JP4756260B2 - Method for treating inorganic nitrogen / phosphorus water with suspension - Google Patents

Method for treating inorganic nitrogen / phosphorus water with suspension Download PDF

Info

Publication number
JP4756260B2
JP4756260B2 JP2004325770A JP2004325770A JP4756260B2 JP 4756260 B2 JP4756260 B2 JP 4756260B2 JP 2004325770 A JP2004325770 A JP 2004325770A JP 2004325770 A JP2004325770 A JP 2004325770A JP 4756260 B2 JP4756260 B2 JP 4756260B2
Authority
JP
Japan
Prior art keywords
water
phosphorus
filter medium
nitrogen
pretreatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004325770A
Other languages
Japanese (ja)
Other versions
JP2006136752A (en
Inventor
康男 田中
敦 谷田貝
Original Assignee
独立行政法人農業・食品産業技術総合研究機構
株式会社ニッチツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人農業・食品産業技術総合研究機構, 株式会社ニッチツ filed Critical 独立行政法人農業・食品産業技術総合研究機構
Priority to JP2004325770A priority Critical patent/JP4756260B2/en
Publication of JP2006136752A publication Critical patent/JP2006136752A/en
Application granted granted Critical
Publication of JP4756260B2 publication Critical patent/JP4756260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、畜舎汚水や食品加工廃水等を活性汚泥法等の通常の生物処理後、ある程度の懸濁物も共存する中でそれらの影響を最小限にとどめつつ効率良く無機態窒素及びリンを除去低減し、処理水放流先の環境の保全に用いられる懸濁物を伴う無機態窒素・リン含有水の処理方法に関するものである。   In the present invention, after normal biological treatment such as activated sludge method for livestock sewage and food processing wastewater, inorganic nitrogen and phosphorus are efficiently added while minimizing the influence of some suspensions. The present invention relates to a method for treating inorganic nitrogen / phosphorus-containing water accompanied by a suspended substance used for reducing and removing the environment where the treated water is discharged.
水質汚濁防止法その他による硝酸性窒素等の無機態窒素に係る排出規制は年々強化されているが、畜産業に対しては経営環境の厳しさや実用的で平易な無機態窒素除去技術が確立していない等の点から暫定的な排出基準が適用されている。   Emission regulations related to inorganic nitrogen such as nitrate nitrogen by the Water Pollution Control Law and others have been strengthened year by year, but the harsh management environment and practical and simple inorganic nitrogen removal technology have been established for the livestock industry. Temporary emission standards have been applied because they are not.
しかしながら、ブタに限定しても全国で約970万頭が肥育されており、それらの尿を中心とした畜舎汚水を高度に処理し、平成16年7月以降は少なくとも硝酸性窒素・亜硝酸性窒素の濃度に加えアンモニア性窒素濃度に0.4を乗じた数値の合計を900mg/L以下にする必要があり、また地域によっては全窒素として60mg/L以下にまで浄化することを求められる場合もある。   However, even if it is limited to pigs, about 9.7 million heads are fattened nationwide, and the barn sewage mainly from urine is highly treated. Since July 2004, at least nitrate nitrogen and nitrite When the total of the numerical values obtained by multiplying the concentration of ammonia nitrogen by 0.4 in addition to the concentration of nitrogen needs to be 900 mg / L or less, and depending on the region, it is required to purify to 60 mg / L or less as total nitrogen There is also.
畜舎汚水の処理現場で比較的多く導入されている活性汚泥法では、畜舎汚水中の窒素化合物を管理方法により容易に硝酸性窒素にまで無機化及び酸化できるが、畜舎汚水はBOD/N比が小さい場合が多く脱窒が不十分となりやすい。そのような状況下で硝酸性窒素を効率良く除去するには独立栄養細菌の一種である硫黄脱窒細菌による方法が適すると考えられ、様々な方法が提案されている(特許文献1〜2)。   In the activated sludge method, which is introduced relatively frequently at the sewage sewage treatment site, nitrogen compounds in the sewage sewage can be easily mineralized and oxidized to nitrate nitrogen by the control method, but the sewage sewage has a BOD / N ratio. In many cases, the denitrification tends to be insufficient. Under such circumstances, it is considered that a method using sulfur denitrifying bacteria, which is a kind of autotrophic bacteria, is suitable for efficiently removing nitrate nitrogen, and various methods have been proposed (Patent Documents 1 and 2). .
それらは基本的に、本発明者の一人が開発し提案した、硫黄マトリクス中に炭酸カルシウムを必要量均質分散させる微生物活性能付与組成物(特許文献3)を脱窒基質としているが、これを用いれば硫黄脱窒に伴い生成される硫酸イオンを的確に中和しpHの低下を抑制することができる。   They basically use a composition for imparting microbial activity (Patent Document 3), which was developed and proposed by one of the present inventors to uniformly disperse a required amount of calcium carbonate in a sulfur matrix as a denitrification substrate. If used, it is possible to accurately neutralize sulfate ions produced with sulfur denitrification and to suppress a decrease in pH.
また、硫黄脱窒による硝酸性窒素の除去だけでなく、脱窒基質への水酸化マグネシウムの添加によるアンモニア性窒素及びリンの同時低減・回収を行う画期的な方法も本発明者らによって開発提案されている(特許文献4)。   In addition to removing nitrate nitrogen by sulfur denitrification, the inventors also developed an innovative method for simultaneous reduction and recovery of ammonia nitrogen and phosphorus by adding magnesium hydroxide to the denitrification substrate. It has been proposed (Patent Document 4).
ところが、活性汚泥法等による畜舎汚水の処理水には通常懸濁物が含まれており、また、膜濾過等により懸濁物をほぼ完全に除去しても、その後に例えば硫黄脱窒を行えば硫黄酸化細菌等が増殖し且つ中和物質としての石膏微粒子等も発生するため、それらが脱窒資材の粒子間を閉塞させ脱窒効率を低下させることになる。これを防ぐためには定期的な逆洗が効果的であるが、従来の硫黄脱窒用資材は密度と粒径の面から逆洗が容易ではなかった。   However, the treated water of livestock sewage by the activated sludge method usually contains a suspension. Even if the suspension is removed almost completely by membrane filtration or the like, for example, sulfur denitrification is subsequently performed. For example, sulfur-oxidizing bacteria and the like grow and gypsum fine particles and the like as neutralizing substances are also generated, so that they block the particles of the denitrification material and reduce the denitrification efficiency. To prevent this, regular backwashing is effective, but conventional sulfur denitrification materials have not been easy to backwash from the viewpoint of density and particle size.
そこで、嵩比重が比較的軽く且つ粒子径を小さくすることが可能な、特許文献3の組成物を応用した資材(特許文献5)が提案されているが、該資材ではバインダーとして含まれる有機成分の分解等により懸濁物の発生が助長される恐れがあり、また、その製法上形状が球形ではなく円筒形である上に消耗に伴う微粒子化の可能性も予測され、濾過特性の面で理想的とはいえない。   Thus, a material (Patent Document 5) using the composition of Patent Document 3 that has a relatively low bulk specific gravity and is capable of reducing the particle diameter has been proposed. In this material, an organic component contained as a binder is proposed. The generation of suspensions may be promoted by decomposition of the liquid, and the shape of the process is not spherical but cylindrical, and the possibility of fine particles due to wear is also predicted. Not ideal.
また、硝化を強めた運転による活性汚泥法等の畜舎汚水処理水にもアンモニア性窒素の残存することは多く、且つリン酸は必ず残存するので、共存懸濁物の影響を最小限にとどめた簡便で効果的な無機態窒素及びリンの同時除去・低減法が多くの現場で望まれている。   Moreover, ammonia nitrogen often remains in livestock sewage treated water such as activated sludge by nitrification-driven operation, and phosphoric acid always remains, so the influence of coexisting suspensions was minimized. A simple and effective method for simultaneous removal and reduction of inorganic nitrogen and phosphorus is desired in many fields.
なお、窒素及びリンの同時除去法としては種々の方法が提案されている(特許文献6〜13)。然し、これらの方法は窒素とリンの除去に別工程を要したり、薬注や加温・加圧を必要としたり、実排水への適用時には管理が煩雑であったり、脱窒とリン除去の両方を特定の細菌に依存したり、工程が複雑であったり、被処理水に含まれるリンの濃度に合わせた凝集材の添加が必要であったり、除去材の寿命が短かったりするなど何れも畜産の現場においては実用性に問題のある場合が多く、それらは特に中小規模の畜産現場での適用性に乏しい。   Various methods for removing nitrogen and phosphorus simultaneously have been proposed (Patent Documents 6 to 13). However, these methods require separate steps to remove nitrogen and phosphorus, require chemical injection, heating and pressurization, are complicated to manage when applied to actual wastewater, and denitrification and phosphorus removal Both depend on specific bacteria, the process is complicated, the addition of an aggregating material according to the concentration of phosphorus contained in the water to be treated, or the life of the removal material is short However, there are many cases where there is a problem in practical use in the field of livestock, and they are poor in applicability particularly in the medium and small scale livestock field.
本発明者らの開発提案した特許文献4の方法も、懸濁物共存下では脱窒効率やリン酸除去に必要な高pHの維持等には別途工夫が必要であった。
特開2003−71491号公報 特開2003−334590号公報 特開平11−285377号公報 特願2003−332479号公報 特開2004−174328号公報 特開2004−237170号公報 特開2003−200199号公報 特開平6−23390号公報 特開2003−285096号公報 特開2001−179295号公報 特開2003−71454号公報 特開平8−103787号公報 特開平11−239785号公報
The method of Patent Document 4 proposed and developed by the present inventors also requires a separate device for maintaining the high pH necessary for denitrification efficiency and phosphoric acid removal in the presence of suspension.
JP 2003-71491 A JP 2003-334590 A JP-A-11-285377 Japanese Patent Application No. 2003-332479 JP 2004-174328 A Japanese Patent Laid-Open No. 2004-237170 JP 2003-200199 A JP-A-6-23390 JP 2003-285096 A JP 2001-179295 A JP 2003-71454 A JP-A-8-103787 JP-A-11-239785
本発明は、活性汚泥法等による畜舎汚水等の処理水から、それに含まれる懸濁物の低減を図ることで懸濁物による悪影響を抑制し、良好な環境での硫黄脱窒による硝酸性窒素及び亜硝酸性窒素の効率の良い除去とともに同時に良好な環境におけるリン酸及びアンモニア性窒素の低減を容易且つ確実に行うことが可能な懸濁物を伴う無機態窒素・リン含有水の処理方法を提供することを目的とする。   The present invention suppresses adverse effects due to suspended solids from treated water such as livestock sewage by an activated sludge method, etc., and suppresses nitrate nitrogen by sulfur denitrification in a good environment. And a method for treating inorganic nitrogen / phosphorus-containing water with a suspension capable of easily and reliably reducing phosphoric acid and ammonia nitrogen in a good environment simultaneously with efficient removal of nitrite nitrogen and nitrogen The purpose is to provide.
本発明に係る懸濁物を伴う無機態窒素・リン含有水の処理方法は、懸濁物と共に無機態窒素及びリンを含有する被処理水を予備処理用濾材を充填した予備処理槽に導水して懸濁物を低減し続いて無機態窒素・リンの低減用濾材を充填した複合処理槽へ導水して無機態窒素及びリンを除去もしくは低減し複合処理槽内に蓄積した懸濁物及び不溶性のリンを逆洗により間欠的に排出するところの懸濁物を伴う無機態窒素・リン含有水の処理方法において
上記予備処理用濾材は複合処理槽で使用された後の脱窒基質消耗に伴う脱窒効果の低下した濾材からなり
該複合処理槽で使用された後の濾材を予備処理用濾材として用いる際予備処理槽から予備処理用濾材を抜き出すと共に新たに無機態窒素・リンの低減用濾材を予備処理槽に充填した上で予備処理槽と複合処理槽とを逆転させて通水することを特徴とする
In the method for treating inorganic nitrogen / phosphorus-containing water with a suspension according to the present invention, water to be treated containing inorganic nitrogen and phosphorus together with the suspension is introduced into a pretreatment tank filled with a pretreatment filter medium. To reduce the suspended solids, and then introduce water into the combined treatment tank filled with filter medium for reducing inorganic nitrogen and phosphorus to remove or reduce inorganic nitrogen and phosphorus, and the suspension accumulated in the combined treatment tank In a method for treating inorganic nitrogen / phosphorus-containing water with a suspension in which substances and insoluble phosphorus are intermittently discharged by backwashing ,
The pretreatment filter medium comprises a filter medium having a reduced denitrification effect due to denitrification substrate consumption after being used in a combined treatment tank ,
When the filter medium after being used in the combined treatment tank is used as a pretreatment filter medium, the pretreatment filter medium is extracted from the pretreatment tank and newly filled with a filter medium for reducing inorganic nitrogen and phosphorus. In the above, the preliminary treatment tank and the combined treatment tank are reversed to pass water .
本発明に係る懸濁物を伴う無機態窒素・リン含有水の処理方法に依れば、基本的には、豚舎汚水等の畜産廃水処理水や食品工場廃水処理水のような懸濁物の共存する中で硝酸性窒素、亜硝酸性窒素、アンモニア性窒素、リン酸の同時除去が望まれる被処理水を簡易に、且つ、効果的に浄化することができ、しかも色度などの外観の改善にも寄与できる。 According to the method for treating inorganic nitrogen / phosphorus-containing water with suspension according to the present invention, basically, suspension of livestock wastewater treated water such as piggery sewage or wastewater treated water of food factory It is possible to easily and effectively purify treated water for which simultaneous removal of nitrate nitrogen, nitrite nitrogen, ammonia nitrogen, and phosphoric acid is desired. It can also contribute to improvement.
その上で、確実に懸濁物の影響を抑制し、長期に亘り順調に無機態窒素及びリン酸を除去低減するべく、懸濁物と共に無機態窒素及びリンを含有する被処理水を、予備処理用濾材を充填した予備処理槽に続いて、無機態窒素・リンの低減濾材を充填した複合処理槽へ導水し、予備処理槽において懸濁物の低減を図り、共存する懸濁物による影響を最小限に留めた無機態窒素及びリンの除去低減が主として複合処理槽でなされ、複合処理槽に充填された無機態窒素・リンの低減用濾材の脱窒基質消耗に伴う脱窒効果の低下を機に、予備処理用濾材に換えて新たに無機態窒素・リンの低減用濾材を予備処理槽へ充填することにより、その後はこれまでの予備処理槽と複合処理槽を逆転した運転操作を行い、以後はそれを繰り返し、且つ槽内に蓄積した懸濁物及び不溶性のリンを適宜実施する逆洗により排出することで被処理水に共存する懸濁物による影響を最小限に留めることができる。
このようにすれば、複合処理槽において劣化した資材からなる濾材を移動させることなく、予備処理用濾材として利用することができるから、極めて作業性がよ
On top of that, to suppress the influence of reliably suspension, in order to smoothly remove the inorganic nitrogen and phosphate reduced for a long period of time, the treatment water containing an inorganic nitrogen and phosphorus along with suspension, preliminary Following the pretreatment tank filled with the filter medium for treatment, water is introduced to the composite treatment tank filled with the filter medium for reducing inorganic nitrogen and phosphorus, and the suspension is reduced in the pretreatment tank. The removal of inorganic nitrogen and phosphorus with minimal influence was mainly done in the combined treatment tank, and the denitrification effect accompanying the denitrification substrate consumption of the filter medium for reducing inorganic nitrogen and phosphorus filled in the combined treatment tank In response to the decrease, the pretreatment tank is newly filled with a filter medium for reducing inorganic nitrogen and phosphorus, and then the pretreatment tank and the combined treatment tank are reversed. After that, repeat it and store it in the tank. It is possible to minimize the influence of suspension coexisting water to be treated by discharging by the suspension and appropriately carried backwash phosphorus insoluble.
By this way, without moving the filter medium consisting degraded material in a composite treatment tank, from Ru can be used as a filter medium for pretreatment, very workability is not good.
本発明の処理対象である被処理水は、豚舎汚水等の畜産廃水、食品工場廃水、これらを通常の生物処理した生物処理水等のように、懸濁物の共存する中で、硝酸性窒素、亜硝酸性窒素、及びアンモニア性窒素を含む無機態窒素と、リン酸態リン等のリンとを含有している被処理水である。このような被処理水には、例えば硫黄脱窒細菌の炭素源となりうる物質が比較的多く含有されており、炭酸カルシウムのような炭素源となり得る物質を多用する必要が無い。   The treated water that is the treatment target of the present invention is livestock wastewater such as swine sewage, food factory wastewater, and biologically treated water obtained by normal biological treatment of these in the presence of suspensions of nitrate nitrogen. Water to be treated containing inorganic nitrogen containing nitrite nitrogen and ammonia nitrogen and phosphorus such as phosphate phosphorus. Such treated water contains, for example, a relatively large amount of a substance that can be a carbon source for sulfur denitrifying bacteria, and it is not necessary to use a large amount of a substance that can be a carbon source such as calcium carbonate.
このような被処理水を処理する方法は、懸濁物と共に無機態窒素及びリンを含有する被処理水を、無機態窒素・リンの低減濾材を充填した複合処理槽へ導水し、懸濁物の低減を図ることで被処理水に共存する懸濁物による影響を最小限にとどめ且つ槽内に蓄積した懸濁物及び不溶性のリンを適宜実施する逆洗により排出することで、無機態窒素及びリンの効果的な除去低減が主として複合処理槽において成されることを基本とする。 In such a method of treating water to be treated, the water to be treated containing inorganic nitrogen and phosphorus together with the suspension is introduced into a combined treatment tank filled with a filter medium for reducing inorganic nitrogen and phosphorus, and suspended. By minimizing the effects of suspended matter coexisting in the water to be treated, the suspended solids accumulated in the tank and insoluble phosphorus are discharged by backwashing as appropriate, so that the inorganic state It is based on the fact that effective removal reduction of nitrogen and phosphorus is mainly performed in the combined treatment tank.
この方法中で複合処理槽の濾材としては、粒状、粉粒体状、粉状、塊状の資材を用いることができ、この資材としては、本発明者の一人が開発したアルカリ性物質と硫黄とが軽比重多孔質粒状物を核に被覆付着及び/含浸した組成物からなる硝酸性窒素等除去用組成物(特開2003‐71493号公報参照)を用いることが望ましい。   In this method, as the filter medium of the composite treatment tank, granular, powdery, powdery, and massive materials can be used, and as this material, alkaline substances and sulfur developed by one of the inventors of the present invention can be used. It is desirable to use a composition for removing nitrate nitrogen or the like (see Japanese Patent Application Laid-Open No. 2003-71493) comprising a composition obtained by coating and / or impregnating light specific gravity porous particles on the core.
その核となる軽量粒状物としては真珠岩等を加熱処理して得られるいわゆるパーライト、真珠岩、坑火石、軽石、シラスバルーン等のシラス加工物、軽量セラミック、ガラス発泡物等を用いることができ、脱窒基質を構成するアルカリ性物質としては炭酸カルシウム、水酸化マグネシウム、ドロマイト、石灰岩、水酸化アルミニウム、軽量気泡コンクリート(ALC)等の粉末、粉粒、細粒を用いることができる。炭酸カルシウム及び水酸化マグネシウムを用いれば、硫黄酸化細菌による独立栄養性脱窒法により酸化態窒素の脱窒に優れると共に、アンモニア性窒素及びリンを除去することができる。   As the light-weight granular material that is the core, so-called perlite, nacre, minestone, pumice, shirasu balloons, etc. obtained by heat treatment of pearlite, lightweight ceramic, glass foam, etc. can be used. As the alkaline substance constituting the denitrification substrate, calcium carbonate, magnesium hydroxide, dolomite, limestone, aluminum hydroxide, lightweight cellular concrete (ALC) powder, powder particles, and fine particles can be used. If calcium carbonate and magnesium hydroxide are used, it is excellent in denitrification of oxidized nitrogen by an autotrophic denitrification method using sulfur-oxidizing bacteria, and ammonia nitrogen and phosphorus can be removed.
更に、水酸化マグネシウム粉末、粉粒としては天然鉱物のブルーサイト(水滑石)や同鉱物を主要構成鉱物として含む岩石の破砕粉砕物を用いることが好ましいが、その他海水等由来や化学合成等による水酸化マグネシウムであっても使用できる。   Furthermore, it is preferable to use a natural mineral brucite (water talc) or a crushed and crushed rock containing the same as a main constituent mineral as magnesium hydroxide powder and powder, but other sources such as seawater and chemical synthesis Even magnesium hydroxide can be used.
このような資材としては、3〜6mm程度の粒径を有する粒子が好ましく、この粒子が複数溶着して大型化されたものであっても用いることができる。この粒子中のアルカリ性物質の粒径としては、概ね0.1mm以下、軽比重多孔質粒状体の粒径としては、2〜5mm程度であるのが好適である。   As such a material, particles having a particle diameter of about 3 to 6 mm are preferable, and even a plurality of particles that are welded and enlarged can be used. The particle size of the alkaline substance in the particles is preferably about 0.1 mm or less, and the particle size of the light specific gravity porous granule is preferably about 2 to 5 mm.
その資材の嵩比重としては、0.6〜0.9g/cmが望ましい。この資材の粒子が親水性的な性質を有しているため、被処理水の処理時には、水分を含んで沈降し良好な処理を実現すると共に、逆洗時には容易に浮遊して逆洗を行うことができるため、簡易な処理を実現し易いからである。また、粒子の形状は球状に近いものが好ましい。球状であれば、濾過性能が高くなり、逆洗の回数を少なく抑え易いからである。 The bulk specific gravity of the material is preferably 0.6 to 0.9 g / cm 3 . Since the particles of this material have hydrophilic properties, when processing the water to be treated, it settles with water and realizes a good treatment, and at the time of backwashing, it floats easily and performs backwashing. This is because simple processing can be easily realized. The particle shape is preferably close to spherical. This is because if it is spherical, the filtration performance is improved, and the number of backwashes is easily reduced.
このような資材を用いて、被処理水を処理するには、複合処理槽に資材を充填して、被処理水を例えば複合処理槽の頂部側から導水して、適宜、HRT等の各種条件を設定して下向き流で通水し、底部側から処理水を排出させるなどにより、被処理水を処理することができる。
この処理においては、例えば、処理後の処理水のpHが8.0〜8.5の範囲とするのが好適である。このようなpHの範囲では、リンの除去能が確保し易く、硝酸性窒素の除去能も確保し易いからであり、更に、亜硝酸性窒素の増加を抑制できるか減少させる傾向も見られた。
In order to treat the water to be treated using such materials, the composite treatment tank is filled with the materials, and the water to be treated is introduced from, for example, the top side of the composite treatment tank, and various conditions such as HRT are appropriately selected. The water to be treated can be treated, for example, by passing the water in a downward flow and discharging the treated water from the bottom side.
In this treatment, for example, the pH of the treated water after treatment is preferably in the range of 8.0 to 8.5. In such a pH range, it is easy to ensure phosphorus removal ability and easy removal of nitrate nitrogen, and also a tendency to suppress or decrease the increase in nitrite nitrogen was also observed. .
その処理期間中には、被処理水中の懸濁物が濾材により濾過されると共に、硫黄酸化細菌等が増殖し、あるいは、石膏微粒子が生成されることにより形成された固形分等も濾材に捕捉される。このため、定期又は不定期に間欠的に濾材を逆洗しつつ、処理を継続するのが好ましい。   During the treatment period, the suspension in the water to be treated is filtered by the filter medium, and sulfur-oxidizing bacteria and the like are propagated, or solid matter formed by the production of gypsum fine particles is also captured by the filter medium. Is done. For this reason, it is preferable to continue the treatment while intermittently backwashing the filter medium regularly or irregularly.
このような被処理水の処理によれば、複合処理槽により、硝酸性窒素、亜硝酸性窒素、アンモニア性窒素、リン酸の同時除去が効率的に行えると同時に、懸濁物を濾過することが可能であり、色度などの外観の改善も行える。そのため、簡易な処理方法により被処理水の処理を簡略化できる。しかも、資材として上述のような所定のものを用いれば、逆洗により容易に濾材の機能を維持することが可能であり、簡易に懸濁物の影響を抑制して長期に亘り順調に無機態窒素及びリン酸を除去低減することができる。   According to such treatment of water to be treated, the combined treatment tank can efficiently remove nitrate nitrogen, nitrite nitrogen, ammonia nitrogen, and phosphoric acid simultaneously and filter the suspension. It is possible to improve the appearance such as chromaticity. Therefore, the treatment of water to be treated can be simplified by a simple treatment method. Moreover, if the predetermined materials as described above are used, it is possible to easily maintain the function of the filter medium by backwashing, and it is possible to easily suppress the influence of the suspended matter and smoothly perform the inorganic state over a long period of time. Nitrogen and phosphoric acid can be removed and reduced.
本発明の方法では、確実に懸濁物の影響を抑制し長期に亘り順調に無機態窒素及びリン酸を除去低減するべく、予備処理用濾材を充填した予備処理槽に導水して懸濁物を低減してから、複合処理槽に導水する。 In the method of the present invention, in order to ensure suspension reduce the effects of suppressing removed smoothly inorganic nitrogen and phosphate for a long period, the suspension was water guide to pre-treatment tank filled with a filter medium for pretreatment The water is introduced to the combined treatment tank.
予備処理槽に充填する予備処理用濾材としては、真珠岩等を加熱処理して得られるいわゆるパーライト、真珠岩、坑火石、軽石、シラスバルーン等のシラス加工物、軽量セラミック、ガラス発泡物、ALC粒、浄水場発生土加工物、鹿沼土等の火山灰起源土壌の加工物等を用いることができる。この資材としては、嵩比重が0.3〜0.9g/cmのものを用いるのが好ましい。ここでは、資材の粒子が親水性的な性質を有しているため、被処理水の処理時には、水分を含んで沈降し、濾過機能を発揮し、逆洗時には容易に浮遊して逆洗を行うことができるからである。 The pretreatment filter material to be filled in the pretreatment tank includes so-called pearlite, pearlite, pebbles, pumice, shirasu balloons, etc. obtained by heat treatment of pearlite, lightweight ceramic, glass foam, ALC Grains, processed soil generated from water purification plants, processed products of volcanic ash-derived soil such as Kanuma soil, etc. As this material, it is preferable to use a material having a bulk specific gravity of 0.3 to 0.9 g / cm 3 . Here, since the particles of the material have a hydrophilic property, when processing the water to be treated, it contains water and settles, exhibits a filtering function, and floats easily during backwashing. Because it can be done.
ここでは、複合処理槽において使用された後の脱窒基質消耗に伴う脱窒効果の低下した資材を用いる。この脱窒基質消耗に伴う脱窒効果の低下した資材とは、十分な脱窒効果が得られなくなった資材であり、例えば、アルカリ性物質と硫黄とが軽比重多孔質粒状物を核に被覆付着及び/含浸した組成物からなる硝酸性窒素等除去用組成物の場合、長期間処理に供されたり、繰り返し逆洗等を受けて磨耗することにより、軽比重多孔質粒状物の表面の硫黄及び炭酸カルシウムに代表される脱窒基質が消費されたり、脱窒基質が剥離し、その結果、所望の脱窒速度が得られなくなったものなどである。これは、後述する水酸化マグネシウムを添加するリンの除去能の回復を繰り返し行い、長期間使用した後に生じるものである。   Here, a material having reduced denitrification effect due to denitrification substrate consumption after being used in the combined treatment tank is used. The material having a reduced denitrification effect due to the denitrification substrate consumption is a material in which a sufficient denitrification effect cannot be obtained.For example, an alkaline substance and sulfur are coated with light specific gravity porous particles on the core. In the case of a composition for removing nitrate nitrogen or the like comprising an impregnated composition, sulfur on the surface of the light specific gravity porous granule is obtained by being subjected to treatment for a long period of time or by being subjected to repeated backwashing and the like. The denitrification substrate represented by calcium carbonate is consumed or the denitrification substrate is peeled off, and as a result, a desired denitrification rate cannot be obtained. This occurs after repeated recovery of the phosphorus removal ability to which magnesium hydroxide is added, which will be described later, and after long-term use.
このような資材を予備処理用濾材として用いれば、適切な比重を有して逆洗が行い易いだけでなく、僅かながら脱窒作用が残存しているため、装置全体としての脱窒効果を向上させることも可能である。しかも、複合処理槽と予備処理槽とに用いる資材の種類を少なくできて資材の無駄を抑えることができる。
このように予備処理槽により予め懸濁物を減少させてから、複合処理槽に被処理水を導水すれば、複合処理槽の濾材に捕捉される懸濁物の量を抑えることができて、濾材の通水性を維持し易い。このことは、逆洗の回数を減らすことになり、逆洗による濾材の磨耗等に起因する劣化を抑制できて好適である。
If such a material is used as a filter medium for pretreatment, not only is it easy to perform backwashing with an appropriate specific gravity, but also a slight denitrification action remains, improving the denitrification effect of the entire device. It is also possible to make it. In addition, it is possible to reduce the types of materials used for the composite treatment tank and the preliminary treatment tank, and to suppress waste of materials.
In this way, after reducing the suspension in advance by the pretreatment tank, if the water to be treated is introduced into the composite treatment tank, the amount of the suspension trapped in the filter medium of the composite treatment tank can be suppressed, It is easy to maintain the water permeability of the filter medium. This is preferable because it reduces the number of times of backwashing and can suppress deterioration due to wear of the filter medium due to backwashing.
本発明の方法では、より確実に懸濁物の影響を抑制し長期に亘り順調に無機態窒素及びリン酸を除去低減するべく、懸濁物と共に無機態窒素及びリンを含有する被処理水を、予備処理用濾材を充填した予備処理槽に続いて、無機態窒素・リンの低減濾材を充填した複合処理槽へ導水し、予備処理槽において懸濁物の低減を図り、共存する懸濁物による影響を最小限にとどめた無機態窒素及びリンの除去低減が主として複合処理槽においてなされ、複合処理槽に充填された無機態窒素・リンの低減用濾材の脱窒基質消耗に伴う脱窒効果の低下を機に、予備処理用濾材に換えて新たに無機態窒素・リンの低減に寄与する濾材を予備処理槽へ充填し、その後はそれまでの予備処理槽と複合処理槽を逆転した運転操作を行い、以後はそれを繰り返し、且つ槽内に蓄積した懸濁物及び不溶性のリンを適宜実施する逆洗により排出することで被処理水に共存する懸濁物による影響を最小限にとどめることができる。
このようにすれば、複合処理槽において劣化した資材からなる濾材を、移動させることなく予備処理用濾材として利用することができ、極めて作業性がよくて好適である。
In the method of the present invention, in order to reduce more reliably removed smoothly inorganic nitrogen and phosphate over a suppressed prolonged effects of the suspension, the treatment water containing an inorganic nitrogen and phosphorus along with suspension Then, following the pretreatment tank filled with the pretreatment filter medium, water is introduced to the combined treatment tank filled with the filter medium for inorganic nitrogen / phosphorus reduction, and the suspension is reduced in the pretreatment tank. Removal of inorganic nitrogen and phosphorus with minimal effects of waste is mainly done in combined treatment tanks, and denitrification accompanying consumption of denitrification substrates in the filter medium for reducing inorganic nitrogen and phosphorus filled in the combined treatment tanks When the effect decreased, the pretreatment tank was newly filled with filter media that contributed to the reduction of inorganic nitrogen and phosphorus instead of the pretreatment filter medium, and then the previous pretreatment tank and the composite treatment tank were reversed. Do the operation and repeat it afterwards And suspension was accumulated intracisternal and the effect of suspension coexisting water to be treated by draining by suitably carried backwash phosphorus insoluble can be minimized.
In this way, the filter medium made of the material deteriorated in the combined treatment tank can be used as the pretreatment filter medium without being moved, which is very good in workability.
本発明の方法では、無機態窒素・リンの低減用濾材のリン低減効果が低下した際、複合処理槽へ脱窒素を妨げない程度に水酸化マグネシウム粉末・粉粒を添加することによりリン除去性能の維持、回復を図ることができる。   In the method of the present invention, when the phosphorus reduction effect of the filter medium for reducing inorganic nitrogen / phosphorus is lowered, the phosphorus removal performance can be achieved by adding magnesium hydroxide powder / powder to an extent that does not prevent denitrification to the combined treatment tank. Maintenance and recovery.
水酸化マグネシウムは、溶解による消費や、被処理水中に含まれる炭酸イオン等により表面が炭酸化され、そのアルカリ性が低下しやすい。そのため、被処理水の処理を継続することにより、不足し易い。そこで、この発明の方法では、リン低減効果が低下した時点で、複合処理槽中に水酸化マグネシウムが存在するか否かに関わらず、水酸化マグネシウムを添加することとしている。   The surface of magnesium hydroxide is carbonated due to consumption by dissolution, carbonate ions contained in the water to be treated, etc., and its alkalinity tends to be lowered. Therefore, it is easy to run out by continuing the treatment of the water to be treated. Therefore, in the method of the present invention, magnesium hydroxide is added at the time when the phosphorus reduction effect is lowered, regardless of whether magnesium hydroxide is present in the combined treatment tank.
その水酸化マグネシウムは、多量に添加すると、pHを過剰に上昇させて脱窒能を低下乃至は無効にすることもある。このため、脱窒素を妨げない程度に添加する必要がある。
なお、ここでは、水酸化マグネシウムを粉末・粉粒として添加するのが、被処理水との接触面積を大きくできる等の理由で好ましいが、逆洗時に複合処理槽から流出する懸念も存在する。ところが、この発明では、複合処理槽に上述のような資材からなる濾材を用いることにより、濾過性能を確保し易く、そのため逆洗の回数を少なく抑えることができる。しかも、水酸化マグネシウムは、懸濁物より比重が重いため、複合処理槽の濾材中に留まり易い。そのため、水酸化マグネシウムの添加により、その効果を十分に発現させることが可能となっているのである。
When the magnesium hydroxide is added in a large amount, the pH is excessively increased and the denitrification ability may be lowered or invalidated. For this reason, it is necessary to add to the extent which does not prevent denitrification.
Here, it is preferable to add magnesium hydroxide as powder / powder for the reason that the contact area with the water to be treated can be increased, but there is also a concern that it will flow out of the combined treatment tank during backwashing. However, in the present invention, by using a filter medium made of the above-mentioned materials for the composite treatment tank, it is easy to ensure filtration performance, and therefore the number of backwashes can be reduced. Moreover, since magnesium hydroxide has a higher specific gravity than the suspension, it tends to stay in the filter medium of the combined treatment tank. Therefore, the addition of magnesium hydroxide makes it possible to fully exhibit the effect.
リン低減効果が低下したことを判定するための指標としては、例えば、複合処理槽から排出される処理水中のリン酸濃度を用いてもよいが、処理水のpHを用いることができる。このpHとして例えばpH8以下に達したことにより、リン低減効果が低下したと判定してもよい。
水酸化マグネシウム粉末・粉粒を添加する際には、過剰に添加するとpHが上昇しすぎて、細菌の活性が低下して脱窒能が低下し易いという理由で、例えば、水酸化マグネシウム粉末・粉粒を添加した状態で複合処理槽から排出される処理水のpHが8〜8.5の範囲を維持するように添加することができ、複数回に分けて添加することも好ましい。
As an index for determining that the phosphorus reduction effect has decreased, for example, the phosphoric acid concentration in the treated water discharged from the combined treatment tank may be used, but the pH of the treated water can be used. For example, it may be determined that the phosphorus reduction effect is reduced by reaching pH 8 or lower as this pH.
When adding magnesium hydroxide powder / granules, excessive addition increases the pH too much, and the bacterial activity decreases and the denitrification ability tends to decrease. For example, magnesium hydroxide powder / It can be added so that the pH of the treated water discharged from the combined treatment tank in the state where the powder is added is maintained in the range of 8 to 8.5, and it is also preferable to add in multiple times.
次に、本発明の方法により被処理水を処理するための処理装置の一例について説明する。
処理装置としては、図1で示すような装置(実施例)を用いることができる。図1中、符号1は予備処理槽、2は予備処理用濾材、3は複合処理槽、4は無機態窒素・リンの低減に寄与する濾材、5は水酸化マグネシウム粉末、6は被処理水、7は処理水を示す。但し、この実施の形態に限定されるものではない。
Next, an example of the processing apparatus for processing to-be-processed water by the method of this invention is demonstrated.
As the processing apparatus, an apparatus (example) as shown in FIG. 1 can be used. In FIG. 1, reference numeral 1 is a pretreatment tank, 2 is a pretreatment filter medium, 3 is a composite treatment tank, 4 is a filter medium that contributes to the reduction of inorganic nitrogen and phosphorus, 5 is magnesium hydroxide powder, and 6 is water to be treated. , 7 indicates treated water. However, it is not limited to this embodiment.
このような処理装置では、まず、予備処理槽1の予備処理用濾材2及び複合処理槽3の無機態窒素・リンの低減用濾材4として上記のような資材を充填する。図1中、実線で示すように、被処理水6を予備処理槽1から通水し、続いて複合処理槽3に通水して、処理水7を複合処理槽3から排出することにより処理を行う。
この処理期間中には、予備処理槽1及び複合処理槽3では、図示しない逆洗装置や曝気装置等を用いて、定期又は不定期に間欠的に逆洗操作を行い、処理能力を維持させる。また、処理水7においてリンの低減効果が低下した時点では、複合処理槽3に水酸化マグネシウム粉末5の添加を行うことにより処理を継続する。
In such a processing apparatus, first, the above-described materials are filled as the pretreatment filter medium 2 of the pretreatment tank 1 and the inorganic nitrogen / phosphorus reduction filter medium 4 of the composite treatment tank 3. As shown by the solid line in FIG. 1, the treated water 6 is passed from the pretreatment tank 1, then passed to the combined treatment tank 3, and the treated water 7 is discharged from the combined treatment tank 3. I do.
During this treatment period, in the preliminary treatment tank 1 and the composite treatment tank 3, a backwash operation is performed intermittently or regularly using a backwash device or an aeration device (not shown) to maintain the processing capacity. . Further, when the effect of reducing phosphorus in the treated water 7 is lowered, the treatment is continued by adding the magnesium hydroxide powder 5 to the combined treatment tank 3.
無機態窒素・リンの低減用濾材4の無機態窒素の低減効果が低下し、所望の脱窒速度が得られなくなった時点で、予備処理槽1から予備処理用濾材2を抜き出し、新たに無機態窒素・リンの低減に寄与する濾材4を予備処理槽1に充填した上で、予備処理槽1と複合処理槽3とを逆転させる操作を行う。即ち、予備処理槽1を複合処理槽3’とし、複合処理槽3を予備処理槽1’とする。このとき、複合処理槽3’内に充填されていた予備処理用濾材2は廃棄し、新たな無機態窒素・リンの低減に寄与する濾材4’を充填する。また、予備処理槽1’内に充填されていた無機態窒素・リンの低減に寄与する濾材4は充填された状態のままにし、この濾材4を予備処理用濾材2’として利用する。   When the effect of reducing inorganic nitrogen of the filter medium 4 for reducing inorganic nitrogen and phosphorus is reduced and the desired denitrification rate cannot be obtained, the filter medium 2 for pretreatment is extracted from the pretreatment tank 1 and newly inorganic. After filling the pretreatment tank 1 with the filter medium 4 that contributes to the reduction of the state nitrogen and phosphorus, an operation of reversing the pretreatment tank 1 and the combined treatment tank 3 is performed. That is, the pretreatment tank 1 is a composite treatment tank 3 ′, and the composite treatment tank 3 is a pretreatment tank 1 ′. At this time, the pretreatment filter medium 2 filled in the composite treatment tank 3 ′ is discarded and filled with a filter medium 4 ′ that contributes to the reduction of new inorganic nitrogen and phosphorus. Further, the filter medium 4 that contributes to the reduction of inorganic nitrogen and phosphorus filled in the pretreatment tank 1 ′ is left in the filled state, and this filter medium 4 is used as the pretreatment filter medium 2 ′.
この状態で、図1中、鎖線で示すように、被処理水6’を予備処理槽1’から通水し、続いて複合処理槽3’に通水して、処理水7’を複合処理槽3’から排出することにより処理を行う。この装置では、更に、このような操作を繰り返すことにより、長期間連続して処理を行うことができる。
なお、使用後の廃棄される予備処理用濾材2は、その後、他の用途に利用することもでき、パーライト等の場合には、堆肥製造の副資材や土壌改良材などとして有効に利用することも可能である。
In this state, as shown by a chain line in FIG. 1, the water 6 ′ to be treated is passed from the preliminary treatment tank 1 ′, and then passed to the combined treatment tank 3 ′ to treat the treated water 7 ′. Processing is performed by discharging from the tank 3 '. In this apparatus, it is possible to perform processing continuously for a long time by repeating such an operation.
In addition, the pretreatment filter medium 2 to be discarded after use can be used for other purposes thereafter. In the case of pearlite, it should be used effectively as a secondary material for compost production or a soil conditioner. Is also possible.
このような装置では、本発明に係る懸濁物を伴う無機態窒素・リン含有水の処理方法は、豚舎汚水等の畜産廃水処理水や食品工場廃水処理水のような懸濁物の共存する被処理水から無機態窒素及びリン酸が効果的に除去され放流先の水環境保全にも寄与することから、懸濁物を伴う無機態窒素・リン含有水の処理に適する。   In such an apparatus, the method for treating inorganic nitrogen / phosphorus-containing water with a suspension according to the present invention coexists with suspensions such as livestock wastewater treated water such as piggery sewage and treated wastewater from food factory wastewater. Since inorganic nitrogen and phosphoric acid are effectively removed from the water to be treated and contribute to water environment conservation at the discharge destination, it is suitable for treatment of inorganic nitrogen / phosphorus-containing water accompanied by suspension.
上述した懸濁物を伴う無機態窒素・リン含有水処理の有効性を基本的な形態で確認するべく、本発明として図1の装置(実施例)を作成し、茨城県つくば市池の台2に所在の畜産草地研究所において実際の養豚畜舎汚水を生物処理した液を供試して試験を行った。この実施例においては、複合処理槽3と予備処理槽1とを逆転させた運転は行わなかった。 In order to confirm the effectiveness of the inorganic nitrogen / phosphorus-containing water treatment with the suspension described above in a basic form, the apparatus (Example) shown in FIG. A test was conducted using a liquid obtained by biologically treating the actual sewage in a pig farm in the Institute for Livestock Pasture. In this example, the operation in which the combined treatment tank 3 and the preliminary treatment tank 1 were reversed was not performed.
予備処理槽1として容量:5リットル、本処理槽3として容量:5リットルのものを備えつけた。   A pretreatment tank 1 having a capacity of 5 liters and a main treatment tank 3 having a capacity of 5 liters were provided.
予備処理用濾材2として真珠岩系パーライト(太平洋パーライト株式会社製):0.5リットル(層厚100mm)、無機態窒素・リンの低減に寄与する濾材4として真珠岩系パーライト(太平洋パーライト株式会社製)表面に、硫黄(細井化学工業株式会社製):37重量%、炭酸カルシウム(株式会社ニッチツ製):18.5重量%、水酸化マグネシウム(中国産):44.5重量%から成る混合物を被覆付着させた粉粒体で粒径2〜25mmの資材:0.5リットル(層厚100mm)を適用し、水酸化マグネシウム粉末5として平均粒子径10μmの試料(中国産)を添加し、表1に示す水質の被処理水を定量ポンプにより予備処理槽1続いて本処理槽3へHRT2.5時間、処理水温20℃の条件で導水した。   Pearlite pearlite (manufactured by Taiheiyo Pearlite Co., Ltd.): 0.5 liter (layer thickness: 100 mm) as pretreatment filter medium 2; Pearlite pearlite (Pacific Pearlite Co., Ltd.) as filter medium 4 that contributes to the reduction of inorganic nitrogen and phosphorus (Made by Hosoi Chemical Co., Ltd.): 37% by weight, calcium carbonate (made by Nichetsu Co., Ltd.): 18.5% by weight, magnesium hydroxide (made in China): 44.5% by weight Applying 0.5 liters (layer thickness 100 mm) of material having a particle size of 2 to 25 mm with powder particles coated and coated, and adding a sample (produced in China) with an average particle size of 10 μm as magnesium hydroxide powder 5 Water to be treated shown in Table 1 was introduced into the pretreatment tank 1 and then to the main treatment tank 3 by a metering pump under conditions of HRT 2.5 hours and a treatment water temperature of 20 ° C.
比較例としては、単独の処理槽において、無機態窒素・リンの低減に寄与する濾材として硫黄(細井化学工業株式会社製):35重量%、炭酸カルシウム(株式会社ニッチツ製):45重量%、水酸化マグネシウム(中国産):20重量%から成る粒径5〜20mmの混合物3リットルにHRT36時間、処理水温20℃の条件で表1の水質の被処理水を通水した。   As a comparative example, in a single treatment tank, sulfur (made by Hosoi Chemical Co., Ltd.): 35 wt%, calcium carbonate (made by Nichetsu Co., Ltd.): 45 wt% as a filter medium that contributes to the reduction of inorganic nitrogen and phosphorus. Magnesium hydroxide (produced in China): To-be-treated water having the water quality shown in Table 1 was passed through 3 liters of a mixture of 20% by weight with a particle size of 5 to 20 mm under conditions of HRT for 36 hours and a treatment water temperature of 20 ° C.
試験の結果は、表2及び図2〜図6に示す通りであった。表2は比較例による浄化効果、図2〜図6は実施例による浄化効果を示す。
図2は、実施例における酸化態窒素、硝酸態窒素、無機態窒素の除去速度、即ち窒素除去能の変化を示す。図3は、原水(被処理水)pHと亜硝酸性窒素増加量の関係を示す。図4は、リン酸態リンの除去速度、即ちリン酸除去能の変化と、水酸化マグネシウムの添加によるリン酸除去能の回復効果を示す。図5は、処理水pHとリン酸除去能の関係を示す。図6は、パーライトを用いた予備処理による浮遊懸濁物(SS)の除去効果を示す。
なお、表2及び図2において無機態窒素として示されている中に、酸化態窒素(硝酸、亜硝酸)及びアンモニア性窒素の全てが含まれる。
The test results were as shown in Table 2 and FIGS. Table 2 shows the purification effect of the comparative example, and FIGS. 2 to 6 show the purification effect of the example.
FIG. 2 shows changes in the removal rate of oxidized nitrogen, nitrate nitrogen, and inorganic nitrogen, that is, nitrogen removal ability in Examples. FIG. 3 shows the relationship between raw water (treated water) pH and nitrite nitrogen increase. FIG. 4 shows the removal rate of phosphate phosphorus, that is, the change in phosphate removal ability, and the recovery effect of phosphate removal ability by adding magnesium hydroxide. FIG. 5 shows the relationship between treated water pH and phosphate removal ability. FIG. 6 shows the effect of removing suspended suspension (SS) by pretreatment using pearlite.
In addition, all of oxidized nitrogen (nitric acid, nitrous acid) and ammoniacal nitrogen are included in Table 2 and FIG. 2 as inorganic nitrogen.
比較例による浄化効果は表2に示すとおりで、浮遊懸濁物(SS)については特記するほどの浄化効果が無く示さなかったが、硝酸性(硝酸態と同意)窒素の除去速度については試験期間130日を通じて最小でも0.10kg/m3/dayの値を示し良好であった。 The purification effect by the comparative example is as shown in Table 2, and the suspended suspension (SS) did not show the purification effect as specially noted, but it was tested for the removal rate of nitrate-like (nitrate state) nitrogen. The value of 0.10 kg / m 3 / day was the smallest and good throughout the period of 130 days.
しかしながら比較例においては、試験開始後20日以降、亜硝酸性窒素及びアンモニア性窒素除去速度が急減し、リン酸態リンについては供試の被処理水を上回る濃度が処理水中に含まれる場合があった。それら除去効果の低下は何れも処理水pHが8以下となった場合に見られたが、硝酸性窒素除去能が逆洗により回復したのと異なり、逆洗を行ってもpHの上昇やアンモニア性窒素除去、リン酸態リン除去効果の回復は殆ど見られなかった。   However, in the comparative example, after 20 days from the start of the test, the removal rate of nitrite nitrogen and ammonia nitrogen suddenly decreases, and the concentration of phosphate phosphorus exceeding the test water may be contained in the treated water. there were. The reduction in the removal effect was observed when the treated water had a pH of 8 or less. Unlike the recovery of nitrate nitrogen removal by backwashing, the pH was increased and ammonia was removed even after backwashing. There was almost no recovery of the removal effect of basic nitrogen and phosphate phosphorus.
これに対し実施例では、試験開始後80日以降に窒素除去能は漸減の傾向にあったが、被処理水中の亜硝酸性窒素濃度が0.2kg/m3/day以下であれば、HRT2.5時間(比較例のHRTは36時間)でも0.3kg/m3/day以上の窒素除去能を示し、比較例に比して明らかに優った(図2参照)。なお、試験後半は原水(被処理水)pHが7.6以下であった場合が多く、そのような場合には亜硝酸性窒素が比較的多く含まれ、0.1kg/m3/day以上の値を示すことも少なくなかった(図3参照)。 In contrast, in the examples, the nitrogen removal ability tended to gradually decrease after 80 days from the start of the test. However, if the concentration of nitrite nitrogen in the water to be treated was 0.2 kg / m 3 / day or less, HRT2 Even at 5 hours (HRT of the comparative example was 36 hours), the nitrogen removal ability was 0.3 kg / m 3 / day or more, which was clearly superior to the comparative example (see FIG. 2). In the latter half of the test, the raw water (treated water) has a pH of 7.6 or less in many cases. In such a case, a relatively large amount of nitrite nitrogen is contained, and 0.1 kg / m 3 / day or more. In many cases, the value of was shown (see FIG. 3).
また実施例では、処理水pHが8.0以下となった50日目以降、逆洗等の操作を行ったがpH及びリン酸除去能の回復が思わしくなく、68日目以降84日目にかけて30gの水酸化マグネシウムを7回に分け本処理槽3の上部から添加したところ処理水pHが8.0以上に回復、同時にリン酸除去能も0.1kg/m3/day以上に回復し、比較例に比して明らかに優った(図4,5参照)。 Further, in the examples, after the 50th day when the treated water pH became 8.0 or less, an operation such as backwashing was performed, but the recovery of the pH and phosphate removal ability was not expected, and from the 68th day to the 84th day. When 30 g of magnesium hydroxide was added in 7 portions from the top of the treatment tank 3, the treated water pH recovered to 8.0 or more, and at the same time, the phosphate removal ability also recovered to 0.1 kg / m 3 / day or more. It was clearly superior to the comparative example (see FIGS. 4 and 5).
さらに実施例では、被処理水(原水)中のSSが119〜169mg/Lであったものが予備処理により8〜10mg/Lにまで低下し、91.6重量%〜95.3重量%の除去率を示した(図6参照)。図6では5日目までの結果を示したが、試験期間中に濾過抵抗の増大を指標にした適宜の逆洗を行うことで、継続的良好に5日目までと同様の濾過効果が持続した。   Further, in the examples, the SS in the water to be treated (raw water) was 119 to 169 mg / L, which was reduced to 8 to 10 mg / L by the pretreatment, and 91.6 wt% to 95.3 wt%. The removal rate was shown (see FIG. 6). Although the results up to the fifth day are shown in FIG. 6, the same filtration effect as that until the fifth day is maintained continuously and satisfactorily by performing appropriate backwashing using the increase in filtration resistance as an index during the test period. did.
また、処理水pHを8.0以上とすればリン酸除去能が維持されるだけでなく、亜硝酸性窒素の蓄積や生成も抑制される傾向が見られたことから、長期稼動の硫黄脱窒に散見される亜硝酸性窒素の残存による酸化態窒素除去能の低下を抑制できる可能性も示唆された(図3、5参照)。   In addition, when the treated water pH was 8.0 or more, not only the phosphate removal ability was maintained, but also the accumulation and generation of nitrite nitrogen tended to be suppressed. It was also suggested that the decrease in the ability to remove oxidized nitrogen due to the remaining nitrite nitrogen found in nitrogen can be suppressed (see FIGS. 3 and 5).
なお、視覚による比較であるが、実施例の処理水は原水(被処理水)はもとより比較例と比べ、色調の改善がなされていた。   In addition, although it is a visual comparison, the treated water of the Example has improved color tone compared to the comparative example as well as the raw water (treated water).
ところで、脱窒濾材として使用後に予備処理用濾材として転用した後の濾材は、表面の硫黄分がほぼ消費されている一方で、不溶化したリン、窒素、マグネシウム成分が表面に沈着している場合があり、濾材がパーライトを主とする場合それは法定土壌改良材として公認されており且つ堆肥化においても良質の副資材として認知されていることから、パーライト及び被処理水等に含まれる肥料成分の循環利用という点から有望なリサイクル資材となり得る。   By the way, the filter medium after diverted as a pretreatment filter medium after being used as a denitrification filter medium is almost consumed for the sulfur content on the surface, but insoluble phosphorus, nitrogen, and magnesium components may be deposited on the surface. Yes, if the filter medium is mainly pearlite, it is recognized as a legal soil improvement material and is recognized as a good secondary material in composting, so the circulation of fertilizer components contained in pearlite and treated water, etc. It can be a promising recycling material in terms of use.
なお、本発明は上述した実施(実施例)の形態に限定されるものではない。   In addition, this invention is not limited to the form of implementation (Example) mentioned above.
本発明に係る懸濁物を伴う無機態窒素・リン含有水の処理装置を示す説明図である。It is explanatory drawing which shows the processing apparatus of inorganic nitrogen and phosphorus containing water with the suspension which concerns on this invention. 本発明の実施例における酸化態窒素、硝酸態窒素、無機態窒素の除去速度、即ち窒素除去能の変化を示すグラフである。It is a graph which shows the change of the removal rate, ie, nitrogen removal ability, of the oxidation nitrogen in the Example of this invention, nitrate nitrogen, and inorganic nitrogen. 本発明の実施例における原水(被処理水)pHと亜硝酸性窒素増加量の関係を示すグラフである。It is a graph which shows the relationship between raw | natural water (treated water) pH and the amount of nitrite nitrogen increase in the Example of this invention. 本発明の実施例におけるリン酸態リンの除去速度、即ちリン酸除去能の変化と、水酸化マグネシウムの添加によるリン酸除去能の回復効果を示すグラフである。It is a graph which shows the removal effect of the phosphate phosphorus in the Example of this invention, ie, the change of phosphate removal ability, and the recovery effect of phosphate removal ability by addition of magnesium hydroxide. 本発明の実施例における処理水pHとリン酸除去能の関係を示すグラフである。It is a graph which shows the relationship between the treated water pH and phosphoric acid removal ability in the Example of this invention. 本発明の実施例におけるパーライトを用いた予備処理による浮遊懸濁物(SS)の除去効果を示すグラフである。It is a graph which shows the removal effect of the suspended suspension (SS) by the pretreatment using the pearlite in the Example of this invention.
1、1’ 予備処理槽
2、2’ 予備処理用濾材
3、3’ 複合処理槽
4、4’ 無機態窒素・リンの低減に寄与する濾材(脱窒濾材)
5、5’ 水酸化マグネシウム粉末
6、6’ 被処理水(原水)
7、7’ 処理水
1, 1 'Pretreatment tank 2, 2' Pretreatment filter medium 3, 3 'Combined treatment tank 4, 4' Filter medium contributing to reduction of inorganic nitrogen and phosphorus (denitrification filter medium)
5, 5 'Magnesium hydroxide powder 6, 6' Water to be treated (raw water)
7, 7 'treated water

Claims (1)

  1. 懸濁物と共に無機態窒素及びリンを含有する被処理水を予備処理用濾材を充填した予備処理槽に導水して懸濁物を低減し続いて無機態窒素・リンの低減用濾材を充填した複合処理槽へ導水して無機態窒素及びリンを除去もしくは低減し複合処理槽内に蓄積した懸濁物及び不溶性のリンを逆洗により間欠的に排出するところの懸濁物を伴う無機態窒素・リン含有水の処理方法において
    上記予備処理用濾材は複合処理槽で使用された後の脱窒基質消耗に伴う脱窒効果の低下した濾材からなり
    該複合処理槽で使用された後の濾材を予備処理用濾材として用いる際予備処理槽から予備処理用濾材を抜き出すと共に新たに無機態窒素・リンの低減用濾材を予備処理槽に充填した上で予備処理槽と複合処理槽とを逆転させて通水することを特徴とする懸濁物を伴う無機態窒素・リン含有水の処理方法
    Water to be treated containing inorganic nitrogen and phosphorus together with the suspension is introduced into a pretreatment tank filled with pretreatment filter medium to reduce the suspension, and then a filter medium for reducing inorganic nitrogen and phosphorus is used. Incorporates water into the combined treatment tank to remove or reduce inorganic nitrogen and phosphorus, and accompanies suspension that accumulates in the treatment tank and intermittently discharges insoluble phosphorus by backwashing. In the treatment method of inorganic nitrogen / phosphorus-containing water ,
    The pretreatment filter medium comprises a filter medium having a reduced denitrification effect due to denitrification substrate consumption after being used in a combined treatment tank ,
    When the filter medium after being used in the combined treatment tank is used as a pretreatment filter medium, the pretreatment filter medium is extracted from the pretreatment tank and newly filled with a filter medium for reducing inorganic nitrogen and phosphorus. A method for treating inorganic nitrogen / phosphorus-containing water with a suspension , wherein the pretreatment tank and the combined treatment tank are reversed and water is passed .
JP2004325770A 2004-11-10 2004-11-10 Method for treating inorganic nitrogen / phosphorus water with suspension Expired - Fee Related JP4756260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325770A JP4756260B2 (en) 2004-11-10 2004-11-10 Method for treating inorganic nitrogen / phosphorus water with suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004325770A JP4756260B2 (en) 2004-11-10 2004-11-10 Method for treating inorganic nitrogen / phosphorus water with suspension

Publications (2)

Publication Number Publication Date
JP2006136752A JP2006136752A (en) 2006-06-01
JP4756260B2 true JP4756260B2 (en) 2011-08-24

Family

ID=36617905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325770A Expired - Fee Related JP4756260B2 (en) 2004-11-10 2004-11-10 Method for treating inorganic nitrogen / phosphorus water with suspension

Country Status (1)

Country Link
JP (1) JP4756260B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5519898B2 (en) * 2006-06-02 2014-06-11 関西ピー・ジー・エス株式会社 How to recover phosphorus
JP2012024650A (en) * 2010-07-20 2012-02-09 National Agriculture & Food Research Organization Simultaneous removal system of organic matter, nitrogen, and phosphorus in wastewater using pearlite filling ventilation tank
FR2965806B1 (en) * 2010-10-06 2013-01-25 Serge Bensaid Filtration of wastewater
CN104743668B (en) * 2015-03-19 2016-09-07 西安建筑科技大学 A kind of cross-flow type biofilter for surface water and filter tank system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665791A (en) * 1979-10-30 1981-06-03 Ishikawajima Harima Heavy Ind Method and device for controlling common hanging of jib crane
JPS6366278B2 (en) * 1980-10-21 1988-12-20 Katayama Kagaku Kogyo Kenkyusho Kk
JPH0128627B2 (en) * 1984-12-26 1989-06-05 Ebara Infilco
JP3293911B2 (en) * 1992-12-08 2002-06-17 前澤工業株式会社 Sewage treatment method and treatment device
JP3414511B2 (en) * 1994-07-21 2003-06-09 株式会社荏原総合研究所 Advanced treatment method for organic wastewater
JPH0839091A (en) * 1994-07-31 1996-02-13 Mamoru Kashiwatani Purification of organic waste water and microbiological reaction apparatus used therein
JPH10309585A (en) * 1997-05-08 1998-11-24 Tamuraya:Kk Water quality purifying method
JP2001029963A (en) * 1999-07-26 2001-02-06 Sekisui Chem Co Ltd Apparatus for removing phosphate ions in wastewater and purification tank equipped therewith
JP2002102875A (en) * 2000-09-29 2002-04-09 Babcock Hitachi Kk Water cleaning apparatus and method
JP4560810B2 (en) * 2000-11-27 2010-10-13 株式会社ニッチツ Nitrate ion removal equipment
JP4563621B2 (en) * 2001-07-23 2010-10-13 新日鐵化学株式会社 Nitrate nitrogen biochemical removal equipment
JP4947247B2 (en) * 2001-08-31 2012-06-06 株式会社ニッチツ Composition for removing nitrate nitrogen and the like and method for producing the same
JP4316225B2 (en) * 2002-11-25 2009-08-19 新日鐵化学株式会社 Method and apparatus for removing nitrate nitrogen in water and denitrification treatment material
JP2004237170A (en) * 2003-02-04 2004-08-26 Nippon Steel Chem Co Ltd Method and apparatus for treating nitrate nitrogen and phosphorus-containing water
JP2005095758A (en) * 2003-09-24 2005-04-14 National Agriculture & Bio-Oriented Research Organization Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus

Also Published As

Publication number Publication date
JP2006136752A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
Karri et al. Critical review of abatement of ammonia from wastewater
Verma et al. Slow sand filtration for water and wastewater treatment–a review
Saeed et al. A comprehensive review on nutrients and organics removal from different wastewaters employing subsurface flow constructed wetlands
Zhu et al. Roles of vegetation, flow type and filled depth on livestock wastewater treatment through multi-level mineralized refuse-based constructed wetlands
CN1309665C (en) Nitrogen and phosphorus removing process
WO2012040943A1 (en) Method and apparatus for synchronously removing heavy metal and nitrate in drinking water
JP4756260B2 (en) Method for treating inorganic nitrogen / phosphorus water with suspension
JP2005095758A (en) Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus
Shen et al. recent developments of substrates for nitrogen and phosphorus removal in CWs treating municipal wastewater
CN1277942A (en) System for treatment of water or wastewater, and method using such system
Moges et al. Performance of biochar and filtralite as polishing step for on-site greywater treatment plant
KR100566053B1 (en) Apparatus and method for treat biologic denitration of wastewater and sewage comprising nitrate nitrogen
Nasr et al. Performance evaluation of sedimentation followed by constructed wetlands for drainage water treatment
JP5422461B2 (en) Purifying material and method for purifying nitrate-containing water
Sekoulov et al. Application of biofiltration in the crude oil processing industry
JP4947247B2 (en) Composition for removing nitrate nitrogen and the like and method for producing the same
JP2005177601A (en) Method and apparatus for cleaning water
CN107129115A (en) A kind of carbon nitrogen phosphorus and sludge treatment integrated small sewage-treatment plant and technique
CN106277602A (en) The Treated sewage reusing processing system of industrial wastewater and method
EP3024319B1 (en) New hybrid biodegradable polymer for efficient nitrogen and phosphate reduction
Behrends et al. Non-invasive methods for treating and removing sludge from subsurface flow constructed wetlands II
JP2004298668A (en) Water cleaning method and water cleaning apparatus
Conroy et al. Effect of Sodium Chloride Concentration on Removal of Chemical Oxygen Demand and Ammonia from Turkey Processing Wastewater in Sand Bioreactors
Guyer An Introduction to Advanced Wastewater Treatment
KR101827525B1 (en) Method for small medium size sewage advanced treatment using float media filtering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees