JP2992692B2 - Sewage purification method and apparatus - Google Patents

Sewage purification method and apparatus

Info

Publication number
JP2992692B2
JP2992692B2 JP36035398A JP36035398A JP2992692B2 JP 2992692 B2 JP2992692 B2 JP 2992692B2 JP 36035398 A JP36035398 A JP 36035398A JP 36035398 A JP36035398 A JP 36035398A JP 2992692 B2 JP2992692 B2 JP 2992692B2
Authority
JP
Japan
Prior art keywords
zeolite
activated sludge
nitrogen
sewage
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36035398A
Other languages
Japanese (ja)
Other versions
JPH11244884A (en
Inventor
正 梶谷
炯仁 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPH11244884A publication Critical patent/JPH11244884A/en
Application granted granted Critical
Publication of JP2992692B2 publication Critical patent/JP2992692B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)
  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水の浄化処理方
法及び装置の技術分野に属し、さらに言えば、水質環境
汚染の大部分を占めている生活下水又は汚水中に含有さ
れている富栄養化の原因物質である窒素成分及びBOD
物質である有機物を物理化学的及び生物学的方法を用
い、効率的かつ経済的に除去できるようにした生活下水
及び汚水の浄化処理方法等の技術に関するものである。
The present invention belongs to the technical field of a method and an apparatus for purifying sewage, and more particularly, eutrophication contained in domestic sewage or sewage which accounts for a large part of water quality environmental pollution. Component and BOD as causative substances
TECHNICAL FIELD The present invention relates to techniques such as a method for purifying domestic sewage and sewage, which is capable of efficiently and economically removing organic substances as substances using physicochemical and biological methods.

【0002】[0002]

【従来の技術】従来、一般的に使用されている下水中の
窒素除去方法は、アンモニアストリッピング法、塩素注
入法、イオン交換法及び生物学的脱窒法等がある。
2. Description of the Related Art Conventionally, generally used methods for removing nitrogen from sewage include an ammonia stripping method, a chlorine injection method, an ion exchange method, and a biological denitrification method.

【0003】アンモニアストリッピング(Ammonia Stri
pping)法は、生活下水又は汚水に石灰等のアルカリ剤
を添加し、pHを10以上に維持しながら接触塔で空気
を吸入させ、アンモニアを気体として飛散させる方法で
あり、簡易に窒素を除去できるものの低温時にアンモニ
アガスの揮発効率が低下すること、また揮発したアンモ
ニアガスは、大気に飛散させると2次汚染の問題を惹起
すること、そして生成した炭酸カルシウムによって接触
塔ノズル等にスケールが付着するなどの問題点がある。
[0003] Ammonia Stri
The pping) method is a method in which an alkaline agent such as lime is added to domestic sewage or sewage, air is sucked through a contact tower while maintaining a pH of 10 or more, and ammonia is scattered as a gas, and nitrogen is easily removed. Although it is possible, the ammonia gas volatilization efficiency decreases at low temperatures, and the volatilized ammonia gas causes a problem of secondary pollution when scattered to the atmosphere, and the calcium carbonate generated causes scale to adhere to the contact tower nozzle and the like. There are problems such as doing.

【0004】塩素注入法は、生活下水又は汚水に酸化剤
として塩素ガスを注入し、NH をNに酸化させる
ことで下水中の窒素を除去する方法であり、pHを6か
ら8の範囲に調整することでNになり、またCl
NH との比が適正となるよう注入すると余剰塩素ガ
スの処理を必要としない長所がある反面、pHを適正に
制御できない場合は、有毒なトリクロロアミン(Trichl
oroamine)又は発癌性物質前駆体であるTHM(Trihal
omethane)等が生成するなどの問題点があるため、下水
中の窒素除去には生物学的脱窒方法が一般的に多く採用
されている。
The chlorine injection method is a method of injecting chlorine gas as an oxidizing agent into domestic sewage or sewage to oxidize NH 4 + to N 2 to remove nitrogen in sewage. By adjusting to the range, it becomes N 2 , and if it is injected so that the ratio of Cl 2 to NH 4 + becomes appropriate, there is an advantage that the treatment of excess chlorine gas is not required, but when the pH cannot be controlled properly. Toxic trichloroamine (Trichl
oroamine) or THM (Trihal
However, biological denitrification methods are generally used to remove nitrogen from sewage because of problems such as generation of omethane).

【0005】この生物学的脱窒方法は窒素酸化菌で窒素
化合物を酸化させた後、脱窒菌によってNガスに還元
し下水中の窒素を除去する方法であるが、本方法は多様
な形態の窒素化合物に適用可能であり、かつ無害な窒素
ガスとして除去される長所があるが、窒素除去速度が遅
く、また温度低下時微生物の活性が低下するため窒素除
去効率が悪化し、液温が15℃以下になると窒素除去し
づらくなる問題点があった。
In this biological denitrification method, nitrogen compounds are oxidized by nitrogen oxidizing bacteria and then reduced to N 2 gas by denitrifying bacteria to remove nitrogen in sewage. It is applicable to nitrogen compounds and has the advantage of being removed as harmless nitrogen gas.However, the nitrogen removal rate is slow, and the activity of microorganisms at the time of temperature decrease is reduced, so the nitrogen removal efficiency is deteriorated and the liquid temperature is reduced. If the temperature is lower than 15 ° C., there is a problem that it is difficult to remove nitrogen.

【0006】また、イオン交換法は、ゼオライトが持っ
ている選択的イオン交換能を利用して生活下水又は汚水
中に含まれているアンモニア性窒素を吸着除去するもの
で、この吸着ゼオライトは中性塩又はアルカリ水溶液等
の薬剤を用い再生し、再生液中に濃縮されたアンモニア
性窒素をさらにアンモニアストリッピング法や電解法な
どで処理する方法である。
The ion exchange method uses the selective ion exchange capacity of zeolite to adsorb and remove ammonia nitrogen contained in domestic sewage or sewage, and this adsorbed zeolite is neutral. This is a method of regenerating using a salt or an aqueous alkali solution or the like, and further treating ammoniacal nitrogen concentrated in the regenerating solution by an ammonia stripping method, an electrolytic method, or the like.

【0007】下水中のアンモニア性窒素の吸着に際して
は、低温でも窒素の除去が可能であり、除去速度も速
く、また負荷の変動にも強い長所があるが、交換体の再
生及びその再生に際し産出する再生廃液をさらに処理す
る必要があり、その方法によっては2次汚染をきたす問
題点があった。
[0007] When adsorbing ammonia nitrogen in sewage, nitrogen can be removed even at low temperatures, the removal rate is fast, and the load is fluctuated. It is necessary to further treat the recycled waste liquid, and depending on the method, there is a problem of causing secondary contamination.

【0008】[0008]

【本発明が解決しようとする課題】本発明は、上記の従
来技術の諸問題を解決するために案出したもので、冬季
液温が低下しても下水等に含有した窒素及びBOD物質
の除去が可能であり、再生液を別途使用することなく窒
素又は有機物を吸着する交換体が自動的に再生され、か
つ運転管理が簡単でその管理費も少なくてすむ物理化学
的及び生物学的下水及び汚水等の浄化処理方法とその装
置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been devised to solve the above-mentioned problems of the prior art, and is intended to reduce the nitrogen and BOD substances contained in sewage and the like even when the liquid temperature in winter falls. Physicochemical and biological sewage that can be removed, the exchanger that adsorbs nitrogen or organic substances is automatically regenerated without using a separate regenerating solution, and operation management is simple and management costs are low. And a method for purifying sewage and the like and an apparatus therefor.

【0009】[0009]

【課題を解決するための手段】前記課題を解決するため
の手段として、請求項1記載の発明に係る下水の浄化処
理方法は、接触槽を通過させることで下水に含まれるB
OD物質である有機物は活性汚泥に、アンモニア性窒素
はゼオライトに吸着除去する第1段階と、前記接触槽を
通過した下水中の有機物とアンモニア性窒素をそれぞれ
吸着した活性汚泥とゼオライトを沈降分離し、汚濁成分
が除去された上澄み液は放流する第2段階と、沈降分離
した前記活性汚泥及びゼオライトは、無酸素部と好気部
とに区画された再生安定化槽の無酸素部に移送し、好気
部から循環してきた酸化態窒素を含む内部循環液と混合
せしめ、循環液中の酸化態窒素は、活性汚泥に吸着され
た有機物質を用い脱窒菌の作用によって窒素ガスに還元
して大気中に放出し、前記混合液は好気部に流入し、ゼ
オライトに吸着されたアンモニア性窒素は、窒素酸化菌
によって酸化態窒素に酸化せしめた後、前記無酸素部へ
循環し、下水中の窒素とBOD物質を除去し、活性汚泥
及びゼオライトの吸着能を再生する第3段階と、前段階
で再生された活性汚泥とゼオライトを前記第1段階の接
触槽へ供給する第4段階と、前記再生安定化槽の好気部
から混合液を引き抜き、余剰汚泥を除去処理する第5段
階とで構成されていることを特徴とする。
According to a first aspect of the present invention, there is provided a method of purifying sewage according to the present invention, wherein B is contained in sewage by passing through a contact tank.
The first step is to remove the organic matter as the OD substance into the activated sludge and to remove the ammonia nitrogen into the zeolite, and to sediment and separate the activated sludge and the zeolite into which the organic matter and the ammonia nitrogen in the sewage passed through the contact tank are respectively adsorbed. The second step in which the supernatant liquid from which the pollutant components have been removed is discharged, and the activated sludge and zeolite separated and settled are transferred to the oxygen-free part of the regeneration stabilization tank partitioned into an oxygen-free part and an aerobic part. Mixed with the internal circulating fluid containing oxidized nitrogen circulated from the aerobic part, and the oxidized nitrogen in the circulated fluid is reduced to nitrogen gas by the action of denitrifying bacteria using organic substances adsorbed on the activated sludge. Released into the atmosphere, the mixture flows into the aerobic part, and the ammoniacal nitrogen adsorbed on the zeolite is oxidized to oxidized nitrogen by nitrogen oxidizing bacteria, and then circulated to the anoxic part, of A third step of removing elemental and BOD substances and regenerating the adsorption capacity of activated sludge and zeolite, a fourth step of supplying the activated sludge and zeolite regenerated in the previous step to the first contact tank, A fifth step of extracting the mixed liquid from the aerobic part of the regeneration stabilization tank and removing excess sludge.

【0010】請求項2記載の発明は、前記請求項1に記
載した下水の浄化処理方法において、前記第3段階及び
第4段階は、前記無酸素部及び好気部を通過した混合液
が、前記無酸素部へ反復して循環されると同時に、前記
無酸素部及び好気部を通過した混合液の一部は、前記接
触槽へ返送される工程により構成されていることを特徴
とする。
According to a second aspect of the present invention, in the method for purifying sewage according to the first aspect, the third step and the fourth step comprise the step of: At the same time as being repeatedly circulated to the oxygen-free part, a part of the mixed solution that has passed through the oxygen-free part and the aerobic part is constituted by a step of being returned to the contact tank. .

【0011】請求項3記載の発明は、前記請求項1又は
請求項2に記載した下水の浄化処理方法において、前記
第5段階は、前記好気部から混合液を間欠的に一定量引
き抜き、前記混合液を凝集及び脱水処理することで汚濁
物質を除去し、汚濁物質の低減した脱水機脱離液は、再
度沈殿槽に供給する段階を包含することを特徴とする。
According to a third aspect of the present invention, in the method for purifying sewage according to the first or second aspect, the fifth step intermittently draws a fixed amount of the mixed solution from the aerobic part, The method includes a step of removing contaminants by coagulating and dehydrating the mixed liquid, and supplying the dehydrator-removed liquid with reduced contaminants to a sedimentation tank again.

【0012】請求項4記載の発明に係る下水の浄化処理
装置は、本設備に導入した下水に活性汚泥及びゼオライ
トを接触させることにより、下水に含まれているBOD
物質である有機物は前記活性汚泥に、アンモニア性窒素
は前記ゼオライトに吸着する接触槽と、当該接触槽を通
過した下水、ゼオライト及び活性汚泥混合液が沈殿さ
れ、汚濁物質の除去された上澄み液は放流され、有機物
とアンモニア性窒素がそれぞれ吸着された活性汚泥とゼ
オライトを沈降分離する沈降分離槽と、無酸素部と好気
部とに区画され、前記沈降分離槽で分離された活性汚泥
及びゼオライトを無酸素部に移送後、その無酸素部と好
気部を循環することにより活性汚泥とゼオライトが吸着
している有機物と窒素を除去し、活性汚泥及びゼオライ
トの吸着能が再生され、これらを再び接触槽に供給する
再生安定化槽と、前記好気部から循環液の一定量を引き
抜き凝集脱水する余剰汚泥除去手段とで構成されている
ことを特徴とする。
[0012] The sewage purification treatment apparatus according to the fourth aspect of the present invention is characterized in that activated sludge and zeolite are brought into contact with the sewage introduced into the present facility, so that the BOD contained in the sewage is improved.
The organic matter which is a substance is in the activated sludge, the ammonia nitrogen is in the contact tank adsorbing on the zeolite, and the sewage, zeolite and activated sludge mixed liquid that has passed through the contact tank is precipitated, and the supernatant liquid from which the pollutants are removed is removed. The sedimentation separation tank for discharging and separating the activated sludge and zeolite to which the organic matter and the ammonia nitrogen are respectively adsorbed, the activated sludge and the zeolite which are divided into an oxygen-free part and an aerobic part, and separated in the sedimentation separation tank After being transferred to the oxygen-free part, the organic matter and nitrogen adsorbed by the activated sludge and the zeolite are removed by circulating the oxygen-free part and the aerobic part, and the adsorption capacity of the activated sludge and the zeolite is regenerated. It is characterized by comprising a regeneration stabilization tank to be supplied to the contact tank again, and an excess sludge removing means for extracting a certain amount of the circulating liquid from the aerobic section and coagulating and dewatering.

【0013】[0013]

【発明の実施の形態及び実施例】本発明の下水浄化処理
装置は、図1に示したように、符号のA方向から流入し
た下水から土砂類が沈降分離される沈殿槽(1)と、沈
殿槽を通過した下水と運転初期段階でE方向から投入さ
れたゼオライト及び再生安定化槽(4)から返送された
活性汚泥とを相互に攪拌接触させる接触槽(2)と、汚
濁物質の除去された上澄み液はB方向に放流され、前記
のゼオライト及び活性汚泥を沈降分離するための沈降分
離槽(3)と、攪拌手段(41)が内設された無酸素部
(4a)及び曝気手段(42)が内設された好気部(4
b)で区画され、沈降分離槽(3)で沈降したゼオライ
ト及び活性汚泥を第1管路(11)を通じて無酸素部
(4a)に移送した後、管路(4c)を経て好気部(4
b)に流入させ、さらに第2管路(12)を通じて再び
無酸素部(4a)に循環させる再生安定化槽(4)と、
バルブ(16)の操作により好気部(4b)を通過した
循環液の一定量を第3管路(13)を通じて連続的又は
間欠的に供給し、前記循環液を凝集、脱水させD方向に
脱水ケーキを排出する余剰汚泥除去手段(6)とで構成
されている。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 1, a sewage purification apparatus according to the present invention comprises: a sedimentation tank (1) for sedimentation and sedimentation of sediment from sewage flowing in from the direction indicated by A; A contact tank (2) for bringing the sewage passed through the sedimentation tank and the activated sludge returned from the regeneration stabilization tank (4) into the zeolite charged in the E direction at the initial stage of operation into mutual contact with each other; The supernatant liquid discharged is discharged in the direction B, and a sedimentation separation tank (3) for sedimentation and separation of the zeolite and the activated sludge, an oxygen-free part (4a) provided with a stirring means (41) and an aeration means (42) has an aerobic part (4
b), the zeolite and the activated sludge settled in the sedimentation separation tank (3) are transferred to the oxygen-free part (4a) through the first pipe (11), and then the aerobic part (4c) is passed through the pipe (4c). 4
b) a regeneration stabilization tank (4) which flows into the b) and is circulated again through the second conduit (12) to the oxygen-free part (4a);
By operating the valve (16), a certain amount of the circulating fluid that has passed through the aerobic part (4b) is supplied continuously or intermittently through the third conduit (13), and the circulating fluid is aggregated and dehydrated in the D direction. And excess sludge removing means (6) for discharging the dewatered cake.

【0014】上記より無酸素部(4a)及び好気部(4
b)を通過する循環液の一部は、ポンプ(P1)の作動
で上記接触槽(2)に返送され、また余剰汚泥除去手段
(6)における余剰汚泥脱離液は、ポンプ(P2)の作
動で第4管路(14)を通じて上記沈殿槽(1)へ移送
される。
From the above, the oxygen-free part (4a) and the aerobic part (4
A part of the circulating liquid passing through b) is returned to the contact tank (2) by the operation of the pump (P1), and the excess sludge desorbed liquid in the excess sludge removing means (6) is supplied to the pump (P2). In operation, it is transferred to the sedimentation tank (1) through the fourth pipe (14).

【0015】上記のように構成された当該装置による本
発明の下水浄化処理方法を説明すると次の通りである。
沈殿槽(1)で土砂類が沈降分離された下水は、接触槽
(2)内に流入し、運転初期段階でE方向から供給され
たゼオライトと再生安定化槽(4)から返送された活性
汚泥と相互に攪拌接触しながら接触槽(2)を通過す
る。この過程でゼオライトが持っている陽イオン交換能
により下水中に含有するアンモニア性窒素(NH
N)が、多孔性の微細粒子状のゼオライトに吸着され、
他方、活性汚泥の吸着能によりBOD物質である有機物
と窒素、燐成分の一部が当該活性汚泥に吸着される。
The sewage purification method of the present invention using the above-configured apparatus will be described below.
The sewage from which sediments are settled and separated in the sedimentation tank (1) flows into the contact tank (2), and the zeolite supplied from the E direction in the initial stage of operation and the activity returned from the regeneration stabilization tank (4). The sludge passes through the contact tank (2) while being in agitated contact with each other. In this process, the ammonia ion (NH 4 + −) contained in the sewage is discharged due to the cation exchange capacity of the zeolite.
N) is adsorbed on the porous fine-particle zeolite,
On the other hand, the organic sludge and a part of nitrogen and phosphorus components are adsorbed to the activated sludge by the adsorption ability of the activated sludge.

【0016】前記接触槽を通過した混合液は、沈降分離
槽(3)で、アンモニア性窒素を吸着したゼオライトと
有機物を吸着した活性汚泥は沈降分離され、上澄み液は
B方向へ放流される。
The mixed solution that has passed through the contact tank is settled and separated in a settling tank (3) from zeolite adsorbing ammonia nitrogen and activated sludge adsorbing organic matter, and the supernatant liquid is discharged in the B direction.

【0017】沈降分離された前記ゼオライト及び活性汚
泥混合液は、無酸素部(4a)へ移送され、前記無酸素
部(4a)を通過した混合液は、好気部(4b)へ流入
し、当該好気部(4b)でゼオライトに吸着されたアン
モニア性窒素は、ニトロソモナス(Nitrosomonas)及び
ニトロバクター(Nitrobacter)等の好気性微生物によ
って亜硝酸性窒素及び硝酸性窒素の酸化態窒素に酸化さ
れる。
The sedimented and separated mixture of zeolite and activated sludge is transferred to an oxygen-free part (4a), and the mixture passed through the oxygen-free part (4a) flows into an aerobic part (4b), The ammoniacal nitrogen adsorbed on the zeolite in the aerobic part (4b) is oxidized to nitrite nitrogen and nitrate nitrogen by aerobic microorganisms such as Nitrosomonas and Nitrobacter. You.

【0018】その過程を化学式で表現すると次の通りで
ある。
The process is represented by a chemical formula as follows.

【化1】 Embedded image

【0019】前記式でZはゼオライトを意味し、Z・N
はアンモニア性窒素が吸着したゼオライトを表わ
す。
In the above formula, Z means zeolite, Z · N
H 4 + represents a zeolite on which ammoniacal nitrogen is adsorbed.

【0020】好気部(4b)の酸化態窒素を含有した混
合液は、ポンプ(P3)の作動で第2管路(12)を通
じて無酸素部(4a)に循環され、沈降分離槽(13)
から無酸素部(4a)に移送されたゼオライト及び活性
汚泥混合液と再混合され、前記の酸化態窒素は無酸素部
(4a)でシュウドモナス(Pseudomonas)やマイクロ
コッカス(Micrococcus)などの通性嫌気性脱窒菌によ
って窒素ガスに還元され、C方向に従って大気中に放出
されることで下水中に含有する窒素成分が除去される。
この脱窒操作に際し、活性汚泥に吸着された有機物が消
費されるため有機物が除去される。
The mixed solution containing the oxidized nitrogen in the aerobic part (4b) is circulated to the oxygen-free part (4a) through the second pipe (12) by the operation of the pump (P3), and the sedimentation tank (13) )
Is remixed with the mixed liquid of zeolite and activated sludge transferred to the oxygen-free part (4a). The nitrogen component is reduced to nitrogen gas by the sex denitrifying bacteria and released into the atmosphere according to the direction C, thereby removing the nitrogen component contained in the sewage.
In this denitrification operation, the organic matter adsorbed on the activated sludge is consumed, so that the organic matter is removed.

【0021】また、活性汚泥に吸着された有機物中、無
酸素部(4a)で消費されなかった残部とゼオライトに
吸着されたアンモニア性窒素は好気部(4b)に移送さ
れ、当該好気部(4b)で残存する有機物は酸化又は資
化され、アンモニア性窒素は酸化態窒素に酸化される。
[0021] In the organic matter adsorbed on the activated sludge, the remainder not consumed in the oxygen-free part (4a) and the ammonia nitrogen adsorbed on the zeolite are transferred to the aerobic part (4b), The remaining organic matter is oxidized or assimilated in (4b), and the ammonia nitrogen is oxidized to oxidized nitrogen.

【0022】すなわち、前記無酸素部(4a)と好気部
(4b)を循環することで、ゼオライトに吸着されたア
ンモニア性窒素は酸化態窒素に酸化されゼオライトから
離脱し、活性汚泥に吸着されたBOD物質である有機物
は、一部は脱窒時に消費し、残りは酸化又は資化により
除去されるため、ゼオライト及び活性汚泥はその吸着能
を再生する。
That is, by circulating through the oxygen-free part (4a) and the aerobic part (4b), the ammonia nitrogen adsorbed on the zeolite is oxidized to oxidized nitrogen, separated from the zeolite, and adsorbed on the activated sludge. Some of the organic substances, which are BOD substances, are consumed at the time of denitrification, and the rest is removed by oxidation or assimilation, so that zeolite and activated sludge regenerate their adsorption capacity.

【0023】吸着能の再生されたゼオライト及び活性汚
泥を含有する混合液は、第5管路(15)を通じて上記
接触槽(2)へ返送され、接触槽内で下水と接触させ、
下水に包含するアンモニア性窒素、有機物や燐等の汚濁
物質を吸着して上記の過程を反復することになる。
The mixed solution containing the regenerated zeolite and the activated sludge having the adsorptive capacity is returned to the contact tank (2) through the fifth pipe (15), and brought into contact with the sewage in the contact tank.
The above process is repeated by adsorbing pollutants such as ammonia nitrogen, organic matter and phosphorus contained in the sewage.

【0024】さらに、下水処理の経過と共に装置系内に
おいて増加する活性汚泥余剰分は、上記好気部(4b)
から内部循環液の一定量を連続的又は間欠的に上記余剰
汚泥除去手段(6)に移送した後、これを凝集、脱水
し、脱水ケーキとして処分し、脱水処理時に発生する脱
離液は、第4管路(14)を通じて沈殿槽(1)へ返送
する。
Further, the excess activated sludge which increases in the apparatus system with the progress of the sewage treatment is transferred to the aerobic section (4b).
After continuously or intermittently transferring a certain amount of the internal circulating liquid to the surplus sludge removing means (6), this is coagulated, dewatered and disposed as a dewatered cake. It is returned to the sedimentation tank (1) through the fourth pipe (14).

【0025】このように、本発明は、活性汚泥とゼオラ
イトの吸着能を利用して、迅速に下水又は汚水中の汚濁
成分を物理化学的に吸着分離させる接触槽(2)と生物
学的に汚濁成分を除去して活性汚泥とゼオライトの吸着
能を再生する再生安定化槽(4)を有機的に連結して、
物理化学的及び生物学的処理のそれぞれの長所を併せ持
つ処理方法として好適に実施される。
As described above, the present invention utilizes a contact tank (2) for rapidly and physicochemically adsorbing and separating pollutants in sewage or sewage by utilizing the adsorption capacity of activated sludge and zeolite. The regeneration stabilization tank (4) for removing pollutants and regenerating the adsorption capacity of activated sludge and zeolite is organically connected,
It is suitably implemented as a processing method having both advantages of physicochemical and biological processing.

【0026】すなわち、従来の生物学的処理方法では、
下水中に含有された窒素を除去する場合、液温が15℃
以下になると処理効率が極度に低下して、事実上下水の
窒素除去が不可能であったが、本発明によれば、液温の
影響の少ない物理化学的な方法によって汚濁成分を吸着
して沈降分離槽(3)で濃縮、沈降分離するため、再生
安定化槽(4)内では汚濁成分と活性汚泥が高濃度に維
持され、再生安定化槽(4)の単位容積あたりの発熱量
が高いことによって冬季においても微生物処理に差し支
えない液温度を維持しやすい。
That is, in the conventional biological treatment method,
When removing nitrogen contained in sewage, the liquid temperature should be 15 ° C.
The treatment efficiency is extremely reduced below, and it was impossible to actually remove nitrogen from water and sewage, but according to the present invention, the pollutant component is adsorbed by a physicochemical method less affected by the liquid temperature. Since concentration and sedimentation are performed in the sedimentation separation tank (3), the pollutant and activated sludge are maintained at a high concentration in the regeneration stabilization tank (4), and the calorific value per unit volume of the regeneration stabilization tank (4) is reduced. Due to the high temperature, it is easy to maintain the liquid temperature that does not hinder microbial treatment even in winter.

【0027】さらに、従来の生物処理学的処理方法にお
いては、汚濁成分の負荷変動が最終沈殿槽での汚泥の沈
降性に絶対的な影響を与えるが、本発明は、汚濁物質を
吸着した状態の活性汚泥が比重の重いゼオライトと共に
沈降分離槽(3)へ移送されるため、沈降性が至極改善
され、流入下水の汚濁成分の負荷変動による影響が少な
く、また、接触槽(2)では、物理学的な吸着によって
汚濁物質が除去されるため、流入下水の汚濁物質濃度が
低位である場合でも処理効率がよい。
Further, in the conventional biological treatment method, the fluctuation of the load of the pollutant component absolutely affects the sedimentation of the sludge in the final sedimentation tank. Of the activated sludge is transferred to the sedimentation tank (3) together with the zeolite having a high specific gravity, so that the sedimentation property is extremely improved, the influence of the load fluctuation of the pollutant component of the inflow sewage is small, and in the contact tank (2), Since the pollutants are removed by physical adsorption, the treatment efficiency is good even when the concentration of the pollutants is low.

【0028】また、本発明は、接触槽(2)で短時間に
物理化学的に汚濁物質を吸着濃縮し、これを微生物の高
濃度に維持された再生安定化槽(4)で生物学的に処理
するため、接触槽(2)と再生安定化槽(4)との槽容
積の総和が、従来の曝気槽容積に比して大幅に縮小でき
る。さらに、同時に窒素酸化、脱窒などの生物学的な窒
素除去過程によって、ゼオライトが自動的にその吸着能
を再生させるため、ゼオライト再生のための別途の設備
及び薬剤を必要とせず、従来の薬剤再生法に比べてより
経済的であり、維持管理も容易である。
The present invention also provides a method for physicochemically adsorbing and concentrating pollutants in a short period of time in a contact tank (2) and subjecting the contaminants to biological regeneration in a regeneration stabilization tank (4) maintained at a high concentration of microorganisms. Therefore, the sum of the tank volumes of the contact tank (2) and the regeneration stabilization tank (4) can be greatly reduced as compared with the conventional aeration tank volume. In addition, zeolite automatically regenerates its adsorption capacity through biological nitrogen removal processes such as nitrogen oxidation and denitrification, eliminating the need for additional equipment and chemicals for zeolite regeneration. It is more economical and easier to maintain than the regeneration method.

【0029】特にゼオライトを薬剤によって再生する場
合は、再生廃液やアンモニアガスの処理のために複雑な
設備と運転管理が必要となり、ゼオライト充填塔を用い
て一定期間吸着再生を反復した劣化ゼオライトの交換に
は、多大な労力を必要をしたが、本発明では、余剰汚泥
と共に排出されるゼオライト量に見合うゼオライトを接
触槽に投入補充すればよい。
Particularly, in the case of regenerating zeolite with a chemical, complicated equipment and operation management are required for the treatment of regenerated waste liquid and ammonia gas, and exchange of degraded zeolite by repeating adsorption and regeneration for a certain period using a zeolite packed tower is required. However, in the present invention, zeolite corresponding to the amount of zeolite discharged together with the excess sludge may be charged and replenished in the contact tank.

【0030】脱窒工程で必要とする有機炭素源は、活性
汚泥に吸着された有機物が使用できるため、メタノール
等の薬品を必要としないか低減でき、また、固形物滞留
時間(SRT:Solid Retention Time)の調整によって
ゼオライトの投入量の調整も可能であり、運転管理費が
少なくてすむ。
As an organic carbon source required in the denitrification step, an organic substance adsorbed on activated sludge can be used, so that a chemical such as methanol can be eliminated or reduced, and a solid retention time (SRT: Solid Retention) can be used. By adjusting the time, it is possible to adjust the amount of zeolite input, and operation management costs can be reduced.

【0031】[0031]

【発明の効果】本発明は、家庭又は工場から排出される
生活下水又は汚水中に含まれる汚濁物質をゼオライトと
活性汚泥に吸着させ、ゼオライトに吸着されたアンモニ
ア性窒素は、好気的条件下で酸化態窒素まで酸化される
ことでゼオライトの再生が図られ、一方、前記酸化態窒
素は、無酸素条件下で最終的に窒素ガスに還元され放出
される。この酸化態窒素の脱窒過程で必要となる有機炭
素源は、活性汚泥に吸着されたBOD物質である有機物
が適用でき、したがって、汚濁物質である有機物と窒素
の同時除去が達成される。
According to the present invention, the pollutants contained in domestic sewage or sewage discharged from homes or factories are adsorbed on zeolite and activated sludge, and the ammonia nitrogen adsorbed on the zeolite is subjected to aerobic conditions. The zeolite is regenerated by being oxidized to oxidized nitrogen at the same time, while the oxidized nitrogen is finally reduced to nitrogen gas and released under anoxic condition. As an organic carbon source required in the process of denitrifying oxidized nitrogen, an organic substance as a BOD substance adsorbed on activated sludge can be applied, and therefore, simultaneous removal of an organic substance as a pollutant and nitrogen is achieved.

【0032】また、冬季における液温の低下に際しても
窒素の除去が可能であり、汚濁負荷変動への対応が容易
になる効果がある。
In addition, nitrogen can be removed even when the liquid temperature decreases in winter, and there is an effect that it is easy to cope with fluctuations in the pollution load.

【0033】さらに、本発明は、汚濁物質濃度が低濃度
の下水の場合においても浄化処理効率が高く、槽容積を
縮小できて浄化設備の単純化が可能な上、運転管理も簡
単で、管理費の低廉化にも貢献する。
Further, according to the present invention, even when the concentration of pollutants is low, the purification efficiency is high, the volume of the tank can be reduced, the purification equipment can be simplified, the operation management is simple, and the management is simple. It also contributes to lower costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による下水の浄化処理装置の概略図であ
る。
FIG. 1 is a schematic view of a sewage purification treatment apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 沈殿槽 2 接触槽 3 沈降分離槽 4 再生安定化槽 4a 無酸素部 4b 好気部 6 余剰汚泥除去手段 DESCRIPTION OF SYMBOLS 1 Sedimentation tank 2 Contact tank 3 Sedimentation separation tank 4 Regeneration stabilization tank 4a Oxygen-free part 4b Aerobic part 6 Excess sludge removal means

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C02F 3/34 101 C02F 1/28 C02F 3/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C02F 3/34 101 C02F 1/28 C02F 3/12

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】接触槽を通過させることで下水に含まれる
BOD物質である有機物は活性汚泥に、アンモニア性窒
素はゼオライトに吸着除去する第1段階と、前記接触槽
を通過した下水中の有機物とアンモニア性窒素をそれぞ
れ吸着した活性汚泥とゼオライトを沈降分離し、汚濁成
分が除去された上澄み液は放流する第2段階と、沈降分
離した前記活性汚泥及びゼオライトは、無酸素部と好気
部とに区画された再生安定化槽の無酸素部に移送し、好
気部から循環してきた酸化態窒素を含む内部循環液と混
合せしめ、循環液中の酸化態窒素は、活性汚泥に吸着さ
れた有機物質を用い脱窒菌の作用によって窒素ガスに還
元して大気中に放出し、前記混合液は好気部に流入し、
ゼオライトに吸着されたアンモニア性窒素は、窒素酸化
菌によって酸化態窒素に酸化せしめた後に前記無酸素部
へ循環し、下水中の窒素とBOD物質を除去し、活性汚
泥とゼオライトの吸着能を再生する第3段階と、前段階
で再生された活性汚泥とゼオライトを前記第1段階の接
触槽へ供給する第4段階と、前記再生安定化槽の好気部
から混合液を引き抜き、余剰汚泥を除去処理する第5段
階とで構成されていることを特徴とする下水の浄化処理
方法。
1. A first step in which organic substances as BOD substances contained in sewage are adsorbed and removed in activated sludge and ammoniacal nitrogen is adsorbed and removed in zeolite by passing through a contact tank, and an organic substance in sewage passed through the contact tank. The activated sludge and zeolite that have respectively adsorbed ammonia and ammonia nitrogen are settled and separated, and the supernatant liquid from which the pollutant component has been removed is discharged. The activated sludge and zeolite that have settled and separated are anoxic and aerobic. The oxygen is transferred to the oxygen-free part of the regeneration stabilization tank and mixed with the internal circulating liquid containing oxidized nitrogen circulated from the aerobic part, and the oxidized nitrogen in the circulated liquid is adsorbed by the activated sludge. Reduced by the action of denitrifying bacteria using organic substances to nitrogen gas and released into the atmosphere, the mixture flows into the aerobic part,
The ammoniacal nitrogen adsorbed on the zeolite is oxidized to oxidized nitrogen by nitrogen oxidizing bacteria and then circulated to the anoxic part to remove nitrogen and BOD substances in the sewage and regenerate the adsorption capacity of activated sludge and zeolite. A third step of supplying the activated sludge and zeolite regenerated in the previous step to the contact tank of the first step; and withdrawing the mixed liquid from the aerobic part of the regeneration stabilization tank to remove excess sludge. A sewage purification method comprising: a fifth step of removing.
【請求項2】請求項1に記載した下水の浄化処理方法に
おいて、 前記第3段階と第4段階は、前記無酸素部と好気部を通
過した混合液が、前記無酸素部へ反復して循環されると
同時に、前記無酸素部と好気部を通過した混合液の一部
は、前記接触槽へ返送される工程により構成されている
ことを特徴とする下水の浄化処理方法。
2. The sewage purification method according to claim 1, wherein the third step and the fourth step are such that the mixed solution passing through the oxygen-free part and the aerobic part is repeated to the oxygen-free part. And a part of the mixed liquid that has passed through the oxygen-free part and the aerobic part while being circulated is returned to the contact tank.
【請求項3】請求項1又は請求項2に記載した下水の浄
化処理方法において、 前記第5段階は、前記好気部から混合液を間欠的に一定
量引き抜き、前記混合液を凝集及び脱水処理することで
汚濁物質を除去し、汚濁物質の低減した脱水機脱離液
は、再度沈殿槽に供給する段階を包含することを特徴と
する下水の浄化処理方法。
3. The method for purifying sewage according to claim 1, wherein the fifth step includes intermittently withdrawing a certain amount of the mixed solution from the aerobic part, and coagulating and dehydrating the mixed solution. A method of purifying sewage, comprising the step of removing pollutants by performing treatment and supplying the dehydrator desorbed liquid having reduced pollutants to a sedimentation tank again.
【請求項4】活性汚泥及びゼオライトを接触させること
により、下水に含まれているBOD物質である有機物は
前記活性汚泥に、アンモニア性窒素は前記ゼオライトに
吸着する接触槽と、当該接触槽を通過した下水、ゼオラ
イト及び活性汚泥混合液が沈殿され、汚濁物質の除去さ
れた上澄み液は放流され、有機物とアンモニア性窒素が
それぞれ吸着された活性汚泥とゼオライトを沈降分離す
る沈降分離槽と、無酸素部と好気部とに区画され、前記
沈降分離槽で分離された活性汚泥とゼオライトを無酸素
部に移送後、その無酸素部と好気部を循環することによ
り活性汚泥とゼオライトが吸着している有機物と窒素を
除去し、活性汚泥とゼオライトの吸着能が再生され、こ
れらを再び接触槽に供給する再生安定化槽と、前記好気
部から循環液の一定量を引き抜き凝集脱水する余剰汚泥
除去手段とで構成されていることを特徴とする下水の浄
化処理装置。
4. The activated sludge and the zeolite are brought into contact with each other, so that the organic matter as a BOD substance contained in the sewage passes through the activated sludge and the ammonia nitrogen passes through the contact tank adsorbed on the zeolite. The sediment mixture containing sewerage, zeolite and activated sludge is settled, the supernatant liquid from which pollutants are removed is discharged, and a sedimentation separation tank for sedimenting and separating activated sludge and zeolite, to which organic matter and ammonia nitrogen are respectively adsorbed, After the activated sludge and zeolite separated in the sedimentation separation tank are transferred to the oxygen-free part, the activated sludge and zeolite are adsorbed by circulating the oxygen-free part and the aerobic part. The activated sludge and the zeolite are regenerated by removing the organic matter and nitrogen contained therein, and the regeneration stabilization tank supplies these to the contact tank again. Purifying apparatus of the sewage, characterized in that it is composed of a excess sludge removal means for aggregating dewatering withdrawal amount.
JP36035398A 1998-01-10 1998-12-18 Sewage purification method and apparatus Expired - Lifetime JP2992692B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1998.470 1998-01-10
KR1019980000470A KR100248874B1 (en) 1998-01-10 1998-01-10 Sewage purifying method and the same equipment

Publications (2)

Publication Number Publication Date
JPH11244884A JPH11244884A (en) 1999-09-14
JP2992692B2 true JP2992692B2 (en) 1999-12-20

Family

ID=19531246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36035398A Expired - Lifetime JP2992692B2 (en) 1998-01-10 1998-12-18 Sewage purification method and apparatus

Country Status (2)

Country Link
JP (1) JP2992692B2 (en)
KR (1) KR100248874B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397848B1 (en) * 2000-12-06 2003-09-13 현대건설주식회사 Ammonai Nitrogen Eliminating Device Using Jolite and Thereof Method
CN1332896C (en) * 2004-07-02 2007-08-22 桂林工学院 Process for removing nitrogen and phosphor from sewage capable of being built by separate periods
US8440074B2 (en) 2009-07-08 2013-05-14 Saudi Arabian Oil Company Wastewater treatment system including irradiation of primary solids
EA201300643A1 (en) * 2009-07-08 2013-09-30 Сауди Арабиан Ойл Компани SYSTEM AND METHOD FOR TREATMENT OF WASTE WATER WITH LOW CONTENT OF POLLUTANT SUBSTANCES
US8435409B2 (en) * 2010-05-28 2013-05-07 Ecolab Usa Inc. Activated sludge process in wastewater treatment
KR101267311B1 (en) 2010-10-08 2013-05-24 주식회사 부강테크 Wastewater treatment system using absorption and filtration and method thereof
US9630865B2 (en) 2013-05-20 2017-04-25 Veolia Water Solutions & Technologies Support System and process for removing ammonium, soluble BOD and suspended solids from a wastewater stream
KR101746135B1 (en) 2016-08-23 2017-06-12 주식회사 포스코건설 Water treating apparatus and method using magnetite
CN115072826B (en) * 2022-06-14 2023-04-25 东北石油大学 Electroplating sewage treatment equipment

Also Published As

Publication number Publication date
KR100248874B1 (en) 2000-03-15
KR19990065255A (en) 1999-08-05
JPH11244884A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
CN102718363B (en) Coking wastewater comprehensive treatment method and system thereof
JP2001037467A (en) Method and arrangement for treating wastewater containing both ammonia and phosphorus
RU2144510C1 (en) Anaerobic removal of sulfur compounds from sewage
JP2992692B2 (en) Sewage purification method and apparatus
JPH11285696A (en) Device and method for sewage treatment
KR20100128121A (en) Method and apparatus for treating anaerobic digestive fluid
JPH06320190A (en) Method and device for treating sewage water
JPH0366036B2 (en)
JP4105006B2 (en) Water treatment system and water treatment method
JPH0639396A (en) Method for treating waste water
JP3837760B2 (en) Treatment method of flue gas desulfurization waste water
JP4085436B2 (en) Drainage treatment apparatus and method
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
KR101065940B1 (en) Treatment and reuse system for wastewater containing high concentrations of hydrofluoric acid, phosphoric acid and nitric acid
JP2002355695A (en) Water treatment method and apparatus
JP3555812B2 (en) Advanced treatment method for organic wastewater
JP2008093602A (en) Waste water treatment method and waste water treatment equipment
JP3832888B2 (en) Purification device operation method
JP3350424B2 (en) Oil-containing wastewater treatment apparatus and its treatment method
JP4647814B2 (en) Organic wastewater treatment equipment
KR20050072342A (en) Nitrogen removal system by physical and chemical treatment
JPH0310399B2 (en)
JPH091187A (en) Waste water treating device and its operating method
JPH0975987A (en) Method for removing nitrogen in high level from organic sewage
JP4335354B2 (en) Wastewater treatment equipment