.: "排水中の窒素除去に関する研究(その10)−ポリ乳酸を用いたバイオリアクターの窒素除去活性の向上と長期", 電力中央研究所報告, vol. V04027, JPN6016047942, June 2005 (2005-06-01), JP, pages 1 - 13, ISSN: 0005049357 *
田中健治ら: "炭素・リン・微生物環境ならびに窒素負荷が浸出水の脱窒効率に及ぼす影響", 土木学会論文集B1(水工学), vol. 68, no. 4, JPN6022027925, 2012, JP, pages 619 - 624, ISSN: 0005049358 *

Also Published As

Publication number Publication date
WO2018155436A1 (en) 2018-08-30
JP2024050967A (en) 2024-04-10

Similar Documents

Publication Publication Date Title
EP3369713B1 (en) Nitrogen removal method
Doi et al. Evaluation of biodegradabilities of biosynthetic and chemosynthetic polyesters in river water
Rajasimman et al. Aerobic digestion of starch wastewater in a fluidized bed bioreactor with low density biomass support
JP5713920B2 (en) Process for maximizing PHA production in glycogen accumulating organisms
Wang et al. Cultivation of aerobic granules for polyhydroxybutyrate production from wastewater
Ashrafi et al. Optimising nutrient removal of a hybrid five-stage Bardenpho and moving bed biofilm reactor process using response surface methodology
Li et al. Starch/polyvinyl alcohol blended materials used as solid carbon source for tertiary denitrification of secondary effluent
Liu et al. Microbial nitrogen removal of ammonia wastewater in poly (butylenes succinate)-based constructed wetland: effect of dissolved oxygen
EP3045500A1 (en) Biodegradable resin composition having a porous structure and method for surface treatment of same
JP4409415B2 (en) Method for removing phosphorus and / or nitrogen from sewage
CN105102379A (en) Biological treatment method and device for organic wastewater
JP5392719B2 (en) Electron donor supplier, method for producing electron donor supplier, and environmental purification method using the same
Lim et al. Treatment of agro based industrial wastewater in sequencing batch reactor: Performance evaluation and growth kinetics of aerobic biomass
WO2018155436A1 (en) Denitrification method and denitrification apparatus
Wang et al. Promotion of polylactide degradation by ammonia under hyperthermophilic anaerobic conditions
JP5869208B2 (en) Waste water treatment method and waste water treatment apparatus
JP7477973B2 (en) Denitrification method and denitrification treatment device
EP2829610A1 (en) Method for obtaining polyhydroxyalkanoates from beer-industry wastewater
JP5909836B2 (en) Electron donor supply agent and environmental purification method using the same
JP2017042737A (en) Contaminated groundwater cleanup method
WO2018061742A1 (en) Denitrification method, and complex microorganism community and production method therefor
JP2019103459A (en) Microbial immobilization carrier
CN109261086B (en) Active microcapsule and preparation method and application thereof
JP7416335B1 (en) Microbial carrier and water treatment method
EP3757074A1 (en) A method for removing nitrogen from wastewater in a sequencing batch reactor with an aerobic granular biomass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230502

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240229

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240419