KR102530855B1 - Sewage and wastewater treatment carrier and manufacturing method thereof - Google Patents

Sewage and wastewater treatment carrier and manufacturing method thereof Download PDF

Info

Publication number
KR102530855B1
KR102530855B1 KR1020220078031A KR20220078031A KR102530855B1 KR 102530855 B1 KR102530855 B1 KR 102530855B1 KR 1020220078031 A KR1020220078031 A KR 1020220078031A KR 20220078031 A KR20220078031 A KR 20220078031A KR 102530855 B1 KR102530855 B1 KR 102530855B1
Authority
KR
South Korea
Prior art keywords
weight
parts
sewage
carrier
sludge
Prior art date
Application number
KR1020220078031A
Other languages
Korean (ko)
Inventor
김한선
Original Assignee
주식회사 세광종합기술단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세광종합기술단 filed Critical 주식회사 세광종합기술단
Priority to KR1020220078031A priority Critical patent/KR102530855B1/en
Application granted granted Critical
Publication of KR102530855B1 publication Critical patent/KR102530855B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/107Inorganic materials, e.g. sand, silicates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/109Characterized by the shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

The present invention relates to a method for manufacturing a carrier for sewage and wastewater treatment with greatly improved purification performance. The present invention includes the steps of: preparing raw materials including 100 parts by weight of sludge, 30 to 50 parts by weight of blast furnace slag, 20 to 40 parts by weight of clay, 10 to 20 parts by weight of vermiculite, and 1 to 10 parts by weight of ceramic fibers based on 100 parts by weight of the sludge; preparing a mixed raw material composition by mixing the raw materials and a sodium silicate solution; preparing a molded product obtained by molding the mixed raw material composition; and sintering the molded product.

Description

오수 및 폐수 처리용 담체 및 그 제조방법{Sewage and wastewater treatment carrier and manufacturing method thereof}Sewage and wastewater treatment carrier and manufacturing method thereof

본 발명은 정화 성능이 크게 향상된 오수 및 폐수 처리용 담체 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a carrier for treatment of sewage and wastewater with greatly improved purification performance.

현재 생활 하수 및 폐수 처리에 있어서 활성 슬러지법(activated sludge)이 널리 이용되고 있다. 활성 슬러지란 하수 및 폐수 처리장의 생물학적 처리에 이용되는 미생물의 총칭으로서, 상기 활성 슬러지법의 일반적인 공법으로는 BOD 제거를 중심으로 하는 표준 활성슬러지 공법이 있고, 이를 변경시켜 질소 및 인을 동시에 제거하는 생물학적 고도 처리 공법이 있다.Activated sludge is currently widely used in domestic sewage and wastewater treatment. Activated sludge is a generic term for microorganisms used in biological treatment of sewage and wastewater treatment plants. As a general method of the activated sludge method, there is a standard activated sludge method centered on BOD removal, which is modified to simultaneously remove nitrogen and phosphorus. There is a biological advanced treatment method.

상기 생물학적 고도 처리 공법은 크게 부유 성장식 공법과 부착 성장식 공법으로 구분된다. 상기 부유 성장식 공법은 교반과 폭기를 수행하여 미생물과 하수를 접촉시켜 처리하는 공법이고, 상기 부착 성장식 공법은 미생물이 부착될 수 있는 담체를 이용하는 공법이다.The advanced biological treatment method is largely divided into a suspended growth method and an adherent growth method. The floating growth method is a method of contacting and treating microorganisms and sewage by performing agitation and aeration, and the adherent growth method is a method using a carrier to which microorganisms can adhere.

최근에는 상기 부유 성장식 공법에 이용하기 위한 상기 부착 성장식 공법에 대한 개발이 활발히 이루어지고 있는데, 폭기조에 충전된 미생물 담체는 미생물과의 접촉 표면적을 증가시켜 미생물 부착량을 증대시킴에 따라 결국 수리학적 체류시간을 단축할 수 있다는 장점이 있다. 더욱이, 상기 미생물 담체는 기존 처리시설을 대규모로 개조함이 없이도 투입이 가능하므로 최소의 비용으로 처리효율을 향상시킬 수 있는 장점도 가진다.Recently, the development of the attached growth method for use in the floating growth method has been actively carried out. As the microbial carrier filled in the aeration tank increases the contact surface area with the microorganisms to increase the amount of microorganisms attached, eventually hydraulic It has the advantage of shortening the residence time. Moreover, since the microbial carrier can be introduced without large-scale remodeling of existing treatment facilities, treatment efficiency can be improved at a minimum cost.

이와 같은 미생물 담체는 일반적으로 그 재질에 따라 폴리염화비닐, 폴리에틸렌, 폴리우레탄 등과 같은 유기계와 다공성 제올라이트, 입상 활성탄, 세라믹 등과 같은 무기계로 구분되는데, 현재까지의 담체 개발은 미생물을 다량으로 표면에 부착시키기 위하여 주로 기공률, 비표면적 및 표면 거칠기를 증가하는 방향으로 진행되어 왔다.Such microbial carriers are generally classified into organic carriers such as polyvinyl chloride, polyethylene, polyurethane, etc., and inorganic carriers such as porous zeolite, granular activated carbon, and ceramics, depending on their material. In order to do this, progress has been made mainly in the direction of increasing porosity, specific surface area and surface roughness.

대한민국 등록특허 제10-1492833호Republic of Korea Patent No. 10-1492833 대한민국 등록특허 제10-0759833호Republic of Korea Patent No. 10-0759833 대한민국 공개특허 제10-2011-0084706호Republic of Korea Patent Publication No. 10-2011-0084706 대한민국 공개특허 제10-2004-0068824호Republic of Korea Patent Publication No. 10-2004-0068824

본 발명은 종래 기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 미생물을 다량으로 표면에 부착시킬 수 있는 구조를 가지며 정화 성능을 크게 향상시킬 수 있는 오수 및 폐수 처리용 담체 및 그 제조방법을 제공하는 것이다.The present invention has been made to solve the problems of the prior art, and an object of the present invention is a carrier for treating sewage and wastewater, which has a structure capable of attaching a large amount of microorganisms to the surface and can greatly improve purification performance, and manufacture thereof is to provide a way

본 발명의 해결하고자 하는 과제는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.The problem to be solved by the present invention is not limited to those mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.

상기한 목적을 달성하기 위하여 본 발명에 따른 오수 및 폐수 처리용 담체 제조방법은 슬러지 100중량부와, 상기 슬러지 100중량부를 기준으로 고로슬래그 30~50중량부와, 점토 20~40중량부와, 질석 10~20중량부와, 단섬유 1~10중량부를 포함하는 원료를 마련하는 단계와;
상기 원료와 규산나트륨 용액을 혼합한 혼합원료 조성물을 마련하는 단계와;
상기 혼합원료 조성물을 성형한 성형물을 마련하는 단계와;
상기 성형물을 소성하는 단계;를 포함하되,
상기 슬러지는 탄화물 기준으로 산화철이 35~45중량% 함유된 펄프 슬러지이고, 상기 단섬유는 산화알루미늄(Al2O3)와 이산화규소(SiO2)의 용융화합물을 0.1~1㎛의 굵기로 가공한 것이며,
상기 성형물의 소성은 1,000~1,200℃의 온도에서 2~7시간 동안 이루어지는 것을 특징으로 한다.
In order to achieve the above object, the method for manufacturing a carrier for sewage and wastewater treatment according to the present invention includes 100 parts by weight of sludge, 30 to 50 parts by weight of blast furnace slag based on 100 parts by weight of the sludge, 20 to 40 parts by weight of clay, Preparing a raw material containing 10 to 20 parts by weight of vermiculite and 1 to 10 parts by weight of short fibers;
preparing a mixed raw material composition in which the raw material and a sodium silicate solution are mixed;
preparing a molded article obtained by molding the mixed raw material composition;
Including; firing the molding;
The sludge is a pulp sludge containing 35 to 45% by weight of iron oxide on a carbide basis, and the short fiber is a molten compound of aluminum oxide (Al 2 O 3 ) and silicon dioxide (SiO 2 ) processed to a thickness of 0.1 to 1 μm. has done,
The firing of the molding is characterized in that it is performed for 2 to 7 hours at a temperature of 1,000 to 1,200 ° C.

또한, 본 발명에 따른 오수 및 폐수 처리용 담체 제조방법에 있어서, 원료와 규산나트륨 용액은 1 : 0.2~0.5의 중량비로 혼합한 것을 특징으로 한다.In addition, in the method for preparing a carrier for sewage and wastewater treatment according to the present invention, the raw material and the sodium silicate solution are mixed in a weight ratio of 1: 0.2 to 0.5.

또한, 본 발명에 따른 오수 및 폐수 처리용 담체 제조방법에 있어서, 성형물은 구형 또는 원통형 구조인 것을 특징으로 한다.In addition, in the method for manufacturing a carrier for sewage and wastewater treatment according to the present invention, the molding is characterized in that it has a spherical or cylindrical structure.

또한, 본 발명에 따른 오수 및 폐수 처리용 담체 제조방법에 있어서, 성형물의 소성은 1,000~1,200℃의 온도에서 2~7시간 동안 이루어지는 것을 특징으로 한다.In addition, in the method for manufacturing a carrier for sewage and wastewater treatment according to the present invention, the firing of the molded product is characterized in that it is performed at a temperature of 1,000 to 1,200 ° C for 2 to 7 hours.

본 발명에 따른 오수 및 폐수 처리용 담체 및 그 제조방법은 미생물을 다량으로 표면에 부착시킬 수 있는 구조를 가지며 정화 성능을 크게 향상시킬 수 있는 효과가 있다.The carrier for treating sewage and wastewater and the manufacturing method according to the present invention has a structure capable of attaching a large amount of microorganisms to the surface and has an effect of significantly improving purification performance.

본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.The effects of the present invention are not limited to those mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below.

이하 본 발명의 바람직한 실시예에 대하여 구체적으로 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail.

본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 판례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. In addition, terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to the intention of a user or operator or a precedent. Therefore, the definition should be made based on the contents throughout this specification.

본 발명에 따른 오수 및 폐수 처리용 담체는 미생물의 부착을 크게 증대시키고 미생물의 활성도를 촉진하여 처리 효율을 크게 높일 수 있는 생물학적 담체에 관한 것이다.The carrier for sewage and wastewater treatment according to the present invention relates to a biological carrier capable of significantly increasing the treatment efficiency by greatly increasing the attachment of microorganisms and promoting the activity of microorganisms.

본 발명에 따른 오수 및 폐수 처리용 담체 제조방법은 슬러지 100중량부와, 상기 슬러지 100중량부를 기준으로 고로슬래그 30~50중량부와, 점토 20~40중량부와, 질석 10~20중량부와, 세라믹 화이버 1~10중량부를 포함하는 원료를 마련하는 S1단계와, 상기 원료와 규산나트륨 용액을 혼합한 혼합원료 조성물을 마련하는 S2단계와, 상기 혼합원료 조성물을 성형한 성형물을 마련하는 S3단계와, 상기 성형물을 소성하는 S4단계를 포함하여 이루어질 수 있다.The method for manufacturing a carrier for sewage and wastewater treatment according to the present invention comprises 100 parts by weight of sludge, 30 to 50 parts by weight of blast furnace slag, 20 to 40 parts by weight of clay, and 10 to 20 parts by weight of vermiculite based on 100 parts by weight of the sludge. Step S1 of preparing a raw material including 1 to 10 parts by weight of ceramic fiber, step S2 of preparing a mixed raw material composition obtained by mixing the raw material and a sodium silicate solution, and S3 step of preparing a molded article obtained by molding the mixed raw material composition And, it may be made including a step S4 of firing the molding.

상기 슬러지는 수분함량이 5~20%인 폐수 슬러지, 하수 슬러지 또는 정수 슬러지인 것을 예시할 수 있다. 그 중에서 산화철이 다량 함유된 폐수 슬러지는 펄프 슬러지 또는 염색공장에서 발생하는 슬러지 등을 예시할 수 있는데, 이들 슬러지에는 고형물 기준으로 산화철이 함유된 응집제 투입으로 인해 다량의 산화철이 들어 있기 때문에 인에 대한 흡착 성능을 크게 향상시킬 수 있는 장점이 있다. 참고로 펄프 슬러지를 탄화시킨 탄화물에는 산화철이 35~45중량% 정도 함유되어 있는데, 이는 정수장 슬러지에 함유된 산화철 함량이 4~6중량%인 것과 대비할 때 현저히 많은 양이다.The sludge may be exemplified by wastewater sludge, sewage sludge or purified water sludge having a water content of 5 to 20%. Among them, wastewater sludge containing a large amount of iron oxide can be exemplified by pulp sludge or sludge generated in a dyeing factory. It has the advantage of greatly improving adsorption performance. For reference, the carbonized material obtained by carbonizing the pulp sludge contains about 35 to 45% by weight of iron oxide, which is a significantly larger amount compared to the iron oxide content of 4 to 6% by weight in the sludge of the water treatment plant.

상기 고로슬래그는 제철공정의 고로에서 발생되는 것으로, 특성에 따라 시멘트 첨가제, 파쇄골제 등의 성분으로 제한적으로 이용되고 있으며, 최근 건축용 재료, 요업재료 등 다방면으로 활용되고 있으며, 실리카 30~36%, 알루미나 12~18%, 산화철(Fe2O3) 0.25~0.35%, 산화칼슘(CaO) 38~45%, 산화마그네슘(MgO) 10.0% 이하, 산화황(SO3) 4.0% 이하의 조성을 가지는 것으로 알려져 있다.The blast furnace slag is generated in the blast furnace of the steelmaking process, and is limitedly used as a component such as cement additives and crushed bone agents according to characteristics, and is recently used in various fields such as building materials and ceramic materials, and silica 30 to 36% , alumina 12~18%, iron oxide (Fe 2 O 3 ) 0.25~0.35%, calcium oxide (CaO) 38~45%, magnesium oxide (MgO) 10.0% or less, sulfur oxide (SO 3 ) having a composition of 4.0% or less It is known.

상기 세라믹 화이버는 예를 들어 산화알루미늄(Al2O3)와 이산화규소(SiO2)의 용융화합물을 섬유 형태의 만든 것으로서, 담체의 비표면적을 넓히도록 굵기가 0.1~1㎛인 단섬유인 것이 바람직하며, 무른 성질을 가진 장석 첨가에 의한 담체의 강도 저하를 보강해주는 역할도 수행한다.The ceramic fiber is, for example, made of a molten compound of aluminum oxide (Al 2 O 3 ) and silicon dioxide (SiO 2 ) in the form of a fiber, and is a single fiber having a thickness of 0.1 to 1 μm to widen the specific surface area of the carrier. Preferably, it also serves to reinforce the decrease in strength of the carrier due to the addition of feldspar having a brittle property.

상기 점토는 성형 및 소성 과정에서 접착력을 제공하는 역할을 하는 것으로서, 20중량부 미만인 경우에는 접착 내지 결합재 성능을 충분히 발휘하기 어렵고, 40중량부를 초과하면 재활용 성분인 슬러지 내지 슬래그 함유량이 낮아져 제조원가가 크게 상승하고 초과량 대비 강도 증가가 크지 않으므로 상술한 범위로 제한하는 것이 바람직하다.The clay serves to provide adhesion during molding and firing, and when it is less than 20 parts by weight, it is difficult to sufficiently exhibit adhesion or binder performance, and when it exceeds 40 parts by weight, the content of sludge or slag, which is a recycled component, is lowered, resulting in a large manufacturing cost It rises and the increase in strength compared to the excess amount is not large, so it is preferable to limit it to the above-mentioned range.

본 발명에서는 점토와 함께 질석을 첨가하는 것을 특징으로 하는데, 질석은 소성 과정에서 팽창하여 미세 기공을 형성한다.In the present invention, vermiculite is added together with clay, and vermiculite expands during firing to form micropores.

상기 질석이 10중량부 미만인 경우에는 팽창 또는 기포 형성이 충분히 이루어지지 않게 되며, 20중량부를 초과하는 경우에는 다른 성분에 비해 상대적으로 과다하게 함유되어 강도 등 물성이 현저하게 저하되므로, 상술한 범위로 제한하는 것이 바람직하다.If the vermiculite is less than 10 parts by weight, expansion or bubble formation is not sufficiently achieved, and if it exceeds 20 parts by weight, it is relatively excessively contained compared to other components, so physical properties such as strength are significantly reduced. It is desirable to limit

본 발명의 S2단계에서 원료와 규산나트륨 용액은 1 : 0.2~0.5의 중량비로 혼합한 것인 것이 바람직한데, 규산나트륨 용액의 중량비가 0.2 미만이 되면 발포 성능과 접착력을 충분히 발휘하기 어렵고, 0.5을 초과하게 되면 원료와 대비할 때 상대적으로 과다하게 혼합되어 오히려 기공을 막을 수 있기 때문에 상술한 범위로 제한하는 것이 바람직하다.In step S2 of the present invention, the raw material and the sodium silicate solution are preferably mixed at a weight ratio of 1: 0.2 to 0.5. When the weight ratio of the sodium silicate solution is less than 0.2, it is difficult to sufficiently exhibit foaming performance and adhesive strength, If it is exceeded, it is preferable to limit it to the above-mentioned range because it can be mixed relatively excessively when compared with the raw material and rather block the pores.

본 발명의 규산나트륨 용액은 KS-3호(Na2O 9~10 중량%, SiO2 28~30 중량% 및 잔량은 물)의 규격을 가진 물유리 30~40중량부에 물 60~70중량부를 혼합한 것을 사용하였다.The sodium silicate solution of the present invention contains 60-70 parts by weight of water in 30-40 parts by weight of water glass having the specifications of KS-3 (9-10% by weight of Na 2 O, 28-30% by weight of SiO 2 and the remaining amount of water) A mixture was used.

본 발명의 S3단계는 혼합원료 조성물을 성형하여 성형물을 마련하고 건조하는 것으로서, 성형물은 10~30mm의 지름을 가진 구형 또는 원통형 구조인 것을 예시할 수 있으나, 이에 한정되는 것은 아니다.Step S3 of the present invention is to prepare and dry a molded product by molding the mixed raw material composition, and the molded product may have a spherical or cylindrical structure with a diameter of 10 to 30 mm, but is not limited thereto.

본 발명의 S4단계는 성형물을을 소성하여 담체를 형성하는 단계로서, 1,000~1,200℃의 온도에서 2~7시간 동안 소성하는 것을 예시할 수 있다.Step S4 of the present invention is a step of forming a carrier by firing the molding, and may be exemplified by firing at a temperature of 1,000 to 1,200 ° C. for 2 to 7 hours.

소성 온도가 1,000℃ 미만이 되면 질석의 팽창에 의한 기공 형성이 이루어지지 않고, 1,200℃를 초과하면 규산나트륨 용액 성분이 융착되어 기공을 막을 수 있으므로, 상술한 온도 범위로 제한하는 것이 바람직하다.When the firing temperature is less than 1,000 ° C., pores are not formed due to expansion of vermiculite, and when it exceeds 1,200 ° C., sodium silicate solution components are fused to block pores, so it is preferable to limit it to the above-described temperature range.

이하에서는 본 발명에 따른 질석을 이용한 경량 다공성 세라믹 소성체 제조방법의 바람직한 실시예를 통해 보다 상세하게 설명한다.Hereinafter, a method for manufacturing a lightweight porous ceramic sintered body using vermiculite according to the present invention will be described in more detail through a preferred embodiment.

S1. 폐수 슬러지 100중량부와, 고로슬래그 40중량부와, 점토 30중량부와, 질석 20중량부와, 세라믹 화이버 5중량부를 포함하는 원료를 마련한다.S1. Raw materials including 100 parts by weight of wastewater sludge, 40 parts by weight of blast furnace slag, 30 parts by weight of clay, 20 parts by weight of vermiculite, and 5 parts by weight of ceramic fibers are prepared.

S2. 원료와 규산나트륨 용액을 1 : 0.3 중량비로 혼합한 혼합원료 조성물을 마련한다.S2. Prepare a mixed raw material composition in which the raw material and the sodium silicate solution are mixed in a weight ratio of 1:0.3.

S3. 혼합원료 조성물을 성형하여 지름 20mm인 구형 성형물을 건조한다.S3. The mixed raw material composition is molded to dry a spherical molding having a diameter of 20 mm.

S4. 구형 성형물을 전기로에서 1,050℃의 온도에서 3시간 동안 소성하여 담체를 제조하고, 바실러스균 액상 종균제에 6시간 동안 침지시켰다.S4. The spherical molding was calcined in an electric furnace at a temperature of 1,050 ° C. for 3 hours to prepare a carrier, and then immersed in a Bacillus liquid spawn for 6 hours.

[비교예 1][Comparative Example 1]

실시예 1에서 폐수 슬러지 대신 하수 슬러지를 100중량부를 사용하고, 점토 함량을 55중량부로 사용하고, 질석과 세라믹 화이버를 생략한 것을 제외하고 실시예 1과 동일한 방법으로 담체를 제조하였다.A carrier was prepared in the same manner as in Example 1 except that 100 parts by weight of sewage sludge was used instead of wastewater sludge, 55 parts by weight of clay was used, and vermiculite and ceramic fibers were omitted.

[비교예 2][Comparative Example 2]

비교예 2에서 규산나트륨 용액 대신 물을 사용한 것을 제외하고 비교예 1과 동일한 방법으로 담체를 제조하였다.A carrier was prepared in the same manner as in Comparative Example 1, except that water was used instead of the sodium silicate solution in Comparative Example 2.

[시험예 1][Test Example 1]

탈질, 탈인의 정도를 측정하기 위하여 담체가 구비된 처리조로 유입되기 전과 후의 유출입 오수 내의 총질소, 총인을 정량분석하였으며, 알고 있는 농도의 물질로 조제된 표준 시료로부터 얻어진 표준 검량선을 이용해서 농도를 측정하였고, 이를 이용하여 제거율을 구하였다.In order to measure the degree of denitrification and dephosphorization, total nitrogen and total phosphorus were quantitatively analyzed in the inflow and outflow wastewater before and after being introduced into the treatment tank equipped with the carrier. It was measured, and the removal rate was obtained using this.

1. 암모니아성 질소: 암모니아성 질소는 페네이트(Phenate)방법을 이용하여 정량 분석하였고, 시료(유출입 오수) 10 mL에 0.4 mL의 페놀 용액과 0.4 mL의 소듐 나이트로푸르시드(sodium nitroprusside)용액, 1.0 mL의 산화제(oxidizing agent)를 첨가한 후 1 시간 정도 빛이 차단된 곳에서 발색시켜 암모니아가 하이포아염소산염(hypochlorite)과 페놀의 촉매하에 소듐나이트로푸르시드와 반응하여 푸른색의 인도페놀을 형성하게 되며 이를 640 nm의 분광광도계(spectrophotometer)로 측정하였다. 1. Ammonia nitrogen: Ammonia nitrogen was quantitatively analyzed using the phenate method, and 0.4 mL of phenol solution and 0.4 mL of sodium nitroprusside solution per 10 mL of sample (inflow and outflow sewage) , After adding 1.0 mL of an oxidizing agent, the color was developed in a place where light was blocked for about 1 hour, and ammonia reacted with sodium nitropurside under the catalyst of hypochlorite and phenol to obtain blue indophenol. is formed and it was measured with a 640 nm spectrophotometer.

2. 아질산성 질소: 열량계방법(calometric method)을 이용하여 정량분석하였으며, 시료(유출입 오수) 50 mL를 pH가 5 내지 9 사이에 있도록 HCl 또는 NaOH로 보정하여 보정된 시료에 N-(1-나프틸)-에틸렌디아민디하이드로클로라이드 (N-(1-naphthyl)-ethylenedia mine dihydrochloride:NED) 시약 1 mL를 넣은 후 10 분 동안 발색시키고, 2 시간 내에 분광 광도계를 이용하여 543 nm에서 흡광도를 측정하였다.2. Nitrite nitrogen: Quantitative analysis was performed using a calometric method, and 50 mL of the sample (influent/sewage) was calibrated with HCl or NaOH so that the pH was between 5 and 9, and the calibrated sample was N-(1- Naphthyl)-ethylenediamine dihydrochloride (N-(1-naphthyl)-ethylenedia mine dihydrochloride: NED) reagent 1 mL was added, and the color was developed for 10 minutes, and the absorbance was measured at 543 nm using a spectrophotometer within 2 hours. did

3. 질산성 질소: UV-분광광도계 스크린(spectrophotometric screening)방법을 이용하여 정량 분석하였고, 시료(유출입 오수) 25 mL에 1 N HCl 용액을 첨가하여 시료의 pH를 2에서 3 사이가 되도록 맞춘 후 UV-가시 분광광도계(visible spectrophotometer)를 이용하여 220 nm와 275 nm에서의 흡광도를 각각 측정하였다. 측정된 값은 A 220 nm - 2 (A 275 nm)의 식에 대입, 계산하여 실제 질산성 질소의 농도를 정량적으로 분석하였다.3. Nitrate nitrogen: Quantitative analysis was performed using a UV-spectrophotometric screening method, and 1 N HCl solution was added to 25 mL of the sample (inflow and outflow sewage) to adjust the pH of the sample to be between 2 and 3. Absorbance at 220 nm and 275 nm was measured using a UV-visible spectrophotometer, respectively. The measured value was substituted into the formula of A 220 nm - 2 (A 275 nm), and the actual concentration of nitrate nitrogen was quantitatively analyzed.

4. 총 질소: 퍼설페이트(Persulfate) 방법을 이용하여 시료(유출입 오수) 안에 있는 모든 질소성분을 질산염으로 산화시킨 후 정량 분석하였는바, 시료 mL 당 5 mL의 소화시약 (digest ion reagent)을 첨가한 후 오토클레이브(autoclave)에서 30 분간 가열하면 시료의 질소성분이 질산염 형태로 산화되는데 이를 질산염 측정법을 이용하여 정량하였다.4. Total nitrogen: As a result of quantitative analysis after oxidizing all nitrogen components in the sample (inflow and outflow sewage) to nitrate using the persulfate method, 5 mL of digest ion reagent was added per mL of sample After heating in an autoclave for 30 minutes, the nitrogen component of the sample is oxidized in the form of nitrate, which was quantified using the nitrate measurement method.

5. 인산염: 스탠뉴어스 클로라이드(Stannous chloride) 방법을 이용하여 정량 분석하였는바, 20 mL의 시료(유출입 오수)에 1 mL의 몰리브데이트 시약(molybdate reagent)과 2방울의 스탠뉴어스 클로라이드 시약을 첨가하면 스탠뉴어스 클로라이드 시약이 시료 안의 인산염 인과 반응하여 파란색 침전을 만드는데, 이를 690 nm의 UV-가시 분광광도계 (visible spectrophotometer)를 이용하여 정량하였다. 이때 발색반응이 온도와 시간에 따라 차이가 나므로 상온에서 스탠뉴어스 클로라이드 시약을 넣은 후 정확히 10 내지 12 분 사이에 흡광도를 측정하였다.5. Phosphate: Quantitative analysis was performed using the Stannous chloride method, 1 mL of molybdate reagent and 2 drops of Stannous chloride reagent in 20 mL of sample (inflow and outflow sewage) When added, the Stanyus chloride reagent reacts with phosphorus phosphate in the sample to form a blue precipitate, which was quantified using a 690 nm UV-visible spectrophotometer. At this time, since the color reaction differs depending on the temperature and time, the absorbance was measured exactly between 10 and 12 minutes after the Stanley's chloride reagent was added at room temperature.

6. 총 인: 퍼설페이트 소화(Persulfate digestion) 방법을 이용하여 정량 분석하였으며, 시료(유출입 오수) 50mL에 페놀프탈레인 지시약(phenolphthalein indicator)을 한 방울 넣고 붉은 색이 나타나면 황산용액을 무색이 되도록 첨가한 후, 1 mL의 황산용액을 추가로 첨가하였고 여기에 0.5 g의 과황산 칼륨(potassium persulfate)를 넣고 오토클레이브에서 30분간 가열하여 소화(digest)하면 시료의 모든 인 성분이 인산염 형태로 산화되고, 이를 인산염 인 정량분석 방법에 준하여 분석하였다.6. Total phosphorus: Quantitative analysis was performed using the persulfate digestion method. A drop of phenolphthalein indicator was added to 50mL of the sample (inflow and outflow sewage), and when a red color appeared, sulfuric acid solution was added to make it colorless. , 1 mL of sulfuric acid solution was additionally added, and 0.5 g of potassium persulfate was added thereto and heated in an autoclave for 30 minutes to digest. Phosphate phosphorus was analyzed according to the quantitative analysis method.

7. 생화학적 산소 요구량(BOD; Biochemical Oxygen Demand): 3개의 BOD병에 시료(유출입 오수)를 담고 그 중 하나의 병에서 아지드 수정(azide modification)방법을 이용하여 초기 용존산소량(DO initial)을 측정하고, 다른 두 병을 20 ℃ 배양기에 넣고 빛이 없는 상태에서 5일간 배양시킨 후 최종 용존산소량(DO final)을 측정하여, 초기 용존산소량과 최종 용존산소량의 차이로부터 생화학적 산소 요구량(BOD)을 측정하였다. 아지드수정(Azide modifica tion) 방법에서는 BOD병에 담겨있는 시료에 황산망간(manganous sulfate) 용액과 알칼리-아이오다이드-아지드 시약(alkali-iodide-azide reagent)을 각각 1 mL씩 넣은 후 흔들어 섞으면 갈색 침전이 형성되는데 침전이 반쯤 가라앉았을 때, 진한 황산용액을 1 mL 넣어 흔들어 섞어 완전히 녹였으며, 이 시료 중 200 mL를 다른 플라스크에 부은 후 지시약으로 전분(starch) 용액을 몇 방울 떨어뜨리면 푸른색이 나타나는데 티오설페이트(thiosulfate) 적정액으로 무색이 될 때까지 적정하였으며, 이때 사용된 적정액의 양으로 시료의 용존산소량(mg/L)을 얻었다.7. Biochemical Oxygen Demand (BOD): Put samples (inflow and outflow sewage) in three BOD bottles, and use the azide modification method in one of the bottles to determine the initial amount of dissolved oxygen (DO initial) was measured, and the other two bottles were placed in an incubator at 20 ° C and incubated for 5 days in the absence of light, and the final dissolved oxygen amount (DO final) was measured. ) was measured. In the azide modifica tion method, add 1 mL each of manganous sulfate solution and alkali-iodide-azide reagent to the sample contained in the BOD bottle, then shake. Upon mixing, a brown precipitate was formed. When the precipitate sank halfway, 1 mL of concentrated sulfuric acid solution was added and shaken to dissolve completely. Pour 200 mL of this sample into another flask and add a few drops of starch solution as an indicator to blue When a color appeared, it was titrated until it became colorless with a thiosulfate titrant, and at this time, the amount of dissolved oxygen (mg/L) of the sample was obtained by the amount of the titrant used.

8. 화학적 산소 요구량(COD; Chemical Oxygen Demand)은 수중의 유기물을 [0088] 화학적으로 산화시킬 때 소비되는 산소량으로 정의하며 단위는 mg/L로 표시하는바, 본 실험에서는 오픈 리플럭스(open reflux) 방법을 사용하였으며 그 방법은 우선 500 mL 환류 플라스크에 50 mL의 시료(유출입 오수)를 담고 황산수은(mercuric sulfate) 1 g을 넣은 후 황산 시약 (sulfuric acid reagent) 5 mL를 천천히 가하여 차갑게 식힌 후, 니크롬산칼륨(potassium dichromate) 용액을 25 mL 넣고 70 mL의 황산 지시약(sulfuric acid reagent)을 넣은 후, 끝이 열려있는 컨덴서(condenser)를 연결하고 2 시간 동안 가열기에서 끓인 다음 식히고, 페로인(ferroin) 지시약을 0.15 mL 넣은 후 철 황산염 암모늄(ferrous ammonium sulfate(FAS)) 적정액으로 적정하였으며 이때 소비된 적정액의 양을 하기의 수학식 1에 대입하여 화학적 산소요구량(mg/L)을 구하였다.8. Chemical Oxygen Demand (COD) is defined as the amount of oxygen consumed when organic matter in water is chemically oxidized, and the unit is expressed as mg/L. In this experiment, open reflux ) method was used, and the method was to first put 50 mL of sample (inflow and outflow sewage) into a 500 mL reflux flask, add 1 g of mercuric sulfate, slowly add 5 mL of sulfuric acid reagent, cool it, and , After adding 25 mL of potassium dichromate solution and 70 mL of sulfuric acid reagent, connect a condenser with an open end, boil in a heater for 2 hours, cool, ferroin ( After adding 0.15 mL of the ferroin indicator, the titration was performed with a ferrous ammonium sulfate (FAS) titrant, and the amount of titrant consumed at this time was substituted into Equation 1 below to calculate the chemical oxygen demand (mg / L) did

[수학식 1][Equation 1]

화학적 산소요구량=(바탕시험에 사용된 FAS양-시료에 사용된 FAS양)*FAS 몰Chemical Oxygen Demand = (Amount of FAS used in the blank test - Amount of FAS used in the sample) * moles of FAS

농도 * 8000(변환인자) / 시료의 부피(mL)Concentration * 8000 (conversion factor) / sample volume (mL)

9. 부유물질(SS): 우선 사용할 여과지(glass fiber filter, 90 mm dia., 0.7 um pore size)로 증류수를 여과한 후, 103 내지 105 ℃의 건조기에서 일정시간 건조시키고 이를 황산 데시케이터에서 식히고 무게를 정량하고 그 다음 여과지로 일정량의 시료를 여과하고, 이를 건조기에서 일정시간 건조한 후 앞의 방법에 따라 무게를 측정하여 여과 후 여과지의 무게와 여과 전 여과지의 무게의 차이로부터 부유물질의 양(mg/L)을 측정하였다.9. Suspended solids (SS): After filtering distilled water with a filter paper (glass fiber filter, 90 mm dia., 0.7 um pore size) to be used first, drying in a dryer at 103 to 105 ° C for a certain period of time, and then drying it in a sulfuric acid desiccator Cool and weigh, then filter a certain amount of sample with filter paper, dry it in a dryer for a certain period of time, and then measure the weight according to the previous method. (mg/L) was measured.

상기의 시험방법에 따라 얻은 시험결과는 아래 표 1과 같다.The test results obtained according to the above test method are shown in Table 1 below.

제거율(%)Removal rate (%) 실시예 1Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2 SSSS 96.296.2 73.973.9 68.268.2 BODBOD 95.495.4 71.571.5 65.365.3 CODCOD 92.092.0 68.468.4 64.964.9 총 질소total nitrogen 89.189.1 65.265.2 61.861.8 총 인total phosphorus 88.988.9 59.759.7 55.555.5

위 표 1에서 평균 유입수는 60.1(mg/L)이고, 평균 유출수는 4.2(mg/L)이다.In Table 1 above, the average influent is 60.1 (mg/L) and the average outlet is 4.2 (mg/L).

위 표 1을 참조하면, 본 발명에 따른 담체는 비교예 1, 2와 대비할 때 SS, BOD, COD, 총 질소 및 총 인에 대한 제거율이 현저히 높다는 것을 확인할 수 있었다.Referring to Table 1 above, it was confirmed that the carrier according to the present invention had significantly higher removal rates for SS, BOD, COD, total nitrogen and total phosphorus when compared to Comparative Examples 1 and 2.

이상에서 설명된 본 발명은 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그러므로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.The present invention described above is only exemplary, and those skilled in the art will appreciate that various modifications and equivalent other embodiments are possible therefrom. Therefore, it will be well understood that the present invention is not limited to the forms mentioned in the detailed description above. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims. It is also to be understood that the present invention includes all modifications, equivalents and alternatives within the spirit and scope of the present invention as defined by the appended claims.

Claims (5)

슬러지 100중량부와, 상기 슬러지 100중량부를 기준으로 고로슬래그 30~50중량부와, 점토 20~40중량부와, 질석 10~20중량부와, 단섬유 1~10중량부를 포함하는 원료를 마련하는 단계와;
상기 원료와 규산나트륨 용액을 혼합한 혼합원료 조성물을 마련하는 단계와;
상기 혼합원료 조성물을 성형한 성형물을 마련하는 단계와;
상기 성형물을 소성하는 단계;를 포함하되,
상기 슬러지는 탄화물 기준으로 산화철이 35~45중량% 함유된 펄프 슬러지이고, 상기 단섬유는 산화알루미늄(Al2O3)와 이산화규소(SiO2)의 용융화합물을 0.1~1㎛의 굵기로 가공한 것이며,
상기 성형물의 소성은 1,000~1,200℃의 온도에서 2~7시간 동안 이루어지는 것을 특징으로 하는 오수 및 폐수 처리용 담체 제조방법.
Preparation of raw materials including 100 parts by weight of sludge, 30 to 50 parts by weight of blast furnace slag, 20 to 40 parts by weight of clay, 10 to 20 parts by weight of vermiculite, and 1 to 10 parts by weight of short fibers based on 100 parts by weight of the sludge step of doing;
preparing a mixed raw material composition in which the raw material and a sodium silicate solution are mixed;
preparing a molded article obtained by molding the mixed raw material composition;
Including; firing the molding;
The sludge is a pulp sludge containing 35 to 45% by weight of iron oxide on a carbide basis, and the short fiber is a molten compound of aluminum oxide (Al 2 O 3 ) and silicon dioxide (SiO 2 ) processed to a thickness of 0.1 to 1 μm. has done,
Method for producing a carrier for sewage and wastewater treatment, characterized in that the firing of the molding is performed at a temperature of 1,000 to 1,200 ° C. for 2 to 7 hours.
제1항에 있어서,
상기 원료와 규산나트륨 용액은 1 : 0.2~0.5의 중량비로 혼합한 것을 특징으로 하는 오수 및 폐수 처리용 담체 제조방법.
According to claim 1,
The method of manufacturing a carrier for sewage and wastewater treatment, characterized in that the raw material and the sodium silicate solution are mixed in a weight ratio of 1: 0.2 to 0.5.
제1항에 있어서,
상기 성형물은 구형 또는 원통형 구조인 것을 특징으로 하는 오수 및 폐수 처리용 담체 제조방법.
According to claim 1,
The method of manufacturing a carrier for sewage and wastewater treatment, characterized in that the molding has a spherical or cylindrical structure.
삭제delete 청구항 1, 2 및 3 중 어느 하나의 방법으로 제조된 것을 특징으로 하는 오수 및 폐수 처리용 담체.

A carrier for sewage and wastewater treatment, characterized in that it is produced by the method of any one of claims 1, 2 and 3.

KR1020220078031A 2022-06-27 2022-06-27 Sewage and wastewater treatment carrier and manufacturing method thereof KR102530855B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220078031A KR102530855B1 (en) 2022-06-27 2022-06-27 Sewage and wastewater treatment carrier and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220078031A KR102530855B1 (en) 2022-06-27 2022-06-27 Sewage and wastewater treatment carrier and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR102530855B1 true KR102530855B1 (en) 2023-05-11

Family

ID=86379008

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220078031A KR102530855B1 (en) 2022-06-27 2022-06-27 Sewage and wastewater treatment carrier and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102530855B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030002222A (en) * 2001-06-30 2003-01-08 한국지질자원연구원 Porous mineral media for wastewater treatment and manufacturing process of the same
KR20040068824A (en) 2003-01-27 2004-08-02 미래이엔씨주식회사 Micro Bio-carrier for fluidizing reactor by using waste slag and fly ash
KR100759833B1 (en) 2006-04-21 2007-09-18 한국과학기술연구원 Active material for biological treatment of sewage and waste water, microbic media containing the active material and method for preparing the same
KR20110084706A (en) 2010-01-18 2011-07-26 제네다인엔지니어링 (주) Porous carrier for microbial immobilization and method for preparing the same
KR101492833B1 (en) 2012-08-16 2015-02-12 이해연 Media For Wastewater Treatment Using Sewage Sludge And Manufacturing Method Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030002222A (en) * 2001-06-30 2003-01-08 한국지질자원연구원 Porous mineral media for wastewater treatment and manufacturing process of the same
KR20040068824A (en) 2003-01-27 2004-08-02 미래이엔씨주식회사 Micro Bio-carrier for fluidizing reactor by using waste slag and fly ash
KR100759833B1 (en) 2006-04-21 2007-09-18 한국과학기술연구원 Active material for biological treatment of sewage and waste water, microbic media containing the active material and method for preparing the same
KR20110084706A (en) 2010-01-18 2011-07-26 제네다인엔지니어링 (주) Porous carrier for microbial immobilization and method for preparing the same
KR101492833B1 (en) 2012-08-16 2015-02-12 이해연 Media For Wastewater Treatment Using Sewage Sludge And Manufacturing Method Thereof

Similar Documents

Publication Publication Date Title
KR100434676B1 (en) Porous mineral media for wastewater treatment and manufacturing process of the same
US4221657A (en) Biological fermentation substrates
CN112321255A (en) Pervious concrete with biological water purification function and preparation method thereof
KR102530855B1 (en) Sewage and wastewater treatment carrier and manufacturing method thereof
KR100434679B1 (en) Porous ceramic media for wastewater treatment using wastes and manufacturing process of the same
CN111253121A (en) Baking-free bioactive filler with ammonia removal and denitrification functions and preparation method thereof
Bao et al. Production of zeolite composite filters using waste paper pulp as slow release carbon source and performance investigation in a biological aerated filter
KR101492833B1 (en) Media For Wastewater Treatment Using Sewage Sludge And Manufacturing Method Thereof
Han et al. Characterization of stone powder sludge foams and their application to wastewater treatment: Role of pore connectivity
CN105936561B (en) Treatment method of explosive wastewater
CN100496682C (en) Mesoporous silicon dioxde film and antibiotics pharmacy waste water purification treating method
KR102621653B1 (en) Garbage landfill leachate purification system
KR100336449B1 (en) The ceramic media using pottery stone and making method thereof
KR20000010218A (en) Ceramic carrier and preparation method thereof
KR100449443B1 (en) Manufacturing method of bioceramic media for native microorganisms
KR100781712B1 (en) Manufacturing method for carrier
KR100433031B1 (en) Porous ceramic support for microbes fixation and method of preparation thereof
KR20210085322A (en) Media for Water Treatment Using Zeolite and Preparation Method thereof
KR101347132B1 (en) A functional carrier and the manufacturing method for water treatment system
Vacková et al. The possibility of using encapsulated nitrifiers for treatment of reject water coming from anaerobic digestion
KR101261365B1 (en) Solid support for forwastewater treatment
CN117430291B (en) Impurity removal and purification process for acrylamide wastewater
KR200187211Y1 (en) Supporting apparatus of media for contacting the biomembrane
CN115536305B (en) Modified siliceous material and preparation method and application thereof
JPH0710531A (en) Porous powder and production thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant