JP2002034385A - Overland culture method by circulating culture water and apparatus therefor - Google Patents

Overland culture method by circulating culture water and apparatus therefor

Info

Publication number
JP2002034385A
JP2002034385A JP2000217277A JP2000217277A JP2002034385A JP 2002034385 A JP2002034385 A JP 2002034385A JP 2000217277 A JP2000217277 A JP 2000217277A JP 2000217277 A JP2000217277 A JP 2000217277A JP 2002034385 A JP2002034385 A JP 2002034385A
Authority
JP
Japan
Prior art keywords
ozone
breeding
water
seawater
breeding water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000217277A
Other languages
Japanese (ja)
Inventor
Toshio Uenishi
敏夫 上西
Shinji Yamamoto
信二 山本
Itaru Umeda
到 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000217277A priority Critical patent/JP2002034385A/en
Publication of JP2002034385A publication Critical patent/JP2002034385A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an overland culture system and apparatus circulating the culture water, capable of shortening the culture period and improving the culture productivity without using chemicals and enabling the reduction of the apparatus size. SOLUTION: The culture apparatus for the overland breeding of fish and shellfish with seawater is composed of a breeding water tank 6 a biological treating apparatus 10, an ozone cleaning apparatus 11 and pipes connecting the above apparatuses to form a closed circuit. The treating apparatus 10 is provided with a packed layer holding a carrier 20 supporting nitrifying bacteria at a high concentration, a filter material to capture suspending substance and a supporting material 21 in three layers and a cleaning nozzle placed in the middle or at the bottom of the packed layer. The cleaning apparatus 11 has an inlet port to introduce a mixed gas 17 of ozone 18 and air 15 at the lower part. The pipe connecting the apparatus 10 and the apparatus 11 is successively connected with a pipe 14 to directly circulate to the breeding water tank 6 and a pipe 5 to introduce clean seawater obtained by the precision filtration of sand-filtered seawater. The ozone cleaning apparatus may be provided with a contact tank 12 to remove the generated oxidant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、魚介類の陸上養殖
システムに係り、特に、海水を用いて飼育水を循環しな
がら、魚介類を陸上飼育する養殖方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a terrestrial aquaculture system for fish and shellfish, and more particularly to a method and apparatus for cultivating seafood on land while circulating breeding water using seawater.

【0002】[0002]

【従来の技術】環境ホルモンや海洋汚染による影響で、
海産魚介類の漁獲量や高級魚の養殖生産量が減少してい
る。その対策として、安全な魚介類を安定的に供給する
ため、陸上での養殖技術の研究開発が進められている。
海産魚介類の陸上養殖は、従来、清澄な海水が得られる
地域では海水をそのまま使用したり、砂ろ過海水をかけ
流しでヒラメやマダイなどの養殖を実施してきた。その
ため、魚介類の糞・尿及び残飯が混入した飼育排水が大
量にその海域に排出され、漁場の海洋汚染の原因になっ
ている。近年、この対策として水産庁をはじめとして、
排水量を極力少なくした「環境創出型の閉鎖循環式陸上
養殖システムの研究開発」が進められるようになった。
[Prior Art] Due to environmental hormones and marine pollution,
The catch of marine products and the production of high-quality fish are decreasing. As a countermeasure, research and development of aquaculture technology on land is being promoted in order to stably supply safe seafood.
Conventionally, in the marine aquaculture of marine products, in the area where clear seawater can be obtained, the seawater has been used as it is, or flounder and red sea bream have been cultivated by pouring sand-filtered seawater. Therefore, a large amount of breeding wastewater mixed with fish and shellfish dung and urine, and garbage is discharged into the sea area, causing marine pollution of fishing grounds. In recent years, as a countermeasure,
"Research and development of an environment-creating closed-circulation onshore aquaculture system" that minimizes the amount of wastewater has been promoted.

【0003】これまでの飼育水の循環型陸上養殖システ
ムは、飼育水槽の容量の約1/3の生物処理槽でアンモ
ニア態窒素と亜硝酸態窒素を硝化して、発生した硝酸を
更に、脱窒槽(エタノール等の栄養源を添加して生物的
に窒素ガスとして除去)で処理する方法が一般的であ
る。この方式では、装置が飼育水槽に比べて、循環設備
(浄化設備)の設置スペースが大きく、魚介類の成長に
合わせて飼料の供給量の増加による設備の運転管理(水
質管理)の難しさ、飼育水の換水率が大きいことなど、
問題点が多い。また、魚介類の循環式陸上養殖システム
においては、生産性を良くするため飼育水槽に多くの魚
介類を収容するため、飼育水は魚介類の排泄物と餌(配
合飼料等)の食べ残しにより大量のアンモニアが発生す
ると共に、魚介類のストレスに由来する粘性のある液体
が発生し、更に飼育環境が悪化する。
[0003] The conventional onshore cultivation system for circulating breeding water uses a biological treatment tank of about one third of the capacity of the breeding aquarium to nitrify ammonia-nitrogen and nitrite-nitrogen to further remove nitric acid generated. Generally, a method of treating in a nitrogen tank (biological removal of nitrogen gas by adding a nutrient such as ethanol) is common. In this system, the installation space of the circulation equipment (purification equipment) is larger than that of the breeding aquarium, and it is difficult to manage the operation of the equipment (water quality management) by increasing the feed supply according to the growth of fish and shellfish, Such as the high rate of breeding water exchange,
There are many problems. In addition, in the marine aquaculture system for marine aquaculture, a large amount of fish and shellfish are stored in the breeding aquarium in order to improve productivity. A large amount of ammonia is generated, and at the same time, a viscous liquid is generated due to the stress of fish and shellfish, which further deteriorates the rearing environment.

【0004】そのため、飼育水槽の後に、泡沫分離槽、
生物処理槽である硝化槽と脱窒素槽、飼育水中の有害微
生物を殺菌するための紫外線殺菌装置やオゾン殺菌装置
が設置され、飼育水を循環使用するシステムになってい
る。このようなシステムは、主として生物を利用してア
ンモニアを亜硝酸を経て硝酸にし、更に生物を利用して
硝酸を窒素ガスにして除去するのが通常である。生物を
利用した方法は、一般的に人体に有害な薬品を使用しな
い代わりに、機能が発揮されるまでに時間がかかること
と、絶えずその生物活性を維持する必要がある。養殖業
のように経済性が強く要求される事業では、設備に掛か
るコストと維持管理の合理化が重要な課題である。
[0004] Therefore, after the breeding aquarium, a foam separation tank,
A nitrification tank and a denitrification tank, which are biological treatment tanks, an ultraviolet sterilizer and an ozone sterilizer for sterilizing harmful microorganisms in the breeding water are installed, and the system uses the breeding water in circulation. In such a system, ammonia is usually converted into nitric acid via nitrous acid mainly by using an organism, and nitric acid is converted into nitrogen gas by using an organism. Biological methods generally require the use of drugs that are harmful to the human body, instead of taking a long time to perform their functions and constantly maintaining their biological activities. In businesses that require strong economics, such as the aquaculture industry, it is important to rationalize the cost of equipment and maintenance.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、薬品を使用せずに養殖期間の短縮と養殖生産
性の向上が図れ、しかも装置の小型化と成長に合せた運
転管理の容易な飼育水循環型陸上養殖方法と装置を提供
することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned prior art, and is capable of shortening the culturing period and improving the culturing productivity without using chemicals, and furthermore, reducing the size of the apparatus and managing the operation in accordance with the growth. It is an object of the present invention to provide a breeding water circulation type onshore aquaculture method and apparatus that are easy to use.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、海水を用いて飼育水を循環しながら魚
介類を陸上飼育する養殖方法において、前記飼育水の一
部を抜き出して、硝化菌を有する生物処理工程に供給し
て硝化処理し、この硝化処理水の一部をそのまま循環
し、残部をオゾン処理して循環するか、あるいは該硝化
処理水の全部をオゾン処理して循環することを特徴とす
る飼育水循環型陸上養殖方法としたものである。前記飼
育水循環型陸上養殖方法において、オゾン処理前の硝化
処理水に、砂ろ過海水を精密ろ過して供給し、該供給量
を飼育水量の5〜10容量%とすることができ、また、
前記飼育水の循環は、オゾン処理水:硝化処理水を1:
0〜3の割合で行うことができる。
According to the present invention, there is provided a method of cultivating fish and shellfish on land while circulating the breeding water using seawater. The nitrification treatment is carried out by supplying the nitrification bacteria to the biological treatment step, and a part of the nitrification treatment water is circulated as it is, and the remaining part is ozone treated and circulated, or the entire nitrification treatment water is ozone treated. It is a breeding water circulation type land aquaculture method characterized by circulation. In the breeding water circulation type onshore culture method, sand-filtered seawater is supplied to the nitrification-treated water before the ozone treatment by precision filtration, and the supply amount can be 5 to 10% by volume of the breeding water amount.
The breeding water is circulated as follows: ozonated water: nitrified water:
It can be performed at a rate of 0 to 3.

【0007】また、本発明では、飼育水槽と、生物処理
装置と、オゾン浄化装置と、それらを順次配管で接続し
て循環経路を形成した海水で、魚介類を陸上飼育する養
殖装置において、前記生物処理装置は、硝化菌を高濃度
に保持する担体と懸濁物質を捕捉するろ材と支持材とを
3層に充填した充填層と、該充填層の中間又は下部に洗
浄用ノズルとを有し、前記オゾン浄化装置は、下部にオ
ゾンと空気の混合ガスを導入する導入口を有すると共
に、前記生物処理装置とオゾン浄化装置とを接続する配
管に、直接飼育水槽に循環する配管と、砂ろ過海水を精
密ろ過した海水を導入する配管とを順次接続したことを
特徴とする飼育水循環型陸上養殖装置としたものであ
る。前記陸上養殖装置において、オゾン浄化装置が、オ
ゾンと空気の混合ガスを導入する反応槽と、海水とオゾ
ンの反応により生成したオキシダントを除去する接触槽
と前記反応槽にオゾンガスと空気の混合ガスを導入する
エゼクタとを有するのがよい。
Further, according to the present invention, there is provided an aquaculture apparatus for rearing fish and shellfish on land in a breeding aquarium, a biological treatment apparatus, an ozone purifying apparatus, and seawater in which these are sequentially connected by piping to form a circulation path. The biological treatment apparatus has a packed bed filled with three layers of a carrier for holding nitrifying bacteria at a high concentration, a filter medium for capturing suspended substances, and a support material, and a washing nozzle in the middle or lower part of the packed bed. The ozone purifier has an inlet for introducing a mixed gas of ozone and air at a lower portion, a pipe connecting the biological treatment apparatus and the ozone purifier, a pipe circulating directly to a breeding aquarium, and a sand pipe. A breeding water circulation type onshore aquaculture apparatus characterized by sequentially connecting piping for introducing seawater obtained by precision filtration of filtered seawater. In the terrestrial aquaculture apparatus, the ozone purifying apparatus includes a reaction tank for introducing a mixed gas of ozone and air, a contact tank for removing an oxidant generated by a reaction between seawater and ozone, and a mixed gas of ozone gas and air for the reaction tank. And an ejector to be introduced.

【0008】[0008]

【発明の実施の形態】本発明は、海面養殖による漁場の
汚染、問題になっているホルマリンや抗生物質や薬品の
使用をなくすため、陸上にて水温・水質を厳重に管理し
て環境や人間の健康に障害となる薬品の使用を制限する
と共に、飼育排水の少量化による当該海域の環境保全に
寄与する。また、本発明によれば、寄生虫などの自然海
域からの有害原生生物の隔離による生残率の向上と、最
適飼育水温・水質管理による養殖期間の短縮と養殖生産
性の向上がはかれる。そして、オゾンによる飼育水の殺
菌とアンモニア態窒素の除去及び亜硝酸態窒素の酸化に
よる生物処理装置の小型化と、成長に合わせた運転管理
が容易で、高齢者でも運転が可能な運転管理の省力化と
簡素化がはかれる。さらに、過酸化水素やホルマリン等
の薬浴の必要性もなく、安心して食べられる海産魚介類
の消費者への安定供給も可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is to strictly control the water temperature and water quality on land to prevent pollution of fishing grounds due to marine aquaculture and the use of formalin, antibiotics and chemicals, which are problematic. In addition to restricting the use of chemicals that interfere with human health, the reduction of breeding wastewater contributes to environmental conservation in the sea area. Further, according to the present invention, the survival rate can be improved by isolating harmful protists from natural sea areas such as parasites, and the cultivation period can be shortened and the cultivation productivity can be improved by controlling the optimal breeding water temperature and water quality. The sterilization of breeding water with ozone, the removal of ammonia nitrogen, and the reduction of the size of the biological treatment device by the oxidation of nitrite nitrogen, the operation management according to the growth is easy, and the operation management that can be operated by the elderly is easy. Labor saving and simplification are achieved. Furthermore, there is no need for a chemical bath such as hydrogen peroxide or formalin, and it is possible to supply marine fish and shellfish that can be eaten with confidence to consumers.

【0009】本発明は、生物学的処理とオゾンによる処
理の長所を有効に生かし、浄水場でも使用されているオ
ゾンの酸化力と殺菌力を化学的に利用して、アンモニア
性窒素を窒素ガスとして除去し、硝酸の発生量を少なく
して脱窒槽を省略した。そして、生物処理槽で発生した
亜硝酸を、生物による硝化だけでは時間がかかる(生物
処理糟の滞留時間を大きくとる必要がある)ため、飼育
魚介類に支障のない濃度に抑えて、一部を飼育水槽に返
送し、残りの亜硝酸をオゾンにより酸化して硝酸にする
システムとした。これによって、生物処理槽の大きさを
通常の1/2〜1/3にすることができる。従来、飼育
期間中は、魚介類が成長すると共に、摂餌量も増加する
ことから、飼育水中のアンモニア濃度も上昇し、生物処
理槽の亜硝酸の発生量が増加して、生物を利用した処理
方式では、この変化に対する対応が難しくなる。しか
し、設備は、絶えず安全サイドに運転する必要があるた
め、大きな設備を建設する必要があり、維持管理のコス
トも高くなってしまう。本発明のシステムでは、オゾン
の注入量を操作するだけで対応が可能であり、必要以上
に飼育密度(単位容量当たりの飼育匹数又は魚介類の生
産量)を少なくする必要がない。
The present invention makes use of the advantages of biological treatment and ozone treatment effectively, and chemically utilizes the oxidizing power and sterilizing power of ozone used in water purification plants to convert ammoniacal nitrogen into nitrogen gas. And the amount of generated nitric acid was reduced, and the denitrification tank was omitted. The nitrite generated in the biological treatment tank is time-consuming only by nitrification by living organisms (it is necessary to increase the residence time of the biological treatment tank). Was returned to the breeding aquarium, and the remaining nitrous acid was oxidized with ozone into nitric acid. Thereby, the size of the biological treatment tank can be reduced to 1/2 to 1/3 of the normal size. Conventionally, during the breeding period, as the seafood grows and the food intake increases, the ammonia concentration in the breeding water also increases, the amount of nitrite generated in the biological treatment tank increases, and organisms are used. The processing method makes it difficult to respond to this change. However, since the equipment needs to be constantly operated on the safe side, it is necessary to construct a large equipment, and the maintenance cost is also increased. In the system of the present invention, it is possible to cope only by controlling the injection amount of ozone, and it is not necessary to reduce the breeding density (the number of breeding animals per unit volume or the amount of fish and shellfish) more than necessary.

【0010】飼育水は、砂ろ過海水を、細菌や微生物及
びそれらの卵等を通さない精密ろ過、特に0.1μm以
下の中空糸膜でろ過した海水を使用し、この海水を循環
して使用するため、海水に含まれる原生生物や病原菌の
侵入を防止する。海水中には、魚介類に寄生する生物や
その卵、病原菌及び有害化学物質などが含まれており、
飼育水に侵入して成長を阻害したり、病気の発生、奇形
の発生や生残率の低下、商品価値の低下を招いてしま
う。しかし、本発明では、これらの阻害物質を飼育水中
に侵入させないため、病気の発生に対する抗生物質の投
与などの対策は一切必要のないことを確認した。また、
成長に応じて飼育水槽を移す場合は、今まで飼育してい
た飼育水に新水を添加する事が好ましく、添加比率は、
飼育水槽の容量当たり10〜20%とする。新水が多す
ぎると、魚介類の摂餌量が低下して成長が悪化する。ま
た、循環飼育中の新水の供給量は、飼育水槽の容量当た
り5〜10%とする。
As the breeding water, sand-filtered seawater is subjected to microfiltration that does not allow bacteria and microorganisms and their eggs to pass therethrough, particularly seawater filtered through a hollow fiber membrane of 0.1 μm or less, and this seawater is circulated and used. To prevent the invasion of protozoa and pathogens contained in seawater. Seawater contains organisms and their eggs, pathogens and harmful chemicals that infest fish and shellfish,
They invade breeding water and hinder growth, cause disease, malformations, decrease survival rate, and reduce commercial value. However, in the present invention, it was confirmed that no measures such as administration of antibiotics for the occurrence of disease were required at all in order to prevent these inhibitors from entering the breeding water. Also,
When moving the breeding aquarium according to growth, it is preferable to add fresh water to the breeding water that has been bred so far, the addition ratio is
It is 10 to 20% per capacity of the breeding aquarium. Too much fresh water reduces the food intake of fish and shellfish and worsens growth. The supply amount of fresh water during circulating breeding is 5 to 10% per volume of the breeding aquarium.

【0011】循環式陸上養殖の飼育水の循環量は、魚介
類の飼育時期にも影響されるが、通常の生物処理循環方
式では、稚魚期を過ぎた成魚では1日20〜30ターン
(循環量/飼育水槽の容量)を必要とする。しかし、本
発明では、1日8〜12ターンであり、循環ポンプの大
きさが約1/2でよく、電気使用量の削減が確認され
た。また、飼育水の循環は、本発明ではオゾン処理水と
生物処理水の混合が経済的であり、混合することを特徴
とする。混合比率は、オゾン処理水1に対して生物処理
水0〜3の割合である。稚魚期の循環は、魚介類の成長
が著しく、給餌量も急激に増加することから、オゾン処
理水で循環する。日齢(魚介類がふ化した後の飼育日
数)100日から生物処理水の混合を始め、徐々に生物
処理水量を増加させて、オゾン処理水と生物処理水の比
率を1:1〜3にする。
[0011] The amount of circulating water for circulating land farming is also affected by the breeding season of fish and shellfish. However, in a normal biological treatment circulating system, the adult fish after the juvenile period has 20 to 30 turns per day (circulation). Volume / capacity of breeding aquarium). However, in the present invention, the number of turns is 8 to 12 per day, the size of the circulating pump may be about 削減, and reduction in the amount of electricity used has been confirmed. In the present invention, the circulation of the breeding water is characterized in that the mixing of the ozonized water and the biologically treated water is economical, and the mixing is performed. The mixing ratio is a ratio of the biologically treated water 0 to 3 to the ozone treated water 1. The circulation during the fry season circulates with ozonated water because the growth of fish and shellfish is remarkable and the amount of feed increases sharply. Mixing of biologically treated water starts at 100 days of age (days of breeding after hatching of fish and shellfish), and gradually increases the amount of biologically treated water to reduce the ratio of ozone-treated water to biologically treated water to 1: 1 to 3 I do.

【0012】生物処理槽は、硝化菌の繁殖密度を高濃度
に保つため、担体として、単位容積当たりの表面積の多
いアンスラサイト(粒径1.2〜3mm)又はプラスチ
ック濾材と、懸濁物質を捕捉するための濾材(砂等、粒
径0.6mm)及び支持材としての砂利(粒径2〜20
mm)の3層を充填することを特徴とする。充填高さ
は、アンスラサイト等は500〜600mm、砂は10
0〜200mm、砂利は100〜200mmとする。ま
た、充填層の中間又は下部に、閉塞を防止するための空
気洗浄ノズルと、50μm又は100μmのフィルタを
通した洗浄水(逆洗)ノズルを設置する構造とする。生
物処理した排水は、一部飼育水槽に返送するが、一部は
オゾン反応槽に移送しオゾンガスと空気の混合ガスに接
触させる。オゾン発生器から出たオゾンガスは、空気の
エゼクタで急速混合させて反応槽に送り込む。反応槽で
は、排水と効率よく気液接触させるため、ガスの衝突版
を反応槽内に設けるのがよい。
In the biological treatment tank, anthracite (particle diameter: 1.2 to 3 mm) having a large surface area per unit volume or a plastic filter medium and a suspended substance are used as carriers in order to keep the growth density of nitrifying bacteria at a high concentration. Filter media (sand, etc., particle size 0.6 mm) for capturing and gravel (particle size 2-20) as a support material
mm). The filling height is 500 to 600 mm for anthracite and the like, and 10 for sand.
0 to 200 mm and the gravel are 100 to 200 mm. Further, an air washing nozzle for preventing clogging and a washing water (backwashing) nozzle passing through a 50 μm or 100 μm filter are provided in the middle or lower part of the packed bed. A part of the biologically treated wastewater is returned to the breeding aquarium, but a part is transferred to an ozone reaction tank and brought into contact with a mixed gas of ozone gas and air. The ozone gas discharged from the ozone generator is rapidly mixed by an air ejector and sent to the reaction tank. In the reaction tank, a gas collision plate is preferably provided in the reaction tank in order to make gas-liquid contact with wastewater efficiently.

【0013】オゾンの注入率は、排水の水質に影響され
るため、発生するオキシダントを測定しながら運転す
る。オキシダントの濃度の目標値は0.5mg/lとす
る。飼育排水中のバクテリアは、発生したオキシダント
で殺菌され、アンモニア性窒素はオキシダントの働きで
窒素ガスとして除去される。また、亜硝酸は酸化され8
0〜95%が硝酸に変化する。オキシダントは、海水中
の生物殺菌や物質の酸化作用によって消耗するが、残留
オキシダントとして排水中に存在する。この残留オキシ
ダントは、そのまま飼育水に返送されると、魚介類に障
害を与えるため除去する必要がある。接触槽では、この
残留オキシダントを活性炭や炭化物に接触させてオキシ
ダントを除去する。飼育水として返送するオゾン処理水
中の残留オキシダントの濃度は、0.003mg/l以
下になるようにする。
Since the injection rate of ozone is affected by the quality of the waste water, the operation is performed while measuring the generated oxidant. The target value of the concentration of the oxidant is 0.5 mg / l. Bacteria in the breeding wastewater are sterilized by the generated oxidant, and ammonia nitrogen is removed as nitrogen gas by the action of the oxidant. Also, nitrous acid is oxidized to 8
0-95% is converted to nitric acid. Oxidants are consumed by biological disinfection in seawater and oxidizing action of substances, but are present in wastewater as residual oxidants. If this residual oxidant is returned to the breeding water as it is, it will cause damage to the fish and shellfish and must be removed. In the contact tank, the residual oxidant is brought into contact with activated carbon or carbide to remove the oxidant. The concentration of the residual oxidant in the ozonized water returned as breeding water is adjusted to be 0.003 mg / l or less.

【0014】次に、本発明を、本発明の陸上養殖システ
ムの一例を示す概略工程図である図1を用いて説明す
る。図1は、飼育水槽6、飼育排水ポンプ枡8、循環ポ
ンプ9、生物処理槽10、オゾン反応槽11、接触槽1
2、及び精密ろ過器2、新水貯槽3、新水供給ポンプ
4、空気ブロワ15、エゼクタ17、オゾン発生器18
より構成されている。飼育水は、砂ろ過海水管1から
0.1μmの中空糸膜の精密ろ過器2を通して、新水貯
槽3に受け入れ、オゾン反応槽11と接触槽12を経由
して、飼育水槽6に供給される。飼育排水7は、飼育排
水ポンプ枡8に導き、循環ポンプ9で生物処理槽10に
移送する。飼育排水ポンプ枡8には、泡沫分離装置を併
設して排水の粘性を除去することができる。
Next, the present invention will be described with reference to FIG. 1 which is a schematic process diagram showing an example of the onshore aquaculture system of the present invention. FIG. 1 shows a rearing water tank 6, a rearing drainage pump basin 8, a circulation pump 9, a biological treatment tank 10, an ozone reaction tank 11, and a contact tank 1.
2, and a fine filter 2, a new water storage tank 3, a new water supply pump 4, an air blower 15, an ejector 17, an ozone generator 18
It is composed of The breeding water is received in the fresh water storage tank 3 from the sand filtration seawater pipe 1 through the 0.1 μm hollow fiber membrane fine filter 2, and supplied to the breeding water tank 6 via the ozone reaction tank 11 and the contact tank 12. You. The breeding drainage 7 is guided to a breeding drainage pump basin 8 and transferred to a biological treatment tank 10 by a circulation pump 9. The breeding drainage pump basin 8 can be provided with a foam separation device to remove the viscosity of drainage.

【0015】生物処理槽10では、硝化菌の繁殖密度を
高濃度に保つための担体20(アンスラサイトやプラス
チック濾材)を上部に、下部に懸濁物質を捕捉するため
の砂と濾材支持材の砂利21を充填し、排水中のアンモ
ニアを硝化すると共に懸濁物質を除去する。生物処理槽
10でアンモニアを魚介類の飼育に障害のない程度に硝
化した処理水は、一部返送配管14で飼育水槽6に返送
する。また、一部は、オゾン反応槽11に導き、オゾン
発生器18からのオゾンと空気ブロワ13からの空気と
の混合ガスに接触させて、発生するオキシダントで飼育
排水を殺菌すると共に、未硝化のアンモニアと亜硝酸を
酸化して除去する。オキシダントを含む排水は、更に接
触槽12に導き、活性炭や炭化物と接触させて残留オキ
シダントが0.003mg/l以下になるようにしてか
ら、返送管13で飼育水槽16に返送する。
In the biological treatment tank 10, a carrier 20 (anthracite or plastic filter medium) for keeping the growth density of nitrifying bacteria at a high concentration is provided on an upper part, and sand for capturing suspended substances and a filter medium support material are provided on a lower part. The gravel 21 is filled, and the ammonia in the waste water is nitrified and the suspended matter is removed. The treated water obtained by nitrifying the ammonia in the biological treatment tank 10 to such an extent that the breeding of fish and shellfish is not hindered is returned to the breeding aquarium 6 through a return pipe 14. In addition, a part of the breeding wastewater is guided to the ozone reaction tank 11 and brought into contact with a mixed gas of ozone from the ozone generator 18 and air from the air blower 13 to sterilize the breeding wastewater with the generated oxidant and to remove unnitrified wastewater. Ammonia and nitrous acid are oxidized and removed. The wastewater containing the oxidant is further led to the contact tank 12, where it is brought into contact with activated carbon or carbide so that the residual oxidant is reduced to 0.003 mg / l or less, and then returned to the breeding aquarium 16 by the return pipe 13.

【0016】[0016]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこの実施例により制限されるものではな
い。 実施例1 図1の本発明のシステムを用い、ふ化後日齢25日と3
8日のトラフグの稚魚300〜1100匹を、飼育水槽
で飼育水を循環して、5〜12ヶ月間陸上で飼育した。
装置は、飼育水槽5m3を2槽、泡沫分離槽(飼育排水
ポンプ枡)2槽、生物処理槽0.42m3を2槽と0.
84m3を1槽、オゾン反応槽1槽、接触槽1槽に、新
水補給用の精密ろ過器とオゾン発生器及び循環ポンプ、
空気ブロワを設置して用いた。飼育水槽には、稚魚投入
前に、砂ろ過海水を0.1μmの中空糸膜を取り付けた
精密ろ過器でろ過した後、オゾン反応槽でオゾンと反応
させ、活性炭を充填した接触槽を通して5m3の飼育水
槽1槽に飼育水を満たした。その後、日齢38日のトラ
フグの稚魚を1100匹投入した。
EXAMPLES The present invention will now be described specifically with reference to examples, but the present invention is not limited to these examples. Example 1 25 days after hatching and 3 days after hatching using the system of the present invention shown in FIG.
300 to 1,100 juvenile tortoises on the 8th were bred on land for 5 to 12 months by circulating breeding water in a breeding aquarium.
Apparatus, breeding aquarium 5 m 3 to 2 tank, foam separation tank (breeding drain pump squares) 2 bath, and 2 tank biological treatment tank 0.42 m 3 0.
84 m 3 in one tank, one ozone reaction tank, one contact tank, a microfilter for fresh water replenishment, an ozone generator and a circulation pump,
An air blower was installed and used. Before feeding the fry, the sand-filtered seawater was filtered through a precision filter equipped with a hollow fiber membrane of 0.1 μm in the breeding aquarium, and then reacted with ozone in an ozone reactor, and passed through a contact tank filled with activated carbon to 5 m 3. Was filled with breeding water. Thereafter, 1,100 juvenile tortoises, 38 days old, were introduced.

【0017】生物処理槽は、47日間0.42m3を1
槽で運転し、48日目から0.42m3を2槽で運転し
た。この間のオゾン反応槽でのオキシダントの発生量
は、0.2〜0.5mg/lで接触槽の出口の残留オキ
シダントは、0.001〜0.003mg/lであっ
た。運転中の三態窒素の変化を、図2でNH3−Nの変
化、図3でNO2−Nの変化、図4でNO3−Nの変化を
示す。アンモニア態窒素(NH3−N)は、飼育水、生
物処理水とも1ヶ月後にピークに達するが、2ヶ月後に
は0.2mg/l以下で安定する。亜硝酸態窒素(NO
2−N)は、生物処理水が2ヶ月後ピークに達し、1〜
1.5mg/lになるが、飼育水は0.5mg/l以下
で安定している。硝酸態窒素(NO3−N)は、飼育
水、生物処理水、オゾン処理水とも徐々に上昇する。し
かしながら、上昇速度が遅く脱窒素の必要がなかった。
The biological treatment tank has a capacity of 0.42 m 3 for 47 days.
The tank was operated, and from day 48, 0.42 m 3 was operated in two tanks. During this time, the amount of oxidant generated in the ozone reaction tank was 0.2 to 0.5 mg / l, and the residual oxidant at the outlet of the contact tank was 0.001 to 0.003 mg / l. FIG. 2 shows the change of NH 3 —N during operation, FIG. 3 shows the change of NO 2 —N, and FIG. 4 shows the change of NO 3 —N during operation. Ammonia nitrogen (NH 3 -N) peaks after one month in both breeding water and biologically treated water, but stabilizes at 0.2 mg / l or less after two months. Nitrite nitrogen (NO
2- N) indicates that the biologically treated water reaches a peak after two months,
Although it becomes 1.5 mg / l, the breeding water is stable at 0.5 mg / l or less. Nitrate nitrogen (NO 3 -N), the breeding water, biologically treated water, gradually increases with ozonated water. However, the rate of rise was slow and there was no need for denitrification.

【0018】以上の結果から、生物処理槽の容量を飼育
水槽の8〜17%にしても、オゾン反応槽で魚介類に対
して毒性を示すアンモニア態窒素と亜硝酸態窒素が除去
される。この実施例では、オゾン反応槽でアンモニア態
窒素は50〜90%、亜硝酸態窒素は70〜95%除去
することができた。この実施例において使用した生物処
理槽は、容量が0.42m3と、0.84m3の円筒型
(角型でも良い)の水槽で、上部に硝化菌の繁殖密度を
高濃度に保つための担体(アンスラサイト粒径1.2〜
3mm:プラスチック濾材でも良い)を500mm、中
間部に懸濁物質を捕捉するための砂(粒径0.6mm)
を100mm、下部に充填材の支持材として砂利(粒径
2〜20mm)を100mmで3層充填し、上部より飼
育排水を流入させ下向流で担体と接触させる構造で、充
填材は、定期的に支持材の底部に設けた洗浄ノズルで空
気洗浄と50μmのフィルタを通した海水で逆洗した。
From the above results, even if the capacity of the biological treatment tank is set to 8 to 17% of that of the breeding aquarium, the ammonia nitrogen and the nitrite nitrogen, which are toxic to fish and shellfish, are removed in the ozone reaction tank. In this example, 50 to 90% of ammonia nitrogen and 70 to 95% of nitrite nitrogen could be removed in the ozone reactor. The biological treatment tank used in this example is a cylindrical (or square) water tank having a capacity of 0.42 m 3 and a capacity of 0.84 m 3 . Carrier (anthracite particle size 1.2 ~
3 mm: plastic filter media may be used) 500 mm, sand in the middle to capture suspended matter (particle diameter 0.6 mm)
Is filled with three layers of gravel (particle size: 2 to 20 mm) as a support material of 100 mm at the bottom and 100 mm, and breeding effluent flows in from the upper part and comes into contact with the carrier in a downward flow. Air washing was carried out with a washing nozzle provided at the bottom of the support material, and back washing was carried out with seawater passed through a 50 μm filter.

【0019】また、この実施例において使用したオゾン
反応槽と接触槽は、角型一体構造の水槽で、流入側に反
応槽を、流出側に接触槽を設置したものを使用した。反
応槽は、底部より生物処理水と空気を混合したオゾンガ
スを流入させ反応させた。接触槽には、活性炭を充填
し、オゾンガスと混合した生物処理水を上向流で接触さ
せて残留オキシダントを除去した。オゾンの注入量は、
反応槽の出口で0.5mg/l以下になる量を目安に行
い、接触槽の出口における残留オキシダントを測定し
た。その結果、年間を通してオキシダントの濃度は、反
応槽の出口で0.2〜0.5mg/lとなり、接触槽の
出口では0.001〜0.003mg/lとなった。
The ozone reaction tank and the contact tank used in this example were water tanks having a rectangular integrated structure, with a reaction tank on the inflow side and a contact tank on the outflow side. The reaction tank was allowed to react by flowing ozone gas, which is a mixture of biologically treated water and air, from the bottom. The contact tank was filled with activated carbon, and contacted with biologically treated water mixed with ozone gas in an upward flow to remove residual oxidants. The ozone injection amount is
At the outlet of the reaction tank, the amount was adjusted to 0.5 mg / l or less, and the residual oxidant at the outlet of the contact tank was measured. As a result, the concentration of the oxidant was 0.2 to 0.5 mg / l at the outlet of the reaction tank and 0.001 to 0.003 mg / l at the outlet of the contact tank throughout the year.

【0020】実施例2 実施例1と同様に、飼育水と飼育水を補充するための新
水に、砂ろ過海水を0.1μmの中空糸膜を取り付けた
精密ろ過器でろ過した後、オゾン反応槽でオゾンと反応
させ、活性炭を充填した接触槽を通して残留オキシダン
トを除去した海水を使用した結果、稚魚(約0.5g)
から600〜800gの商品サイズの大きさまで陸上養
殖したが、寄生虫やウイルス等の病気によるへい死は発
生しなかった。
Example 2 In the same manner as in Example 1, breeding water and fresh water for replenishing the breeding water were subjected to filtration of sand-filtered seawater with a microfilter equipped with a hollow fiber membrane of 0.1 μm, followed by ozone treatment. As a result of using seawater from which a residual oxidant was removed through a contact tank filled with activated carbon by reacting with ozone in a reaction tank, fry (about 0.5 g)
Although it was cultivated on land up to the size of a commercial product of 600 to 800 g, no mortality occurred due to diseases such as parasites or viruses.

【0021】実施例3 実施例1及び2において、飼育水の運転条件(循環量の
条件)を変化させると、トラフグの摂餌量が水質の変化
によって変化する結果が得られた。摂餌量の減少は、魚
介類の成長に大きく影響する。飼育水の循環条件の違い
による摂餌量の比較を表1に示す。
Example 3 In Examples 1 and 2, when the operating conditions of the breeding water (conditions of the amount of circulating water) were changed, the results were obtained in which the amount of feeding of the tiger puffer fluctuated due to the change in the water quality. Reduced food consumption has a significant effect on the growth of seafood. Table 1 shows a comparison of the amount of food consumed depending on the circulating conditions of the breeding water.

【表1】 [Table 1]

【0022】以上の結果は、新水(3%)オゾン処理水
(97%)の条件から変化させたもので、オゾン処理水
に生物処理水を混合しても、摂餌量は減少せず、増加し
ていることが証明された。従って、飼育水は、全量オゾ
ンと反応させて循環する必要がなく、飼育水の水質(ア
ンモニア及び亜硝酸の濃度)によって、循環量を決定す
ればよく、設備の経済設計が可能である。本実施例よ
り、オゾン処理水:生物処理水は1:1〜3を設計数値
とした。
The above results were obtained by changing the conditions of fresh water (3%) and ozone-treated water (97%). Even when the biologically treated water was mixed with the ozone-treated water, the food consumption did not decrease. , Proved to be increasing. Therefore, it is not necessary to circulate the breeding water in its entirety by reacting it with ozone, and the circulating amount may be determined by the quality of the breeding water (the concentration of ammonia and nitrite), and the equipment can be economically designed. According to the present embodiment, the design values of ozone-treated water: biologically treated water are set to 1 to 3 as a design value.

【0023】[0023]

【発明の効果】近年、海洋環境の変化に伴う漁獲量の減
少、海面での過密養殖や環境ホルモンなどの有害物質の
排出による漁場の悪化等の原因により、水産資源の安定
的な確保が課題となっている水産界において、飼育水の
循環式陸上養殖システムは、排水量が少なく、海面での
過密養殖をなくして、海域の環境を改善するばかりでな
く、適切な水質・水温管理によって、優良魚介類を1年
を通して安定的に消費者に供給できることが期待され
る。本発明は、前記した構成としたことにより、循環式
陸上養殖システムとしての課題である「アンモニア等
(三態窒素)の除去」、「水質・水温管理による養殖期
間の短縮」、「魚介類の成長に障害のある魚病や寄生虫
の防除」をクリアし、コンパクトなシステムとして食糧
問題や環境問題に貢献できる。
In recent years, stable fishery resources have been challenged due to factors such as a decrease in catches due to changes in the marine environment, overfishing at sea level, and deterioration of fishing grounds due to emission of harmful substances such as environmental hormones. In the aquatic world, the circulating onshore cultivation system for breeding water has a low drainage, eliminates overcrowding on the sea surface, not only improves the environment in the sea area, but also has excellent water quality and water temperature management. It is expected that seafood can be supplied to consumers stably throughout the year. The present invention, by adopting the above-described configuration, has the following problems as a recirculating onshore aquaculture system: "removal of ammonia and the like (trimorphic nitrogen)", "reduction of the aquaculture period by controlling water quality and temperature", " Clearing the control of fish diseases and parasites that hinder growth, and contributing to food and environmental issues as a compact system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の陸上養殖システムの一例を示す概略工
程図。
FIG. 1 is a schematic process diagram showing an example of a land culture system of the present invention.

【図2】処理水によるNH3−Nの変化を示すグラフ。FIG. 2 is a graph showing a change in NH 3 —N by treated water.

【図3】処理水によるNO2−Nの変化を示すグラフ。FIG. 3 is a graph showing a change in NO 2 -N due to treated water.

【図4】処理水によるNO3−Nの変化を示すグラフ。FIG. 4 is a graph showing a change in NO 3 -N due to treated water.

【符号の説明】[Explanation of symbols]

1:砂ろ過海水管、2:精密ろ過器(中空糸膜)、3:
新水貯槽、4:新水供給ポンプ、5:新水供給管、6:
飼育水槽、7:飼育排水管、8:飼育排水ポンプ枡、
9:循環ポンプ、10:生物処理槽、11:オゾン反応
槽、12:接触槽、13:オゾン処理水返送管、14:
生物処理水返送管、15:空気ブロワ、16:空気管、
17:エゼクタ、18:オゾン発生器、19:オゾン
管、20:担体層、21:砂及び砂利の充填層
1: Sand filtration seawater pipe, 2: Microfilter (hollow fiber membrane), 3:
New water storage tank, 4: New water supply pump, 5: New water supply pipe, 6:
Breeding aquarium, 7: breeding drainage pipe, 8: breeding drainage pump basin,
9: circulation pump, 10: biological treatment tank, 11: ozone reaction tank, 12: contact tank, 13: ozone-treated water return pipe, 14:
Biological treatment water return pipe, 15: air blower, 16: air pipe,
17: ejector, 18: ozone generator, 19: ozone tube, 20: carrier layer, 21: packed bed of sand and gravel

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 540 C02F 1/50 540B 550 550B 550C 550H 560 560B 560E 560H 560Z 1/78 1/78 3/06 3/06 3/34 101 3/34 101D 9/00 501 9/00 501B 502 502E 502H 502R 502Z 503 503C 504 504A 504D 504E (72)発明者 梅田 到 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 2B104 EA01 EF01 EF09 EF13 4D003 AA01 AB02 BA02 CA02 CA10 DA18 DA22 EA01 EA22 EA23 EA30 FA02 FA05 FA06 4D040 DD03 DD14 DD31 4D050 AA06 AA08 AB06 AB35 AB37 BB01 BB02 BD02 BD03 BD06 BD08 CA04 CA06 CA09 CA15 CA17 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C02F 1/50 540 C02F 1/50 540B 550 550B 550C 550H 560 560B 560E 560H 560Z 1/78 1/78 3/06 3 / 06 3/34 101 3/34 101D 9/00 501 9/00 501B 502 502E 502H 502R 502Z 503 503C 504 504A 504D 504E (72) Inventor Toru Umeda 11-1 Haneda Asahimachi, Ota-ku, Tokyo Ebara Corporation F term (reference) 2B104 EA01 EF01 EF09 EF13 4D003 AA01 AB02 BA02 CA02 CA10 DA18 DA22 EA01 EA22 EA23 EA30 FA02 FA05 FA06 4D040 DD03 DD14 DD31 4D050 AA06 AA08 AB06 AB35 AB37 BB01 CB02 BD02 BD03 CA06 BD06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 海水を用いて飼育水を循環しながら魚介
類を陸上飼育する養殖方法において、前記飼育水の一部
を抜き出して、硝化菌を有する生物処理工程に供給して
硝化処理し、この硝化処理水の一部をそのまま循環し、
残部をオゾン処理して循環するか、あるいは該硝化処理
水の全部をオゾン処理して循環することを特徴とする飼
育水循環型陸上養殖方法。
1. A method of cultivating seafood on land while circulating breeding water using seawater, wherein a part of the breeding water is extracted and supplied to a biological treatment step having nitrifying bacteria for nitrification treatment. A part of this nitrification treatment water is circulated as it is,
A breeding water circulation type land farming method characterized by circulating the remaining part by ozone treatment or circulating the entire nitrification treatment water by ozone treatment.
【請求項2】 請求項1記載の養殖方法において、オゾ
ン処理前の硝化処理水に、砂ろ過海水を精密ろ過して供
給し、該供給量を飼育水量の5〜10容量%とすること
を特徴とする飼育水循環型陸上養殖方法。
2. The aquaculture method according to claim 1, wherein the sand-filtered seawater is finely filtered and supplied to the nitrification-treated water before the ozone treatment, and the supply amount is 5 to 10% by volume of the breeding water amount. Characteristic land culture method of breeding water circulation type.
【請求項3】 前記飼育水の循環は、オゾン処理水:硝
化処理水を1:0〜3の割合で行うことを特徴とする請
求項1又は2記載の飼育水循環型陸上養殖方法。
3. The breeding water circulation type land culture method according to claim 1 or 2, wherein the breeding water is circulated in a ratio of ozone-treated water to nitrification-treated water in a ratio of 1: 0 to 3.
【請求項4】 飼育水槽と、生物処理装置と、オゾン浄
化装置と、それらを順次配管で接続して循環経路を形成
した、海水で魚介類を陸上飼育する養殖装置において、
前記生物処理装置は、硝化菌を高濃度に保持する担体と
懸濁物質を捕捉するろ材と支持材とを3層に充填した充
填層と、該充填層の中間又は下部に洗浄用ノズルとを有
し、前記オゾン浄化装置は、下部にオゾンと空気の混合
ガスを導入する導入口を有すると共に、前記生物処理装
置とオゾン浄化装置とを接続する配管に、直接飼育水槽
に循環する配管と、砂ろ過海水を精密ろ過した海水を導
入する配管とを順次接続したことを特徴とする飼育水循
環型陸上養殖装置。
4. A breeding aquarium, a biological treatment device, an ozone purification device, and a cultivation device for breeding seafood by land in seawater, wherein the circulating route is formed by sequentially connecting these with piping,
The biological treatment apparatus includes a packed bed filled with three layers of a carrier that holds nitrifying bacteria at a high concentration, a filter medium that captures suspended substances, and a support material, and a washing nozzle in the middle or lower part of the packed bed. The ozone purifier has an inlet for introducing a mixed gas of ozone and air at a lower portion, and a pipe connecting the biological treatment apparatus and the ozone purifier, a pipe circulating directly to a breeding aquarium, A breeding water circulation type onshore aquaculture device, which is sequentially connected to a pipe for introducing seawater obtained by finely filtering sand-filtered seawater.
【請求項5】 前記オゾン浄化装置が、オゾンと空気の
混合ガスを導入する反応槽と、海水とオゾンの反応によ
り生成したオキシダントを除去する接触槽と、前記反応
槽にオゾンガスと空気の混合ガスを導入するエゼクタと
を有することを特徴とする請求項4記載の飼育水循環型
陸上養殖装置。
5. A reaction tank for introducing a mixed gas of ozone and air, a contact tank for removing an oxidant generated by a reaction between seawater and ozone, and a mixed gas of ozone gas and air in the reaction tank. The breeding water circulation type land culture apparatus according to claim 4, further comprising an ejector for introducing the breeding water.
JP2000217277A 2000-07-18 2000-07-18 Overland culture method by circulating culture water and apparatus therefor Pending JP2002034385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000217277A JP2002034385A (en) 2000-07-18 2000-07-18 Overland culture method by circulating culture water and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000217277A JP2002034385A (en) 2000-07-18 2000-07-18 Overland culture method by circulating culture water and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2002034385A true JP2002034385A (en) 2002-02-05

Family

ID=18712413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217277A Pending JP2002034385A (en) 2000-07-18 2000-07-18 Overland culture method by circulating culture water and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2002034385A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261698A (en) * 2003-02-28 2004-09-24 Ebara Corp Cleaning method for seawater and brackish water and apparatus therefor
CN102351367A (en) * 2011-06-30 2012-02-15 河北省水产研究所 Method for regulating and controlling water quality of fully enclosed circulation sea-water industrial mariculture
JP2015023841A (en) * 2013-07-26 2015-02-05 水ing株式会社 Circulation cleanup process and apparatus of breeding water
JP2015173995A (en) * 2014-03-13 2015-10-05 オルガノ株式会社 Water treatment equipment and water treatment method
JP2015181973A (en) * 2014-03-20 2015-10-22 オルガノ株式会社 Membrane filtration system, membrane filtration method, and apparatus of producing rearing water for aquatic organism
CN113396861A (en) * 2021-07-09 2021-09-17 本溪赛智水产科技有限公司 Modular recirculating aquaculture unit and method
CN117247175A (en) * 2023-10-01 2023-12-19 江苏省海洋水产研究所 Ecological treatment process and device for tail water of seawater shrimp and crab culture pond

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261698A (en) * 2003-02-28 2004-09-24 Ebara Corp Cleaning method for seawater and brackish water and apparatus therefor
CN102351367A (en) * 2011-06-30 2012-02-15 河北省水产研究所 Method for regulating and controlling water quality of fully enclosed circulation sea-water industrial mariculture
JP2015023841A (en) * 2013-07-26 2015-02-05 水ing株式会社 Circulation cleanup process and apparatus of breeding water
JP2015173995A (en) * 2014-03-13 2015-10-05 オルガノ株式会社 Water treatment equipment and water treatment method
JP2015181973A (en) * 2014-03-20 2015-10-22 オルガノ株式会社 Membrane filtration system, membrane filtration method, and apparatus of producing rearing water for aquatic organism
CN113396861A (en) * 2021-07-09 2021-09-17 本溪赛智水产科技有限公司 Modular recirculating aquaculture unit and method
CN117247175A (en) * 2023-10-01 2023-12-19 江苏省海洋水产研究所 Ecological treatment process and device for tail water of seawater shrimp and crab culture pond

Similar Documents

Publication Publication Date Title
JP3665838B2 (en) Fish farming equipment
JP5847376B2 (en) Closed circulation culture method for seafood
WO2017110296A1 (en) Denitrification device and aquatic organism rearing system
US20200396970A1 (en) Systems and methods of intensive recirculating aquaculture
JP6129709B2 (en) Water purification system for aquarium
US5076209A (en) Breeding apparatus
CN103570193B (en) Circulating water treatment method and equipment for fish egg incubation
JP2002034385A (en) Overland culture method by circulating culture water and apparatus therefor
JP3887214B2 (en) Circulating aquaculture equipment
JP5935076B2 (en) Water treatment equipment
JP2002239573A5 (en)
US20060196440A1 (en) Hatchery system and method
JP2013247949A (en) Water treating device
JP3887256B2 (en) Closed circulation aquaculture system
JPH0646719A (en) Culturing apparatus for fishery
JP2635432B2 (en) Breeding equipment
JP3427091B2 (en) Fish water purification equipment
WO2003015503A2 (en) Process for culturing crabs in recirculating marine aquaculture systems
JP2009060872A (en) Method for treating water for breeding, device for treating water for breeding and system for breeding
JP2020039296A (en) Culture apparatus
JPH0440842A (en) Filtration device
Fontaine et al. Application of aquariological techniques to an intensive fish-rearing process using recycled, warmed water for the production of rainbow trout fry, Oncorhynchus mykiss
JPH0576257A (en) System for circulating, filtering and culturing
JP2625562B2 (en) Breeding equipment
JPS63185328A (en) Recirculation type purifying apparatus of water tank for breeding fishes and shellfishes