JP3180174B2 - Biological denitration method for exhaust gas containing nitrogen oxides - Google Patents

Biological denitration method for exhaust gas containing nitrogen oxides

Info

Publication number
JP3180174B2
JP3180174B2 JP16334994A JP16334994A JP3180174B2 JP 3180174 B2 JP3180174 B2 JP 3180174B2 JP 16334994 A JP16334994 A JP 16334994A JP 16334994 A JP16334994 A JP 16334994A JP 3180174 B2 JP3180174 B2 JP 3180174B2
Authority
JP
Japan
Prior art keywords
exhaust gas
nitrogen oxides
absorption tower
sodium thiosulfate
gas containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16334994A
Other languages
Japanese (ja)
Other versions
JPH08956A (en
Inventor
裕史 嘉森
誠 北野
敏彦 高木
清 有留
理 三木
英昭 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16334994A priority Critical patent/JP3180174B2/en
Publication of JPH08956A publication Critical patent/JPH08956A/en
Application granted granted Critical
Publication of JP3180174B2 publication Critical patent/JP3180174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、10ppm以下の希薄
窒素酸化物含有排ガス、例えば自動車用トンネル内のガ
ス等から窒素酸化物を除去する窒素酸化物含有排ガスの
生物学的脱硝方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for the biological denitration of exhaust gas containing less than 10 ppm of dilute nitrogen oxides, for example, exhaust gas containing nitrogen oxides for removing nitrogen oxides from gas in automobile tunnels.

【0002】[0002]

【従来の技術】従来の窒素酸化物含有排ガスの生物学的
脱硝方法としては、特開昭52−120963号公報,
特開昭52−129677号公報に、窒素酸化物含有排
ガスを先ずオゾン (O3)と接触させ、窒素酸化物をNO
2 以上の酸化度に酸化し、このあと吸収塔に当該排ガス
を供給し、吸収液によって吸収した後、この吸収液と脱
窒菌および水素供与体を含有する混合液と接触すること
によって、窒素ガスの形態に還元する方法が記載されて
いる。
2. Description of the Related Art A conventional biological denitration method for nitrogen oxide-containing exhaust gas is disclosed in Japanese Patent Application Laid-Open No. 52-120963,
Japanese Unexamined Patent Publication (Kokai) No. 52-129677 discloses that an exhaust gas containing nitrogen oxides is first contacted with ozone (O 3 ) to convert nitrogen oxides into NO.
The exhaust gas is oxidized to an oxidation degree of 2 or more, and then the exhaust gas is supplied to an absorption tower, absorbed by an absorbing solution, and then brought into contact with a mixed solution containing a denitrifying bacterium and a hydrogen donor to thereby form a nitrogen gas. Are described.

【0003】またチオ硫酸ナトリウム水溶液を吸収材と
し、微生物(チオバチルス・デナイトリフィカント : T
hiobacillus denitrificans )を固定化したカキ殻を充
填材とする吸収塔を用いて、生物学的に脱硝を行う方法
がすでに知られている。
[0003] In addition, an aqueous solution of sodium thiosulfate is used as an absorbent, and microorganisms (Tiobacillus deniterificant: T
Hitherto, a method of biologically performing denitration using an absorption tower containing oyster shells on which immobilized Hiobacillus denitrificans is immobilized is already known.

【0004】[0004]

【発明が解決しようとする課題】排ガス中に含有される
窒素酸化物が、NO2 あるいはそれ以上の酸化度の窒素
形態に酸化する場合、オゾンを用いるとコストが高くな
る問題がある。
When nitrogen oxides contained in exhaust gas are oxidized to NO 2 or a nitrogen form having an oxidation degree higher than NO 2 , there is a problem in that use of ozone increases costs.

【0005】またチオ硫酸ナトリウム水溶液を吸収材と
し、カキ殻を充填材とする生物学的脱硝方法では、充填
材として用いたカキ殻の閉塞および耐久力が問題であ
る。また脱窒を行う細菌として、チオバチルス・デナイ
トリフィカントを集積培養して用いるが、当該細菌の大
量培養など、コストが高くなる等の問題がある。
[0005] Further, in the biological denitration method using an aqueous sodium thiosulfate solution as an absorbent and a oyster shell as a filler, there is a problem of clogging and durability of the oyster shell used as the filler. In addition, as a bacterium that performs denitrification, Thiobacillus deniterificant is used in an integrated culture, but there are problems such as an increase in cost, such as mass culture of the bacterium.

【0006】本発明は上記課題に鑑み、窒素酸化物を含
有する排ガスを、硝化細菌,脱窒細菌を用いて生物学的
に安定して、かつ低コストに処理する排ガスの生物学的
脱硝方法を提供する。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a method for biologically denitrifying an exhaust gas containing nitrogen oxides using nitrifying bacteria and denitrifying bacteria in a biologically stable and low-cost manner. I will provide a.

【0007】[0007]

【課題を解決するための手段】本発明は、排ガス中の窒
素酸化物を生物学的に除去する方法において、排ガスを
吸収塔内のチオ硫酸ナトリウム水溶液と接触させ、排ガ
ス中の窒素酸化物をチオ硫酸ナトリウム水溶液に吸収さ
せて吸収塔内の固定化担体に担持させた微生物で酸化し
た後、該チオ硫酸ナトリウム水溶液を固定床型リアクタ
ーに流入させて、固定床型リアクター内のサドル型セラ
ミックスに担持させた微生物により酸化した窒素酸化物
を除去することを特徴とする窒素酸化物含有排ガスの生
物学的脱硝方法である。
SUMMARY OF THE INVENTION The present invention provides a method for biologically removing nitrogen oxides in an exhaust gas, the method comprising contacting the exhaust gas with an aqueous solution of sodium thiosulfate in an absorption tower to remove the nitrogen oxides in the exhaust gas. After being absorbed in an aqueous solution of sodium thiosulfate and oxidized by microorganisms supported on an immobilization carrier in an absorption tower, the aqueous solution of sodium thiosulfate is allowed to flow into a fixed-bed reactor, and to a saddle-type ceramic in the fixed-bed reactor. A biological denitration method for a nitrogen oxide-containing exhaust gas, which comprises removing nitrogen oxides oxidized by microorganisms carried by the microorganisms.

【0008】[0008]

【作用】下水活性汚泥中には、種々雑多な微生物が生息
しており、窒素酸化物を酸化する亜硝酸菌( Nitrosomo
nas )および硝酸菌( Nitrobactor)、また還元性の硫
黄化合物(例えば硫黄,チオ硫酸等)の酸化時に生ずる
水素イオンを用いて脱窒を行う細菌であるチオバチルス
・デナイトリフィカントもまた、若干であるが存在して
いる。
[Function] Various activated microorganisms inhabit sewage activated sludge and nitrite oxidizing nitrogen oxides (Nitrosomo
nas) and nitric acid bacteria (Nitrobactor), and a small number of bacteria that denitrify using hydrogen ions generated during oxidation of reducing sulfur compounds (eg, sulfur, thiosulfate, etc.). Exists.

【0009】従って、この亜硝酸菌,硝酸菌およびチオ
バチルス・デナイトリフィカントを適正な環境(酸化還
元電位:OPR ,pH ,基質等)に生息させることによ
り、下水活性汚泥中から安価に大量に増殖させることが
可能である。
Therefore, the nitrite bacteria, nitrate bacteria and Thiobacillus deniterificant are inhabited in an appropriate environment (oxidation-reduction potential: OPR, pH, substrate, etc.), and are proliferated in large quantities at low cost from sewage activated sludge. It is possible to do.

【0010】つまり、排ガス中の窒素酸化物の吸収液を
チオ硫酸ナトリウム水溶液とし、先ず吸収塔内に生息す
る亜硝酸菌および硝酸菌に窒素酸化物をNO3 + 以上の
酸化物に酸化した後、この窒素酸化物を含有する吸収液
を下水処理場から大量培養した当該チオバチルス・デナ
イトリフィカントに接触させることにより、チオ硫酸を
酸化するときに生じる水素イオンを用いて脱窒を行うこ
とが可能である。
That is, the absorbing solution of nitrogen oxides in the exhaust gas is an aqueous solution of sodium thiosulfate, and the nitric acid bacteria and the nitric acid bacteria living in the absorption tower are oxidized to nitrogen oxides of NO 3 + or more. By contacting the absorption solution containing nitrogen oxides with the thiobacillus denite refinant cultured in large quantities from a sewage treatment plant, denitrification can be performed using hydrogen ions generated when thiosulfuric acid is oxidized. It is.

【0011】なお文献「 Lawrence,A.W.: Autotrophic
Denitrification Using Sulphur Electron Donors, U.
S.EPA-600/2-78-113 (1978), Bisogni,J.J.Jr.,Driscol
l,C.T.Jr.: Denitrification Using Thiosulfate and S
ulfide, J.En.Eng., ASCE,103,593 (1977) 」による
と、チオ硫酸イオンを電子供与体とした場合のイオウ脱
窒における化学量論式は、次の(1)式で示される
[0011] In addition, the literature "Lawrence, AW: Autotrophic
Denitrification Using Sulfur Electron Donors, U.
S.EPA-600 / 2-78-113 (1978), Bisogni, JJJr., Driscol
l, CTJr .: Denitrification Using Thiosulfate and S
ulfide, J. En. Eng., ASCE, 103, 593 (1977)], the stoichiometric formula for sulfur denitrification when thiosulfate ion is used as the electron donor is given by the following formula (1).

【0012】[0012]

【数1】 0.844S2O 3 2・+ NO3 +0.347 CO2 + 0.0865 HCO3 +0.0865 NH4 + +0.434 H2O → 0.0865 C5H7O2N + 0.5 N2 + 1.689 SO4 2・+ 0.697 H+ ……(1)[Number 1] 0.844S 2 O 3 2 · + NO 3 · +0.347 CO 2 + 0.0865 HCO 3 · +0.0865 NH 4 + +0.434 H 2 O → 0.0865 C 5 H 7 O 2 N + 0.5 N 2 + 1.689 SO 4 2 · + 0.697 H + ...... (1)

【0013】吸収塔内で十分に窒素ガスに還元されなか
った窒素酸化物は、吸収塔と接続されるサドル型セラミ
ックスを充填した固定床型リアクターに生息する上記同
様下水活性汚泥から大量培養したチオバチルス・デナイ
トリフィカントによって完全に窒素ガスに還元される。
固定床型リアクターはチオバチルス・デナイトリフィカ
ントを増殖させるため、嫌気状態に保たれている。
The nitrogen oxides that have not been sufficiently reduced to nitrogen gas in the absorption tower are cultivated in large quantities from the sewage activated sludge in the same manner as described above, which inhabits a fixed-bed reactor filled with saddle-type ceramics connected to the absorption tower.・ It is completely reduced to nitrogen gas by denite refinant.
The fixed bed reactor is kept anaerobic in order to grow Thiobacillus deniterificants.

【0014】この考えに基づいて、窒素酸化物を含有す
る排ガスからの脱硝を行う。すなわち図1に示すような
吸収塔1,固定床型リアクター2に充填した表1,表2
にその物理的性状および成分組成の例を示すサドル型セ
ラミックス固定化担体に、下水活性汚泥を固定化するた
め固定床型リアクター2に下水活性汚泥を入れ、1〜2
日程度循環ポンプ10を用いて下水活性汚泥を循環し、
固定化する。
On the basis of this idea, denitration from exhaust gas containing nitrogen oxides is performed. That is, Tables 1 and 2 filled in an absorption tower 1 and a fixed-bed reactor 2 as shown in FIG.
The sewage activated sludge is put into a fixed bed type reactor 2 for immobilizing the sewage activated sludge on a saddle-type ceramic immobilization carrier showing examples of its physical properties and component compositions.
Circulating the sewage activated sludge using the circulation pump 10 for about a day,
Immobilize.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】循環液が透明になり、下水活性汚泥が固定
化された後、循環液にチオ硫酸ナトリウムと、アンモニ
ア性窒素を含有する水溶液を少量混合し、固定床型リア
クター2の酸化還元電位(ORP)が−150〜−20
0mV(vs.Ag/AgCl),pHが6.5〜7.5となる
ようORPセンサー3,ORP制御装置4,pHセンサ
ー5,pH制御装置6を用いて制御する。なおチオ硫酸
ナトリウム水溶液の濃度は、100〜500mg/リッ
トルにすることが好ましい。
After the circulating liquid becomes transparent and the sewage activated sludge is fixed, a small amount of sodium thiosulfate and an aqueous solution containing ammoniacal nitrogen are mixed into the circulating liquid, and the oxidation-reduction potential of the fixed-bed reactor 2 ( ORP) is -150 to -20
The control is performed using the ORP sensor 3, the ORP control device 4, the pH sensor 5, and the pH control device 6 so that 0 mV (vs. Ag / AgCl) and the pH are 6.5 to 7.5. The concentration of the aqueous solution of sodium thiosulfate is preferably adjusted to 100 to 500 mg / liter.

【0018】pHが設定値から外れた場合、酸・アルカ
リ供給ポンプ7によって酸あるいはアルカリを添加し、
制御範囲になるよう制御する。またORPが設定値より
低くなった場合、ブロワー9を稼動させ空気を曝気する
ことによって、ORPを上昇させる。
When the pH deviates from the set value, an acid or alkali is added by an acid / alkali supply pump 7,
Control to be within the control range. When the ORP becomes lower than the set value, the ORP is raised by operating the blower 9 to aerate the air.

【0019】このようにしてさらに数日間循環を続ける
と、吸収塔1内においては、排ガス中の酸素による好気
的な部分と、固定化担体と微生物によって酸素が行き届
かない嫌気的部分が形成され、約一週間程度で吸収塔1
の中で好気条件に近い雰囲気において亜硝酸菌および硝
酸菌が増殖し、吸収塔の中で嫌気条件に近い雰囲気でチ
オバチルス・デナイトリフィカントが優先的に増殖し、
また固定床型リアクター2の嫌気雰囲気においてはチオ
バチルス・デナイトリフィカントが優先的に増殖し、循
環液中の窒素濃度は、ほぼ検出限界値以下(検出管:
0.04ppm以下)となる。
When the circulation is continued for several days in this way, an aerobic part due to oxygen in the exhaust gas and an anaerobic part where oxygen is not sufficiently reached by the immobilized carrier and microorganisms are formed in the absorption tower 1. And the absorption tower 1
Nitrite and nitrate grow in an atmosphere near aerobic conditions, and Thiobacillus deniterificant grows preferentially in an atmosphere near anaerobic conditions in an absorption tower.
In the anaerobic atmosphere of the fixed-bed reactor 2, Thiobacillus denite refinant grows preferentially, and the nitrogen concentration in the circulating fluid is almost below the detection limit (detection tube:
0.04 ppm or less).

【0020】上記手法による微生物の馴養の後、窒素酸
化物を10ppm程度含有する排ガスを吸収塔の空間速
度(SV)が50h-1程度となるよう通気する。吸収塔
出口における排ガス中の窒素酸化物の濃度が検出限界値
以下になったら、SVを50h-1程度づつ上昇させる
と、最大SVが400h-1程度で、吸収塔出口における
排ガス中の窒素酸化物の濃度は検出限界値以下となる。
After acclimation of the microorganism by the above method, exhaust gas containing about 10 ppm of nitrogen oxides is aerated so that the space velocity (SV) of the absorption tower becomes about 50 h -1 . When the concentration of nitrogen oxides in the exhaust gas in the absorption tower outlet becomes less than the detection limit, increasing increments of about 50h -1 to SV, a maximum SV is at about 400h -1, nitrogen oxides in the exhaust gas in the absorption tower outlet The concentration of the substance is below the detection limit.

【0021】[0021]

【実施例】実施例1として、下水の活性汚泥を吸収塔1
および固定床型リアクター2の固定化担体量に対し、活
性汚泥菌体量が1g/リットルとなるよう固定床型リア
クターに入れ、約1日間循環した。
EXAMPLE As an example 1, activated sludge of sewage was introduced into an absorption tower 1.
Further, the activated sludge was introduced into the fixed-bed reactor such that the amount of the activated sludge cells became 1 g / liter with respect to the amount of the immobilized carrier of the fixed-bed reactor 2 and circulated for about one day.

【0022】循環液が透明になり、下水活性汚泥が固定
化された後、循環液にチオ硫酸ナトリウムと、アンモニ
ア性窒素をそれぞれの濃度が200mg/リットル,1
0mg/リットルとなるよう添加した。このとき固定床
型リアクターの酸化還元電位(ORP)は、−150m
V(vs.Ag/AgCl),pHは7.0程度となるようOR
Pセンサー3,ORP制御装置4,pHセンサー5,p
H制御装置6を用いて制御した。
After the circulating liquid becomes transparent and the sewage activated sludge is fixed, sodium thiosulfate and ammonium nitrogen are added to the circulating liquid at a concentration of 200 mg / liter, 1
0 mg / liter was added. At this time, the oxidation-reduction potential (ORP) of the fixed-bed reactor was -150 m
V (vs. Ag / AgCl), OR so that the pH is about 7.0
P sensor 3, ORP controller 4, pH sensor 5, p
Control was performed using the H control device 6.

【0023】即ち、pHが設定値から外れた場合、酸・
アルカリ供給ポンプ7によって酸あるいはアルカリを添
加し、制御範囲になるよう制御した。またORPが設定
値より低くなった場合、ブロワー9を稼動させ空気を曝
気することによって、ORPを上昇させた。
That is, when the pH deviates from the set value, the acid
An acid or an alkali was added by an alkali supply pump 7, and controlled to be within a control range. When the ORP became lower than the set value, the ORP was raised by operating the blower 9 and aerating the air.

【0024】この後さらに数日間循環を続け、チオ硫酸
ナトリウムとアンモニア性窒素濃度が当初の濃度よりも
低下した場合、再び添加し初期濃度を維持した。
Thereafter, circulation was continued for several days, and when the concentrations of sodium thiosulfate and ammonia nitrogen fell below the initial concentrations, they were added again to maintain the initial concentrations.

【0025】7日間の馴養期間が終了した後、窒素酸化
物を3ppm含有する排ガスを吸収塔の空間速度(S
V)が50h-1となるよう通気した。吸収塔出口におけ
る排ガス中の窒素酸化物の濃度は、2日後に検出限界値
以下(検出管:0.04ppm以下)になった。また循
環液中のチオ硫酸ナトリウム濃度は、100〜200m
g/リットルとなるよう調整した。
After the end of the seven-day acclimatization period, the exhaust gas containing 3 ppm of nitrogen oxides is discharged at the space velocity (S
V) was ventilated to 50 h -1 . The concentration of nitrogen oxides in the exhaust gas at the outlet of the absorption tower fell below the detection limit after 2 days (detection tube: 0.04 ppm or less). The concentration of sodium thiosulfate in the circulating fluid is 100 to 200 m
g / liter.

【0026】さらにSVを50h-1づつ上昇させた結
果、最大SVが400h-1で吸収塔出口における排ガス
中の窒素酸化物の濃度は、検出限界値以下となった。
Further, as a result of increasing the SV by 50 h -1 at a time, the maximum SV was 400 h -1 and the concentration of nitrogen oxides in the exhaust gas at the outlet of the absorption tower was lower than the detection limit.

【0027】実施例2として、実施例1と同様に、下水
の活性汚泥を吸収塔1および固定床型リアクター2の固
定化担体量に対し、活性汚泥菌体量が1g/リットルと
なるよう固定床型リアクターに入れ、約1日間循環し
た。
In Example 2, as in Example 1, activated sludge of sewage was immobilized so that the amount of activated sludge cells was 1 g / liter with respect to the amount of immobilized carrier in the absorption tower 1 and the fixed bed reactor 2. It was placed in a bed reactor and circulated for about one day.

【0028】活性汚泥が固定化担体に固定化された後、
チオ硫酸ナトリウムおよびアンモニア性窒素による馴養
無しに窒素酸化物を3ppm含有する排ガスを吸収塔の
空間速度(SV)が50h-1となるよう通気した。
After the activated sludge is immobilized on the immobilization carrier,
Exhaust gas containing 3 ppm of nitrogen oxides was aerated so that the space velocity (SV) of the absorption tower was 50 h -1 without acclimation with sodium thiosulfate and ammoniacal nitrogen.

【0029】このとき固定床型リアクターの酸化還元電
位(ORP)は、−150mV(vs.Ag/AgCl),pH
は7.0程度となるようORPセンサー3,ORP制御
装置4,pHセンサー5,pH制御装置6を用いて制御
した。
At this time, the oxidation-reduction potential (ORP) of the fixed bed reactor was -150 mV (vs. Ag / AgCl), pH
Was controlled using the ORP sensor 3, the ORP controller 4, the pH sensor 5, and the pH controller 6 so as to be about 7.0.

【0030】即ち、pHが設定値から外れた場合、酸・
アルカリ供給ポンプ7によって酸あるいはアルカリを添
加し、制御範囲になるよう制御した。またORPが設定
値より低くなった場合、ブロワー9を稼動させ空気を曝
気することによって、ORPを上昇させた。循環液中の
チオ硫酸ナトリウム濃度は、実施例1同様に100〜2
00mg/リットルとなるよう調整した。
That is, when the pH deviates from the set value, the acid
An acid or an alkali was added by an alkali supply pump 7, and controlled to be within a control range. When the ORP became lower than the set value, the ORP was raised by operating the blower 9 and aerating the air. The concentration of sodium thiosulfate in the circulating fluid was 100 to 2 as in Example 1.
It was adjusted to be 00 mg / liter.

【0031】吸収塔出口における排ガス中の窒素酸化物
の濃度は徐々に低下し、20日後は検出限界値以下とな
った。
The concentration of nitrogen oxides in the exhaust gas at the outlet of the absorption tower gradually decreased, and became lower than the detection limit after 20 days.

【0032】さらにSVを50h-1づつ上昇させた結
果、最大SVが400h-1で吸収塔出口における排ガス
中の窒素酸化物の濃度は、検出限界値以下となった。
Further, as a result of raising the SV by 50 h -1 , the maximum SV was 400 h -1 , and the concentration of nitrogen oxides in the exhaust gas at the outlet of the absorption tower was lower than the detection limit.

【0033】[0033]

【発明の効果】以上説明したように本発明は、排ガスを
吸収塔内のチオ硫酸ナトリウム水溶液と接触させて窒素
酸化物を吸収し、これを塔内に担持させた微生物で酸化
し、さらにこの水溶液を固定床型リアクターに流入さ
せ、リアクター内に担持させた微生物により酸化した窒
素酸化物を除去することにより、窒素酸化物含有排ガス
を低コストかつ高能率で処理できる方法であり、この方
法により10ppm以下の希薄窒素酸化物含有排ガス,
例えば自動車用トンネル内の排ガス等から、窒素酸化物
を生物学的に安定して、かつ低コストで処理することが
可能となる。
As described above, according to the present invention, the exhaust gas is brought into contact with the aqueous solution of sodium thiosulfate in the absorption tower to absorb the nitrogen oxides, oxidized by the microorganisms carried in the tower, and further oxidized. This is a method in which a nitrogen oxide-containing exhaust gas can be treated at low cost and with high efficiency by flowing an aqueous solution into a fixed-bed reactor and removing nitrogen oxides oxidized by microorganisms supported in the reactor. Exhaust gas containing less than 10 ppm of diluted nitrogen oxides,
For example, nitrogen oxides can be treated biologically stably and at low cost from exhaust gas and the like in an automobile tunnel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の脱硝方法を実施するに好適な窒素酸化
物含有排ガス処理装置の一例を示すブロック接続図であ
る。
FIG. 1 is a block connection diagram showing an example of a nitrogen oxide-containing exhaust gas treatment apparatus suitable for performing a denitration method of the present invention.

【符号の説明】[Explanation of symbols]

1 吸収塔 2 固定床型リアクター 3 ORPセンサー 4 ORP制御装置 5 pHセンサー 6 pH制御装置 7 酸・アルカリ添加ポンプ 8,9 ブロワー 10 循環ポンプ 11 ガス流量計 12 散気管 DESCRIPTION OF SYMBOLS 1 Absorption tower 2 Fixed-bed type reactor 3 ORP sensor 4 ORP controller 5 pH sensor 6 pH controller 7 Acid / alkali addition pump 8,9 Blower 10 Circulation pump 11 Gas flow meter 12 Air diffuser

フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 3/34 ZAB B01D 53/34 ZAB // C12M 1/00 (72)発明者 有留 清 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (72)発明者 三木 理 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (72)発明者 矢部 英昭 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (56)参考文献 特表 平5−506362(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/56 B01D 53/14 102 B01D 53/34 ZAB B01D 53/77 C02F 3/34 101 C02F 3/34 ZAB Continuation of the front page (51) Int.Cl. 7 Identification symbol FI C02F 3/34 ZAB B01D 53/34 ZAB // C12M 1/00 (72) Inventor Kiyoshi Aridome 20-1 Shintomi, Futtsu-shi, Chiba New Japan-made Inside the Technology Development Division of Steel Corporation (72) Inventor Osamu Miki 20-1 Shintomi, Futtsu City, Chiba Prefecture Inside the Technology Development Division of Nippon Steel Corporation (72) Hideaki Yabe 20-1 Shintomi, Futtsu City, Chiba Prefecture New Nippon Steel Corporation Technology Development Division (56) References Table 5-56 362 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B01D 53/56 B01D 53/14 102 B01D 53/34 ZAB B01D 53/77 C02F 3/34 101 C02F 3/34 ZAB

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 排ガス中の窒素酸化物を生物学的に除去
する方法において、排ガスを吸収塔内のチオ硫酸ナトリ
ウム水溶液と接触させ、排ガス中の窒素酸化物をチオ硫
酸ナトリウム水溶液に吸収させて吸収塔内の固定化担体
に担持させた微生物で酸化した後、該チオ硫酸ナトリウ
ム水溶液を固定床型リアクターに流入させて、固定床型
リアクター内のサドル型セラミックスに担持させた微生
物により酸化した窒素酸化物を除去することを特徴とす
る窒素酸化物含有排ガスの生物学的脱硝方法。
In a method for biologically removing nitrogen oxides in an exhaust gas, the exhaust gas is brought into contact with an aqueous solution of sodium thiosulfate in an absorption tower, and the nitrogen oxides in the exhaust gas are absorbed by the aqueous solution of sodium thiosulfate. After being oxidized by the microorganisms supported on the immobilization carrier in the absorption tower, the aqueous solution of sodium thiosulfate was allowed to flow into the fixed-bed reactor, and nitrogen oxidized by the microorganisms supported on the saddle-type ceramics in the fixed-bed reactor. A biological denitration method for exhaust gas containing nitrogen oxides, comprising removing oxides.
JP16334994A 1994-06-23 1994-06-23 Biological denitration method for exhaust gas containing nitrogen oxides Expired - Fee Related JP3180174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16334994A JP3180174B2 (en) 1994-06-23 1994-06-23 Biological denitration method for exhaust gas containing nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16334994A JP3180174B2 (en) 1994-06-23 1994-06-23 Biological denitration method for exhaust gas containing nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH08956A JPH08956A (en) 1996-01-09
JP3180174B2 true JP3180174B2 (en) 2001-06-25

Family

ID=15772201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16334994A Expired - Fee Related JP3180174B2 (en) 1994-06-23 1994-06-23 Biological denitration method for exhaust gas containing nitrogen oxides

Country Status (1)

Country Link
JP (1) JP3180174B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361978B1 (en) 1996-05-06 2002-03-26 Roche Vitamins, Inc. Production of biotin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560810B2 (en) * 2000-11-27 2010-10-13 株式会社ニッチツ Nitrate ion removal equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361978B1 (en) 1996-05-06 2002-03-26 Roche Vitamins, Inc. Production of biotin

Also Published As

Publication number Publication date
JPH08956A (en) 1996-01-09

Similar Documents

Publication Publication Date Title
US5795751A (en) Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions
JPH06508981A (en) Device for reacting a liquid medium with a gaseous substance
JP3485240B2 (en) Nitrogen removal method and apparatus, and entrapping immobilization carrier
CN107055760A (en) A kind of method that efficient nitrosation is realized based on ammonia nitrogen waste water
JP3180174B2 (en) Biological denitration method for exhaust gas containing nitrogen oxides
NL8403773A (en) METHOD FOR BIOLOGICAL CLEANING OF POLLUTED GASES.
JP2003010883A (en) Nitration method of ammonia nitrogen-containing water
JPH10128389A (en) Method and apparatus for waste water treatment
JP4817057B2 (en) Batch treatment of nitrogen-containing water
Wei et al. Performance and mechanism of nitric oxide removal using a thermophilic membrane biofilm reactor
JP3303665B2 (en) Nitrification / denitrification method and apparatus
JP3278841B2 (en) Nitrification and denitrification of wastewater
JP4104311B2 (en) How to remove nitrogen from wastewater
JP4817056B2 (en) Method and apparatus for treating nitrogen-containing water
JP2000117291A (en) Treatment of waste water and waste water treating device
JP3345874B2 (en) Comprehensive immobilization carrier and treatment device for wastewater containing ammonia
JP2004305980A (en) Biological denitrification treatment method
JPS586299A (en) Purification of water containing organic pollutants
JP2002018479A (en) Method for removing nitrogen from water
JP3070220B2 (en) Microbial carrier
JP2614580B2 (en) Wastewater biological treatment method
JP3837757B2 (en) Method for treating selenium-containing water
JP2582695B2 (en) Biological treatment method for wastewater containing hydrogen sulfide
JPH05200392A (en) Carrier for microbe
JPH091184A (en) Treatment of waste water

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010321

LAPS Cancellation because of no payment of annual fees