KR100869058B1 - Treatment pocess for the industrial wastewater loaded high nitrogen - Google Patents

Treatment pocess for the industrial wastewater loaded high nitrogen Download PDF

Info

Publication number
KR100869058B1
KR100869058B1 KR1020080028999A KR20080028999A KR100869058B1 KR 100869058 B1 KR100869058 B1 KR 100869058B1 KR 1020080028999 A KR1020080028999 A KR 1020080028999A KR 20080028999 A KR20080028999 A KR 20080028999A KR 100869058 B1 KR100869058 B1 KR 100869058B1
Authority
KR
South Korea
Prior art keywords
nitrification
nitrogen
zeolite
tank
denitrification
Prior art date
Application number
KR1020080028999A
Other languages
Korean (ko)
Inventor
이미란
Original Assignee
(주)대성그린테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)대성그린테크 filed Critical (주)대성그린테크
Priority to KR1020080028999A priority Critical patent/KR100869058B1/en
Application granted granted Critical
Publication of KR100869058B1 publication Critical patent/KR100869058B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1263Sequencing batch reactors [SBR]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/345Biological treatment of water, waste water, or sewage characterised by the microorganisms used for biological oxidation or reduction of sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time

Abstract

A method of treating industry wastewater containing a nitrogen having a high concentration is provided to reduce a nitrogen category ejected to a water-base and to cutting down a budget required to the advanced treatment improvement of waste water processing facilities by reducing the nitrogen amount flown into the waste water processing facilities by securing a processing capability of the discharging facilities. An NH4-N is separated from an effluent passing through the coagulation sedimentation pre-process in the zeolite adhesion bath(1). The effluent in which the ammonia is separated through a zeolite adsorption process of the zeolite adhesion bath is transferred an SBR(3) and an organic compound is removed. The remained NH4-N is discharged after the remained NH4-N is passed through a nitrification and a de-nitrogen process. An NH4-N-absorbed water which is attached and detached by transferring the effluent at the SBR and a nitrification tank(2) the same time is converted into NO3-N by nitrification microorganism. The effluent of which the nitrification is finished is transferred to a sulfation denitrification tank(4) in the nitrification tank, the S2- S0, and S2O32- of sulfide are oxidized to SO4- by the sulfation microorganism, returned to the zeolite adhesion bath, and circulated to feedwater necessary for regenerating zeolite.

Description

고농도 질소함유 산업폐수 처리방법{TREATMENT POCESS FOR THE INDUSTRIAL WASTEWATER LOADED HIGH NITROGEN}High concentration nitrogen containing industrial wastewater treatment method {TREATMENT POCESS FOR THE INDUSTRIAL WASTEWATER LOADED HIGH NITROGEN}

폐수 중의 고농도 NH4-N을 제올라이트 이온교환을 통해 50% 분리시켜 C/N비를 조정한 후 SBR에서 처리한 후 방류하고, 제올라이트 재생에 의해 분리된 NH4-N은 질산화반응조에서 질산화 완료 후 황산화탈질조에서 탈질시키며, 제올라이트 재생약품으로는 NaHCO3을 사용하여 질산화와 황산화탈질 시 소비되는 알칼리도의 공급을 유도하는 한편, 질산화반응조에서 배양된 질산화미생물을 SBR에 공급하여 처리효율을 증가시키는 원리로 구성된 처리방법에 관한 것이다.The high concentration of NH 4 -N in the wastewater was separated by 50% through zeolite ion exchange to adjust the C / N ratio, and then discharged after treatment in SBR. After completion of nitrification in the nitrification tank, NH 4 -N was separated. Denitrification in sulphation denitrification tank, NaHCO 3 is used as a zeolite regeneration chemical to induce nitrification and alkalinity consumed in desulfurization denitrification, and nitrification microorganism cultured in nitrification tank is supplied to SBR to increase treatment efficiency. It relates to a treatment method composed of a principle to make.

국내에 질소규제가 본격적으로 도입된 이후 우리나라의 생물학적고도처리 기술수준은 급격히 향상되어 왔으며, 실질적으로 DNR, NPR, KSBNR, KIDEA, HANT, BCS 등의 공정이 개발되어 현장에 적용되는 성과가 있었다. 또한, 매립지 침출수와 축산폐수에서의 질소문제가 부각되면서 고농도 질소처리에 관한 기술은 오히려 외국 에 비해 우세에 하다고 볼 수도 있는 수준에 와있다. Since the introduction of nitrogen regulation in Korea, the level of biological advanced processing technology in Korea has been rapidly improved, and DNR, NPR, KSBNR, KIDEA, HANT, and BCS have been developed and applied to the field. In addition, as the problem of nitrogen in landfill leachate and livestock wastewater is highlighted, the technology of high concentration nitrogen treatment is rather superior to foreign countries.

그럼에도, 고농도 질소 함유 산업폐수처리를 위한 공정이 개발이 미흡했던 첫째 이유는 그동안 우리나라의 수처리 분야 시장이 정부와 지자체에 의해 주도되었기 때문이다. 즉, 외환위기사태 및 기업의 낮은 수익성 등에 의해 시장이 불안정한 민간 산업폐수처리시설 분야보다는 확보된 예산을 바탕으로 시장이 형성된 공공처리시설 분야에 환경분야 기술개발이 집중되는 것은 당연한 현상이라고 할 수 있다. 그리고 처리공정 개발이 원활하지 않았던 두 번째 이유는 고농도 질소함유 산업폐수의 성상이 대부분 C/N 비가 낮아 생물학적 질소제거가 용이하지 않은 특성을 갖고 있으므로 기존에 개발된 생물학적 처리방식을 갖고 접근하는데 어려움이 있었기 때문이다. 생물학적처리가 어려운 침출수와 축산폐수의 경우에도 원수 특성상 C/N 비가 충분히 확보되어있고, C/N 비가 낮은 편인 하수의 경우에는 원수에 포함된 질소농도가 낮아 높은 효율의 질소제거가 이루어지지 않아도 방류수 수질기준을 달성하는데 어려움이 없었다. 따라서 기존의 공정을 가지고 C/N 비가 낮은 고농도 질소함유 산업폐수를 처리하고자 한다면 질산화를 위한 막대한 반응조 용량확보, 탈질을 위한 고가의 외부탄소원 투입 등의 문제 때문에 사용부지가 제한되어있고 이윤을 중요시하는 산업체에서 수용하기 어려운 것이 현실이다. Nevertheless, the first reason why the process for industrial wastewater treatment containing high concentration of nitrogen is insufficient is that the domestic water treatment market has been led by the government and local governments. In other words, it is not surprising that the development of environmental technology in the field of public treatment facilities where the market was formed based on the budget secured, rather than the private industrial wastewater treatment facilities, where the market is unstable due to the financial crisis and low profitability of companies. . The second reason why the development of the treatment process was not smooth was that most of the high-density nitrogen-containing industrial wastewater had a low C / N ratio, which made it difficult to remove biological nitrogen. Because it was. Even in the case of leachate and livestock waste, which are difficult to treat biologically, the C / N ratio is sufficiently secured due to the nature of raw water, and in the case of sewage with low C / N ratio, the nitrogen concentration contained in the raw water is low, so that the effluent is not efficiently removed. There was no difficulty in achieving the water quality standards. Therefore, if you want to treat high concentration nitrogen containing industrial wastewater with low C / N ratio with the existing process, the site of use is limited and profit is important because of the enormous amount of reactor capacity for nitrification and the input of expensive external carbon source for denitrification. The reality is that it is difficult for industry to accept.

이러한 실정 때문에 폐수종말처리시설의 질소규제가 강화됨에 따라 구역 내 개별 업체 중 질소배출부하를 저감할 필요가 있는 사업장과 폐수를 단독처리한 후 직접 배출하는 데 있어 배출기준을 달성하는데 어려움을 겪고 있는 사업장에게 현실적인 대안이 될 수 있는 처리공정의 개발이 매우 절실하다. 이에 본 발명자는 C/N 비가 낮고 고농도의 암모니아성 질소를 함유한 중규모 산업폐수를 특정대상으로 하여 반응조 용량의 증가를 억제하고, 동력비와 약품비 등의 유지관리비가 저렴한 처리방법을 개발하고자 한다. Due to this situation, as the nitrogen regulation of wastewater treatment facilities is strengthened, it is difficult to achieve emission standards in the direct treatment of wastewater and workplaces that need to reduce nitrogen emission load among individual companies in the area. There is an urgent need to develop a treatment process that can be a realistic alternative for a workplace. Accordingly, the present inventors aim to develop a treatment method that has a low C / N ratio and suppresses an increase in reactor capacity by targeting a medium-sized industrial wastewater containing a high concentration of ammonia nitrogen, and maintains maintenance costs such as power costs and chemical costs.

본 발명은 폐수종말처리시설 배출기준을 달성함과 동시에 경제성이 확보된 고농도 암모니아성 질소함유 중규모 산업폐수 처리방법을 제공하기 위해, 산업폐수에서 NH4-N을 50% 분리하여 후단 SBR에 유입되는 폐수의 C/N 비를 탈질에 적정하도록 조정하고, 제올라이트 재생을 통해 탈착되는 NH4-N을 질산화반응조(MBR)로 유입시켜 고효율로 질산화를 진행시키고, 질산화반응조에서 유출되는 NO3-N을 황산화탈질조로 유입시켜 고가의 외부탄소원 대신 저가의 황을 이용하여 탈질시키며,질산화반응조에서 발생하는 잉여 질산화미생물을 SBR로 유입시켜 SBR 내 질산화미생물을 인위적으로 증가시키고, 제올라이트 재생에 필요한 약품으로 NaHO3를 사용하여 질산화반응조와 황산화탈질조에서 소비되는 알칼리도를 공급하는 고농도 암모니아성 질소함유 중규모 산업폐수 처리방법의 제공을 발명의 목적으로 한다.The present invention is to provide a high concentration ammonia nitrogen-containing medium-sized industrial wastewater treatment method while achieving the discharge standard of wastewater treatment facilities and economic feasibility, by separating 50% of NH 4 -N from the industrial wastewater is introduced into the rear SBR Adjust the C / N ratio of the waste water to denitrification, induce NH 4 -N denitrification through zeolite regeneration into the nitrification tank (MBR) to proceed nitrification with high efficiency, and remove NO 3 -N from the nitrification tank. By desulfurization denitrification tank, denitrification using inexpensive sulfur instead of expensive external carbon source, surplus nitrification microorganisms generated in nitrification reactor is introduced into SBR to artificially increase nitrification microorganisms in SBR, and NaHO as a chemical necessary for regeneration of zeolite a high concentration by using a three-supplying alkalinity consumed in the nitrification tank and the denitrification tank sulfated ammonium nitrogen-containing medium-sized And the provision of a wastewater treatment method up to the object of the invention.

상기 목적을 달성하기 위해, 본 발명은 응집침전 전처리 과정을 거친 폐수를 2계열 구성을 갖는 제올라이트흡착조로 유입하여 제올라이트 흡착과정을 통한 NH4-N의 분리와, 암모니아 분리와 제올라이트 재생과정을 통한 NH4-N의 탈착과정을 거치는 흡·탈착 단계와,In order to achieve the above object, the present invention is introduced into the zeolite adsorption tank having a two-series configuration of the wastewater undergoing the coagulation sedimentation pretreatment process, the separation of NH 4 -N through the zeolite adsorption process, NH through the ammonia separation and zeolite regeneration process Adsorption / desorption step of 4 -N desorption process,

상기 제올라이트흡착조의 제올라이트 흡착과정을 통해 암모니아가 분리된 폐수를 연속회분식반응조로 이송하여 유기물의 제거, 잔류 NH4-N 질산화 및 자체 탈질 과정을 거친 후 방류하는 단계와,Transferring the wastewater from which ammonia has been separated through the zeolite adsorption process of the zeolite adsorption tank to a continuous batch reaction tank for removal of organic matter, residual NH 4 -N nitrification and self-denitrification, and then discharged;

상기 연속회분식반응조의 제올라이트 재생과정을 통해 탈착된 NH4-N 함유수를 질산화반응조로 이송하여 질산화미생물에 의해 NO3-N로 전환하는 질산화 단계와,A nitrification step of transferring the NH 4 -N-containing water desorbed through the zeolite regeneration process of the continuous batch reaction tank to a nitrification tank and converting it into NO 3 -N by a nitrification microorganism;

그 질산화반응조에서 질산화가 완료된 폐수를 황산화탈질조로 이송하여 황화합물의 S2 -, S0, S2O3 2 -를 황산화미생물에 의해 SO4 -로 산화시켜 다시 제올라이트흡착조로 반송하여 제올라이트 재생에 필요한 공급수로 순환시키는 단계로 이루어지는 고농도 질소함유 산업폐수 처리방법을 주요 기술적 구성으로 한다.The conveyed oxidized back to the twos zeolite adsorbent zeolite play-that of a sulfur compound by nitrification is transferring the complete wastewater twos sulfated denitrification in the nitrification tank S 2 -, S0, S 2 O 3 2 - the SO 4 by sulfating microorganism The main technical composition is the method of treating high concentration nitrogen containing industrial wastewater, which is circulated to the required feed water.

상기 질산화반응조는 유입 공기량을 9 ~ 12ℓ/min으로 유지하는 것으로, 그 질산화미생물은 니트로소모나스(Nitrosomonas), 니트로박터(Nitrobacter)로서, 암모니아성 질소가 니트로소모나스(Nitrosomonas)에 의해 아질산성 질소로 전환되고, 그 아질산성 질소는 니트로박터(Nitrobacter)에 의해 질산성 질소로 전환되는 것을 특징으로 하며, 상기 황산화탈질조의 황산화미생물은 티오바실러스 데니트리피칸 스(Thiobacillus denitrificans) 또는 티오미크로스피라 데니트리피칸스(Thiomicrospira denitrificans) 중 선택되는 어느 1종 또는 2종 이상의 혼합인 것을 특징으로 한다.The nitrification tank maintains an inlet air volume of 9 to 12 l / min. The nitrifying microorganisms are nitrosomonas and nitrobacter, and ammonia nitrogen is nitrite nitrogen by nitrosomonas. The nitrite nitrogen is converted to nitrate nitrogen by Nitrobacter, and the sulfated microorganism of the sulphate denitrification tank is Thiobacillus denitrificans or thiomicrospira. Denitripicans ( T hiomicrospira denitrificans) is characterized in that any one or a mixture of two or more selected.

그리고 상기 연속회분식반응조는 질산화반응조로부터 지속적으로 질산화미생물을 공급받을 수 있도록 구성되고, 그 연속회분식반응조의 처리수는 황산화탈질조로 유입되도록 구성된 것을 특징으로 한다.The continuous batch reaction tank is configured to receive a nitrification microorganism continuously from the nitrification reaction tank, and the treated water of the continuous batch reaction tank is configured to flow into the desulfurization denitrification tank.

이하, 상기 기술적 구성을 더욱 상세히 살펴보도록 한다.Hereinafter, the technical configuration will be described in more detail.

고농도 질소를 함유하는 산업폐수는 발생원 및 성상이 다양하기 때문에 하나의 정형화된 방법으로 모든 형태의 폐수를 처리할 수 없으므로 처리방법 구성에 앞서 폐수특성에 대한 기본적인 분류가 필요하다. 따라서 폐수유형을 정확히 결정하고 파악하여 수처리 과정을 거치는 것이 바람직하다. 고농도 질소함유 산업폐수를 다음의 3가지 유형으로 분류하였다.(폐수배출시설 표준원단위 조사연구보고서(국립환경연구원)의 data를 참고로 분류한 것이며, RFP에 의거 전자, 식품폐수처리시설은 분류대상에서 제외한 것임)Since industrial wastewater containing high concentration of nitrogen has various sources and characteristics, it is not possible to treat all types of wastewater by one standardized method, so it is necessary to classify wastewater characteristics before constructing treatment method. Therefore, it is desirable to go through the water treatment process by accurately determining the wastewater type. Industrial wastewater containing high concentration of nitrogen was classified into the following three types. (It is classified based on the data of the research report (National Institute of Environmental Research) on the standard unit of wastewater discharge facility.) Electronic and food wastewater treatment facilities are classified according to RFP. Excluded from)

표 1. 고농도 질소함유 산업폐수 유형분류Table 1. Types of industrial wastewater containing high concentrations of nitrogen

구분division 특성characteristic 배출시설Discharge facility 1형 Type 1 BOD, TN의 농도가 모두 높고 C/N비가 9~32이며, 자체탈질이 가능한 폐수 예) 석탄화합물제조 BOD 5,632mg/l, TN 595mg/l COD 2,489mg/l, SS 276mg/l BOD/N ratio 9.5   High concentrations of BOD and TN, 9-32 C / N ratio, self-denitrification wastewater) Coal compound production BOD 5,632mg / l, TN 595mg / l COD 2,489mg / l, SS 276mg / l BOD / N ratio 9.5 석탄화합물 부타디엔계 화학물질 살균/살충제/농업용화학품 화장품 치약  Coal Compound Butadiene Chemicals Sterilization / Pesticides / Agricultural Chemicals Cosmetic Toothpaste 2형 Type 2 BOD, TN의 농도가 모두 높고 C/N비가 2~6이며, SS제거 목적의 응집침전 처리 시 부수적으로 발생되는 BOD 제거로 인해 자체탈질에 필요한 C/N 비를 유지하지 못하는 폐수 예) 비료제조시설 BOD 809mg/l, TN 376mg/l COD 300mg/l, SS 1,200mg/l BOD/N ratio 2.2   Wastewater that has high concentrations of BOD and TN, C / N ratio is 2 ~ 6, and does not maintain C / N ratio necessary for self denitrification due to BOD removal which is incidental to coagulation sedimentation treatment for SS removal. Facility BOD 809 mg / l, TN 376 mg / l COD 300 mg / l, SS 1,200 mg / l BOD / N ratio 2.2 비료/질소화합물 비철금속제련/정련/합금 산업용 가스 기초 무기화합물 고무 및 플라스틱 기타 섬유제품 가죽/모피가공/제품 유리/유리제품 석유화학계기초화합물 합성연료유연제/기타착색 합성수지/기타플라스틱   Fertilizers / Nitrogen compounds Non-ferrous metals Smelting / Refining / Alloys Industrial gases Basic inorganic compounds Rubber and plastics Other fiber products Leather / fur processing / Products Glass / Glass products Petrochemical base compounds Synthetic fuels Softeners / Other colored synthetic resins / Other plastics 3형 Type 3 BOD 농도는 낮고 TN 농도가 높으며 C/N 비가 1 미만인 폐수 예) 강관제조시설 BOD 68mg/l, TN 162mg/l COD 94mg/l, SS 95mg/l BOD/N ratio 0.4   Wastewater with low BOD concentration, high TN concentration and C / N ratio below 1) Steel pipe manufacturing facilities BOD 68mg / l, TN 162mg / l COD 94mg / l, SS 95mg / l BOD / N ratio 0.4 금속주조 강관제조, 철강압연 등 비철금속제련/정련/합금 동압연압출/연신제품   Metal casting Steel pipe manufacturing, Steel rolling, etc.Non-ferrous metal smelting / refining / alloy copper rolling extrusion / stretching products

상기 표 1에서 알 수 있듯이 고농도 질소함유 폐수를 배출하는 업체의 상당부분이 폐수 2형에 속한다. C/N 비가 높은 폐수 1형의 경우 외부탄소원을 주입하지 않고 일반적인 생물학적 고도처리방법(MLE, A2/O, SBR 등)을 통해 질소제거가 가능하다. 한편, C/N 비가 역전된 폐수 3형은 주로 금속제품을 질산으로 세척하는 과정에서 발생하기 때문에 폐수 내 질소가 NO3-N의 형태이므로 탈질전용 방법을 적용하면 처리가 가능하다. As can be seen in Table 1, a large portion of companies that discharge high concentration nitrogen-containing wastewater belongs to wastewater type 2. In case of wastewater type 1 with high C / N ratio, nitrogen can be removed through general biological advanced treatment methods (MLE, A2 / O, SBR, etc.) without injecting external carbon sources. On the other hand, since the C / N ratio is inverted wastewater type 3 mainly occurs in the process of washing the metal product with nitric acid, nitrogen in the wastewater is in the form of NO 3 -N can be treated by applying the denitrification only method.

그러나 폐수 2형의 경우 주로 NH4-N 형태의 고농도 질소가 존재하기 때문에 질산화미생물 확보를 위한 반응조의 대용량화와 이에 따른 슬러지 발생량 증가가 따르고, 낮은 C/N 비 때문에 저하되는 탈질효율을 상승시키기 위하여 고가의 외부탄소원(메탄올)을 반드시 투입하여야 한다. 따라서 폐수 2형을 배출하는 산업체는 기존의 생물학적 처리방식을 적용할 경우 넓은 부지를 확보하고 다량의 슬러지처리와 고가의 외부 탄소원 투입에 필요한 유지관리비의 상승 때문에 시설설치에 제약을 받고 있다. 또한 수질환경 보전 측면에서 볼 때도 상당량의 고농도 질소함유 폐수가 2형에 속한다.However, in the case of wastewater type 2, since the high concentration of nitrogen in the form of NH 4 -N is mainly present, the capacity of the reactor to secure the nitrification microorganism is increased and the sludge generation amount is increased, and the denitrification efficiency is lowered due to the low C / N ratio. Expensive external carbon sources (methanol) must be added. Therefore, the industry that discharges wastewater type 2 is constrained by the installation of the facility because of the large amount of land secured by the existing biological treatment method and the increase of maintenance costs required for the treatment of large amounts of sludge and the input of expensive external carbon sources. In addition, in terms of water conservation, a considerable amount of high nitrogen-containing wastewater is in type 2.

본 발명에서는 BOD, TN의 농도가 모두 높고 C/N비가 2 ~ 6이며, SS제거 목적 응집침전 처리 시 부수적으로 발생하는 BOD 제거로 인해 자체 탈질에 필요한 C/N 비를 유지하지 못하는 폐수를 그 처리대상으로 하는 것으로, 그 폐수의 처리를 위한 각 방법에 대해 상세히 살펴보도록 한다.In the present invention, the concentrations of both BOD and TN are high and the C / N ratio is 2 to 6, and the wastewater that does not maintain the C / N ratio necessary for its own denitrification due to the BOD removal incidentally generated during the coagulation sedimentation treatment for SS removal is As the object of treatment, each method for the treatment of the wastewater will be described in detail.

NHNH 44 -N 흡·탈착 단계-N adsorption and desorption step

응집침전 등의 전처리를 거친 폐수는 제올라이트흡착조를 통과하면서 NH4-N이 분리되며 그 효율은 50%에 달한다. 상기 제올라이트흡착조를 2계열 구성을 갖는 것으로, 이는 하나의 계열이 암모니아 흡착을 진행하는 동안 다른 계열은 탈착을 진행하는 방식을 번갈아가며 반복함으로써 시간의 단락이 없도록 구성된 것이다.Wastewater, which has undergone pretreatment such as coagulation sedimentation, passes through the zeolite adsorption tank to separate NH 4 -N and the efficiency reaches 50%. The zeolite adsorption tank has a two-series configuration, in which one series undergoes ammonia adsorption while the other series alternately repeats desorption and thus there is no short circuit of time.

암모니아 이온교환과 제올라이트 재생에 관한 반응식은 다음과 같다.The reaction scheme for ammonia ion exchange and zeolite regeneration is as follows.

암모니아 이온교환 : Z-Na+ + NH4 + --------→ Z-NH4 + + Na+ Ammonia Ion Exchange: Z-Na + + NH 4 + -------- → Z-NH 4 + + Na +

제올라이트 재생 : Z-NH4 + + NaHCO3 --------→ Z-Na+ + NH4 + + HCO3 - Zeolite reproduction: Z-NH 4 + + NaHCO 3 -------- → Z-Na + + NH 4 + + HCO 3 -

상기 제올라이트 재생을 위한 약품은 일반적으로 사용하는 NaCl을 사용하는 대신 NaHCO3 사용한다. 그 NaHCO3 사용하는 이유는 탈착된 NH4-N이 질산화 반응조로 유입되면 질산화과정에서 필요로 하는 알칼리도인 7.07g alkalinity(as CaCO3)/g NH4-N과 질산화조 처리 수가 유입하게 될 황산화탈질조에서 필요로 하는 알칼리도인 4.57g alkalinity(as CaCO3)/g NO3-N을 공급하기 위함이다.The chemical for regenerating the zeolite is NaHCO 3 instead of using NaCl, which is generally used. use. That NaHCO 3 The reason for the use is that when desorbed NH 4 -N flows into the nitrification tank, 7.07g alkalinity (as CaCO 3 ) / g NH 4 -N and nitrification tank treated water will flow into the nitrification process. This is to supply 4.57g alkalinity (as CaCO 3 ) / g NO 3 -N, which is the alkalinity required by.

즉, 후단의 질산화반응조와 황산화탈질조의 알칼리도 유지를 위해 공급해야 할 NaHCO3을 제올라이트의 재생용 약품으로 활용함으로써 별도의 알칼리도 공급비용지출이 없도록 한 것이다.In other words, NaHCO 3 which should be supplied to maintain the alkalinity of the nitrification tank and the desulfurization denitrification tank of the latter stage is used as a regeneration chemical for zeolite so that there is no extra alkalinity supply cost.

유기물의 제거, 잔류 Removal of organic matter, residue NHNH 44 -N 질산화, 자체 탈질 및 방류 단계-N nitrification, self denitrification and discharge steps

상기 제올라이트흡착조에서 암모니아가 50% 분리된 폐수는 적정 C/N비를 확보하게 되고 그 후단에 설치되어 있는 연속회분식반응조(SBR)로 이송되어 유기물 제거, 잔류 NH4-N의 질산화, 자체 탈질 처리과정을 거친 후 방류하게 된다.Wastewater from which the ammonia is separated by 50% from the zeolite adsorption tank secures an appropriate C / N ratio and is transferred to a continuous batch reactor (SBR) installed at the rear end to remove organic matter, nitrification of residual NH 4 -N, and self denitrification. After treatment, it is discharged.

상기 제올라이트흡착조 후단에 연속회분식반응조(SBR)를 설치하는 이유는 MLE, A2/O 공정에 비해 유입수 성상에 따라 탄력적 운전이 가능하고 운전이 용이하며 에너지소비량이 적기 때문으로, 2,000m3/d 미만의 중소규모의 시설에 적용된 생물학적 고도처리방법의 대부분이 연속회분식반응조이고, 4,000m3/d 까지는 연속회분식반응조가 경제적이기 때문이다.The reason for installing the sequencing batch reactor (SBR) to the zeolite adsorbent tank rear end is capable of flexible operation depending on the incoming water the aqueous phase than the MLE, A 2 / O process and the operation is easy, and because a less energy consumption, 2,000m 3 / This is because most of the advanced biological treatment methods applied to small and medium-sized installations with d less than d are continuous batch reactors, and up to 4,000 m 3 / d are more economical.

상기 SBR의 운전모드는 HRT 6시간, 1 cycle이 360분, DO(mg/L) aerobic 2.0 ~ 6.0, anoxic 0.5이상, pH 7.5 ~ 8.6, 온도 25℃, MLVSS(mg/L) 1618의 조건의 운전모드 1 또는 HRT 11시간, 1 cycle이 4620분, DO(mg/L) aerobic 2.0 ~ 6.0, anoxic 0.5이상, pH 7.5 ~ 8.6, 온도 25℃, MLVSS(mg/L) 934의 조건의 운전도드 2로 이루어진다.The operating mode of the SBR is HRT 6 hours, 1 cycle 360 minutes, DO (mg / L) aerobic 2.0 ~ 6.0, anoxic 0.5 or more, pH 7.5 ~ 8.6, temperature 25 ℃, MLVSS (mg / L) 1618 Operating mode 1 or HRT 11 hours, 1 cycle 4620 minutes, DO (mg / L) aerobic 2.0 to 6.0, anoxic 0.5 or more, pH 7.5 to 8.6, temperature 25 ℃, MLVSS (mg / L) 934 It consists of two.

상기 운전모드 1의 경우에는 유기물 제거율이 31 ~ 55%, 질소의 경우 14 ~ 25.5%로 나타나게 되고, 운전모드 2의 경우에는 유기물 제거율이 56 ~ 84%, 질소의 경우에는 64 ~ 93%로서, 상기 운전모드 2의 조건이 바람직하다.In the case of the operation mode 1, the organic matter removal rate is 31 to 55%, and in the case of nitrogen, 14 to 25.5%. In the case of the operation mode 2, the organic matter removal rate is 56 to 84%, and in the case of nitrogen, 64 to 93%. The condition of the operation mode 2 is preferable.

상기 연속회분식반응조(SBR)는 질산화반응조로부터 지속적으로 질산화미생물을 공급받게 되어있는데 이는 전체 미생물의 13.2%에 불과한 질산화미생물의 점유율을 인위적으로 증가시키기 위함이다. 한편, NH4-N의 분리에도 C/N 비가 탈질에 적정비율까지 조정되지 않아 잔류된 NO3-N을 처리할 필요가 있는 경우를 대비하여 연속회분식반응조의 처리수가 황산화탈질조로 유입되도록 구성한다.The continuous batch reactor (SBR) is continuously supplied with nitrification microorganisms from the nitrification tank to artificially increase the share of nitrification microorganisms of only 13.2% of the total microorganisms. On the other hand, in case of separation of NH 4 -N, the C / N ratio is not adjusted to the proper ratio for denitrification, so that the treated water of the continuous batch reaction tank flows into the desulfurization denitrification tank in case it is necessary to treat residual NO 3 -N. do.

질산화 단계Nitrification stage

상기 제올라이트흡착조에서 암모니아가 50% 분리된 폐수는 연속회분식반응조(SBR)로 이송됨과 동시에 질산화반응조로 이송되어 질산화 과정을 거치게 된다.Wastewater from which the ammonia is separated by 50% from the zeolite adsorption tank is transferred to a continuous batch reactor (SBR) and simultaneously transferred to the nitrification reactor to undergo nitrification.

질산화반응조(MBR)의 막 모듈은 평막(flat-sheet type)형태로서 폴리에틸렌 재질이며, 유효공경(Avg. Pore size) 0.2㎛, 유효 막면적(Effective area) 0.1㎡인 것을 사용하며, 그 질산화반응조에서의 생물학적 질산화는 암모니아성 질소를 아질산성 질소로 산화시키는 니트로소모나스(Nitrosomonas)와 아질산성 질소를 질산성 질소로 산화시키는 니트로박터(Nitrobacter)의 두 종에 의해 이루어지는 것으로, 이들 미생물은 종속영양 미생물(Heterotrophic organisms)이 유기화합물을 산화시키면서 에너지를 얻는 반면 무기화합물로부터 에너지를 얻기 때문에 독립영양 미생물(Autotrophic organisms)이다. The membrane module of the nitrification reactor (MBR) is a flat-sheet type, made of polyethylene, and having an effective pore size of 0.2 µm and an effective membrane area of 0.1 m2. Biological nitrification in Esau consists of two species: nitrosomonas, which oxidizes ammonia nitrogen to nitrite nitrogen, and nitrobacter, which oxidizes nitrite nitrogen to nitrate nitrogen. Heterotrophic organisms are autotrophic organisms because they get energy from oxidizing organic compounds, while they get energy from inorganic compounds.

즉 질산화반응조에서의 질산화 방법은 니트로소모나스(Nitrosomonas)에 의해 암모니아성 질소가 아질산성 질소로 전환되고, 니트로박터(Nitrobacter)에 의해 아질산성 질소가 질산성 질소로 전환되어 이루어진다.In other words, the nitrification method in the nitrification tank is performed by converting ammonia nitrogen into nitrite nitrogen by nitrosomonas and by converting nitrite nitrogen into nitrate nitrogen by nitrobacter.

따라서 제올라이트 재생에 의해 탈착된 NH4-N 함유 수는 질산화반응조로 유입되어 독립영양세균인 질산화미생물에 의해 다음의 반응 과정을 거쳐 NO3-N로 전환된다.Therefore, the NH 4 -N-containing water desorbed by the zeolite regeneration is introduced into the nitrification tank and converted into NO 3 -N through the following reaction process by the nitrifying microorganism, an autotrophic bacterium.

NH4 + + 1.863O2 + 0.098CO2 NH 4 + + 1.863 O 2 + 0.098 CO 2

→ 0.0196C5H7NO2 + 0.98NO3 - + 0.0941H2O + 1.98H+ → 0.0196C 5 H 7 NO 2 + 0.98NO 3 - + 0.0941H 2 O + 1.98H +

이 과정에서 1g의 NH4-N을 전환하는데 4.2g의 O2와 7.07g의 알칼리도(as CaCO3)가 소비되고, 0.16g의 세포가 합성되며, 0.08g의 무기탄소가 세포합성에 이용된다. In this process, 4.2 g of O 2 and 7.07 g of alkalinity (as CaCO 3 ) are consumed to convert 1 g of NH 4 -N, 0.16 g of cells are synthesized, and 0.08 g of inorganic carbon is used for cell synthesis. .

질산화반응조의 성능을 판단하는 주요 항목 중의 하나는 반응조 용적당 NH4-N 부하로서, 인공폐수를 대상으로 한 선행 연구를 살펴보면 MLVSS 6,300mg/l, HRT 5.7hr에서 3.3 kgNH4-N/m3·d를 유지한 경우와 Biofilm 방식을 통해 1.5 ~ 3.5 kgNH4-N/m3·d를 달성한 결과가 있음을 알 수 있다. One of the key factors to judge the performance of nitrification reactor is NH 4 -N load per tank volume. Based on previous studies on artificial wastewater, 3.3 kgNH 4 -N / m 3 at MLVSS 6,300mg / l and HRT 5.7hr. It can be seen that the result of achieving 1.5 to 3.5 kgNH 4 -N / m 3 · d was maintained in case of d and biofilm method.

상기 질산화반응조에서 처리과정을 거친 처리수는 후단의 황산화탈질조로 유입되고, 잉여 질산화미생물은 연속회분식반응조(SBR)로 공급되어 그 연속회분식반응조의 질산화 효율증진을 유도한다.The treated water which has undergone the treatment in the nitrification tank is introduced into the sulfate denitrification tank in the rear stage, and the surplus nitrifying microorganism is supplied to the continuous batch reactor (SBR) to induce the nitrification efficiency of the continuous batch reactor.

특히, 질산화반응조의 설치는 부지면적 및 유지관리비와 직결되어있으므로 반드시 처리방법에 포함할 사항으로서, 미국의 12개 생물학적 고도처리시설을 대상으로 한 연구 결과에 따르면 반응조 내 질산화미생물의 개체수는 전체 미생물의 13.2%에 불과하다. 이러한 질산화미생물의 낮은 점유율 때문에 NH4-N이 함유된 폐수를 처리할 경우 질산화미생물 개체수 확보를 위해 반응조 용량의 증가가 필수적으 로 수반된다. 일반하수를 대상으로 한 비교결과인 표 2에서 알 수 있듯이 25mg/l에 불과한 NH4-N을 제거하기 위하여 BOD제거에 필요한 HRT 보다 2배 증가하였다. 그러므로 고농도의 NH4-N을 함유한 산업폐수 처리를 일반적인 생물학적 방식으로 접근할 경우 반응조 용량 및 송풍량이 크게 증대하기 때문에 경제성이 크게 저하된다. 따라서 전체 반응조에서 질산화미생물 개체수를 효과적으로 확보하거나 NH4-N을 분리하여 질산화를 독립적으로 수행할 경우 매우 효과적이다.In particular, since the installation of the nitrification tank is directly related to the area and maintenance costs, it must be included in the treatment method. According to a study of 12 biologically advanced treatment facilities in the United States, the number of nitrifier microorganisms in the reactor is total microorganisms. Only 13.2% of the total. Because of the low occupancy rate of nitrification microorganisms, the treatment of wastewater containing NH 4 -N requires an increase in reactor capacity to secure the nitrification population. As shown in Table 2, which is a comparison result for general sewage, it doubled than HRT required for BOD removal to remove NH 4 -N which is only 25 mg / l. Therefore, when industrial wastewater treatment containing a high concentration of NH 4 -N is approached in a general biological manner, the economic efficiency is greatly reduced because of the large increase in reactor capacity and airflow. Therefore, it is very effective to effectively obtain the nitrification microbial population in the whole reactor or to perform nitrification independently by separating NH 4 -N.

표2.일반하수처리시 Table 2 General Sewage Treatment 유기물단독제거와Organic Sole Removal and 질산화포함시  Including nitrification 설계인자Design factor 비교( compare( MetcalfMetcalf &  & EddyEddy , , WastewaterWastewater EngineeringEngineering TreatmentTreatment andand ReuseReuse , 4, 4 thth editionedition , 2004), 2004)

구분division 유기물 제거Organic matter removal 유기물제거 + 질산화Organic matter removal + nitrification 유입수질(mg/l)Influent Quality (mg / l) BOD 140, COD 300, SS 70, NH4-N 25BOD 140, COD 300, SS 70, NH 4 -N 25 MLVSS(mg/l)MLVSS (mg / l) 2,4002,400 F/M(d-1)F / M (d -1 ) 0.330.33 0.160.16 BOD loading(kg/m3)BOD loading (kg / m 3 ) 0.780.78 0.370.37 SRT(d)SRT (d) 5.005.00 8.338.33 HRT(hr)HRT (hr) 4.34.3 9.09.0

한편, 질소제거에 있어 Anammox 방법은 독립영양세균인 혐기성 암모늄 산화균 등에 의해 다음과 같은 반응과정을 통해 질소를 제거시킨다.On the other hand, in the removal of nitrogen Anammox method removes nitrogen through the following reaction process by anaerobic ammonium oxide bacteria, such as autotrophs.

NH4 + + 1.32NO2 - + 0.066HCO3 - + 0.13H+ NH 4 + + 1.32NO 2 - + 0.066HCO 3 - + 0.13H +

→ 0.26NO3 - + 1.02N2 + 0.066C5H7O2N + 2.03H2O → 0.26NO 3 - + 1.02N 2 + 0.066C 5 H 7 O 2 N + 2.03H 2 O

상기 반응식에서 NH4 +의 N2 전환은 전자공여체로 NH4 +, 전자수용체로 NO2 -를 이용하며, 무기탄소원으로는 HCO3 -를 사용하는데, 폐수에서의 NO2 -/NH4 + 비가 1.32 이상이어야 한다. 이러한 NO2 -/NH4 + 비의 조건을 맞추기 위해서는 NH4 +의 NO2 -까지의 제한적 질산화를 위한 방법이 전단계에 필요하다.N 2 conversion of NH 4 + in the above reaction scheme is NO 2 with NH 4 +, an electron acceptor with electron donor - and using the inorganic carbon source is HCO 3 -, in using the NO in the waste water 2 - / NH 4 + ratio It must be at least 1.32. In order to meet the conditions of the NO 2 / NH 4 + ratio, a method for limiting nitrification of NH 4 + to NO 2 is required in the previous step.

상기 질산화반응조는 유입 공기량을 9 ~ 12ℓ/min으로 유지하여 운전하게 되는데, 상기 유입공기량은 완벽한 질산화가 이루어질 수 있는 적정 양으로서, 바람직하게는 10ℓ/min를 유지한다. 상기 10ℓ/min에서는 유입 암모니움 농도가 1000 mg/L의 고농도이더라도 거의 완벽한 질산화가 이루어진다.The nitrification tank is operated by maintaining the inlet air amount at 9-12 L / min, and the inlet air amount is an appropriate amount to achieve perfect nitrification, and preferably maintains 10 L / min. At 10 l / min, almost complete nitrification is achieved even if the inlet ammonium concentration is high at 1000 mg / L.

황산화탈질Sulfate denitrification 및 반송단계 And return step

상기 질산화반응조에서 질산화가 완료된 폐수는 황산화탈질조로 유입된다.In the nitrification tank, the nitrification of the wastewater is introduced into a sulfate denitrification tank.

그 황산화탈질조(4)의 온도는 황 이용 탈질 최적조건인 30℃, pH 7.5 ~ 8.0 유지한 상태에서 타이오박실리서 데니트리피칸스(Thiobacillus denitrificans), 타이오미크로스피라 데니트리피칸스(Thiomicrospira denitrificans)의 독립영양 황산화미생물이 S2 -, S0, S2O3 2 - 의 황화합물을 SO4 -로 산화시키는 과정에서 HCO3 - 등의 무기탄소를 탄소원으로 이용하고, 최종 전자수용체로서 NO3 -를 사용하면서 탈질을 완 수한다.The temperature of the desulfurization denitrification tank (4) was maintained at 30 ° C., which is an optimum condition for denitrification using sulfur, and pH 7.5 to 8.0, and the bacterium Tiobacillus denitrificans and T. micropyra denitripicans ( autotrophic sulfated microorganisms Thiomicrospira denitrificans) is S 2 -, S 0, S 2 O 3 2 - of the sulfur compounds SO 4 - in the course of oxidation with HCO 3 - an inorganic carbon, such as carbon sources, and a final electron acceptor, Denitrification is completed using NO 3 - as the base.

NO3 - + 1.10S + 0.40CO2 + 0.76H2O + 0.08NH4 + NO 3 - + 1.10S + 0.40CO 2 + 0.76H 2 O + 0.08NH 4 +

→ 0.5N2 +1.10SO4 2- + 1.28H+ + 0.08C5H7O2N→ 0.5N 2 + 1.10SO 4 2- + 1.28H + + 0.08C 5 H 7 O 2 N

상기 반응 과정에서 1g의 NO3-N을 전환하는데 2.51g의 S와 4.57 g의 알칼리도(as CaCO3)가 소비되고 7.54 g의 SO4 2 -가 발생한다. 종속영양세균의 경우 1g의 NO3-N을 전환시키는데 소요되는 외부탄소원인 메탄올(CH3OH)의 양이 2.47g으로서 S의 소비량과 비슷하지만 시중의 S 가격이 메탄올 가격의 60%에 불과하므로 황산화탈질이 경제적이다. 알칼리도는 제올라이트 재생시 발생한 HCO3 -가 질산화조에서 소비되고 남은 양이 유입되므로 별도로 공급할 필요가 없다. 한편, 황산화탈질조의 유출수는 제올라이트 재생에 필요한 공급수로 순환된다.In the course of the reaction, 2.51 g of S and 4.57 g of alkalinity (as CaCO 3 ) are consumed to convert 1 g of NO 3 -N and 7.54 g of SO 4 2 - is generated. In the case of heterotrophic bacteria, the amount of external carbon source methanol (CH 3 OH) required to convert 1 g of NO 3 -N is 2.47 g, which is similar to the consumption of S, but the commercial S price is only 60% of methanol. Sulfation denitrification is economical. The alkalinity does not need to be supplied separately because HCO 3 - generated during regeneration of zeolite is consumed in the nitrifier and the remaining amount is introduced. On the other hand, the effluent from the sulfidation denitrification tank is circulated to the feed water required for zeolite regeneration.

이상에서 살펴본 바와 같이, 본 발명에 따른 고농도 질소함유 산업폐수 처리방법은 수계로 배출되는 질소부하를 줄일 수 있고, 개별 배출시설의 처리능력 확보를 통해 폐수종말처리시설로 유입되는 질소량을 감소시킴으로서 폐수종말처리시설 의 고도처리개선에 소요되는 예산을 절감할 수 있다. As described above, the high concentration nitrogen-containing industrial wastewater treatment method according to the present invention can reduce the nitrogen load discharged into the water system and reduce the amount of nitrogen flowing into the wastewater end treatment facility by securing the treatment capacity of the individual discharge facility. The budget for advanced treatment of the terminal treatment facility can be reduced.

암모니아 흡착을 위한 제올라이트를 지속적으로 흡착조에 적치한 상태에서 이온교환 및 재생을 하고 그 폐액을 질산화미생물의 암모니아 공급원과 알칼리도 공급원으로 활용하는 방식에 의해 고농도 암모니아성 질소함유 폐수를 처리할 수 있고, 질산성 질소가 주류를 이루는 금속관련 산업폐수의 처리에 황산화 탈질방식이 적용되는 기초를 제공할 수 있다.High concentration ammonia nitrogen wastewater can be treated by ion exchange and regeneration with zeolite for adsorption of ammonia continuously in the adsorption tank and using the waste liquid as ammonia source and alkalinity source for nitrifying microorganism. It can provide the basis on which the sulphate denitrification is applied to the treatment of metal-related industrial wastewater, in which acidic nitrogen is the mainstream.

그리고 2013년 1월 1일부터 적용될 폐수종말처리시설의 배출기준 TN 20mg/l을 달성하기 위하여 현 상태의 종말처리시설을 개선하기 위해서는 막대한 국가 예산이 책정되어야 한다. 이러한 시점에서 고농도 질소함유 폐수를 현실적인 비용으로 처리할 수 있는 기술이 개발된다면 정부와 지자체는 종말처리시설 구역 내 개별사업장에 대해 질소부하 저감 후 연계할 것을 요구할 수 있다. 이러한 방향으로 정책이 결정된다면 폐수종말처리시설 고도처리 개선사업에 소요되는 국가 예산을 절감 효과를 갖는다.And a huge national budget should be set to improve the current end treatment facility to achieve the TN 20 mg / l emission standard for wastewater treatment plants to be effective from 1 January 2013. At this point, if technology is developed that can deal with high concentrations of nitrogen-containing wastewater at a realistic cost, the government and local governments may require that individual sites within the terminal treatment facility area be linked after reducing the nitrogen load. If the policy is decided in this direction, the national budget for the advanced treatment of wastewater treatment facilities will be saved.

이하, 상기 기술적 구성을 도면을 통해 더욱 구체적으로 살펴보도록 한다.Hereinafter, the technical configuration will be described in more detail with reference to the accompanying drawings.

도 1 및 도 6은 고농도 질소함유 산업폐수 처리방법에 따른 공정 및 순서도를 개략적으로 보이고 있는 것으로, 본 발명의 고농도 질소함유 산업폐수 처리방법은 먼저, 응집침전 전처리 과정을 거친 폐수를 도 2의 2계열 구성을 갖는 제올라이 트흡착조(1)로 유입하여 제올라이트 흡착과정을 통한 NH4-N의 분리와, 암모니아 분리와 제올라이트 재생과정을 통한 NH4-N의 탈착과정을 거치는 흡·탈착 단계를 거치게 되며,1 and 6 schematically show a process and a flow chart according to the high concentration nitrogen containing industrial wastewater treatment method, the high concentration nitrogen containing industrial wastewater treatment method of the present invention, first, the wastewater that has undergone the coagulation sedimentation pretreatment process 2 of FIG. and it flows into the zeolite adsorbent (1) having a series configuration separation of NH 4 -N through the zeolite adsorption process and the ammonia separated from the adsorption-desorption step passes through a desorption process of NH 4 -N through the zeolite regeneration Going through,

상기 제올라이트흡착조(1)의 제올라이트 흡착과정을 통해 암모니아가 분리된 폐수는 도 4의 연속회분식반응조(3)로 이송되어 유기물의 제거, 잔류 NH4-N 질산화 및 자체 탈질 과정을 거친 후 방류하는 단계를 거치게 된다.Wastewater from which ammonia is separated through the zeolite adsorption process of the zeolite adsorption tank 1 is transferred to the continuous batch reactor 3 of FIG. 4 to be discharged after removal of organic matter, residual NH 4 -N nitrification, and self-denitrification. It goes through the steps.

그리고, 상기 연속회분식반응조(3)의 제올라이트 재생과정을 통해 탈착된 NH4-N 함유수를 도 3의 질산화반응조(2)로 이송하여 질산화미생물에 의해 NO3-N로 전환하는 질산화 단계와,In addition, the nitrification step of transferring the NH 4 -N-containing water desorbed through the zeolite regeneration process of the continuous batch reaction tank (3) to the nitrification reaction tank (2) of FIG. 3 and converted to NO 3 -N by the nitrification microorganism;

그 질산화반응조(2)에서 질산화가 완료된 폐수를 도 5의 황산화탈질조(4)로 이송하여 황화합물의 S2 -, S0, S2O3 2 -를 황산화미생물에 의해 SO4 -로 산화시켜 다시 제올라이트흡착조(1)로 반송하여 제올라이트 재생에 필요한 공급수로 순환시키는 황산화탈질 단계를 거쳐 고농도 질소함유 산업폐수가 처리된다.The nitrification reactor (2) nitrification is to transfer a complete waste into sulfated denitrification tank 4 of Figure 5 of sulfur compound S 2 in the -, S0, S 2 O 3 2 - by the sulfation microorganism SO 4 - in the oxidation The high concentration nitrogen-containing industrial wastewater is treated through a sulphation denitrification step which is returned to the zeolite adsorption tank 1 and circulated to the feed water required for zeolite regeneration.

제 1도는 본 발명에 따른 고농도 질소함유 산업폐수 처리방법을 도시한 공정 도.1 is a process chart showing a high concentration nitrogen-containing industrial wastewater treatment method according to the present invention.

제 2도는 본 발명에 따른 제올라이트흡착조를 도시한 개략 단면도.2 is a schematic cross-sectional view showing a zeolite adsorption tank according to the present invention.

제 3도는 본 발명에 따른 질산화반응조를 도시한 개략 단면도.3 is a schematic cross-sectional view showing a nitrification tank according to the present invention.

제 4도는 본 발명에 따른 연속회분식반응조(SBR)을 도시한 개략 단면도.4 is a schematic cross-sectional view showing a continuous batch reactor (SBR) according to the present invention.

제 5도는 본 발명에 따른 황산화탈질조를 도시한 개략 단면도.5 is a schematic cross-sectional view showing a sulfate denitrification tank according to the present invention.

제 6도는 본 발명에 따른 고농도 질소함유 산업폐수 처리방법에 따른 순서도.6 is a flow chart according to the high concentration nitrogen-containing industrial wastewater treatment method according to the present invention.

* 도면의 주요 부분에 대한 부호 설명 *Explanation of symbols on the main parts of the drawings

1 : 제올라이트흡착조1: zeolite adsorption tank

2 : 질산화반응조(MBR)2: nitrification tank (MBR)

3 : 연속회분식반응조(SBR)3: continuous batch reactor (SBR)

4 : 황산화탈질조4: sulfate denitrification tank

10: 처리조10: treatment tank

Claims (5)

응집침전 전처리 과정을 거친 폐수를 2계열 구성을 갖는 제올라이트흡착조(1)로 유입하여 하나의 계열이 제올라이트 흡착과정을 통한 NH4-N의 분리를 진행하는 동안 다른 계열은 암모니아 분리와 제올라이트 재생과정을 통한 NH4-N의 탈착과정을 진행하며, 이와 같은 방식을 번갈아가며 반복함으로써 시간의 단락이 없도록 하는 흡·탈착 단계와,Wastewater, which has undergone coagulation pretreatment and pretreatment, is introduced into the zeolite adsorption tank (1) having a two-stage configuration, while one series undergoes NH 4 -N separation through zeolite adsorption and the other series undergoes ammonia separation and zeolite regeneration. Adsorption and desorption step of proceeding the desorption process of NH 4 -N through the alternating manner, so that there is no short circuit of time by alternating the same manner, 상기 제올라이트흡착조(1)의 제올라이트 흡착과정을 통해 암모니아가 분리된 폐수를 연속회분식반응조(3)로 이송하여 HRT 6시간, 1cycle이 360분, DO(mg/L) aerobic 2.0 ~ 6.0, anoxic 0.5이상, pH 7.5 ~ 8.6, 온도 25℃, MLVSS(mg/L) 1618의 조건의 운전모드 1 또는 HRT 11시간, 1cycle이 4620분, DO(mg/L) aerobic 2.0 ~ 6.0, anoxic 0.5이상, pH 7.5 ~ 8.6, 온도 25℃, MLVSS(mg/L) 934의 조건의 운전모드 2를 통해 유기물의 제거, 잔류 NH4-N 질산화 및 자체 탈질 과정을 거친 후 방류하는 단계와,Wastewater from which ammonia was separated through the zeolite adsorption process of the zeolite adsorption tank (1) was transferred to a continuous batch reactor (3) for 6 hours, 1 cycle of 360 minutes, DO (mg / L) aerobic 2.0 to 6.0, anoxic 0.5 Above, pH 7.5 ~ 8.6, temperature 25 ℃, MLVSS (mg / L) 1618, operation mode 1 or HRT 11 hours, 1 cycle 4620 minutes, DO (mg / L) aerobic 2.0 ~ 6.0, anoxic 0.5 or more, pH Discharged after removal of organic matter, residual NH 4 -N nitrification and self-denitrification through operation mode 2 of 7.5 to 8.6, temperature 25 ° C., MLVSS (mg / L) 934, 상기 연속회분식반응조(3)의 제올라이트 재생과정을 통해 탈착된 NH4-N 함유수를 질산화반응조(2)로 이송하여 질산화미생물에 의해 NO3-N로 전환하는 질산화 단계와,A nitrification step of transferring the NH 4 -N-containing water desorbed through the zeolite regeneration process of the continuous batch reaction tank 3 to the nitrification reactor 2 and converting it into NO 3 -N by the nitrification microorganism; 그 질산화반응조(2)에서 질산화가 완료된 폐수를 황산화탈질조(4)로 이송하여 황화합물의 S2 -, S0, S2O3 2-를 황산화미생물에 의해 SO4 -로 산화시켜 다시 제올라이트흡착조(1)로 반송하여 제올라이트 재생에 필요한 공급수로 순환시키는 황산화탈질 단계로 이루어짐을 특징으로 하는 고농도 질소함유 산업폐수 처리방법.The nitrification reactor (2) nitrification is complete, feeding the waste water to sulfated denitrification tank 4 in the sulfur compound S 2 -, S0, S 2 O 3 2- to SO 4 by sulfating microorganism-oxidized back to the zeolite, A high concentration nitrogen-containing industrial wastewater treatment method comprising the step of returning to the adsorption tank (1) and circulating the denitrification step to circulate with feed water for regeneration of zeolite. 삭제delete 제 1항에 있어서, 질산화단계의 질산화미생물은 니트로소모나스(Nitrosomonas), 니트로박터(Nitrobacter)로서, 암모니아성 질소가 니트로소모나스(Nitrosomonas)에 의해 아질산성 질소로 전환되고, 그 아질산성 질소는 니트로박터(Nitrobacter)에 의해 질산성 질소로 전환되는 것을 특징으로 하는 고농도 질소함유 산업폐수 처리방법.The method of claim 1, wherein the nitrification microorganism of the nitrification step is Nitrosomonas, Nitrobacter, wherein ammonia nitrogen is converted to nitrous nitrogen by Nitrosomonas, the nitrite nitrogen A high concentration nitrogen-containing industrial wastewater treatment method, characterized in that the conversion to nitric acid nitrogen by Nitrobacter. 제 1항에 있어서, 연속회분식반응조(3)는 질산화반응조(2)로부터 질산화미생물을 공급받을 수 있도록 연결구성되고, 그 연속회분식반응조(3)의 처리수는 황산화탈질조(4)로 유입되도록 연결구성된 것임을 특징으로 하는 고농도 질소함유 산업폐수 처리방법.2. The continuous batch reaction tank (3) according to claim 1, wherein the continuous batch reaction tank (3) is connected to receive the nitrification microorganisms from the nitrification reaction tank (2), and the treated water of the continuous batch reaction tank (3) flows into the sulfidation denitrification tank (4). High concentration nitrogen-containing industrial wastewater treatment method characterized in that it is configured to be connected. 제 1항에 있어서, 황산화탈질 단계는 황산화탈질조(4)의 온도를 30℃로 유지하고, pH를 7.5 ~ 8.0 유지하여 티오바실러스 데니트리피칸스(Thiobacillus denitrificans) 또는 티오미크로스피라 데니트리피칸스(Thiomicrospira denitrificans) 중 선택되는 어느 1종 또는 2종 이상의 혼합인 황산화미생물을 이 용하는 것임을 특징으로 하는 고농도 질소함유 산업폐수 처리방법.According to claim 1, Sulfation denitrification step is to maintain the temperature of the desulfurization denitrification tank (4) at 30 ℃, pH 7.5 ~ 8.0 to Thiobacillus denitrificans (Thiobacillus denitrificans) or thiomicrospyranite tree A method for the treatment of high concentration nitrogen-containing industrial wastewater, characterized in that it uses a sulfated microorganism, which is one or a mixture of two or more selected from Pecans ( T hiomicrospira denitrificans).
KR1020080028999A 2008-03-28 2008-03-28 Treatment pocess for the industrial wastewater loaded high nitrogen KR100869058B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080028999A KR100869058B1 (en) 2008-03-28 2008-03-28 Treatment pocess for the industrial wastewater loaded high nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080028999A KR100869058B1 (en) 2008-03-28 2008-03-28 Treatment pocess for the industrial wastewater loaded high nitrogen

Publications (1)

Publication Number Publication Date
KR100869058B1 true KR100869058B1 (en) 2008-11-17

Family

ID=40284353

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080028999A KR100869058B1 (en) 2008-03-28 2008-03-28 Treatment pocess for the industrial wastewater loaded high nitrogen

Country Status (1)

Country Link
KR (1) KR100869058B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104710079A (en) * 2014-02-20 2015-06-17 刘冬峰 Method for utilizing modified mordenite to treat urban recycled water
CN107055940A (en) * 2017-01-26 2017-08-18 浙江清华长三角研究院 High-ammonia-nitrogen sewage advanced treatment process based on short-cut nitrification and denitrification
CN107986557A (en) * 2017-11-17 2018-05-04 浙江海洋大学 A kind of synchronous coupled biological treatment process for removing agricultural runoff nitrogen phosphorus
CN109354310A (en) * 2018-11-13 2019-02-19 江苏蓝必盛化工环保股份有限公司 A kind of processing method of acrylic acid wastewater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1080697A (en) 1996-09-06 1998-03-31 Ebara Corp Complete treatment of organic sewage
JPH10277543A (en) 1997-04-09 1998-10-20 Ngk Insulators Ltd Method for nitrification and denitrification of nitrogen-containing waste water
KR20040044702A (en) * 2002-11-21 2004-05-31 황규대 Apparatus and mode of transformed sequential batch reactor with separating nitrification basin for purifying sewage and wastewater
KR20060102763A (en) * 2005-03-24 2006-09-28 동림건설기술(주) System for processing waste water using rumination sbr
KR20070011864A (en) * 2005-07-21 2007-01-25 현대건설주식회사 Advanced wasterwater treatment system by a combination of membrane bio-reactor and sulfur denitrification and method thereof
KR20070014857A (en) * 2005-07-29 2007-02-01 주식회사 미래엔지니어링 System and method for biological treatment of wastewater using mbr and zeolite powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1080697A (en) 1996-09-06 1998-03-31 Ebara Corp Complete treatment of organic sewage
JPH10277543A (en) 1997-04-09 1998-10-20 Ngk Insulators Ltd Method for nitrification and denitrification of nitrogen-containing waste water
KR20040044702A (en) * 2002-11-21 2004-05-31 황규대 Apparatus and mode of transformed sequential batch reactor with separating nitrification basin for purifying sewage and wastewater
KR20060102763A (en) * 2005-03-24 2006-09-28 동림건설기술(주) System for processing waste water using rumination sbr
KR20070011864A (en) * 2005-07-21 2007-01-25 현대건설주식회사 Advanced wasterwater treatment system by a combination of membrane bio-reactor and sulfur denitrification and method thereof
KR20070014857A (en) * 2005-07-29 2007-02-01 주식회사 미래엔지니어링 System and method for biological treatment of wastewater using mbr and zeolite powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104710079A (en) * 2014-02-20 2015-06-17 刘冬峰 Method for utilizing modified mordenite to treat urban recycled water
CN104710079B (en) * 2014-02-20 2016-05-25 日照轻创知识产权服务中心 A kind of applying modified modenite is processed the method for municipal middle water
CN107055940A (en) * 2017-01-26 2017-08-18 浙江清华长三角研究院 High-ammonia-nitrogen sewage advanced treatment process based on short-cut nitrification and denitrification
CN107055940B (en) * 2017-01-26 2019-09-03 浙江清华长三角研究院 High-ammonia-nitrogen sewage advanced treatment process based on short-cut nitrification and denitrification
CN107986557A (en) * 2017-11-17 2018-05-04 浙江海洋大学 A kind of synchronous coupled biological treatment process for removing agricultural runoff nitrogen phosphorus
CN107986557B (en) * 2017-11-17 2020-11-17 浙江海洋大学 Coupling biological treatment process for synchronously removing nitrogen and phosphorus in agricultural runoff
CN109354310A (en) * 2018-11-13 2019-02-19 江苏蓝必盛化工环保股份有限公司 A kind of processing method of acrylic acid wastewater

Similar Documents

Publication Publication Date Title
CN108483655B (en) Method for deep denitrification by coupling shortcut nitrification and denitrification with anaerobic ammonia oxidation and sulfur autotrophic denitrification
CN103241904B (en) Multi-point water inlet aeration anoxic-aerobic high-efficient nitrogen and phosphorus removal method
CN106396098B (en) A kind of high-salt wastewater simultaneous denitrification process for sulfur removal
Leu et al. Bioaugmentation to improve nitrification in activated sludge treatment
CN104761097A (en) Total nitrogen treatment method suitable for high concentration and degradation-resistant organic wastewater
CN110395851B (en) High-altitude town sewage treatment method based on nitrogen and phosphorus capture and completely autotrophic nitrogen removal
CN111732298B (en) Low-carbon source sewage deep denitrification method with two series-connected AO sections
Vineyard et al. Life cycle assessment of electrodialysis for sidestream nitrogen recovery in municipal wastewater treatment
Dang et al. Influence of C/N ratios on treatment performance and biomass production during co-culture of microalgae and activated sludge
KR100869058B1 (en) Treatment pocess for the industrial wastewater loaded high nitrogen
CN110255820B (en) Low-carbon-source sewage biological denitrification system and method adopting plug-flow anoxic tank
Wałęga et al. Nitrogen and phosphorus removal from sewage in biofilter–activated sludge combined systems
Nagabalaji et al. Effect of co-culturing bacteria and microalgae and influence of inoculum ratio during the biological treatment of tannery wastewater
Wang et al. Comparison on biological nutrient removal and microbial community between full-scale anaerobic/anoxic/aerobic process and its upgrading processes
Subramaniam et al. Efficient biological nutrient removal in high strength wastewater using combined anaerobic-sequencing batch reactor treatment
CN102101740B (en) Treatment method of high-concentration organic wastewater in electronic industry
CN104609659B (en) A kind of method strengthening SBR PROCESS FOR TREATMENT coal chemical industrial waste water denitrification efficiency
Hao et al. A proposed sustainable BNR plant with the emphasis on recovery of COD and phosphate
Soda et al. Statistical analysis of global warming potential, eutrophication potential, and sludge production of wastewater treatment plants in Japan
Diamantis et al. 6.40 Efficiency and Sustainability of Urban Wastewater Treatment with Maximum Separation of the Solid and Liquid Fraction
Gutwinski et al. Removal of nitrogen and phosphorus from reject water using chlorella vulgaris algae after partial nitrification/anammox process
CN114620830A (en) Municipal sewage treatment system and method
CN110697991B (en) Garbage leachate biological treatment process and system
KR102214449B1 (en) The Method of Removing Nitrogen in Wastewater Using Sequencing batch reaction system
Kim et al. Anaerobic Wastewater Treatment and Potable Reuse: Energy and Life Cycle Considerations

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121106

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131015

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141107

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20151109

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20161110

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20171016

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181112

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20191106

Year of fee payment: 12