JP2614580B2 - Wastewater biological treatment method - Google Patents

Wastewater biological treatment method

Info

Publication number
JP2614580B2
JP2614580B2 JP18053192A JP18053192A JP2614580B2 JP 2614580 B2 JP2614580 B2 JP 2614580B2 JP 18053192 A JP18053192 A JP 18053192A JP 18053192 A JP18053192 A JP 18053192A JP 2614580 B2 JP2614580 B2 JP 2614580B2
Authority
JP
Japan
Prior art keywords
wastewater
saddle
microorganism
reactor
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18053192A
Other languages
Japanese (ja)
Other versions
JPH06493A (en
Inventor
裕史 嘉森
正博 藤井
理 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18053192A priority Critical patent/JP2614580B2/en
Publication of JPH06493A publication Critical patent/JPH06493A/en
Application granted granted Critical
Publication of JP2614580B2 publication Critical patent/JP2614580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固定床型リアクターに
おいて還元性硫黄化合物を酸化還元する有用微生物を効
率的にまた迅速に培養・増殖して還元性硫黄化合物を含
む廃水を処理する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a wastewater containing a reducing sulfur compound by efficiently and rapidly cultivating and growing useful microorganisms that redox a reducing sulfur compound in a fixed-bed reactor. .

【0002】[0002]

【従来の技術】都市下水、団地下水、産業廃水に含まれ
ているBOD、COD、硫化物等の汚濁物質を生物学的
に処理する方法は、従来より文献などで報じられてい
る。
2. Description of the Related Art Methods for biologically treating pollutants such as BOD, COD, and sulfide contained in municipal sewage, industrial groundwater, and industrial wastewater have been reported in literatures and the like.

【0003】また、ガス廃液を活性汚泥処理法で処理す
る場合、曝気槽の酸化還元電位を指標にして曝気量を管
理、制御すると良好な処理性能が得られることが特開昭
54−152351号公報、特開昭55−64896号
公報等に記載されている。
[0003] In the case of treating a gas waste liquid by an activated sludge treatment method, good treatment performance can be obtained by controlling and controlling the amount of aeration using the oxidation-reduction potential of an aeration tank as an index. And JP-A-55-64896.

【0004】さらに、汚濁物質を微生物学的に分解する
際、リアクター内の酸化還元電位を自由反応エネルギー
の変化から求めた値に保つことにより、活性汚泥および
スラッジから有用微生物を迅速に増殖・培養できること
を本発明者等はすでに発明している。
Further, when microbiologically decomposing pollutants, by maintaining the oxidation-reduction potential in the reactor at a value determined from a change in free reaction energy, useful microorganisms can be rapidly grown and cultured from activated sludge and sludge. The inventors have already invented what can be done.

【0005】[0005]

【発明が解決しようとする課題】従来より行われている
主に流動床型バイオリアクターにより活性汚泥から硫黄
酸化細菌を増殖させ還元性硫黄化合物を処理する方法の
場合、有用微生物がウォッシュアウトしやすく、このた
めリアクターの有用微生物濃度が減少し、その結果、図
2、3に示すように還元性硫黄化合物の処理を十分に行
うことが不可能であった。また、排水中の還元性硫黄化
合物などの大きな濃度変化に起因するバルキング等によ
る急激な処理水質の悪化を如何に防止するかが課題であ
った。
In the conventional method of treating a reducing sulfur compound by growing a sulfur-oxidizing bacterium from activated sludge mainly by a fluidized-bed bioreactor, a useful microorganism is easily washed out. Therefore, the concentration of useful microorganisms in the reactor decreased, and as a result, as shown in FIGS. 2 and 3, it was impossible to sufficiently treat the reducing sulfur compound. Another problem is how to prevent sudden deterioration of treated water quality due to bulking or the like caused by a large change in the concentration of reducing sulfur compounds in wastewater.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、下水、
産業廃水を処理する活性汚泥およびスラッジから廃水処
理に適した有用微生物を培養・増殖する場合、ウォッシ
ュアウトしやすい有用微生物をサドル型セラミックス微
生物固定化担体に固定化し、なおかつ、処理を行おうと
する廃水に含まれている汚濁物質の分解化学反応式を推
定し、この汚濁物質分解反応に関する自由反応エネルギ
ーの変化量から酸化還元電位を計算で求め、廃水処理を
行う上記微生物固定化担体を充填した固定床型バイオリ
アクターの酸化還元電位をこの計算で求めた値以上に管
理、制御することを特徴とする廃水の生物学的処理方法
である。この場合、サドル型セラミックス微生物固定化
担体として高炉水砕スラグを主原料としたサドル型セラ
ミックス微生物固定化担体を用いることは好ましい。
The gist of the present invention is that sewage,
When cultivating and growing useful microorganisms suitable for wastewater treatment from activated sludge and sludge for treating industrial wastewater, the useful microorganisms that are easy to wash out are immobilized on a saddle-type ceramics microorganism immobilization carrier, and the wastewater that is to be treated Estimate the decomposition chemical reaction formula of the pollutant contained in the, find the oxidation-reduction potential from the amount of change in free reaction energy related to this pollutant decomposition reaction, and fix the microorganism-immobilized carrier that performs wastewater treatment A biological treatment method for wastewater, wherein the oxidation-reduction potential of a bed-type bioreactor is controlled and controlled to a value equal to or higher than the value obtained by this calculation. In this case, it is preferable to use a saddle-type ceramics microorganism-immobilized carrier mainly composed of granulated blast furnace slag as the saddle-type ceramics microorganism-immobilized carrier.

【0007】[0007]

【作用】図1に、本発明方法を実施するために使用する
廃水処理用の固定床型バイオリアクターを示す。
FIG. 1 shows a fixed-bed type bioreactor for treating wastewater used for carrying out the method of the present invention.

【0008】本発明者らは、下水、産業廃水の処理を行
っている活性汚泥およびスラッジに還元性硫黄化合物を
酸化分解する微生物が存在することを見いだした。即
ち、後述する微生物の馴養・増殖方法により下水・産業
廃水を処理している活性汚泥およびスラッジから優先的
に培養・増殖した微生物は、還元性硫黄化合物を酸化し
て硫酸を生成する機能がある。
The present inventors have found that activated sludge and sludge treating sewage and industrial wastewater contain microorganisms that oxidatively decompose reducing sulfur compounds. That is, microorganisms preferentially cultured and grown from activated sludge and sludge that are treating sewage and industrial wastewater by the microorganism acclimation and propagation method described below have a function of oxidizing reducible sulfur compounds to generate sulfuric acid. .

【0009】また、微生物を馴養・増殖しようとするリ
アクターに微生物固定化用サドル型セラミックスを充填
し、微生物を固定しながら馴養・増殖すると微生物のウ
ォッシュアウトが少なくなる。
[0009] Further, when a saddle-type ceramic for immobilizing microorganisms is filled in a reactor for acclimating and growing microorganisms, and the microorganisms are acclimated and grown while being fixed, the washout of microorganisms is reduced.

【0010】還元性硫黄化合物を酸化分解する微生物の
馴養・増殖についてであるが、まず、還元性硫黄化合物
の酸化分解反応を仮定し、この反応における自由エネ
ルギー変化量を便覧、文献等から求め、次に、この自由
エネルギー変化量からの計算により、これらの酸化分解
反応が起こるための酸化還元電位(ORP)を求めてお
く。
[0010] While it is for acclimatization and proliferation of the reducing sulfur compound oxide decomposing microorganisms, firstly, assuming the oxidative decomposition reaction of the reducing sulfur compounds to obtain the free energy change amount in the reaction Handbook, from literature Next, an oxidation-reduction potential (ORP) for causing these oxidative decomposition reactions is obtained by calculation from the amount of change in free energy.

【0011】上記についてさらに詳しく述べると、微生
物を用いて還元性化合物を酸化する場合、微生物の細胞
内に吸収された還元性硫黄化合物は酵素等により複雑な
反応を経て酸化される。しかし、総括的な自由エネルギ
ーの変化は、出発点となる化合物と最終的に到達する化
合物との差によって表現することができる。
The above is described in more detail.
When a reducing compound is oxidized using a substance, cells of microorganisms
The reducing sulfur compounds absorbed in the inside are complicated by enzymes, etc.
It is oxidized through the reaction. But overall free energy
Changes between the starting compound and the final
It can be expressed by the difference from the compound.

【0012】例えば、還元性硫黄化合物としてチオ硫酸
を例にすれば、細胞内におけるチオ硫酸との酸化還元系
での反応は、下記式化1のように簡略化して仮定でき
る。
For example, thiosulfuric acid is used as a reducing sulfur compound.
As an example, the redox system with thiosulfate in the cell
Reaction can be simplified and assumed as shown in Formula 1 below.
You.

【0013】[0013]

【化1】 Embedded image

【0014】上記反応における自由エネルギー変化量
(ΔG)は、上記式の各物質の自由エネルギーを化学便
覧等から求めることによって簡単に計算できる。
The amount of change in free energy in the above reaction
(ΔG) is the free energy of each substance of the above formula
It can be easily calculated by obtaining from the list.

【0015】次に、この自由エネルギー変化量(ΔG)
から酸化還元電位(ORP、ΔE)を求めるには、合
葉、永井著「生物化学工学−反応速度論」(1975)
に記載されている廃水中汚濁物質の微生物細胞への合成
モデルに基づいて導き出される下記式数1を用いればよ
い。
Next, the free energy change (ΔG)
To obtain the oxidation-reduction potential (ORP, ΔE) from
Habe and Nagai, "Biochemical Engineering-Reaction Kinetics" (1975)
Of pollutants from wastewater to microbial cells as described in
Use the following equation (1) derived based on the model.
No.

【0016】[0016]

【数1】 (Equation 1)

【0017】図1に示すようなORPセンサー3、OR
P制御器5、pHセンサー4、pH制御器6等を備えた
固定床型バイオリアクター1にサドル型セラミックスを
充填し、下水あるいは産業廃水の処理を行っている活性
汚泥混合液を入れ、約1日リアクター1中央に設置した
エアリフト管10を利用して活性汚泥を循環させながら
徐々に固定化する。この後、リアクター1のORPを先
に求めたORP値に設定する。
The ORP sensor 3, OR shown in FIG.
A fixed-bed type bioreactor 1 equipped with a P controller 5, a pH sensor 4, a pH controller 6, and the like is filled with saddle-type ceramics, and an activated sludge mixed solution for treating sewage or industrial wastewater is added thereto. The activated sludge is gradually fixed while circulating by using an air lift pipe 10 installed at the center of the reactor 1. After that, the ORP of the reactor 1 is set to the ORP value obtained earlier.

【0018】処理する廃水に複数の還元性硫黄化合物が
存在する場合、それぞれの化合物の酸化分解反応の自由
エネルギーが異なるのでORP値も異なる。例えば、廃
水に還元性硫黄化合物としてチオ硫酸ナトリウムと硫化
水素が存在する場合、計算で求めたORP値はチオ硫酸
ナトリウムが+150mV(Ag/AgCl電極基
準)、硫化水素が約−80mV(Ag/AgCl電極基
準)である。このような場合、曝気槽のORPをより酸
化側、即ち+150mV(Ag/AgCl電極基準)以
上に設定すると、両化合物の酸化反応あるいは分解反応
が起こる。このことから、還元性硫黄化合物としてチオ
硫酸ナトリウムと硫化ナトリウムが共存する廃水に適し
た微生物を馴養・増殖する場合、下水または産業廃水を
処理している活性汚泥を固定化したリアクター出口のO
RPを+150mV(Ag/AgCl電極基準)以上に
維持してこれらの化合物を含有する廃水を徐々に供給す
れば、これらの化合物を酸化する微生物が活性汚泥から
容易に増殖すると考えられる。
When a plurality of reducing sulfur compounds are present in the wastewater to be treated, the ORP values are different because the free energy of the oxidative decomposition reaction of each compound is different. For example, when sodium thiosulfate and hydrogen sulfide are present in the wastewater as reducing sulfur compounds, the calculated ORP values are +150 mV for sodium thiosulfate (based on the Ag / AgCl electrode) and about -80 mV for hydrogen sulfide (Ag / AgCl (Electrode reference). In such a case, when the ORP of the aeration tank is set to a more oxidizing side, that is, +150 mV (based on the Ag / AgCl electrode), an oxidation reaction or a decomposition reaction of both compounds occurs. From this fact, when acclimating and growing microorganisms suitable for wastewater in which sodium thiosulfate and sodium sulfide coexist as reducing sulfur compounds, the O at the outlet of the reactor where the activated sludge treating sewage or industrial wastewater is immobilized.
If the RP is maintained at +150 mV or higher (based on the Ag / AgCl electrode) and the wastewater containing these compounds is gradually supplied, it is considered that microorganisms that oxidize these compounds easily grow from the activated sludge.

【0019】この考えに基いて、これらの化合物を酸化
する微生物の馴養・増殖を行う。まず、図1に示す固定
床型バイオリアクター1に下水処理を行っている活性汚
泥混合液を入れる。ルーツブロワー8によって約1日間
リアクター1下部の散気管からエアーを吹き込み、リア
クター1中央部に設置したエアリフト管10によって活
性汚泥混合液を循環させながらリアクター1に充填した
サドル型セラミックスに活性汚泥を固定化する。固定化
された後、リアクター1出口のORP値を+150mV
(Ag/AgCl電極基準)に設定し、リアクター1に
還元性硫黄化合物としてチオ硫酸ナトリウムと硫化ナト
リウムが共存する廃水を処理時間が8時間になるように
供給する。ORP値が+150mV(Ag/AgCl電
極基準)に達したら処理時間を順次6、4、3、2時間
と短縮しながら微生物の増殖をはかる。
Based on this idea, microorganisms that oxidize these compounds are adapted and grown. First, an activated sludge mixed solution subjected to sewage treatment is put into the fixed-bed type bioreactor 1 shown in FIG. Activated sludge is fixed to saddle-type ceramics filled in reactor 1 while air is blown in from diffuser pipe at the bottom of reactor 1 by roots blower 8 for about one day, and the activated sludge mixture is circulated by air lift pipe 10 installed in the center of reactor 1. Become After being fixed, the ORP value at the outlet of the reactor 1 is increased by +150 mV.
(Based on the Ag / AgCl electrode), and wastewater containing sodium thiosulfate and sodium sulfide as reducing sulfur compounds is supplied to the reactor 1 so that the treatment time is 8 hours. When the ORP value reaches +150 mV (based on the Ag / AgCl electrode), the growth of the microorganism is measured while sequentially reducing the treatment time to 6, 4, 3, and 2 hours.

【0020】馴養・増殖後廃水処理を行うが、上記方法
により活性汚泥を固定化担体に固定化したリアクター1
に、還元性硫黄化合物としてチオ硫酸ナトリウムと硫化
ナトリウムが共存する廃水を処理時間が2〜3時間にな
るように供給し、処理を行う。この時、リアクター1出
口におけるORP値が+150mV(Ag/AgCl電
極基準)になるように、ORPセンサー(金−銀/塩化
銀複合電極)3によって酸化還元電位を測定し、設定電
位より低い場合には、ルーツブロワー7の回転数をOR
P制御器5とインバーター9によって制御して上昇させ
る。逆に、設定電位より高い場合には、ルーツブロワー
7の回転数をORP制御器5とインバーター9によって
制御して減少させ、ORP値を制御する。
After acclimation and propagation, wastewater treatment is performed. The reactor 1 in which activated sludge is immobilized on an immobilization carrier by the above method.
Then, wastewater in which sodium thiosulfate and sodium sulfide coexist as reducing sulfur compounds is supplied such that the treatment time is 2 to 3 hours, and the treatment is performed. At this time, the oxidation-reduction potential is measured by the ORP sensor (gold-silver / silver chloride composite electrode) 3 so that the ORP value at the outlet of the reactor 1 becomes +150 mV (based on the Ag / AgCl electrode). Is the number of rotations of the roots blower 7
Controlled by the P controller 5 and the inverter 9 to increase the pressure. Conversely, when the potential is higher than the set potential, the rotation speed of the roots blower 7 is controlled and reduced by the ORP controller 5 and the inverter 9 to control the ORP value.

【0021】また、リアクター1内のpH値は5〜6が
適切であるので、pHセンサー4、pH制御器6によっ
て酸・アルカリの添加ポンプを稼働することにより制御
する。
Since the pH value in the reactor 1 is appropriately 5 to 6, the pH value is controlled by operating the acid / alkali addition pump by the pH sensor 4 and the pH controller 6.

【0022】さらに、2〜3時間の高効率な処理におい
ては、固定化担体から剥離した微生物がリアクター1出
口から流出することがある。従って、リアクター処理水
をサドル型セラミックスを濾過材として充填した濾過装
置2により下降流で濾過処理すると、良好な処理水が得
られる。なお、濾過装置2において堆積した微生物は、
処理水とエアーによって逆洗を行い処理する。
Furthermore, in a highly efficient treatment for 2 to 3 hours, microorganisms separated from the immobilized carrier may flow out of the reactor 1 outlet. Therefore, when the water treated by the reactor is subjected to the downward filtration treatment by the filtration device 2 filled with saddle-type ceramics as a filtering material, good treated water can be obtained. The microorganisms deposited in the filtration device 2 are:
Backwash with treated water and air for treatment.

【0023】[0023]

【実施例】下水の活性汚泥を固定床型バイオリアクター
に投入し、高炉水砕スラグを主原料とするサドル型セラ
ミックス固定化担体に固定化した後、還元性硫黄化合物
としてチオ硫酸ナトリウム(S 2−として500
mg/l)、硫化ナトリウム(S2−として100mg
/l)を含む廃水を処理時間が8時間となるように通水
した。また、リアクター出口のORP値を+150mV
(Ag/AgCl電極基準)に保つようにエアーの流量
を調整しながらリアクターに曝気し、リアクター内部の
pHを5〜6に保つように酸およびアルカリで調整しな
がら馴養を行った。2〜3日でチオ硫酸ナトリウムを酸
化しはじめ、約1週間で上記廃水を処理する微生物が馴
養された。
EXAMPLE Activated sludge from sewage was charged into a fixed-bed type bioreactor and immobilized on a saddle-type ceramic immobilization support mainly composed of granulated blast furnace slag, and sodium thiosulfate (S 2 ) was used as a reducing sulfur compound. O 3 2- as 500
mg / l), 100mg as sodium sulfide (S 2-
/ L) was passed through so that the treatment time was 8 hours. Also, the ORP value at the reactor outlet is +150 mV
(Ag / AgCl electrode standard) The reactor was aerated while adjusting the flow rate of the air so as to keep the inside of the reactor at 5 to 6, while acclimating while adjusting the flow rate of the air. The sodium thiosulfate began to oxidize in a few days, and in about a week, the microorganisms that treated the wastewater acclimated.

【0024】上記方法により微生物の馴養を行ったリア
クターに、上記還元性硫黄化合物を含む廃水を処理時間
が8時間、6時間、4時間、3時間となるように順次処
理時間を短縮しながら通水し、その後、濾過装置により
処理を行った処理水の性状は、COD<20mg/l、
2−<1mg/l、S2−<1mg/lと良好
であった。
The wastewater containing the reducing sulfur compound is passed through the reactor, which has been acclimated to the microorganisms by the above method, while reducing the treatment time so that the treatment time becomes 8 hours, 6 hours, 4 hours, and 3 hours. Water, and then treated by a filtration device, the properties of the treated water are COD <20 mg / l,
S 2 O 3 2- <1 mg / l and S 2- <1 mg / l were favorable.

【0025】[0025]

【発明の効果】本発明により、還元性硫黄化合物として
チオ硫酸ナトリウムと硫化ナトリウムを含む廃水を一度
に処理できる微生物の馴養・増殖を短期間でしかも効率
的に行うことができ、さらに上記廃水の高効率な処理が
可能となる。
According to the present invention, the acclimatization and growth of microorganisms capable of treating wastewater containing sodium thiosulfate and sodium sulfide as reducing sulfur compounds at once can be performed in a short period of time and efficiently. Highly efficient processing becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施するために使用する固定床型
バイオリアクターを示す図である。
FIG. 1 is a diagram showing a fixed-bed bioreactor used to carry out the method of the present invention.

【図2】本発明方法と従来法によるリアクター1m
りの有用微生物濃度の変化を比較して示す図である。
FIG. 2 is a diagram showing a comparison of changes in the concentration of useful microorganisms per m 3 of a reactor according to the method of the present invention and a conventional method.

【図3】本発明方法と従来法による処理水中S
2−、S2−濃度の変化を比較して示す図である。
FIG. 3 S 2 O 3 in treated water by the method of the present invention and the conventional method
It is a figure which compares and shows the change of 2- , S2- concentration.

【符号の説明】[Explanation of symbols]

1 固定床型バイオリアクター 2 濾過装置 3 ORPセンサー 4 pHセンサー 5 ORP制御器 6 pH制御器 7 ルーツブロワー 8 ルーツブロワー 9 インバーター 10 エアリフト管 DESCRIPTION OF SYMBOLS 1 Fixed-bed type bioreactor 2 Filtration device 3 ORP sensor 4 pH sensor 5 ORP controller 6 pH controller 7 Roots blower 8 Roots blower 9 Inverter 10 Air lift tube

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下水、産業廃水を処理する活性汚泥およ
びスラッジから廃水処理に適した有用微生物を培養・増
殖する場合、ウォッシュアウトしやすい有用微生物をサ
ドル型セラミックス微生物固定化担体に固定化し、なお
かつ、処理を行おうとする廃水に含まれている汚濁物質
の分解化学反応式を推定し、この汚濁物質分解反応に関
する自由反応エネルギーの変化量から酸化還元電位を計
算で求め、廃水処理を行う上記微生物固定化担体を充填
した固定床型バイオリアクターの酸化還元電位をこの計
算で求めた値以上に管理、制御することを特徴とする廃
水の生物学的処理方法。
When culturing and growing useful microorganisms suitable for wastewater treatment from activated sludge and sludge for treating sewage and industrial wastewater, useful microorganisms that are easy to wash out are immobilized on a saddle-type ceramics microorganism-immobilizing carrier, and , By estimating the decomposition chemical reaction formula of pollutants contained in the wastewater to be treated, calculating the oxidation-reduction potential from the amount of change in free reaction energy related to this pollutant decomposition reaction, A biological treatment method for wastewater, wherein the oxidation-reduction potential of a fixed-bed type bioreactor filled with an immobilization carrier is controlled and controlled to a value equal to or higher than the value obtained by this calculation.
【請求項2】 請求項1記載の方法において、サドル型
セラミックス微生物固定化担体として高炉水砕スラグを
主原料としたサドル型セラミックス微生物固定化担体を
用いることを特徴とする廃水の生物学的処理方法。
2. The biological treatment of wastewater according to claim 1, wherein a saddle-type ceramics microorganism-immobilized carrier mainly composed of granulated blast furnace slag is used as the saddle-type ceramics microorganism-immobilized carrier. Method.
JP18053192A 1992-06-16 1992-06-16 Wastewater biological treatment method Expired - Fee Related JP2614580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18053192A JP2614580B2 (en) 1992-06-16 1992-06-16 Wastewater biological treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18053192A JP2614580B2 (en) 1992-06-16 1992-06-16 Wastewater biological treatment method

Publications (2)

Publication Number Publication Date
JPH06493A JPH06493A (en) 1994-01-11
JP2614580B2 true JP2614580B2 (en) 1997-05-28

Family

ID=16084897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18053192A Expired - Fee Related JP2614580B2 (en) 1992-06-16 1992-06-16 Wastewater biological treatment method

Country Status (1)

Country Link
JP (1) JP2614580B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811690A (en) * 1994-04-25 1996-01-16 Aisin Seiki Co Ltd Load response type brake fluid pressure control device
KR20030080690A (en) * 2002-04-10 2003-10-17 한국지질자원연구원 Inorganic Media for Wastewater Treatment using Wastes and its Manufacture
KR20040068824A (en) * 2003-01-27 2004-08-02 미래이엔씨주식회사 Micro Bio-carrier for fluidizing reactor by using waste slag and fly ash
CN105455405A (en) * 2015-12-16 2016-04-06 桐城市神墩环卫保洁有限公司 Sanitation cleaning brush
CN110387464A (en) * 2019-07-19 2019-10-29 江西铜业技术研究院有限公司 A method of it will be enriched in sulphur arsenic in the complex materials of elemental sulfur and removes

Also Published As

Publication number Publication date
JPH06493A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
JP4784873B2 (en) Anaerobic ammonia oxidation treatment method and apparatus
JP3729332B2 (en) Wastewater treatment apparatus including upflow anaerobic reactor and wastewater treatment method using the same
TW200927677A (en) Treatment of wastewater
JP2001293494A (en) Biological nitrogen removing method
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP4923348B2 (en) Biological denitrification method
JP2614580B2 (en) Wastewater biological treatment method
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
JP2003033784A (en) Method and device for denitrification
JP2003024987A (en) Nitrification method for ammonia nitrogen-containing water
JP4104311B2 (en) How to remove nitrogen from wastewater
JP4224542B2 (en) Water treatment method and apparatus
JP2509099B2 (en) Method for acclimatizing and growing microorganisms that oxidatively decompose reducing sulfur compounds, and method for biological treatment of wastewater containing reducing sulfur compounds
JP3358388B2 (en) Treatment method for selenium-containing water
JPH09253687A (en) Anaerobic and aerobic treatment apparatus for waste water
JPH0615294A (en) Immobilized carrier suitable for sulfur-oxidizing bacteria, immobilization of sulfur-oxidizing bacteria in immobilized carrier, culturing and propagating method for sulfur oxidizing bacteria in fixed bed type bioreactor and biological treatment of waste water containing reducing sulfur compound
JP3837757B2 (en) Method for treating selenium-containing water
JP3134145B2 (en) Wastewater biological denitrification method
JP5126691B2 (en) Wastewater treatment method
JP2582695B2 (en) Biological treatment method for wastewater containing hydrogen sulfide
JP2509098B2 (en) Microorganisms for oxidizing or degrading reducing sulfur compounds and aromatic organic compounds having sulfone groups, method of breeding, and biological of wastewater containing reducing sulfur compounds and aromatic organic compounds having sulfone groups Processing method
JP2693099B2 (en) Biological treatment method and acclimation method of microorganisms
JPH07185589A (en) Waste water treatment method for removal of nitrogen and device therefor
JPH09155388A (en) Denitrification device using biological catalyst
JPH06496A (en) Advanced treatment of sewage

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961210

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees