JPH1080697A - Complete treatment of organic sewage - Google Patents
Complete treatment of organic sewageInfo
- Publication number
- JPH1080697A JPH1080697A JP8236709A JP23670996A JPH1080697A JP H1080697 A JPH1080697 A JP H1080697A JP 8236709 A JP8236709 A JP 8236709A JP 23670996 A JP23670996 A JP 23670996A JP H1080697 A JPH1080697 A JP H1080697A
- Authority
- JP
- Japan
- Prior art keywords
- zeolite
- tank
- water
- ammonia
- packed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Water Treatment By Sorption (AREA)
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、下水などのアンモ
ニア性窒素を含有する有機性汚水を高度に浄化する処理
方法に関し、特に前記有機性汚水からアンモニア性窒素
を従来技術よりも著しく高い除去率で除去することがで
きる有機性汚水の処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a treatment method for highly purifying organic sewage containing ammonia nitrogen, such as sewage, and more particularly to a method of removing ammonia nitrogen from the organic sewage which is significantly higher than the prior art. The present invention relates to a method for treating organic sewage that can be removed by a method.
【0002】[0002]
【従来の技術】下水などのアンモニア性窒素を含有する
有機性汚水を処理してその窒素を除去する方法として最
も代表的な技術は、硝化液循環型生物学的硝化脱窒素法
である。この技術は、有機性汚水をまず生物学的脱窒素
部に供給し、そこで後の硝化部から循環されてくる硝化
液と混合されて脱窒素反応が生じ、そこで得た脱窒素液
を硝化部に供給してアンモニアを硝化(酸化)し、その
硝化液の一部を前記の脱窒素部に循環し、他部を沈殿槽
に供給し、沈降する活性汚泥を分離し、上澄液の処理液
を得る方法である。この硝化脱窒素法を改良した方法と
して、反応速度が小さい硝化部に硝化菌を固定したゲル
担体を投入し硝化速度を高める技術も最近実用化されて
いる。従来の方法では、下水を処理する場合において窒
素除去率が80%程度が得られており、処理水にはアン
モニアがほとんど残らないところまで行っているが、硝
酸性窒素が10mg/リットル程度残留するという問題
点がある。従って、この方法では、窒素除去率を90%
以上にすることは原理的に不可能であり、放流水域の富
栄養化を防止することには極めて不十分であった。2. Description of the Related Art The most typical technique for treating organic sewage containing ammoniacal nitrogen, such as sewage, to remove the nitrogen is a nitrification liquid circulation type biological nitrification denitrification method. In this technology, organic sewage is first supplied to a biological denitrification section, where it is mixed with a nitrification solution circulated from a subsequent nitrification section to cause a denitrification reaction, and the denitrification liquid obtained there is converted to a nitrification section. To nitrify (oxidize) ammonia, circulate a part of the nitrification liquid to the above-mentioned denitrification part, supply the other part to the sedimentation tank, separate the settling activated sludge, and treat the supernatant liquid It is a method of obtaining a liquid. As an improved method of the nitrification denitrification method, a technique of increasing the nitrification rate by introducing a gel carrier having nitrifying bacteria immobilized in a nitrification section having a low reaction rate has recently been put to practical use. In the conventional method, when the sewage is treated, a nitrogen removal rate of about 80% is obtained, and the treatment is performed until almost no ammonia remains in the treated water, but about 10 mg / liter of nitrate nitrogen remains. There is a problem. Therefore, in this method, the nitrogen removal rate is 90%.
It was impossible in principle to do the above, and it was extremely insufficient to prevent eutrophication of the discharge water area.
【0003】さらに、硝化液を脱窒素部に循環する水量
が莫大であり(原水水量の3倍以上)、循環ポンプの駆
動に要する動力が多大であるという欠点もある。また、
有機性汚水からのアンモニアの化学的除去方法として
は、ゼオライトによる選択的イオン交換吸着法が公知で
あり、下水を生物学的硝化脱窒素が行われない通常の活
性汚泥法で処理した後、ゼオライトでアンモニアを吸着
除去する方法が過去において検討されているが、アンモ
ニアを吸着したゼオライトの再生薬品として塩化ナトリ
ウム水溶液を使用している関係で、塩化ナトリウム、ア
ンモニアを高度に含む再生排液が多量に発生し、この処
分も極めて困難であった。そのため、この方法が実用化
された例はなかった。Further, there is a disadvantage that the amount of water circulating the nitrification solution to the denitrification section is enormous (three times or more the amount of raw water), and the power required to drive the circulation pump is large. Also,
As a method for chemically removing ammonia from organic sewage, a selective ion exchange adsorption method using zeolite is known, and after treating sewage with a normal activated sludge method in which biological nitrification denitrification is not performed, zeolite is used. In the past, methods for adsorbing and removing ammonia have been studied in the past, but because of the use of aqueous sodium chloride as a regenerating chemical for ammonia-adsorbed zeolites, a large amount of regenerated effluent containing sodium chloride and ammonia at high levels Occurred and this disposal was also extremely difficult. Therefore, there was no example in which this method was put to practical use.
【0004】このような技術的背景から、本発明者は、
先に生物学的硝化脱窒素法とゼオライト吸着法を結合し
た新技術(特開平8−52494号公報)を提示した。
この方法では窒素除去率が約95%と高いものであり、
処理水の全窒素含有量が約2mgと低い優れた方法であ
る。しかし、この方法でも、ゼオライト再生排液の処分
については難点があり、高濃度の塩化ナトリウム、アン
モニアを含んだ再生排液が発生するため、合理的に処分
できなかった。また所要時間の長い硝化工程及びポンプ
所要動力の多大な硝化液循環工程を省略することができ
なかった。[0004] From such a technical background, the present inventor:
A new technology combining a biological nitrification denitrification method and a zeolite adsorption method has been presented (JP-A-8-52494).
With this method, the nitrogen removal rate is as high as about 95%,
This is an excellent method in which the total nitrogen content of the treated water is as low as about 2 mg. However, even with this method, there is a problem in disposal of the zeolite regenerated effluent, and a regenerated effluent containing high-concentration sodium chloride and ammonia is generated, and thus cannot be rationally disposed. In addition, the nitrification step that requires a long time and the nitrification liquid circulation step that requires a large amount of power required by the pump could not be omitted.
【0005】[0005]
【発明が解決しようとする課題】本発明は、生物学的硝
化脱窒素法とゼオライト吸着法を結合した処理方法にお
いて伴う問題点を解決することを課題とするものであ
り、所要時間の長い硝化工程を不要にでき、ゼオライト
の再生及び再生排液の合理的な処分が可能である新規な
処理方法を提供することを課題とするものである。SUMMARY OF THE INVENTION An object of the present invention is to solve the problems associated with a treatment method combining a biological nitrification denitrification method and a zeolite adsorption method. It is an object of the present invention to provide a novel treatment method which can eliminate the need for a step and can regenerate zeolite and rationally dispose of a regenerated effluent.
【0006】[0006]
【課題を解決するための手段】本発明者は、前記の課題
を解決するために、前記の生物学的硝化脱窒素法とゼオ
ライト吸着法を結合した処理方法において伴う問題点が
生ずる原因や各工程の組合せについて検討した結果、活
性汚泥法のプロセス構成を変革し、かつゼオライトによ
る選択的イオン交換法、再生法を新規な態様で統合する
ことにより、上記課題を解決できることを見出した。す
なわち、本発明は、下記の手段により前記の課題を解決
することができた。 (1)アンモニア性窒素を含有する有機性汚水を生物学
的脱窒素部に供給して脱窒素した後、好気性生物処理
し、該生物処理水をゼオライト充填層に供給してアンモ
ニアを吸着除去して処理水を得る汚水処理工程(A)、
該アンモニア吸着ゼオライト層に水を供給しながら、前
記層の下部から酸素含有ガスで曝気し、該ゼオライトに
固定された硝化菌によってゼオライトに吸着したアンモ
ニアを硝化してゼオライトから脱着させてゼオライトを
再生させ、再生排水を流出させる吸着剤再生工程
(B)、該再生工程(B)からの再生排水を前記生物学
的脱窒素部に供給する循環工程(C)を有することを特
徴とする有機性汚水の高度処理方法。In order to solve the above-mentioned problems, the present inventor has set forth the causes and problems of the problems associated with the above-described treatment method combining the biological nitrification denitrification method and the zeolite adsorption method. As a result of examining the combination of steps, it was found that the above problem can be solved by changing the process configuration of the activated sludge process and integrating the selective ion exchange method and the regeneration method using zeolite in a novel manner. That is, the present invention has solved the above-mentioned problems by the following means. (1) Organic wastewater containing ammoniacal nitrogen is supplied to a biological denitrification unit to denitrify, and then subjected to aerobic biological treatment, and the biologically treated water is supplied to a zeolite packed bed to adsorb and remove ammonia. Wastewater treatment process (A) to obtain treated water
While supplying water to the ammonia-adsorbed zeolite layer, aerating with oxygen-containing gas from the lower part of the layer, nitrifying bacteria adsorbed on zeolite by nitrifying bacteria fixed to the zeolite, and desorbing from zeolite to regenerate zeolite An adsorbent regeneration step (B) for causing the regeneration wastewater to flow out, and a circulation step (C) for supplying the regeneration wastewater from the regeneration step (B) to the biological denitrification unit. Advanced treatment of sewage.
【0007】なお、本発明において用いる「ゼオライ
ト」としては、ゼオライト、モデルナイト、クリノプチ
ライト、合成ゼオライトなどのゼオライト系鉱物を総称
するものである。従来の生物学的硝化脱窒素法は、処理
水中にアンモニアを残留させないことを基本的な設計思
想としているため、脱窒素部を先にし、脱窒素部から硝
化部に導入し、硝化部からの流出スラリを沈殿槽に導
き、残留する窒素分を硝酸性窒素の形で含有する処理水
を得ることを必須としている。硝化脱窒素の段階を2段
に重ねて行う場合においても同様である。The term "zeolite" used in the present invention is a general term for zeolite minerals such as zeolite, model knight, clinoptilite and synthetic zeolite. Since the conventional biological nitrification denitrification method has a basic design concept of not leaving ammonia in the treated water, the denitrification section is introduced first, then the denitrification section is introduced into the nitrification section, and the It is essential that the effluent slurry be guided to a sedimentation tank to obtain treated water containing residual nitrogen in the form of nitrate nitrogen. The same applies to the case where nitrification and denitrification are performed in two stages.
【0008】これに対して、本発明は、硝化部という工
程を除き、活性汚泥法の曝気槽の前段に嫌気的な脱窒素
部を設け、後記するゼオライトの生物再生水中の硝酸性
窒素を有機性汚水の有機炭素源を利用して脱窒素するも
のである。次に、生物学的脱窒素槽の流出水中の少量の
残留BODを好気性生物処理、例えば活性汚泥処理槽に
流入させ、BODを除去する。この活性汚泥処理工程で
は硝化を起こさせる必要はなく、BODを除去するだけ
でよいので、短時間の反応槽で良い。硝酸性窒素が生成
すると、後段のゼオライト吸着塔で吸着されないで、処
理水に入ってしまうためである。On the other hand, according to the present invention, an anaerobic denitrification section is provided in the former stage of the activated sludge aeration tank except for a step of nitrification section, and nitrate nitrogen in biologically regenerated water of zeolite described later is converted to organic. It denitrifies using the organic carbon source of sewage. Next, a small amount of residual BOD in the effluent of the biological denitrification tank flows into an aerobic biological treatment, for example, an activated sludge treatment tank, and the BOD is removed. In this activated sludge treatment step, it is not necessary to cause nitrification, and it is only necessary to remove the BOD. This is because when nitrate nitrogen is generated, it is not adsorbed by the zeolite adsorption tower in the subsequent stage and enters the treated water.
【0009】次に活性汚泥処理槽からの流出スラリを固
液分離槽(沈殿槽など)に導き、アンモニアを意図的に
残留させた処理水を粒状ゼオライト充填槽に供給し、ア
ンモニアを選択的イオン交換吸着して除去し、アンモニ
アが高度に除去された処理水を得る。ゼオライトへの原
水通水速度は下水処理に適用する場合、SV3〜30
(1/H)、好ましくはSV4〜8(1/H)とするの
がよい。このようにして運転を続けると、ゼオライトの
アンモニア吸着量が飽和するので、この時点で通水を止
め、粒状ゼオライトの再生を行う。再生法として種々の
方法を検討した結果、次のように行うことらって効果的
に粒状ゼオライトを生物学的に再生できることを見いだ
した。Next, the slurry discharged from the activated sludge treatment tank is guided to a solid-liquid separation tank (such as a sedimentation tank), and treated water in which ammonia is intentionally left is supplied to a granular zeolite packed tank, and ammonia is selectively ionized. It is removed by exchange adsorption to obtain treated water from which ammonia has been highly removed. When the raw water flow rate to zeolite is applied to sewage treatment, SV3 to 30
(1 / H), preferably SV 4 to 8 (1 / H). If the operation is continued in this manner, the amount of adsorbed ammonia on the zeolite is saturated. At this point, the flow of water is stopped, and the granular zeolite is regenerated. As a result of studying various methods as a regeneration method, it was found that the granular zeolite can be effectively biologically regenerated by performing the following method.
【0010】すなわち、原水(沈殿池越流水)の通水を
止め、図1のようにゼオライト充填槽処理水の一部をゼ
オライト層を有するゼオライト充填槽11に通水しなが
ら(SV1〜5程度が好ましい)、前記ゼオライト充填
塔11の下部から酸素含有ガス(空気、酸素、酸素富化
空気のいずれか)を曝気させる。この結果、ゼオライト
の表面に硝化菌が自然増殖して固定化される。この硝化
菌によってゼオライトに吸着さたアンモニアが次の反応
によって硝酸性窒素に酸化される。 NH4 + + 2O2 → NO3 - + 2H+ + H2 0 (1) また、次の反応も同時に生起していることが推定され
た。 NH4 + + NO3 - → N2 + 2H2 0 (2) 生成した硝酸性窒素及び窒素ガスはゼオライトへの吸着
性を持たないので、ゼオライトから離脱し液側に移行
し、ゼオライトが再生される。硝酸性窒素を含有する再
生排水は、前記生物学的脱窒素部に供給し、原水中の有
機炭素源(BOD)を脱窒素菌のための有機炭素源とし
て生物学的に窒素に還元され脱窒素される。That is, the flow of the raw water (flow over the sedimentation basin) is stopped, and a part of the treated water of the zeolite filling tank is passed through the zeolite filling tank 11 having a zeolite layer as shown in FIG. Is preferable), and an oxygen-containing gas (any of air, oxygen, and oxygen-enriched air) is aerated from the lower part of the zeolite packed tower 11. As a result, nitrifying bacteria naturally grow on the surface of the zeolite and are immobilized. Ammonia adsorbed on zeolite by the nitrifying bacteria is oxidized to nitrate nitrogen by the following reaction. NH 4 + + 2O 2 → NO 3 − + 2H + + H 2 0 (1) Further, it was estimated that the following reaction occurred simultaneously. NH 4 + + NO 3 − → N 2 + 2H 2 0 (2) Since the generated nitrate nitrogen and nitrogen gas do not have adsorbability to zeolite, they are separated from zeolite and migrate to the liquid side to regenerate zeolite. You. The regenerated wastewater containing nitrate nitrogen is supplied to the biological denitrification section, and the organic carbon source (BOD) in the raw water is biologically reduced to nitrogen as an organic carbon source for denitrifying bacteria and denitrified. Nitrogen.
【0011】[0011]
【発明の実施の形態】本発明を実際に実施する態様を図
面により説明すると、原水1は脱窒素槽2に導入して脱
窒素反応を行わせ、そこからの流出スラリ3を曝気槽4
に導入し、空気5による曝気で好気性処理を行わせ、そ
のスラリを沈殿槽7に入れて汚泥を沈殿分離させ、上澄
水8を第1ゼオライト充填槽10に送りアンモニアを除
去させる。第1ゼオライト充填槽10から流出する水は
処理水13としてその大半を取り出す。沈殿槽7からの
汚泥9は、その大部分を返送汚泥15として脱窒素槽2
に返送し、残りの汚泥は余剰汚泥16として系外に排出
する。既に処理に用いてアンモニアを吸着している第2
ゼオライト充填槽11には処理水13の一部を導入し、
空気12を吹き込み、生物処理することによりゼオライ
トを再生する。同槽11から出た水は生物再生排水14
として原水1と合流させる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, an embodiment of the present invention will be described. Raw water 1 is introduced into a denitrification tank 2 to carry out a denitrification reaction.
The slurry is put into a sedimentation tank 7 for sludge sedimentation separation, and the supernatant water 8 is sent to a first zeolite filling tank 10 to remove ammonia. Most of the water flowing out of the first zeolite filling tank 10 is taken out as treated water 13. Most of the sludge 9 from the settling tank 7 is returned to the denitrification tank 2 as returned sludge 15.
And the remaining sludge is discharged out of the system as surplus sludge 16. The second that has already used the process to adsorb ammonia
A part of the treated water 13 is introduced into the zeolite filling tank 11,
The zeolite is regenerated by blowing air 12 and performing biological treatment. The water discharged from the tank 11 is biological regeneration wastewater 14
And merge with the raw water 1.
【0012】ゼオライト充填層を備えたゼオライト充填
槽は図1のように2系列用意しておき、一方のゼオライ
ト充填槽11の生物再生中に、原水をもう一方のゼオラ
イト充填槽10に通水し、アンモニアを吸着除去するよ
うにするのが良い。なお、ゼオライトへの硝化菌の付着
を促進し、生物再生がスタートアップ時から円滑に進む
ようにするためには次の方法が推薦できる。すなわち、
運転当初に原水をゼオライト充填層に通水しながら、同
層の下部から酸素含有ガスを供給して曝気すると、所要
時間経過後にゼオライト表面に硝化菌が高濃度に固定化
される。この状態になってから曝気を止め、原水を通水
すると、アンモニアのゼオライトへの吸着が行われ、か
つゼオライトの生物再生時に速やかに硝化反応が進こと
が認められた。As shown in FIG. 1, two zeolite-filled tanks each having a zeolite-filled layer are prepared, and raw water is passed through another zeolite-filled tank 10 during biological regeneration of one zeolite-filled tank 11. It is better to adsorb and remove ammonia. The following method can be recommended in order to promote the attachment of nitrifying bacteria to zeolite and make the biological regeneration proceed smoothly from the start-up. That is,
When oxygen-containing gas is supplied from the lower part of the zeolite packed bed while supplying raw water to the zeolite packed bed at the beginning of operation and aeration is performed, nitrifying bacteria are immobilized on the zeolite surface at a high concentration after a lapse of a required time. When the aeration was stopped and the raw water passed through in this state, it was recognized that the ammonia was adsorbed on the zeolite, and that the nitrification reaction proceeded promptly during the biological regeneration of the zeolite.
【0013】ゼオライト生物再生の所要時間は、本発明
者の実験によれば、ゼオライトのアンモニアの吸着量に
よって変化し、再生を開始する時点のゼオライトのアン
モニア吸着量が多い程当然、再生時間は長くなるが、ア
ンモニア吸着量が5〜10mgN/g・ゼオライトの場
合に、12〜24時間程度で十分な再生が可能であるこ
とが認められた。この外の本発明の他の実施態様とし
て、次のような方法を採用することができる。 活性汚泥処理工程、又は脱窒素部に粒状ゲルなどの
微生物付着担体を共存させ、BOD除去速度、脱窒素速
度を向上させる方法。 生物処理工程の脱窒素槽の前に嫌気槽を追加し、原
水と返送汚泥を嫌気槽に供給した後、図1の脱窒素部に
流入させる構成とし生物脱リンを生起させる方法。 生物処理槽に無機凝集剤を添加して、リンを凝集除
去する方法。According to an experiment conducted by the present inventor, the time required for zeolite biological regeneration varies depending on the amount of ammonia adsorbed on the zeolite, and the longer the amount of ammonia adsorbed on the zeolite at the start of regeneration, the longer the regeneration time is naturally. However, it was recognized that sufficient regeneration was possible in about 12 to 24 hours when the amount of adsorbed ammonia was 5 to 10 mg N / g zeolite. As another embodiment of the present invention other than the above, the following method can be adopted. A method for improving the BOD removal rate and the denitrification rate by coexisting a microorganism-adhering carrier such as a granular gel in the activated sludge treatment step or the denitrification section. An anaerobic tank is added before the denitrification tank in the biological treatment step, and raw water and returned sludge are supplied to the anaerobic tank, and then flow into the denitrification section in FIG. 1 to generate biological dephosphorization. A method of adding an inorganic coagulant to a biological treatment tank to coagulate and remove phosphorus.
【0014】[0014]
【実施例】以下、実施例により本発明を具体的に説明す
る。ただし、本発明はこれらの実施例のみに限定される
ものではない。 実施例1 図1に示す処理工程に従って、第1表に示す平均水質を
もつ下水を対象に、本発明の方法の実証試験を行った。
粒状ゼオライトには、ジークライト工業(株)の製品で
ある山形県産産出の天然粒状ゼオライト(平均粒径2〜
3mm)を使用した。試験条件を第2表に示す。The present invention will be described below in detail with reference to examples. However, the present invention is not limited to only these examples. Example 1 A verification test of the method of the present invention was performed on sewage having an average water quality shown in Table 1 in accordance with the processing steps shown in FIG.
The granular zeolite is a natural granular zeolite produced in Yamagata Prefecture (average particle size of 2
3 mm). Table 2 shows the test conditions.
【0015】[0015]
【表1】 [Table 1]
【0016】[0016]
【表2】 [Table 2]
【0017】実験の結果、処理が定常状態になってから
のゼオライト槽流出水の水質は、第3表に示すように窒
素が高度に除去されており、T−Nが2mg/リットル
以下の処理水が安定して得られた。As a result of the experiment, the water quality of the effluent of the zeolite tank after the treatment was in a steady state was as shown in Table 3 in which nitrogen was highly removed and the TN was 2 mg / liter or less. Water was obtained stably.
【0018】[0018]
【表3】 [Table 3]
【0019】[0019]
【発明の効果】本発明においては、次に挙げる効果を有
する。 (1)生物学的脱窒素技術とゼオライトによる選択的イ
オン交換反応を新規な態様で結合し、かつ粒状ゼオライ
トを新規な生物再生法によって再生し、再生排水を生物
学的脱窒素部で処分するようにしたので、処理水にアン
モニア性窒素及び硝酸性窒素が極めて微量しか残留せ
ず、高度の窒素除去率が安定して得られる。 (2)反応速度が遅い硝化工程が不要であり、硝化液の
脱窒素部への循環も不要であるので、生物処理槽の所要
容積が小さくてすみ、建設コストが低く、循環ポンプ動
力も不要であるので、省エネルギーが図れる。 (3)ゼオライト充填槽でSSのろ過も同時に行えるの
で、一石二鳥の効果がある。 (4)ゼオライトを生物再生するので、ゼオライト再生
薬品が不要である。また、再生排液の処分も生物学的に
簡単に行える。The present invention has the following effects. (1) Combine biological denitrification technology with selective ion exchange reaction with zeolite in a novel manner, and regenerate particulate zeolite by a novel biological regeneration method, and dispose of regenerated wastewater in a biological denitrification section. As a result, very small amounts of ammonia nitrogen and nitrate nitrogen remain in the treated water, and a high nitrogen removal rate can be stably obtained. (2) The nitrification process, which has a slow reaction rate, is not required, and the nitrification solution is not required to be circulated to the denitrification section. Therefore, the required volume of the biological treatment tank is small, the construction cost is low, and the circulating pump power is unnecessary. Therefore, energy can be saved. (3) Since the filtration of SS can be performed simultaneously in the zeolite filling tank, there is an effect of two birds per stone. (4) Since zeolite is biologically regenerated, a zeolite regenerating chemical is unnecessary. Also, disposal of the regenerated effluent can be biologically easily performed.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の有機性汚水の高度処理方法の一態様を
表した工程図を示す。FIG. 1 is a process chart showing one embodiment of an advanced treatment method for organic wastewater of the present invention.
1 原水 2 脱窒素槽 3 流出スラリ 4 曝気槽 5 空気 6 スラリ 7 沈殿槽 8 上澄水 9 汚泥 10 第1ゼオライト充填槽 11 第2ゼオライト充填槽 12 空気 13 処理水 14 生物再生排水 15 返送汚泥 16 余剰汚泥 Reference Signs List 1 raw water 2 denitrification tank 3 outflow slurry 4 aeration tank 5 air 6 slurry 7 settling tank 8 supernatant water 9 sludge 10 first zeolite filling tank 11 second zeolite filling tank 12 air 13 treated water 14 biological regeneration wastewater 15 return sludge 16 surplus Sludge
Claims (1)
を生物学的脱窒素部に供給して脱窒素した後、好気性生
物処理し、該生物処理水をゼオライト充填層に供給して
アンモニアを吸着除去して処理水を得る汚水処理工程
(A)、該アンモニア吸着ゼオライト層に水を供給しな
がら、前記層の下部から酸素含有ガスで曝気し、該ゼオ
ライトに固定された硝化菌によってゼオライトに吸着し
たアンモニアを硝化してゼオライトから脱着させてゼオ
ライトを再生させ、再生排水を流出させる吸着剤再生工
程(B)、該再生工程(B)からの再生排水を前記生物
学的脱窒素部に供給する循環工程(C)を有することを
特徴とする有機性汚水の高度処理方法。Claims 1. An organic wastewater containing ammonia nitrogen is supplied to a biological denitrification unit to denitrify, and then subjected to aerobic biological treatment, and the biologically treated water is supplied to a zeolite packed bed to remove ammonia. A sewage treatment step (A) in which treated water is obtained by adsorption and removal, while supplying water to the ammonia-adsorbed zeolite layer, aerating with oxygen-containing gas from the lower part of the layer, and converting the zeolite into zeolite by nitrifying bacteria fixed to the zeolite. An adsorbent regeneration step (B) in which the adsorbed ammonia is nitrified and desorbed from the zeolite to regenerate the zeolite and drain the regeneration wastewater, and the regeneration wastewater from the regeneration step (B) is supplied to the biological denitrification unit Advanced treatment method for organic sewage, comprising a circulating step (C).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23670996A JP3555812B2 (en) | 1996-09-06 | 1996-09-06 | Advanced treatment method for organic wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23670996A JP3555812B2 (en) | 1996-09-06 | 1996-09-06 | Advanced treatment method for organic wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1080697A true JPH1080697A (en) | 1998-03-31 |
JP3555812B2 JP3555812B2 (en) | 2004-08-18 |
Family
ID=17004610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23670996A Expired - Fee Related JP3555812B2 (en) | 1996-09-06 | 1996-09-06 | Advanced treatment method for organic wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3555812B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100869058B1 (en) | 2008-03-28 | 2008-11-17 | (주)대성그린테크 | Treatment pocess for the industrial wastewater loaded high nitrogen |
JP2012024762A (en) * | 2011-09-22 | 2012-02-09 | Chugoku Electric Power Co Inc:The | Microorganism-immobilized carrier, dhs reactor, biological nitrification and denitrification apparatus, and method for using the apparatus |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100794336B1 (en) | 2007-07-25 | 2008-01-15 | 주식회사 부강테크 | Wastewater processing apparatus employing a biological filtering device |
KR101046277B1 (en) * | 2008-07-16 | 2011-07-04 | 주식회사 부강테크 | Wastewater Treatment System for Two-stage Multi-layer Biofiltration Process |
-
1996
- 1996-09-06 JP JP23670996A patent/JP3555812B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100869058B1 (en) | 2008-03-28 | 2008-11-17 | (주)대성그린테크 | Treatment pocess for the industrial wastewater loaded high nitrogen |
JP2012024762A (en) * | 2011-09-22 | 2012-02-09 | Chugoku Electric Power Co Inc:The | Microorganism-immobilized carrier, dhs reactor, biological nitrification and denitrification apparatus, and method for using the apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3555812B2 (en) | 2004-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11285696A (en) | Device and method for sewage treatment | |
JP2002263689A (en) | Method for treating ammonia-containing waste water and device | |
JP3555807B2 (en) | Organic wastewater nitrogen removal method | |
JP2992692B2 (en) | Sewage purification method and apparatus | |
JP3555812B2 (en) | Advanced treatment method for organic wastewater | |
KR100243729B1 (en) | Method for treating wastewater biologically by continuously cycling and regenerating powdered zeolite in the bioreactor | |
JP3552754B2 (en) | Advanced treatment method of organic sewage and its apparatus | |
JP2003154390A (en) | Method and apparatus for treating ammonia-containing sewage | |
JP3837760B2 (en) | Treatment method of flue gas desulfurization waste water | |
JP3222015B2 (en) | Biological water treatment method for wastewater containing ammonia nitrogen | |
JP3346690B2 (en) | Method for removing nitrogen and phosphorus from organic wastewater | |
JPH0999293A (en) | Treatment of organic sewage | |
JPH0975987A (en) | Method for removing nitrogen in high level from organic sewage | |
JP3407342B2 (en) | Biological denitrification / phosphorus removal equipment | |
JP3222014B2 (en) | Biological water treatment method for wastewater containing ammonia nitrogen | |
JPS60129194A (en) | Treatment of sewage | |
JP3496789B2 (en) | Organic wastewater treatment method and treatment device | |
JPH05277475A (en) | Treatment method for water containing organic substance | |
JPH05154495A (en) | Method for nitrifying and denitrifying organic waste water | |
JP2002263688A (en) | Method and device for treating organic polluted water | |
JPH0985285A (en) | High-degree removal of nitrogen in organic sewage | |
JP3491794B2 (en) | Advanced nitrogen removal method and apparatus for sewage | |
JPH1099893A (en) | Method for highly removing nitrogen of organic sewage | |
JPH06170388A (en) | Treatment of sewage | |
JPH0985287A (en) | High-degree removal of nitrogen of organic sewage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040506 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040507 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |