KR20040068824A - Micro Bio-carrier for fluidizing reactor by using waste slag and fly ash - Google Patents

Micro Bio-carrier for fluidizing reactor by using waste slag and fly ash Download PDF

Info

Publication number
KR20040068824A
KR20040068824A KR1020030005377A KR20030005377A KR20040068824A KR 20040068824 A KR20040068824 A KR 20040068824A KR 1020030005377 A KR1020030005377 A KR 1020030005377A KR 20030005377 A KR20030005377 A KR 20030005377A KR 20040068824 A KR20040068824 A KR 20040068824A
Authority
KR
South Korea
Prior art keywords
weight
parts
carrier
raw material
slag
Prior art date
Application number
KR1020030005377A
Other languages
Korean (ko)
Inventor
박경태
조영민
Original Assignee
미래이엔씨주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미래이엔씨주식회사 filed Critical 미래이엔씨주식회사
Priority to KR1020030005377A priority Critical patent/KR20040068824A/en
Publication of KR20040068824A publication Critical patent/KR20040068824A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE: Provided is a method for preparing a microorganism carrier of a fluidized bed reactor by using waste slag and waste coal fly ash by which provided porous ceramic carrier has good adhesive capacity of microorganisms, enough mechanical strength and large specific surface area. CONSTITUTION: The method comprises steps of (a) mixing a raw material composition consisting of 40 parts by weight of blast-furnace slag and 25 parts by weight of coal, 5 parts by weight of loess, 5 parts by weight of silica stone, 10 parts by weight of bentonite, 10 parts by weight of bentonite and 0.05-0.07 parts by weight of plasticizer; (b) pulverizing the mixture of the step (a) by a ball mill to prepare a ceramic material; (c) molding the ceramic material by using a stainless pelletizer into a spherical shape and drying it; and (d) sintering the molded carrier at a temperature of 1,150-1,200 °C.

Description

폐슬래그 및 폐석탄회를 이용한 유동상 반응기용 미생물 담체 제조방법{Micro Bio-carrier for fluidizing reactor by using waste slag and fly ash}Micro bio-carrier for fluidizing reactor by using waste slag and fly ash}

본 발명은 하·폐수를 보다 효율적으로 처리하기 위한 세라믹 다공성 담체의 제조방법에 관한 것으로서, 산업 활동의 부산물인 슬래그 및 석탄회를 발포제와 적절히 혼합하고, 소성시간과 발포량을 조절하여 넓은 비표면적을 갖고, 균일하고 미세한 기공을 형성시킴으로써 미생물의 부착능이 우수한 세라믹 다공성 담체의 제조방법에 관한 것이다.The present invention relates to a method for producing a ceramic porous carrier for more efficient treatment of sewage and wastewater. The present invention relates to slag and coal ash, which are by-products of industrial activities, with a blowing agent, and to controlling a firing time and a foaming amount to provide a wide specific surface area. It relates to a method for producing a ceramic porous carrier having excellent adhesion of microorganisms by forming uniform and fine pores.

담체 연구는 재질과 용도에 따라 기공률과 기공의 크기 및 비표면적을 조절할 수 있고, 내구성을 갖춘 소재 개발과 병행하여 이루어지고 있다. 최근에는 미생물의 부착능과 성장환경을 개선시키고자 미세 기공을 다양하게 형성시킨 세라믹상물질을 주로 활용하고 있다. 미생물 고정화에 활용되는 담체에는 고분자계, 세라믹계, 활성탄계 등이 있지만, 고분자계의 경우 비표면적이 적고, 물리화학적으로 불안정하며, 미생물의 탈리가 빈번하게 일어나는 문제점이 발생하고 있다. 이에 비해 세라믹계담체는 비표면적이 크고 물리·화학적으로 안정하며 미생물 막이 얇게 형성되는 장점을 가지고 있으나 원하는 모양으로 성형이 어렵고 고온 소성에 의해 제조되어 담체 표면의 흡착성을 상실할 뿐만 아니라 가격이 매우 비싸다는 단점을 안고 있다. 고효율 미생물 고정화 담체는 충분한 표면 거칠기와 다공성의 넓은 비표면적을 가져야 하며, 물리화학적으로 안정된 물성을 지내야 하고, 담체로부터 독성물질이 유출되지 말아야 한다. 또한 강도와 내구성이 충분히 확보되어야 하며, 물성 조절이 용이하고 가격 면에서의 경쟁력이 있어야 한다. 국내 제철소에서 년 간 600만 톤이상 발생하는 비정질 물질인 수재 슬래그는 대체로 시멘트나 골재 등의 단순 혼합재료로서만 재활용되어 왔지만, 이의 재활용 영역이 다른 선진국처럼 다양화되는 것이 필요하며 이를 위해서 보다 적극적인 처리기술을 개발하여 이러한 폐기부산물의 부가가치를 높이는 것이 요구된다.Carrier research is carried out in parallel with the development of durable materials that can control porosity, pore size and specific surface area according to materials and applications. Recently, in order to improve the adhesion ability and growth environment of microorganisms, it is mainly using a ceramic material having variously formed micropores. Carriers used for immobilization of microorganisms include polymers, ceramics, activated carbons, and the like, but polymers have a small specific surface area, physicochemical instability, and desorption of microorganisms frequently. In contrast, ceramic-based carriers have the advantages of large specific surface area, physical and chemical stability, and microbial film formation. However, they are difficult to mold into desired shapes and are manufactured by high temperature firing. Has its drawbacks. The high efficiency microorganism immobilized carrier should have a sufficient surface roughness and a large specific surface area of porosity, have physicochemically stable physical properties, and should not release toxic substances from the carrier. In addition, strength and durability must be sufficiently secured, physical property can be easily adjusted and competitive in price. Although wood slag, an amorphous material that generates more than 6 million tons per year in domestic steel mills, has been recycled only as a simple mixed material such as cement or aggregate, but its recycling area needs to be diversified like other developed countries. It is required to develop techniques to increase the added value of these waste by-products.

일반적으로 미생물 다공체는 우선 재질에 따라 유기질과 무기질로 구분되며, 담체형상에 따라서는 구형, 튜브형, 섬유형, 큐빅형 또는 불규칙형으로 대별된다. 또한 기공율, 기공형태 및 기공크기에 따라 고다공형, 저다공형, 개기공형, 폐기공형, 매크로포어형, 마이크로포어형 등으로 나뉘어지며, 반응조에 따라서는 유동상형, 고정상형으로 분류된다.In general, the microbial porous body is first divided into organic and inorganic according to the material, depending on the carrier shape is roughly divided into spherical, tubular, fibrous, cubic or irregular. In addition, it is divided into high porosity, low pore type, open pore type, waste pore type, macro pore type, micro pore type, etc. according to porosity, pore type and pore size, and depending on reaction tank, it is classified into fluidized bed type and stationary bed type.

미생물 담체 반응기는 고정상과 유동상 반응기로 구분할 수 있는데 하·폐수처리에는 주로 유동상 반응기나 공기부상 반응기가 적용되며, 악취제거 공정에서는 고정상 담체가 사용되고 있다. 유동상 생물막 반응기(Fludized Bed Biofilm Reactor)는 순환 방식에 따라 내부순환, 외부순환형, 유동방향에 따라 상향류, 하향류형과 산소공급에 따라 호기조, 혐기조로 구별되며 사용하는 담체와 반응기 형태가 다양하게 이용되고 있다. 고농도의 미생물을 유지할 수 있어 다량의 폐수를 처리 할 수 있다. 막힘현상(clogging) 방지를 위한 역세과정이 필요 없는 것이 고정상 공법과 구별되는 특징이다. 유동상 반응기는 특히 반응기 표면적 대비 높이를 충전상보다 크게 할 수 있으며 생물막 담체와 처리수의 고액분리를 위한 침전조를 반응기에 설치할 수 있어 소요부지 측면에서 보다 이롭다. 또한 유동상 반응기는 슬러지 팽화(sludge bulking), 거품발생 등으로 인한 부유물질 제거 기능이 불안정하여 처리수질 관리에 문제가 있는 폐수에 효과적이다.The microbial carrier reactor can be classified into a fixed bed and a fluidized bed reactor. A fluidized bed reactor or an air flotation reactor is mainly used for sewage and wastewater treatment, and a fixed bed carrier is used in the odor removal process. Fluidized Bed Biofilm Reactor is divided into aerobic and anaerobic tanks according to the circulation method, internal circulation, external circulation, upflow, downflow, and oxygen supply. Is being used. It can maintain high concentration of microorganisms and can treat large amount of wastewater. The need for a backwashing process to prevent clogging is a distinguishing feature from the stationary phase process. In particular, the fluidized bed reactor may have a height relative to the surface area of the reactor than the packed bed, and a settling tank for solid-liquid separation of the biofilm carrier and the treated water may be installed in the reactor. In addition, the fluidized bed reactor is unstable in removing suspended solids due to sludge bulking, foaming, etc., which is effective for wastewater having a problem in managing the treated water quality.

따라서, 본 발명의 목적은 미생물의 부착능이 용이하며 충분한 기계적 강도를 갖고 넓은 비표면적을 갖는 다공성 세라믹 담체를 제조하는 것이다. 아울러 호기성 미생물 처리 공법에 유효한 유동상 반응기용 저 비중 구형 담체를 개발하고자 하였다.Accordingly, it is an object of the present invention to prepare a porous ceramic carrier having an easy adhesion of microorganisms, having sufficient mechanical strength and having a large specific surface area. In addition, it was intended to develop a low specific gravity spherical carrier for a fluidized bed reactor effective for aerobic microbial treatment.

..

도 1 : 미생물 담체의 현미경사진 - 미세구조(다공성)1: Micrograph of microbial carrier-microstructure (porous)

도 2 : 실물크기의 미생물담체 (구형)2: Full-scale microbial carrier (spherical)

도 3 : 실물크기의 미생물담체 (육면체)3: Full-scale microbial carrier (hexahedron)

본 발명을 제조 공정에 따라 설명하면 다음과 같다. 수재슬래그 40 중량부, 석탄 25 중량부로 구성된 원료 조성물과, 황토 5 중량부, 규석 5 중량부, 장석 5중량부, 벤토나이트 10 중량부 및 유약 10 중량부, 가소제 0.05∼0.07 중량부를 혼합한다.Referring to the present invention according to the manufacturing process as follows. A raw material composition composed of 40 parts by weight of hand slag and 25 parts by weight of coal, 5 parts by weight of loess, 5 parts by weight of quartzite, 5 parts by weight of feldspar, 10 parts by weight of bentonite, 10 parts by weight of glaze, and 0.05 to 0.07 parts by weight of plasticizer are mixed.

본 발명에서는 세라믹 담체의 제조에 있어서 입자충전법과 포말법을 혼합한 독특한 기술인 세라믹 폼(foam) 방법을 사용함으로써 경제성과 기능성을 충분히 갖추어 국제적으로도 경쟁력 있는 제품을 개발하였다.In the present invention, by using a ceramic foam method, which is a unique technique in which the particle filling method and the foam method are mixed, in the manufacture of the ceramic carrier, a product having sufficient economic efficiency and functionality has been developed internationally and competitively.

담체 내·외부에 형성되어 있는 미세 세공들은 일반적으로 기포끼리 얇은 막을 사이에 두고 접하고 있는데, 세라믹 폼 기술을 적용할 경우 그러한 막이 폐쇄되어있지않다. 일반적으로 기존의 다공질 세라믹 담체는 입상 세라믹을 소결한 것이지만 세라믹 폼은 소결체의 공극 부분이 세라믹으로, 세라믹 부분이 공극으로 된 것과 같은 것이므로 대단히 공극률이 높은 다공체를 형성할 수 있다. 세라믹 폼의 실용화는 희망하는 크기 및 형상으로 세라믹 폼이 얻어진다는 것이 큰 장점이다. 최근 이 세라믹 폼에 대해 고온에서의 여과재, 또는 열교환재 등의 분야에 있어서도 높은 관심과 평가를 얻고 있다.Micropores formed inside and outside the carrier are generally in contact with each other with a thin film between the bubbles. When the ceramic foam technology is applied, such a film is not closed. In general, the porous ceramic carrier is a sintered granular ceramic, but the ceramic foam can form a porous body having a very high porosity because the pores of the sintered body are ceramics, and the ceramics are pores. The practical use of the ceramic foam is a great advantage that the ceramic foam is obtained in the desired size and shape. In recent years, high interest and evaluation have been gained in this field of ceramic foam in the field of high temperature filter medium or heat exchanger.

제1공정에서는 소재를 볼밀(ball mill)기를 이용하여 미분말 상태로 분쇄하여 세라믹 소재를 조성한다.In the first step, the raw material is ground into a fine powder using a ball mill to form a ceramic material.

제2공정은 1공정에서 준비된 소재를 이용 입상시료성형기(stainless pelletizer)를 이용하여 원하는 구형 형상으로 성형하여 이를 건조한다.In the second step, the raw material prepared in step 1 is molded into a desired spherical shape using a stainless pelletizer and dried.

제3공정에서는 성형된 담체를 1,150℃∼1,200℃에서 소성시킨다.In the third step, the molded carrier is fired at 1,150 ° C to 1,200 ° C.

제4공정에서 소성 완료된 제품을 제품화하거나 재가공 연마하여 제품화한다.In the fourth step, the finished product is commercialized or reprocessed and polished.

본 발명에서 소재의 배합비율은 상기 공정으로 제한하는 것이 아니고 제조 제품의 특성, 사용용도, 소재의 품질정도 또는 소성온도에 따라 배합비율이 조절된다.In the present invention, the blending ratio of the raw material is not limited to the above process, and the blending ratio is adjusted according to the characteristics of the manufactured product, the intended use, the quality of the raw material or the firing temperature.

또 본 발명에서 담체의 미세기포가 균일하게 분포되고 팽창되어 연마 또는가공이 필요하지 않으나 필요시 성능을 극대화시키기 위하여 추가적인 물리화학적 처리가 수반될 수도 있다.In addition, in the present invention, the microbubbles of the carrier are uniformly distributed and expanded, so that grinding or processing is not necessary, but additional physicochemical treatment may be involved to maximize performance when necessary.

또한 본 발명에서 제조된 세라믹 소재의 다공성 세라믹 담체는 비중이 0.9정도 이어서 경량화되고, 다공성이어서 넓은 비표면적을 가져 미생물의 부착능력이 우수하다.In addition, the porous ceramic carrier of the ceramic material prepared in the present invention has a specific gravity of about 0.9, thereby reducing weight, and having a large specific surface area due to its porosity.

실시예 1Example 1

제철소에서 발생하는 수재슬래그 미분말 35 중량부, 화력발전소 부산물인 석탄회 30 중량부, 황토 5 중량부, 규석 5 중량부, 장석 5 중량부, 벤토나이트(bentonite)분말 15 증량부 및 가소제 0.05∼0.07 중량부로 이루어진 혼합 원료조성물을 제조하였다.35 parts by weight of fine powder of wood slag produced in steel mill, 30 parts by weight of coal ash as a by-product of thermal power plant, 5 parts by weight of loess, 5 parts by weight of quartzite, 5 parts by weight of feldspar, 15 parts by weight of bentonite powder and 0.05 to 0.07 parts by weight of plasticizer. A mixed raw material composition was prepared.

슬래그는 CaO와 SiO2로 주로 구성되어 있으며, 기공이 많으며 투수성이 높은 불규칙상의 분말로서 미생물의 부착력이 우수하다. 주성분이 SiO2, Al2O3, Fe2O3인 석탄회를 선정하였으며, 100㎛이하의 미세한 구형입자로, 소결성이 우수하고 비표면적이 크다. 황토는 점토의 성질을 나타내므로 가소성을 높이고 건조강도 증가에 기여한다. 규석은 양이 풍부하고, 강도를 높여주는 역할을 한다. 장석은 연화온도와 용융온도가 낮으며 점도가 높다. 또한 연화점이 지나서도 높은 점도 때문에 오랫동안 형태를 유지할 수 있다.The slag is mainly composed of CaO and SiO 2 , is a powder with a lot of pores and high permeability, and excellent adhesion of microorganisms. Coal ash whose main components are SiO 2 , Al 2 O 3 and Fe 2 O 3 was selected. Fine spherical particles of 100 μm or less, excellent sinterability and large specific surface area. Ocher has the properties of clay, which increases plasticity and contributes to increased dry strength. Quartz is rich in quantity and serves to increase strength. Feldspar has a low softening and melting temperature and high viscosity. In addition, the high viscosity even after the softening point can maintain the shape for a long time.

상기 입자성형기를 약 300rpm 정도의 속도로 회전시키며 혼합분말에 그라스 프릿(유약) 5 중량부와 물 25 중량부를 혼합하여 스테인레스 재질의 드럼형 입자성형기에 분사하였다. 입자성형기 내의 상기 원료 조성물이 균일한 크기로 구형으로 입상화 될 때까지 회전시켰다. 일정 크기가 된 조성물은 120℃의 온도 범위에서 2시간이상 충분히 건조시켰다.The particle molding machine was rotated at a speed of about 300 rpm, and 5 parts by weight of glass frit (glaze) and 25 parts by weight of water were mixed in the mixed powder and sprayed onto a stainless steel drum-type particle forming machine. The raw material composition in the granulator was spun until it was granulated into a spherical shape with a uniform size. The composition which became a certain size was fully dried over 2 hours in the temperature range of 120 degreeC.

건조과정을 거친 소결체는 전기로에 투입하여 소결하였다. 소결 조건은 승온속도 5℃/min, 소결온도 1,150℃, 소결시간 2시간이상 유지, 그리고 로내에서 자연 냉각시켰다. 소결체는 5∼10mm의 크기로 팽창 발포되었으며, 경우에 따라 볼밀(ball mill)기 등에 넣어서 겉표면을 연마함으로써 최종적으로 담체를 제조하였다.The dried sintered body was put into an electric furnace and sintered. The sintering conditions were maintained at a heating rate of 5 ° C./min, a sintering temperature of 1,150 ° C., a sintering time of 2 hours or longer, and naturally cooled in a furnace. The sintered body was expanded and foamed to a size of 5 to 10 mm, and in some cases, the carrier was finally prepared by polishing a surface by putting it in a ball mill or the like.

제조된 다공성 세라믹 담체의 물성 측정 결과를 살펴보면 압축강도가 78kgf/㎠이고, 비중이 2.6이였고, 기공율은 11%로 측정되었다.Looking at the measurement results of the physical properties of the prepared porous ceramic carrier, the compressive strength was 78kgf / ㎠, specific gravity was 2.6, the porosity was measured to 11%.

표 1에 본 발명에 사용된 슬래그와 석탄회의 주요 성분을 나타내었다.Table 1 shows the main components of slag and coal ash used in the present invention.

실시예 2Example 2

수재슬래그 120㎛ 이하의 미분말 40 중량부와 63㎛ 이하의 석탄회 25 중량부, 황토 5 중량부, 규석 10 중량부, 장석 5 중량부, 벤토나이트(bentonite) 분말 5 중량부 및 가소제 0.05∼0.07 중량부로 이루어진 혼합 원료조성물을 제조하였다.Recycling slag 40 parts by weight of fine powder of 120 μm or less, 25 parts by weight of coal ash of 63 μm or less, 5 parts by weight of ocher, 10 parts by weight of quartz, 5 parts by weight of feldspar, 5 parts by weight of bentonite powder, and 0.05 to 0.07 parts by weight of plasticizer A mixed raw material composition was prepared.

혼합분말을 용적 3.5ℓ의 스테인레스 재질의 입자성형기에 투입하고, 그라스프릿(유약) 10 중량부와 물 20 중량부를 흔합하여 직접 분사하였다. 다음에 상기 입자 성형기를 약 300rpm 정도의 속도로 입자성형기 내의 상기 원료 조성물이 균일한 크기로 입상 될 때까지 회전시켰다. 일정 크기가 된 조성물은 120℃의 온도 범위에서 2시간 이상으로 충분히 건조시켰다.The mixed powder was poured into a 3.5 L stainless steel molding machine, and 10 parts by weight of glass frit (glaze) and 20 parts by weight of water were mixed and sprayed directly. The particle forming machine was then rotated at a speed of about 300 rpm until the raw material composition in the particle forming machine was granulated to a uniform size. The composition which became a certain size was fully dried over 2 hours in the temperature range of 120 degreeC.

건조된 소결체는 전기로에 넣어 소결하였다. 소결 조건은 승온속도 5℃/min, 소결온도 1,180℃, 소결시간 4시간이상 유지, 그리고 로내에서 상온까지 서서히 냉각시켰다. 최종 소결체는 5∼10mm이었으며, 크기로 볼밀(ball mill)기 등에 넣어서 겉표면을 구형에 가깝도록 연마함으로써 담체로 제조하였다.The dried sintered body was put into an electric furnace and sintered. The sintering conditions were maintained at a temperature increase rate of 5 ° C./min, a sintering temperature of 1,180 ° C., a sintering time of 4 hours or more, and gradually cooled from room to room temperature. The final sintered body was 5 to 10 mm in size, and was put into a ball mill or the like to prepare a carrier by polishing the outer surface to be spherical.

제조된 다공성 세라믹 담체의 물성을 분석한 결과 압축강도가 78kgf/㎤이고, 비중이 0.8이였고, 기공율은 50%로 측정되었다.As a result of analyzing the physical properties of the prepared ceramic support, the compressive strength was 78kgf / cm 3, the specific gravity was 0.8, and the porosity was measured at 50%.

실시예 2로 제조한 세라믹 다공성 담체의 조직 사진을 도 1과 도 2에 나타내었다.Tissue photographs of the ceramic porous carrier prepared in Example 2 are shown in FIGS. 1 and 2.

실시예 3Example 3

수재슬래그 120㎛이하의 미분말 35 중량부와 63㎛이하의 석탄회 35 중량부, 황토 5 중량부, 규석 5 중량부, 장석 5 중량부, 벤토나이트(bentonite) 분말 5 중량부 및 가소제 0.05∼0.07중량부로 이루어진 혼합 원료조성물을 제조하였다.Handmade slag 35 parts by weight of fine powder of 120 μm or less and 35 parts by weight of coal ash of 63 μm or less, 5 parts by weight of ocher, 5 parts by weight of quartz, 5 parts by weight of feldspar, 5 parts by weight of bentonite powder, and 0.05 to 0.07 parts by weight of plasticizer A mixed raw material composition was prepared.

원료조성물을 볼밀(ball mill)기를 이용하여 혼합한 후, 탄산칼슘(CaCO3) 10 중량부와 물 20 중량부를 투입하여 다시 혼합하였다. 다음에 상기 원료 조성물이 균일한 크기로 입상 되도록 압출 성형하여 펠렛 모양으로 제조하였다. 일정 크기가된 조성물은 120℃의 온도 범위에서 2시간 이상으로 충분히 건조시켰다.After the raw material composition was mixed using a ball mill, 10 parts by weight of calcium carbonate (CaCO 3 ) and 20 parts by weight of water were added and mixed again. Next, the raw material composition was extruded to granulate to a uniform size, thereby preparing pellets. Compositions of constant size were sufficiently dried in a temperature range of 120 ° C. for at least 2 hours.

건조된 소결체는 전기로에 넣어 소결하였다. 소결 조건은 승온속도 5℃/min, 소결온도 1,150℃, 소결시간 2시간이상 유지, 그리고 로내에서 상온까지 서서히 냉각시켰다. 소결체는 5∼10mm 크기의 펠렛 형태로 볼밀(ball mill)기 등에 넣어서 겉표면을 연마함으로써 담체로 제조하였다.The dried sintered body was put into an electric furnace and sintered. The sintering conditions were maintained at a temperature increase rate of 5 ° C./min, a sintering temperature of 1,150 ° C., a sintering time of 2 hours or more, and gradually cooled from room to room temperature. The sintered compact was prepared as a carrier by polishing a surface of the pellet by placing it in a ball mill or the like in a pellet form having a size of 5 to 10 mm.

제조된 다공성 세라믹 담체의 물성을 분석한 결과 비중이 1.21로 측정되었다.As a result of analyzing the physical properties of the prepared porous ceramic carrier, the specific gravity was measured as 1.21.

실시예 3으로 제조한 세라믹 다공성 담체의 조직 사진을 도 3에 나타내었다.The tissue photograph of the ceramic porous carrier prepared in Example 3 is shown in FIG. 3.

본 발명에 따른 다공성 세라믹 담체는, 산업 활동의 부산물인 제강 슬래그와 석탄회를 환경 안정적으로 재활용 할 수 있는 분야를 개척할 수 있고, 또한 넓은 비표면적과 높은 기계적 강도를 가짐과 동시에 미세 기공들이 서로 연결되어 연속적으로 이어져 있는 구조 또는 불규칙한 기공들이 연속적으로 이어진 그물 구조를 가짐으로써, 미생물이 위 다공성 세라믹 담체에 쉽게 부착 성장할 수 있으므로 미생물을 이용한 폐수처리에 있어서 그 처리 효율을 향상시킬 수 있다.The porous ceramic carrier according to the present invention can pioneer the field of environmentally stable recycling of steelmaking slag and coal ash, which are by-products of industrial activities, and also have a large specific surface area and high mechanical strength, and at the same time, micropores are connected to each other. By having a continuous structure or a continuous net structure of irregular pores, the microorganism can be easily attached and grown on the above porous ceramic carrier can improve the treatment efficiency in wastewater treatment using the microorganism.

무엇보다 폐기물을 적절히 자원화하는 과정을 거쳐 고부가가치성 재활용 분야를 개척하였다고 사료된다. 또한 원료물질들의 적절한 혼합배율과 유효한 열처리 과정을 통하여 하·폐수보다 가벼운 비중의 담체 구조를 개발함으로써 효율 높은 유동상 반응기에 적합한 구형 담체 개발이 가능하다.Above all, it is believed that the company has pioneered the field of high value-added recycling through the process of appropriately recycling waste. In addition, it is possible to develop a spherical carrier suitable for a highly efficient fluidized bed reactor by developing a carrier structure having a specific gravity lighter than wastewater and wastewater through proper mixing ratio of raw materials and effective heat treatment.

Claims (2)

하·폐수 처리를 위한 유동상 반응기용 세라믹 담체 제조 방법으로서, 폐자원 재활용 개념의 수재슬래그와 폐 석탄회를 주원료로 하고 세라믹 폼(ceramic foam) 방법을 채택한 비중 0.9∼1.1 정도의 구형 담체 제조 방법.A method for producing a ceramic carrier for fluidized bed reactors for sewage and wastewater treatment, the method comprising: producing spherical carriers having a specific gravity of 0.9 to 1.1 using a raw material slag and waste coal ash as a main raw material and employing a ceramic foam method. 주원료 65%(슬래그, 석탄회), 부가 원료 15%, 바인더 10%, 발포제 10%, 가소제 0.05∼0.07% 범위 내에서 혼합시킨 것을 특징으로 하되, 발포제로써 유약을 적용하여 1150℃∼1200℃의 소성온도를 선택함으로서 발포 효과를 극대화시킬 수 있는 제조 방법.The main raw material is 65% (slag, coal ash), 15% additional raw material, 10% binder, 10% blowing agent, 0.05 ~ 0.07% plasticizer, characterized in that the mixing in the range, sintering from 1150 ℃ to 1200 ℃ by applying glaze as blowing agent Manufacturing method which can maximize foaming effect by selecting temperature.
KR1020030005377A 2003-01-27 2003-01-27 Micro Bio-carrier for fluidizing reactor by using waste slag and fly ash KR20040068824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030005377A KR20040068824A (en) 2003-01-27 2003-01-27 Micro Bio-carrier for fluidizing reactor by using waste slag and fly ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030005377A KR20040068824A (en) 2003-01-27 2003-01-27 Micro Bio-carrier for fluidizing reactor by using waste slag and fly ash

Publications (1)

Publication Number Publication Date
KR20040068824A true KR20040068824A (en) 2004-08-02

Family

ID=37357854

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030005377A KR20040068824A (en) 2003-01-27 2003-01-27 Micro Bio-carrier for fluidizing reactor by using waste slag and fly ash

Country Status (1)

Country Link
KR (1) KR20040068824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872463B1 (en) * 2007-10-15 2008-12-05 한양대학교 산학협력단 Reactive composite permeable barrier
KR102530855B1 (en) 2022-06-27 2023-05-11 주식회사 세광종합기술단 Sewage and wastewater treatment carrier and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261384A (en) * 1992-03-19 1993-10-12 Mitsubishi Materials Corp Carrier for microbe
JPH06493A (en) * 1992-06-16 1994-01-11 Nippon Steel Corp Method of biologically treating waste water
KR19990014365A (en) * 1998-07-02 1999-02-25 박영일 Manufacturing method of multifunctional porous ceramics
KR19990046483A (en) * 1999-03-19 1999-07-05 이현재 The preparation of the carrier for treating odorous and volatile organic compounds by biological treatments
KR20030002221A (en) * 2001-06-30 2003-01-08 한국지질자원연구원 Porous ceramic media for wastewater treatment using wastes and manufacturing process of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261384A (en) * 1992-03-19 1993-10-12 Mitsubishi Materials Corp Carrier for microbe
JPH06493A (en) * 1992-06-16 1994-01-11 Nippon Steel Corp Method of biologically treating waste water
KR19990014365A (en) * 1998-07-02 1999-02-25 박영일 Manufacturing method of multifunctional porous ceramics
KR19990046483A (en) * 1999-03-19 1999-07-05 이현재 The preparation of the carrier for treating odorous and volatile organic compounds by biological treatments
KR20030002221A (en) * 2001-06-30 2003-01-08 한국지질자원연구원 Porous ceramic media for wastewater treatment using wastes and manufacturing process of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872463B1 (en) * 2007-10-15 2008-12-05 한양대학교 산학협력단 Reactive composite permeable barrier
KR102530855B1 (en) 2022-06-27 2023-05-11 주식회사 세광종합기술단 Sewage and wastewater treatment carrier and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN101885620B (en) Ceramic material with multi-stage duct structure and manufacture method thereof
CN1150975C (en) Spherical porous light haydite for treating waste water and its production method
JP5658136B2 (en) Porous ceramic sintered body and method for producing the same
KR100729677B1 (en) Porous ceramic and method for manuracturing the same
CN101774684B (en) Filter material for water treatment and preparation method and application thereof
CN101746882B (en) Biological filter material by utilizing sugar mill mud and method
CN1321918C (en) Fixed microbial suspension ceramic carrier and production thereof
KR100434679B1 (en) Porous ceramic media for wastewater treatment using wastes and manufacturing process of the same
JPH026589B2 (en)
JP3273310B2 (en) Porous lightweight ceramic body
CN103382098B (en) Light biological carrier for water treatment, and preparation method and application of light biological carrier
Han et al. Fabrication and characterization of macroporous flyash ceramic pellets
KR101066193B1 (en) Carbonized lightweight aggregate be made from organic sludge
JP2007145704A (en) Porous ceramic and method for manufacturing the same
CN100450968C (en) Method for preparing microporous mullite aerated head(plate) by fly ash
JP2002220291A (en) Ceramic filter
KR100434613B1 (en) Multi-porous ceramic carrier for fixing microorganism on inner/outer surface thereof
KR100331162B1 (en) Porous ceramic carriers for biofilter and process for manufacturing them
KR20040068824A (en) Micro Bio-carrier for fluidizing reactor by using waste slag and fly ash
JP2005270048A (en) Carrier for microorganism and method for producing the same
JPS61120612A (en) Preparation of ceramic filter
KR100336449B1 (en) The ceramic media using pottery stone and making method thereof
KR20000010218A (en) Ceramic carrier and preparation method thereof
KR20010074659A (en) Porous ceramic carriers for biofilter and process for manufacturing them
KR100993120B1 (en) Water purification block by using bottom ash and method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application