JP2002355695A - Water treatment method and apparatus - Google Patents

Water treatment method and apparatus

Info

Publication number
JP2002355695A
JP2002355695A JP2001165224A JP2001165224A JP2002355695A JP 2002355695 A JP2002355695 A JP 2002355695A JP 2001165224 A JP2001165224 A JP 2001165224A JP 2001165224 A JP2001165224 A JP 2001165224A JP 2002355695 A JP2002355695 A JP 2002355695A
Authority
JP
Japan
Prior art keywords
sludge
water
treated
treatment
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001165224A
Other languages
Japanese (ja)
Inventor
Hidekazu Nishikawa
英一 西川
Jiro Sato
二朗 佐藤
Kohei Miki
康平 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2001165224A priority Critical patent/JP2002355695A/en
Publication of JP2002355695A publication Critical patent/JP2002355695A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove dioxins, etc., contained in water to be treated still more sufficiently than before at the time of cleaning treatment of water to be treated such as leached water or the like. SOLUTION: A water treatment apparatus 100 is constituted by successively arranging a biological nitrification/denitrification tank 4, a sedimentation/ separation tank 5 and a flocculation/sedimentation tank 6 to the rear stage of a flocculation/sedimentation tank 50 connected to pretreatment tanks 20 and 30 to which leached water W containing dioxins is supplied. The leached water W to which a carbonate and a flocculant are added in the pretreatment tanks 20 and 30 is supplied to the flocculation/sedimentation tank 50 to be subjected to the separation treatment of flocculated sludge and subsequently treated with activated sludge in the biological nitrification/denitrification tank 4. The leached water W is introduced into the sedimentation/separation tank 5 to be separated from activated sludge and flocculated sludge is removed in the flocculation/sedimentation tank 6. Mixed sludge D of a part of activated sludge separated from the leached water W and flocculated sludge is subjected to nitrification treatment in a biological reaction tank 1 and dioxins in the mixed sludge D are decomposed accompanied thereby.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水処理方法及び装置
に関し、特に有機塩素化合物を含有する被処理水を処理
する水処理方法及びそのための水処理装置に関する。
The present invention relates to a water treatment method and apparatus, and more particularly to a water treatment method for treating water to be treated containing an organic chlorine compound and a water treatment apparatus therefor.

【0002】[0002]

【従来の技術】廃棄物焼却設備から発生する飛灰、廃棄
物処分場からの浸出水に含まれる懸濁物質、それら飛灰
や浸出水で汚染された土壌等には、ダイオキシン類に代
表される難分解性の有機塩素化合物が含まれることがあ
り、大きな社会問題となっている。これに対し、処理対
象である浸出水等の被処理水に含まれるダイオキシン類
を分解処理する有効な方法及び装置として、本出願人に
よる国際公開第00/58038号(WO00/580
38)パンフレットに記載の有機塩素化合物の処理方法
及び装置が提案されている。
2. Description of the Related Art Fly ash generated from waste incineration facilities, suspended solids contained in leachate from waste disposal sites, and soil contaminated with such fly ash and leachate are represented by dioxins. In some cases, organic chlorine compounds that are hardly decomposable are contained, which is a major social problem. On the other hand, as an effective method and apparatus for decomposing dioxins contained in water to be treated such as leachate to be treated, WO 00/58038 (WO 00/580) by the present applicant has been proposed.
38) A method and an apparatus for treating an organic chlorine compound described in a pamphlet have been proposed.

【0003】この方法及び装置は、被処理水を硝化処理
することにより、その被処理水に含まれるダイオキシン
類等の難分解性有機塩素化合物を同時に酸化分解処理す
る方法であり、複雑且つ大規模な装置を必要とせず、且
つ、高温高圧といった過酷な処理条件も不要である。そ
して、これにより、それまでのダイオキシン類の処理技
術に比して、処理の手間を省くと共に処理コストを軽減
しつつダイオキシン類の高処理効率を達成できるといっ
た有用な効果を奏するものである。
[0003] This method and apparatus is a method for subjecting treated water to nitrification treatment to simultaneously oxidatively decompose hardly decomposable organic chlorine compounds such as dioxins contained in the treated water. No complicated equipment is required, and no severe processing conditions such as high temperature and high pressure are required. As a result, as compared with the conventional dioxin processing technology, a useful effect such as high processing efficiency of dioxins can be achieved while reducing processing time and processing cost.

【0004】[0004]

【発明が解決しようとする課題】ところで、本発明者ら
は、活性汚泥を用いた浸出水等の浄化処理に対して本出
願人による上記従来の方法を適用し、その効果及び適用
性等について詳細な検討を行ったところ、以下に示す知
見を得た。すなわち、水処理に供された活性汚泥(余剰
汚泥)を上記従来の方法で処理すると、その汚泥中に含
まれるダイオキシン類は十分な高効率で除去できる。し
かし、被処理水の性状等によっては、被処理水に含まれ
るダイオキシン類の余剰汚泥への吸着や移行が十分では
なく、ダイオキシン類を処理系全体から必ずしも十分に
除去できないことがあった。
By the way, the present inventors have applied the above-mentioned conventional method by the present applicant to the purification treatment of leachate or the like using activated sludge, and have examined its effects and applicability. After a detailed study, the following findings were obtained. That is, when activated sludge (excess sludge) subjected to water treatment is treated by the above-described conventional method, dioxins contained in the sludge can be removed with a sufficiently high efficiency. However, depending on the properties of the water to be treated and the like, the adsorption and transfer of dioxins contained in the water to be treated to excess sludge are not sufficient, and dioxins may not always be sufficiently removed from the entire treatment system.

【0005】そこで、本発明は、このような問題点に鑑
みてなされたものであり、被処理水の浄化処理に際し、
被処理水に含まれるダイオキシン類等の難分解性有機塩
素化合物を従来に比してより一層十分に除去できる水処
理方法及び装置を提供することを目的とする。
Accordingly, the present invention has been made in view of such problems, and has been developed in purifying water to be treated.
It is an object of the present invention to provide a water treatment method and apparatus capable of removing more difficult-to-decompose organic chlorine compounds such as dioxins contained in the water to be treated than in the past.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明者らは鋭意研究を重ねた結果、更に以下に示
す知見を得た。一般に、浸出水等の水処理においては、
原水に元来含まれている溶解物質、懸濁物質等の成分
を、活性汚泥による生物処理に先立って予め除去した
り、水質向上のために余剰汚泥を分離した後更に前記成
分の除去を行うことが多い。これらの成分は、一般的に
凝集され、固形分として除去されるが、一部が循環処理
される活性汚泥とは異なり、通常、貯留された後に廃棄
処分されている。そして、本発明者らは、余剰汚泥に移
行しなかったダイオキシン類等の残部がこのような回収
固形分中に有為に含まれ得ることを見出し、本発明を完
成するに至った。
Means for Solving the Problems In order to solve the above problems, the present inventors have made intensive studies and as a result have obtained the following findings. Generally, in water treatment such as leachate,
Components such as dissolved substances and suspended substances originally contained in raw water are removed in advance prior to biological treatment with activated sludge, or the above components are further removed after separating excess sludge for improving water quality. Often. These components are generally agglomerated and removed as solids, but unlike activated sludge, which is partially recycled, is usually discarded after being stored. The present inventors have found that dioxins and the like that have not been transferred to excess sludge can be significantly contained in such recovered solids, and have completed the present invention.

【0007】すなわち、本発明による水処理方法は、
(1)有機塩素化合物を含有する被処理水を活性汚泥に
より生物処理する生物処理工程を備える方法であって、
(2)生物処理を実施した被処理水に含まれる活性汚泥
を固液分離する活性汚泥分離工程と、(3)被処理水に
凝集剤を添加して凝集せしめた凝集汚泥を固液分離する
凝集汚泥分離工程と、(4)固液分離して得た活性汚泥
及び凝集汚泥のそれぞれの少なくとも一部に還元態(叉
は還元体)窒素を添加し、好気性処理することにより還
元態窒素を酸化する汚泥処理工程とを備えることを特徴
とする。
That is, the water treatment method according to the present invention comprises:
(1) A method comprising a biological treatment step of biologically treating treated water containing an organic chlorine compound with activated sludge,
(2) an activated sludge separation step of solid-liquid separation of the activated sludge contained in the treated water subjected to the biological treatment, and (3) a solid-liquid separation of the aggregated sludge that has been aggregated by adding a coagulant to the treated water. Coagulated sludge separation step, and (4) adding reduced (or reduced) nitrogen to at least a part of each of activated sludge and coagulated sludge obtained by solid-liquid separation and performing aerobic treatment to reduce reduced nitrogen And a sludge treatment step for oxidizing the sludge.

【0008】このような構成を有する水処理方法におい
ては、生物処理(生物硝化脱窒処理等)に供された活性
汚泥の少なくとも一部を余剰汚泥として汚泥処理工程に
送り、還元態窒素を添加して好気性処理することにより
硝化反応を生起させ、その余剰汚泥中に含まれるダイオ
キシン類等の有機塩素化合物を酸化分解する。それと共
に、被処理水に凝集剤を添加し、例えばその共沈作用に
よって凝集して得られる凝集(沈殿)汚泥をも汚泥処理
工程に導入する。
In the water treatment method having such a configuration, at least a part of the activated sludge subjected to the biological treatment (biological nitrification and denitrification treatment) is sent to a sludge treatment step as excess sludge, and reduced nitrogen is added. Then, a nitrification reaction is caused by the aerobic treatment, and organic chlorine compounds such as dioxins contained in the excess sludge are oxidatively decomposed. At the same time, a coagulant is added to the water to be treated, and for example, coagulated (precipitated) sludge obtained by coagulation by the coprecipitation action is also introduced into the sludge treatment step.

【0009】一般に、凝集剤としては、高分子系凝集
剤、無機系凝集剤等を用いることができ、凝集汚泥とし
ては無機成分を含むものとなるが、生物処理工程で使用
される活性汚泥の一部も含まれ得る。よって、これらを
汚泥処理工程で処理することにより、凝集汚泥に含まれ
る有機塩素化合物も酸化分解される。特に、余剰汚泥と
して生物処理工程に送られた活性汚泥と共に好気性処理
すると、有機塩素化合物の酸化分解効率が高められるの
でより好ましく、凝集汚泥が無機成分を多く含む場合に
殊に有用である。また、この場合、装置構成の簡略化が
図られる。
In general, a polymer-based flocculant, an inorganic flocculant and the like can be used as the flocculant, and the flocculant contains an inorganic component. Some may also be included. Therefore, by treating these in the sludge treatment step, the organochlorine compounds contained in the aggregated sludge are also oxidatively decomposed. In particular, aerobic treatment with activated sludge sent to the biological treatment step as surplus sludge is more preferable because the efficiency of oxidative decomposition of the organochlorine compound is enhanced, and is particularly useful when the coagulated sludge contains a large amount of inorganic components. In this case, the device configuration is simplified.

【0010】このように、本発明の水処理方法は、余剰
汚泥及び凝集汚泥を生物処理工程の系外へ取り出して生
物硝化処理することにより、それらの汚泥に濃縮吸着等
されたダイオキシン類等の有機塩素化合物を酸化分解な
らしめるものである。このような難分解性の有機塩素化
合物の分解機構は未だ十分に解明されていないが、硝化
菌によって生成されるアンモニアモノオキシナーゼ等の
酸化酵素が関与する酵素反応系において難分解性有機塩
素化合物の酸化分解が促進されるものと推定される。
As described above, according to the water treatment method of the present invention, surplus sludge and coagulated sludge are taken out of the system of the biological treatment step and subjected to biological nitrification treatment, whereby dioxins and the like concentrated and adsorbed on the sludge are removed. It oxidatively decomposes organic chlorine compounds. Although the decomposition mechanism of such a hardly decomposable organochlorine compound has not yet been sufficiently elucidated, the hardly decomposable organochlorine compound is involved in an enzyme reaction system involving an oxidase such as ammonia monooxygenase produced by nitrifying bacteria. It is presumed that oxidative decomposition of is promoted.

【0011】また、具体的には、凝集汚泥分離工程が、
(a)生物処理工程を実施する前に被処理水に凝集剤を
添加して凝集せしめた凝集汚泥を固液分離する第1の凝
集分離ステップを有すると好ましい。
[0011] More specifically, the coagulated sludge separation step comprises:
(A) It is preferable to have a first coagulation separation step of solid-liquid separation of coagulated sludge by adding a coagulant to water to be treated before performing the biological treatment step.

【0012】こうすれば、第1の凝集分離ステップで、
被処理水に元来含まれる溶解物質、懸濁物質等の成分が
凝集して被処理水から有効に除去され、生物処理工程で
の生物処理を一層良好に実施できる。その固形分を含む
凝集汚泥は、生物処理前の被処理水及び懸濁物質等に含
まれるダイオキシン類等の有機塩素化合物を含み得る
が、それらは汚泥処理工程に送られて酸化分解される。
なお、第1の凝集分離ステップで得られる凝集汚泥が主
として無機成分を含むときには、上述の如く、余剰汚泥
と共に汚泥処理工程で酸化(硝化)処理することが望ま
しい。
Thus, in the first coagulation separation step,
Components such as dissolved substances and suspended substances originally contained in the water to be treated aggregate and are effectively removed from the water to be treated, so that the biological treatment in the biological treatment step can be performed more favorably. The coagulated sludge containing the solid content can contain organic chlorine compounds such as dioxins contained in the water to be treated and suspended substances before biological treatment, but they are sent to the sludge treatment step to be oxidatively decomposed.
When the coagulated sludge obtained in the first coagulation / separation step mainly contains an inorganic component, it is desirable to perform the oxidation (nitrification) treatment in the sludge treatment step together with the excess sludge as described above.

【0013】或いは、凝集汚泥分離工程が、(b)活性
汚泥分離工程を実施した後に活性汚泥が分離された被処
理水に凝集剤を添加して凝集せしめた凝集汚泥を固液分
離する第2の凝集分離ステップを有しても好適である。
この場合、第2の凝集分離ステップでは、活性汚泥から
分離された被処理水中に残存する若干の懸濁物質、活性
汚泥等の固形分が凝集分離される。このような固形分を
含む凝集汚泥は、被処理水から分離された活性汚泥へ移
行しなかった有機塩素化合物や、被処理水に残存してい
る固形分そのものに含まれる有機塩素化合物、等を含み
得る。そして、このような有機塩素化合物も汚泥処理工
程において酸化分解される。
Alternatively, the coagulated sludge separation step is a step (b) in which a coagulant is added to the treated water from which the activated sludge has been separated after the activated sludge separation step has been carried out to perform solid-liquid separation of the coagulated sludge. It is also preferable to have a coagulation separation step.
In this case, in the second coagulation / separation step, a small amount of suspended solids, activated sludge, and other solids remaining in the water to be treated separated from the activated sludge are coagulated and separated. Agglomerated sludge containing such solids includes organic chlorine compounds that did not migrate to the activated sludge separated from the water to be treated, and organic chlorine compounds contained in the solids themselves remaining in the water to be treated. May be included. And such organic chlorine compounds are also oxidatively decomposed in the sludge treatment step.

【0014】さらに、汚泥処理工程で処理した活性汚泥
及び凝集汚泥と処理済液とを膜分離する膜分離工程を更
に備えると好適であり、この膜分離工程は、汚泥処理工
程を実施した後に実施してもよく、或いは、前記汚泥処
理工程を実施しながら実施してもよい。こうすれば、汚
泥処理工程において有機塩素化合物が分解除去された汚
泥から処理済液から高度に分離できるので、例えば、処
理液を生物処理工程に返送する場合に、汚泥が生物処理
工程へ流入することが防止される。よって、有機塩素化
合物が汚泥中に僅かに残存したとしても、それが生物処
理系へ戻入されてしまうことが抑制される。また、有機
線素化合物が十分に分解除去された汚泥を効率よく回収
できるので、その後の排出叉は回収が平易である。
Further, it is preferable that the method further comprises a membrane separation step for membrane-separating the activated sludge and coagulated sludge treated in the sludge treatment step from the treated liquid, and this membrane separation step is carried out after the sludge treatment step is performed. Alternatively, it may be performed while performing the sludge treatment step. This makes it possible to highly separate the treated liquid from the sludge from which the organochlorine compound has been decomposed and removed in the sludge treatment step. For example, when returning the treatment liquid to the biological treatment step, the sludge flows into the biological treatment step. Is prevented. Therefore, even if the organic chlorine compound slightly remains in the sludge, it is suppressed from being returned to the biological treatment system. In addition, since the sludge from which the organic linear compound has been sufficiently decomposed and removed can be efficiently recovered, subsequent discharge or recovery is easy.

【0015】またさらに、被処理水として浸出水を処理
するときには、第1の凝集分離ステップにおいて、その
浸出水に、カルシウム(Ca)と反応して難水溶性塩を
生じ得る塩を添加すると更に好適である。この場合、そ
の「塩」を溶液の状態で添加してもよいし、そのままの
状態(粉状体、粒状体等の固体)で添加しても構わな
い。
Further, when treating leachate as the water to be treated, a salt capable of reacting with calcium (Ca) to form a poorly water-soluble salt is added to the leachate in the first coagulation separation step. It is suitable. In this case, the “salt” may be added in the form of a solution, or may be added as it is (solids such as powders and granules).

【0016】また、廃棄物焼却施設の排ガス中のHCl
を除去するために廉価な消石灰が使用されることが多
い。消石灰に含まれるCaは、経時的に土壌中に浸透
し、やがて浸出水中に移行する。第1の凝集分離ステッ
プで、このような浸出水にCaと反応して難溶性塩を生
じ得る塩、例えばアルカリ金属の炭酸塩等を添加し、更
に凝集剤によって凝集した凝集汚泥を除去する。よっ
て、有機塩素化合物の分解除去に加えて、Caの除去に
よる一層良好な生物処理が行われる。
Further, HCl contained in exhaust gas from a waste incineration plant
Inexpensive slaked lime is often used to remove lime. Ca contained in slaked lime penetrates into soil over time and eventually migrates into leachate. In the first coagulation separation step, a salt capable of forming a hardly soluble salt by reacting with Ca, such as an alkali metal carbonate, is added to such leachate, and coagulated sludge coagulated by the coagulant is removed. Therefore, in addition to the decomposition and removal of the organic chlorine compound, a better biological treatment by removing Ca is performed.

【0017】また、本発明による水処理装置は、本発明
の水処理方法を有効に実施するための装置であり、
(1)有機塩素化合物を含有する被処理水が供給され、
その被処理水が活性汚泥により生物処理される生物処理
部を備えるものであって、(2)生物処理部で生物処理
された被処理水と活性汚泥とが固液分離される活性汚泥
分離部と、(3)被処理水が供給され、凝集剤が添加さ
れ、被処理水中から凝集した固形分が凝集汚泥としてそ
の処理水から固液分離される凝集汚泥分離部と、(4)
活性汚泥分離部と凝集汚泥分離部とに接続されており、
活性汚泥及び凝集汚泥が供給され、且つ、還元態窒素が
供給され、好気性条件下で還元態窒素が酸化される(つ
まり硝化処理される)汚泥処理部と、(5)汚泥処理部
に接続され、叉は、汚泥処理部内に設けられており、活
性汚泥及び凝集汚泥と処理済液とが膜分離される膜分離
部とを更に備えることを特徴とする。
The water treatment apparatus according to the present invention is an apparatus for effectively implementing the water treatment method of the present invention,
(1) Water to be treated containing an organic chlorine compound is supplied,
An activated sludge separating section in which the treated water is biologically treated with activated sludge, and (2) the treated water biologically treated in the biological treatment section and the activated sludge are separated into solid and liquid. (3) a coagulated sludge separation section to which water to be treated is supplied, a coagulant is added, and solid matter coagulated from the water to be treated is separated into coagulated sludge from the treated water by solid-liquid separation;
Connected to the activated sludge separation section and the coagulated sludge separation section,
Activated sludge and coagulated sludge are supplied, and reduced nitrogen is supplied, and reduced nitrogen is oxidized (ie, nitrified) under aerobic conditions, and (5) sludge treatment unit is connected. Alternatively, the method further comprises a membrane separation unit provided in the sludge treatment unit, wherein the activated sludge and the coagulated sludge are separated from the treated liquid by a membrane.

【0018】さらに、凝集汚泥分離部が、生物処理部の
前段に設けられており、且つ、被処理水に凝集剤が添加
されて凝集した凝集汚泥が固液分離される第1の凝集分
離部を有すると好ましい。或いは、凝集汚泥分離部が、
生物処理部の前段に設けられており、且つ、被処理水に
凝集剤が添加されて凝集した凝集汚泥が固液分離される
第2の凝集分離部を有しても有用である。
Further, a coagulated sludge separation section is provided in front of the biological treatment section, and a first coagulation separation section in which a coagulant is added to the water to be treated to separate coagulated sludge into solid and liquid. It is preferable to have Alternatively, the coagulated sludge separation unit
It is also useful to have a second coagulation / separation unit which is provided in front of the biological treatment unit and in which coagulation sludge obtained by adding a coagulant to the water to be treated is separated into solid and liquid.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態について
詳細に説明する。なお、同一の要素には同一の符号を付
し、重複する説明を省略する。また、上下左右等の位置
関係は、特に断らない限り、図面に示す位置関係に基づ
くものとする。また、図面の寸法比率は、図示の比率に
限られるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. Note that the same components are denoted by the same reference numerals, and redundant description will be omitted. Unless otherwise specified, the positional relationship such as up, down, left, and right is based on the positional relationship shown in the drawings. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

【0020】図1は、本発明による水処理装置の第一実
施形態を模式的に示す構成図である。水処理装置100
は、ダイオキシン類が含まれる被処理水としての浸出水
Wが供給される前処理槽20,30及び後処理槽70が
連設された凝集沈殿槽50(第1の凝集分離部)の後段
に、それぞれ生物硝化脱窒槽4(生物処理部)、沈殿分
離槽5(活性汚泥分離部)、並びに、前処理槽30及び
後処理槽71が連設された凝集沈殿槽6(第2の凝集分
離部)が順次配置されたものである。これらの各槽のう
ち、凝集沈殿槽6,50が凝集汚泥分離部として機能す
る。
FIG. 1 is a schematic diagram showing a first embodiment of a water treatment apparatus according to the present invention. Water treatment device 100
Is disposed downstream of the coagulation sedimentation tank 50 (first coagulation / separation unit) in which the pretreatment tanks 20, 30 and the post-treatment tank 70 to which the leachate water W containing dioxins is supplied are connected. , A biological nitrification denitrification tank 4 (biological treatment section), a sedimentation separation tank 5 (activated sludge separation section), and a coagulation sedimentation tank 6 (second coagulation separation tank) in which a pretreatment tank 30 and a post-treatment tank 71 are connected in series. ) Are sequentially arranged. Among these tanks, the coagulation sedimentation tanks 6, 50 function as a coagulation sludge separation unit.

【0021】また、凝集沈殿槽6の後段には、ろ過塔
7、吸着塔8、及び滅菌槽9が連設されている。さら
に、沈殿分離槽5及び凝集沈殿槽6,50は、配管ライ
ンによって生物反応槽1(汚泥処理部)に接続されてお
り、この生物反応槽1には、膜分離装置2(膜分離部)
を介して汚泥脱水機3が接続されている。
A filtration tower 7, an adsorption tower 8, and a sterilization tank 9 are connected in series at the subsequent stage of the coagulation / sedimentation tank 6. Furthermore, the sedimentation separation tank 5 and the coagulation sedimentation tanks 6, 50 are connected to the biological reaction tank 1 (sludge processing unit) by a piping line, and the biological reaction tank 1 has a membrane separation device 2 (membrane separation unit).
The sludge dewatering machine 3 is connected via.

【0022】前処理槽20には、炭酸ナトリウム(Na
2CO3)等の炭酸塩溶液が貯留された炭酸塩貯留槽21
が接続されており、この前処理槽20に隣接する前処理
槽30には、凝集剤が貯留された凝集剤貯留槽31が接
続されている。この凝集剤としては、特に限定されるも
のではないが、例えば、イオン性叉は非イオン性高分子
凝集剤、無機系凝集剤等を用いることができる。これら
のうち無機系凝集剤としては、カルシウム系凝集剤(水
酸化カルシウム、酸化カルシウム等)、鉄系凝集剤(塩
化第二鉄、ポリ硫酸鉄等)、アルミニウム系凝集剤(硫
酸アルミニウム、ポリ塩化アルミニウム等)等が挙げら
れ、これらを単独で或いは二種以上混合して使用するこ
とができる。
The pretreatment tank 20 contains sodium carbonate (Na).
A carbonate storage tank 21 in which a carbonate solution such as 2 CO 3 ) is stored.
The pretreatment tank 30 adjacent to the pretreatment tank 20 is connected to a flocculant storage tank 31 in which a flocculant is stored. The coagulant is not particularly limited, and for example, an ionic or nonionic polymer coagulant, an inorganic coagulant, or the like can be used. Of these, inorganic coagulants include calcium coagulants (calcium hydroxide, calcium oxide, etc.), iron coagulants (ferric chloride, polyiron sulfate, etc.), and aluminum coagulants (aluminum sulfate, polychloride). Aluminum and the like, and these can be used alone or as a mixture of two or more.

【0023】また、凝集沈殿槽50は、比重差を利用し
て沈降分離を促進させる型のいわゆる重力沈降分離槽で
あり、掻寄機M1が内設されている。この凝集沈殿槽5
0には、前処理槽20,30を通して浸出水Wが供給さ
れるようになっている。後処理槽70は、pH調整槽
(中和槽)であり、硝酸等の酸を用いて、浸出水Wの液
性を後段の生物硝化脱窒槽4における生物処理に適した
pHとなるように調整するものである。
The coagulating sedimentation tank 50 is a so-called gravity sedimentation separation tank of the type that promotes sedimentation separation by utilizing a difference in specific gravity, and has a scraper M1 therein. This coagulation sedimentation tank 5
Leached water W is supplied to 0 through the pretreatment tanks 20 and 30. The post-treatment tank 70 is a pH adjustment tank (neutralization tank), and uses an acid such as nitric acid to adjust the liquid property of the leachate W to a pH suitable for biological treatment in the subsequent biological nitrification and denitrification tank 4. It is to adjust.

【0024】さらに、生物硝化脱窒槽4は、硝化菌及び
脱窒菌等の微生物菌体を含む活性汚泥を有しており、凝
集沈殿槽50で固液分離された上澄水が供給されるよう
になっている。この生物硝化脱窒槽4は、攪拌機M2が
設けられた嫌気性処理槽41と、ブロアBに接続された
散気管を有する曝気攪拌装置Kが設けられた好気性処理
槽42とから構成されるものである。
Further, the biological nitrification and denitrification tank 4 has activated sludge containing microbial cells such as nitrifying bacteria and denitrifying bacteria. Has become. The biological nitrification denitrification tank 4 is composed of an anaerobic treatment tank 41 provided with a stirrer M2 and an aerobic treatment tank 42 provided with an aeration stirrer K having an aeration tube connected to a blower B. It is.

【0025】またさらに、生物硝化脱窒槽4の後段に連
設された沈殿分離槽5及び凝集沈殿槽6は、共に凝集沈
殿槽50と同様に構成された重力沈降分離槽を成してい
る。凝集沈殿槽6には、凝集剤が貯留された凝集剤貯留
槽61が接続されており、この凝集剤としては、例え
ば、上述した凝集剤貯留槽31で用いられるものが挙げ
られる。なお、凝集沈殿槽6の後段の後処理槽71は、
前述した後処理槽70と同様にpH調整槽(中和槽)で
ある。さらにまた、凝集沈殿槽6の後段に配置されたろ
過塔7は、砂、アンスラサイト、活性炭、セラミック
ス、等の各種のろ過材を用いたろ過器を有している。一
方、吸着塔8は、活性炭等の炭素質吸着材といった種々
の吸着媒体が充填された吸着層を有している。
Further, the sedimentation / separation tank 5 and the coagulation / sedimentation tank 6 connected to the subsequent stage of the biological nitrification / denitrification tank 4 together constitute a gravity sedimentation / separation tank configured similarly to the coagulation / sedimentation tank 50. An aggregating agent storage tank 61 in which an aggregating agent is stored is connected to the aggregating and settling tank 6, and examples of the aggregating agent include those used in the above-described aggregating agent storage tank 31. In addition, the post-treatment tank 71 after the coagulation settling tank 6 includes:
It is a pH adjustment tank (neutralization tank) like the post-treatment tank 70 described above. Furthermore, the filtration tower 7 disposed downstream of the coagulation sedimentation tank 6 has a filter using various filtration materials such as sand, anthracite, activated carbon, and ceramics. On the other hand, the adsorption tower 8 has an adsorption layer filled with various adsorption media such as a carbonaceous adsorbent such as activated carbon.

【0026】他方、生物反応槽1は、沈殿分離槽5及び
凝集沈殿槽6,50でそれぞれ固液分離された汚泥が供
給されるものであり、ブロアBに接続された散気管を有
する曝気攪拌装置Kが内設されている。また、生物反応
槽1には、還元態窒素としてのアンモニア水(NH4
H)が貯留されているアンモニア水貯留槽13が接続さ
れている。この生物反応槽1の後段に設置された膜分離
装置2としては、例えば、浸漬膜を有する膜分離モジュ
ールを備える浸漬型のもの、ケーシング型のもの等が挙
げられる。また、この浸漬膜としては、中空糸、チュー
ブラー、平膜等の膜が例示され、通常は、精密ろ過膜、
限外ろ過膜等を用いると好適である。
On the other hand, the biological reaction tank 1 is supplied with sludge separated into solid and liquid in the sedimentation separation tank 5 and the coagulation sedimentation tanks 6 and 50, respectively, and has an aeration and agitation having an aeration tube connected to the blower B. A device K is provided internally. In addition, the biological reaction tank 1 contains ammonia water (NH 4 O) as reduced nitrogen.
An ammonia water storage tank 13 storing H) is connected thereto. Examples of the membrane separation device 2 installed at the subsequent stage of the biological reaction tank 1 include an immersion type equipped with a membrane separation module having an immersion membrane, and a casing type. Examples of the immersion membrane include hollow fiber, tubular, and flat membranes. Usually, a microfiltration membrane,
It is preferable to use an ultrafiltration membrane or the like.

【0027】このように構成された水処理装置100を
用いた本発明による水処理方法の一例について説明す
る。まず、浸出水Wを前処理槽20へ供給すると共に、
炭酸塩貯留槽21から炭酸塩溶液を添加する。浸出水W
には、先述したように消石灰等を起源とするCa(イオ
ン:Ca2+)が含まれていることが多く、炭酸塩溶液中
の炭酸イオン(CO3 2-)と反応し、難水溶性塩である
炭酸カルシウム(CaCO3)が生成し、浸出水W中に
析出する。
An example of the water treatment method according to the present invention using the water treatment apparatus 100 configured as described above will be described. First, while supplying the leachate W to the pretreatment tank 20,
A carbonate solution is added from the carbonate storage tank 21. Leachate W
Often contain Ca (ion: Ca 2+ ) originating from slaked lime or the like, as described above, reacting with carbonate ions (CO 3 2- ) in a carbonate solution, and has poor water solubility. Calcium carbonate (CaCO 3 ), which is a salt, is generated and precipitates in the leachate water W.

【0028】次に、この浸出水Wを前処理槽30へ流入
させると共に、凝集剤貯留槽31から、例えば塩化第二
鉄(FeCl3)等の凝集剤(溶液)を添加した後、凝
集沈殿槽50へ導入する。凝集沈殿槽50では、pH等
の液性を随時調整し、凝集剤の共沈作用によってCaC
3を含む無機系固形分を凝集せしめる。このとき、浸
出水Wに元来含まれていた懸濁物質(Suspended Solid
s;以下、「SS」という 。)の大部分も共に凝集し得
る。また、浸出水Wに含まれるダイオキシン類等の難分
解性有機塩素化合物は、難溶性でもあるため、SS等に
付着していたり、コロイド状に分散して存在する傾向に
あるので、ダイオキシン類等の一部もSS等と共に凝集
分に移行する。
Next, the leachate W is allowed to flow into the pretreatment tank 30, and a coagulant (solution) such as ferric chloride (FeCl 3 ) is added from the coagulant storage tank 31. It is introduced into the tank 50. In the coagulation sedimentation tank 50, the liquid properties such as pH are adjusted as needed, and CaC
Aggregate inorganic solids containing O 3 . At this time, suspended solids (Suspended Solid) originally contained in the leachate W
s; hereinafter, referred to as “SS”. ) Can also aggregate together. In addition, since hardly decomposable organic chlorine compounds such as dioxins contained in the leachate W are also hardly soluble, they tend to adhere to SS or the like or disperse in a colloidal form. Also migrates to the coagulated portion together with SS and the like.

【0029】掻寄機M1を運転して凝集を促進させた
後、重力沈降分離によって凝集成分と液分とを固液分離
し、凝集した固形分を凝集汚泥として生物反応槽1へ送
出する(第1の凝集分離ステップ)。その一方で、上澄
水である浸出水Wを後処理槽70でpH調整(中和)し
た後、生物硝化脱窒槽4の嫌気性処理槽41へ導入す
る。嫌気性処理槽41では、浸出水Wに空気等を供給す
ることなく、攪拌機M2による攪拌のみを実施して嫌気
性処理(脱窒処理)を行う。さらに、嫌気性処理槽41
で処理した浸出水Wと活性汚泥との混合液を好気性処理
槽42へ導入し、ブロアBを運転して空気等の酸素(O
2)を含むガスを供給しながら好気性処理(硝化処理)
を行う。
After operating the scraper M1 to promote coagulation, the coagulation component and the liquid component are separated into solid and liquid by gravity sedimentation separation, and the coagulated solid content is sent to the biological reaction tank 1 as coagulated sludge ( First coagulation separation step). On the other hand, the leachate W as the supernatant water is pH-adjusted (neutralized) in the post-treatment tank 70 and then introduced into the anaerobic treatment tank 41 of the biological nitrification denitrification tank 4. In the anaerobic treatment tank 41, only the stirring by the stirrer M2 is performed without supplying air or the like to the leachate W to perform the anaerobic treatment (denitrification treatment). Furthermore, the anaerobic treatment tank 41
The mixed liquid of leachate W and activated sludge treated in the above is introduced into the aerobic treatment tank 42, and the blower B is operated to operate oxygen (O) such as air.
2 ) Aerobic treatment (nitrification treatment) while supplying gas containing
I do.

【0030】次いで、好気性処理槽42で処理した浸出
水Wと活性汚泥の混合液の一部を沈殿分離槽5へ供給す
る一方で、他部を嫌気性処理槽41へ返送し、生物硝化
脱窒槽4において浸出水Wの循環処理を実施する(生物
処理工程)。このとき、嫌気性処理槽41では、好気性
処理槽42から循環返送された混合液に含まれる亜硝酸
性窒素(NO2 -−N)や硝酸性窒素(NO3 -−N)が活
性汚泥中の脱窒菌の作用による下記式(1)及び/叉は
式(2); 2NO2 - + 6H+ → 2H2O + 2OH- + N2 …(1) 2NO3 - + 10H+ → 4H2O + 2OH- + N2 …(2) で表される還元反応によって脱窒され、窒素分が窒素ガ
ス(N2)となって放出除去される。
Next, a part of the mixed liquid of the leachate W and the activated sludge treated in the aerobic treatment tank 42 is supplied to the sedimentation separation tank 5, while the other part is returned to the anaerobic treatment tank 41, and the biological nitrification is performed. In the denitrification tank 4, the leachate W is circulated (biological treatment step). In this case, the anaerobic treatment tank 41, nitrite nitrogen contained in the mixed liquid is circulated back from the aerobic treatment tank 42 (NO 2 - -N) and nitrate nitrogen (NO 3 - -N) activated sludge The following formula (1) and / or formula (2) due to the action of denitrifying bacteria therein: 2NO 2 + 6H + → 2H 2 O + 2OH + N 2 ... (1) 2NO 3 + 10H + → 4H 2 O + 2OH - + N 2 ... are denitrified by a reduction reaction represented by (2), nitrogen content is released removed becomes nitrogen gas (N 2).

【0031】ここで、脱窒反応の際に用いられる水素
(H+)の供与体(水素供与体)としては、浸出水Wに
含まれているBOD成分(物質)が使われるが、この浸
出水Wの性状や処理の進展に伴ってBOD成分が不足す
る場合には、メタノール等のアルコール、酢酸等の有機
酸といった有機物を水素供与体として嫌気性処理槽41
へ添加してもよい。
As the hydrogen (H + ) donor (hydrogen donor) used in the denitrification reaction, the BOD component (substance) contained in the leachate W is used. If the BOD component is insufficient due to the properties of the water W or the progress of the treatment, the anaerobic treatment tank 41 uses an organic substance such as an alcohol such as methanol or an organic acid such as acetic acid as a hydrogen donor.
May be added.

【0032】また、好気性処理槽42では、槽底部に設
けられた曝気攪拌装置Kからの空気等の曝気によって十
分な攪拌が行われる。これにより、良好な好気性雰囲気
が形成され、嫌気性処理槽41からの混合液中に残存す
るBOD成分が酸化分解される。それと共に、混合液に
含まれるアンモニア性窒素(NH4 +−N)が、活性汚泥
中の硝化菌の作用による下記式(3)及び/叉は式
(4); 2NH4 + + 3O2 → 2NO2 - + 2H2 + 4H+ …(3) 2NO2 - + O2 → 2NO3 - …(4) で表される酸化反応によって硝化され、亜硝酸性窒素
(NO2 -−N)や硝酸性窒素(NO3 -−N)が生成され
る。
In the aerobic treatment tank 42, sufficient agitation is performed by aeration of air or the like from an aeration / agitator K provided at the bottom of the tank. Thereby, a favorable aerobic atmosphere is formed, and the BOD component remaining in the mixed solution from the anaerobic treatment tank 41 is oxidized and decomposed. At the same time, the ammonia nitrogen (NH 4 + -N) contained in the mixed solution is converted into the following formula (3) and / or formula (4) by the action of nitrifying bacteria in the activated sludge; 2NH 4 + + 3O 2 → 2NO 2 - + 2H 2 O + 4H + ... (3) 2NO 2 - + O 2 → 2NO 3 - ... is nitrified by the oxidation reaction represented by (4), nitrite nitrogen (NO 2 - -N) and nitrate nitrogen (NO 3 - -N) is generated.

【0033】このようにして、生物硝化脱窒槽4で浸出
水W中のBOD成分の処理と窒素分の処理の両方を実現
する。この際に、浸出水W中に含まれるダイオキシン類
等の難分解性有機塩素化合物の一部も酸化分解し得る
が、残部は活性汚泥に吸着することにより汚泥側へ移行
する。次に、このような活性汚泥と浸出水Wとを含む混
合液を、沈殿分離槽5において重力沈降分離によって固
液分離する(活性汚泥分離工程)。それから、沈殿した
活性汚泥の一部を嫌気性処理槽41へ戻入して生物処理
に用いる一方で、その残部を余剰汚泥として生物反応槽
1へ送出する。他方、硝化脱窒処理済みの上澄水である
浸出水Wを、凝集沈殿槽6へ送出する。
In this way, both the treatment of the BOD component in the leachate W and the treatment of the nitrogen content in the biological nitrification denitrification tank 4 are realized. At this time, some of the hardly decomposable organic chlorine compounds such as dioxins contained in the leachate W can be oxidatively decomposed, but the remaining part is adsorbed by the activated sludge and moves to the sludge side. Next, the mixed liquid containing such activated sludge and leachate W is separated into solid and liquid by gravity sedimentation in the sedimentation separation tank 5 (activated sludge separation step). Then, a part of the settled activated sludge is returned to the anaerobic treatment tank 41 and used for biological treatment, while the remaining part is sent to the biological reaction tank 1 as surplus sludge. On the other hand, the leachate W, which is the supernatant water after the nitrification and denitrification treatment, is sent to the coagulation sedimentation tank 6.

【0034】ここで、本発明者らの知見によれば、一般
的な浸出水Wに含まれる難分解性有機塩素化合物のうち
ダイオキシン類の含有量は、例えば、概ね0.2〜50
pg−TEQ/l(“TEQ”は毒性等量数を示し、
“l”はリットルを示す。以下同様。)であり、凝集沈
殿槽6に供給される上澄水に含有されるダイオキシン類
の濃度は、例えば、0.1〜10pg−TEQ/l程度
である。また、生物反応槽1へ送られる余剰汚泥には、
約15pg−TEQ/g−dry(“g−dry”は、
乾燥汚泥の重量あたりであることを示す。以下同様。)
のダイオキシン類が含まれる。
Here, according to the findings of the present inventors, the content of dioxins among the hardly decomposable organic chlorine compounds contained in general leachate W is, for example, approximately 0.2 to 50.
pg-TEQ / l ("TEQ" indicates the toxic equivalent number;
“L” indicates liter. The same applies hereinafter. ), And the concentration of dioxins contained in the supernatant water supplied to the coagulation sedimentation tank 6 is, for example, about 0.1 to 10 pg-TEQ / l. In addition, surplus sludge sent to the biological reaction tank 1 includes:
About 15 pg-TEQ / g-dry ("g-dry" is
Indicates that the weight per dry sludge. The same applies hereinafter. )
Dioxins.

【0035】次いで、凝集沈殿槽6では、前述した凝集
沈殿槽50におけるのと同様にして沈殿分離槽5で得ら
れた上澄水としての浸出水Wに凝集剤貯留槽61から凝
集剤(溶液)を添加する。沈殿分離槽5から送出された
浸出水Wには、微細な浮遊固形分が残存するが、凝集剤
の添加により凝集して比較的大きな粒子となる。これに
より、微細な浮遊固形分は沈降し易くなり、重力沈降分
離によって固液分離されると共に、上澄水中に含まれる
ダイオキシン類等が凝集成分へ吸着移行する。また、こ
のとき、上澄水中に残存していた活性汚泥、SS成分そ
の他の固形分も共に凝集され液分から分離される。
Next, in the coagulating sedimentation tank 6, the coagulant (solution) is transferred from the coagulant storage tank 61 to the leachate W as the supernatant water obtained in the sedimentation separation tank 5 in the same manner as in the coagulation sedimentation tank 50 described above. Is added. Fine suspended solids remain in the leachate W sent out from the sedimentation separation tank 5, but are aggregated into relatively large particles by the addition of a coagulant. As a result, the fine suspended solids are liable to settle, and are separated into solids and liquids by gravity sedimentation, and dioxins and the like contained in the supernatant water are adsorbed and transferred to the flocculated component. At this time, the activated sludge, SS component and other solids remaining in the supernatant water are also coagulated and separated from the liquid.

【0036】次いで、凝集した固形分を凝集汚泥として
生物反応槽1へ送出する一方、上澄水である浸出水Wを
ろ過塔7へ導入してろ過処理を行ってから、吸着塔8へ
導入して微粒子状物質を取り除き、更に滅菌槽9におい
て滅菌処理を施した後、処理済水Wsとして系外へ排出
する。この処理済水Wsにおけるダイオキシン類等の難
分解性有機塩素化合物の含有濃度は、概ね0.01〜1
pg−TEQ/l程度まで低減され、河川等への放流が
十分に可能なレベルとされる。
Next, the coagulated solids are sent to the biological reaction tank 1 as coagulated sludge, and leachate W as supernatant water is introduced into the filtration tower 7 to perform a filtration treatment. After removing the particulate matter by a sterilization treatment in the sterilization tank 9, the water is discharged out of the system as treated water Ws. The concentration of the hardly decomposable organic chlorine compound such as dioxins in the treated water Ws is generally 0.01 to 1%.
The level is reduced to about pg-TEQ / l, which is a level at which discharge to a river or the like is sufficiently possible.

【0037】他方、生物反応槽1では、沈殿分離槽5及
び凝集沈殿槽6,50からそれぞれ送出された余剰汚泥
(活性汚泥)及び凝集汚泥の混合物(以下、「混合汚泥
D」という)に、アンモニア水貯留槽13からアンモニ
ア水を添加すると共に、ブロアBからの空気等の酸素を
含むガスを曝気攪拌装置Kから供給する。これにより、
混合汚泥Dに添加されたアンモニア性窒素(NH4 +
N)が、汚泥中の硝化菌の作用による上記式(3)及び
/叉は式(4)で表される酸化反応によって硝化され
る。
On the other hand, in the biological reaction tank 1, a mixture of excess sludge (activated sludge) and coagulated sludge (hereinafter referred to as “mixed sludge D”) sent from the sedimentation separation tank 5 and the coagulation sedimentation tanks 6, 50, respectively, Ammonia water is added from the ammonia water storage tank 13, and a gas containing oxygen such as air from the blower B is supplied from the aeration and stirring device K. This allows
Ammonia nitrogen (NH 4 + −) added to mixed sludge D
N) is nitrified by the oxidation reaction represented by the above formula (3) and / or formula (4) by the action of nitrifying bacteria in the sludge.

【0038】沈殿分離槽5から送られた余剰汚泥は、生
物硝化脱窒槽4における脱窒処理を経たものであり、つ
まり脱窒素により還元態窒素の含有量が低下している
が、アンモニア水の添加によって還元態窒素の含有濃度
が高められ、上述の硝化反応が良好に進行する。このよ
うに、生物反応槽1において言わば強制的に生物学的硝
化反応を生起させると、それと共に混合汚泥Dに含まれ
るダイオキシン類等の難分解性有機塩素化合物の分解が
格段に促進され、最終的に低級炭化水素、二酸化炭素、
水等に転換されて無害化される(汚泥処理工程)。
The excess sludge sent from the sedimentation separation tank 5 has been subjected to the denitrification treatment in the biological nitrification denitrification tank 4, that is, the content of reduced nitrogen has been reduced by denitrification. By the addition, the concentration of reduced nitrogen is increased, and the above-mentioned nitrification reaction proceeds favorably. As described above, when the biological nitrification reaction is forcibly caused in the biological reaction tank 1, the decomposition of the hardly decomposable organic chlorine compounds such as dioxins contained in the mixed sludge D is remarkably promoted. Lower hydrocarbons, carbon dioxide,
It is converted into water and made harmless (sludge treatment step).

【0039】このようなダイオキシン類等の分解機構は
まだ十分に解明されてはいないが、硝化菌によって産生
されるアンモニアモノオキシゲナーゼ等の酸化酵素が関
与する酵素反応系において、ダイオキシン類等の酸化が
同時に生じるためと考えられる。おそらく、アンモニア
モノオキシゲナーゼ等がダイオキシン類等に作用し、式
(3)及び/叉は式(4)に示す硝化反応と並行してダ
イオキシン類が酸化される共酸化( co-oxydation )反
応のような一種の共役反応が進行していると推定され
る。
Although the decomposition mechanism of dioxins and the like has not been sufficiently elucidated yet, oxidation of dioxins and the like in an enzyme reaction system involving an oxidase such as ammonia monooxygenase produced by nitrifying bacteria is not considered. It is considered that they occur at the same time. Possibly, ammonia monooxygenase or the like acts on dioxins or the like, and a co-oxydation reaction in which dioxins are oxidized in parallel with the nitrification reaction shown in formula (3) and / or formula (4). It is presumed that a kind of conjugation reaction is in progress.

【0040】次いで、生物反応槽1で所定の時間、硝化
処理を行った後、その混合汚泥Dを膜分離装置2へ導入
し、膜ろ過によって液分と固形分とに分離する(膜分離
工程)。得られた液分である膜分離液には、硝酸性窒素
等の酸化態(叉は酸化体)窒素が多く含まれているた
め、生物硝化脱窒槽4の嫌気性処理槽41へ戻入する。
他方、固形分である処理済みの混合汚泥Dを汚泥脱水機
3へ送って脱水処理した後、脱水汚泥Dsとして系外へ
排出し、処分に供する。また、汚泥脱水機3において脱
水汚泥Dsから分離された脱水分離液も硝酸性窒素等を
含むため、嫌気性処理槽41へ戻入する。
Next, after performing nitrification treatment in the biological reaction tank 1 for a predetermined time, the mixed sludge D is introduced into the membrane separation device 2 and separated into a liquid component and a solid component by membrane filtration (membrane separation step). ). Since the obtained liquid separation membrane separation liquid contains a large amount of oxidized (or oxidized) nitrogen such as nitrate nitrogen, it is returned to the anaerobic treatment tank 41 of the biological nitrification denitrification tank 4.
On the other hand, the treated mixed sludge D, which is a solid content, is sent to the sludge dewatering machine 3 to be dewatered, and then discharged out of the system as dewatered sludge Ds for disposal. In addition, the dewatered separated liquid separated from the dewatered sludge Ds in the sludge dewatering machine 3 also returns to the anaerobic treatment tank 41 because it contains nitrate nitrogen and the like.

【0041】このように構成された水処理装置100及
びこれを用いた水処理方法によれば、生物反応槽1にお
いて混合汚泥Dに還元態窒素であるアンモニア水を添加
して硝化反応を生起させることにより、混合汚泥Dに吸
着する等によって含まれるダイオキシン類等の難分解性
有機塩素化合物をも酸化分解し無害化する。そして、こ
の混合汚泥Dは、浸出水Wの生物硝化脱窒処理に用いた
活性汚泥のみならず、浸出水Wから凝集させた凝集汚泥
を含むものであり、混合汚泥Dには浸出水Wからのダイ
オキシン類等の大部分が回収される。
According to the water treatment apparatus 100 configured as described above and the water treatment method using the same, the nitrification reaction is caused by adding ammonia water, which is reduced nitrogen, to the mixed sludge D in the biological reaction tank 1. Thereby, even the hardly decomposable organic chlorine compounds such as dioxins contained by being adsorbed to the mixed sludge D are oxidized and decomposed to be harmless. The mixed sludge D contains not only the activated sludge used for the biological nitrification and denitrification treatment of the leachate W, but also the agglomerated sludge agglomerated from the leachate W. Most of dioxins are recovered.

【0042】よって、処理済水Wsに含まれるダイオキ
シン類等の難分解性有機塩素化合物の濃度を十分に低減
できると共に、浸出水Wから回収したダイオキシン類等
の殆どを無害化できる。したがって、ダイオキシン類等
が水処理装置100の系外へ排出されてしまうおそれが
極めて少ない。これに対し、浸出水W等の被処理水から
凝集成分を回収することは従来も多々行われているもの
の、通常、これらは貯蔵されたり、その後に管理処分さ
れていた。すなわち、本発明によれば、かかる従来の方
法に比して、系外へのダイオキシン類等の排出を格別に
抑制することができる。
Accordingly, the concentration of the hardly decomposable organic chlorine compounds such as dioxins contained in the treated water Ws can be sufficiently reduced, and most of the dioxins recovered from the leachate W can be rendered harmless. Therefore, the possibility that dioxins and the like are discharged out of the water treatment apparatus 100 is extremely low. On the other hand, although a large amount of agglutinated components have been conventionally recovered from the water to be treated such as the leachate W, they are usually stored or managed and disposed of thereafter. That is, according to the present invention, emission of dioxins and the like to the outside of the system can be significantly suppressed as compared with the conventional method.

【0043】また、凝集汚泥は、活性汚泥の一部である
余剰汚泥のように微生物菌体を殆ど含まないか、含んで
も少量であるので、凝集汚泥を単独で処理する場合に
は、硝化菌等の菌体を別途添加する必要があり得る。こ
のようにしても凝集汚泥中のダイオキシン類等の分解処
理を実施できるものの、手間及び工数の軽減、及び、装
置構成の簡略化の観点からは改善が望まれる。これに対
し、水処理装置100を用いれば、凝集汚泥を余剰汚泥
と混合して単一の生物反応槽1内で硝化処理するので、
手間や工数の増大及び装置構成の複雑化を防止できる。
さらに、上記従来の凝集汚泥を貯留していたような装置
構成に比べれば、装置規模を逆に縮小できる利点があ
る。
The coagulated sludge contains little or no microbial cells, such as surplus sludge that is a part of activated sludge. May need to be added separately. Although the decomposition treatment of dioxins and the like in the coagulated sludge can be performed in this manner, improvement is desired from the viewpoint of reducing labor and man-hours and simplifying the apparatus configuration. On the other hand, if the water treatment apparatus 100 is used, the coagulated sludge is mixed with the surplus sludge and the nitrification treatment is performed in the single biological reaction tank 1.
It is possible to prevent an increase in labor and man-hours and a complicated device configuration.
Furthermore, there is an advantage that the scale of the apparatus can be reduced in comparison with the above-described conventional apparatus configuration in which coagulated sludge is stored.

【0044】またさらに、浸出水Wの生物硝化脱窒処理
に先立って凝集沈殿槽50で凝集処理して得た凝集汚泥
と、生物硝化脱窒処理後に凝集沈殿槽6で凝集処理して
得た凝集汚泥との両方を生物反応槽1へ導入して一括処
理するので、浸出水Wから除去したダイオキシン類等の
系外への排出を一層抑止することが可能となる。
Further, the coagulated sludge obtained by coagulation treatment in the coagulation sedimentation tank 50 prior to the biological nitrification denitrification treatment of the leachate W is obtained by coagulation treatment in the coagulation sedimentation tank 6 after the bionitrification denitrification treatment. Since both of the coagulated sludge and the coagulated sludge are introduced into the biological reaction tank 1 and collectively treated, it is possible to further suppress the discharge of dioxins and the like removed from the leachate W to the outside of the system.

【0045】さらにまた、ダイオキシン類等の難分解性
有機塩素化合物を分解処理した後の混合汚泥Dを膜分離
装置2によって固液分離するので、膜分離液と固形分
(汚泥分)との高度な分離が可能となり、嫌気性処理槽
41へ戻入する膜分離液中に汚泥が混入することを十分
に防止できる。
Furthermore, since the mixed sludge D after the decomposition treatment of the hardly decomposable organic chlorine compounds such as dioxins is separated into solid and liquid by the membrane separation device 2, the separation between the membrane separation liquid and the solids (sludge) is high. Separation can be performed, and it is possible to sufficiently prevent sludge from being mixed into the membrane separation liquid returning to the anaerobic treatment tank 41.

【0046】加えて、前処理槽20を設けて浸出水Wに
炭酸塩を添加し、生じた炭酸カルシウムを凝集させ、生
物硝化脱窒処理前に浸出水Wから除去するので、ダイオ
キシン類等の有機塩素化合物の分解除去効率が向上され
るだけでなく、浄化性能が向上されて処理済水Wsの水
質を一層良化できる。
In addition, a pretreatment tank 20 is provided to add carbonate to the leachate W to aggregate the generated calcium carbonate and remove it from the leachate W before the biological nitrification and denitrification treatment. Not only is the efficiency of decomposing and removing organic chlorine compounds improved, but also the purification performance is improved, and the quality of the treated water Ws can be further improved.

【0047】図2は、本発明による水処理装置の第二実
施形態を模式的に示す構成図である。水処理装置200
は、生物反応槽1及び膜分離装置2の代りに、膜分離モ
ジュール25(膜分離部)が設けられた生物反応槽15
(汚泥処理部)を備えること以外は、図1に示す水処理
装置100と同様に構成されたものである。膜分離モジ
ュール25としては、特に制限されないが、平膜、中空
糸膜等を複数有する浸漬型のモジュールを用いると好適
である。
FIG. 2 is a schematic diagram showing a second embodiment of the water treatment apparatus according to the present invention. Water treatment device 200
Is a biological reaction tank 15 provided with a membrane separation module 25 (membrane separation unit) instead of the biological reaction tank 1 and the membrane separation device 2.
It is configured similarly to the water treatment apparatus 100 shown in FIG. 1 except that it has a (sludge treatment section). Although not particularly limited, the membrane separation module 25 is preferably an immersion type module having a plurality of flat membranes, hollow fiber membranes, and the like.

【0048】このような構成を有する水処理装置200
においては、生物反応槽15に導入された余剰汚泥及び
凝集汚泥の混合汚泥Dに、アンモニア水を添加し、空気
等のガスを供給して攪拌曝気しながら、膜分離モジュー
ル25による膜分離を行う(膜分離工程)。これによ
り、混合汚泥Dの硝化反応によるダイオキシン類等の分
解を行いつつ、膜分離液を連続的に嫌気性処理槽41へ
戻入することができる。よって、より効率的な混合汚泥
Dの生物処理を達成できる。なお、これ以外の処理手順
及び作用効果については、前述した水処理装置100に
おけるのと同様であるので、ここでの説明は省略する。
The water treatment apparatus 200 having such a configuration
In, ammonia water is added to the mixed sludge D of the excess sludge and the coagulated sludge introduced into the biological reaction tank 15, and the membrane is separated by the membrane separation module 25 while supplying a gas such as air while stirring and aerating. (Membrane separation step). Thereby, the membrane separation liquid can be continuously returned to the anaerobic treatment tank 41 while decomposing dioxins and the like by the nitrification reaction of the mixed sludge D. Therefore, more efficient biological treatment of the mixed sludge D can be achieved. Note that the other processing procedures and operational effects are the same as those in the water treatment apparatus 100 described above, and a description thereof will be omitted.

【0049】図3は、本発明による水処理装置の第三実
施形態を模式的に示す構成図である。水処理装置300
は、生物反応槽1と膜分離装置2との間に嫌気性処理槽
60が設置されたこと以外は、図1に示す水処理装置1
00と同等の構成を有するものである。この嫌気性処理
槽60は、生物硝化脱窒槽4を構成する嫌気性処理槽4
1と同様、内部に攪拌機M2が設けられている。
FIG. 3 is a schematic diagram showing a third embodiment of the water treatment apparatus according to the present invention. Water treatment device 300
Is a water treatment apparatus 1 shown in FIG. 1 except that an anaerobic treatment tank 60 is installed between the biological reaction tank 1 and the membrane separation apparatus 2.
It has a configuration equivalent to 00. This anaerobic treatment tank 60 is an anaerobic treatment tank 4 that constitutes the biological nitrification denitrification tank 4.
As in 1, the stirrer M2 is provided inside.

【0050】かかる構成を有する水処理装置300にお
いては、生物反応槽1で硝化処理された混合汚泥Dを嫌
気性処理槽41へ導入し、攪拌機M2のみの運転により
嫌気性処理を行う。硝化処理を経た混合汚泥D中には硝
酸性窒素等の酸化態窒素が含まれており、嫌気性処理槽
41における嫌気性処理によって脱窒菌の作用による還
元反応が生起され、脱窒が行われる。
In the water treatment apparatus 300 having such a configuration, the mixed sludge D that has been nitrified in the biological reaction tank 1 is introduced into the anaerobic treatment tank 41, and the anaerobic treatment is performed by operating only the stirrer M2. The mixed sludge D that has undergone nitrification treatment contains oxidized nitrogen such as nitrate nitrogen, and the anaerobic treatment in the anaerobic treatment tank 41 causes a reduction reaction by the action of denitrifying bacteria, thereby performing denitrification. .

【0051】また、この状態で更に嫌気性状態を維持す
ると、混合汚泥Dに含まれる硝化菌等の微生物菌体が解
体され、これに伴って、混合汚泥Dに僅少量残存するダ
イオキシン類等の分解が生じ得る。この作用機構の詳細
は未解明であるが、硝化菌に産生されていたモノオキシ
ゲナーゼ等の酸化酵素が菌体の解体によって溶出し、こ
の酵素が介在する共酸化反応によって有機塩素化合物の
酸化分解が促進されることによると推定される。
When the anaerobic state is further maintained in this state, microbial cells such as nitrifying bacteria contained in the mixed sludge D are disintegrated, and accordingly, dioxins and the like remaining in the mixed sludge D in a small amount remain. Decomposition can occur. Although the details of this mechanism of action are unclear, oxidizing enzymes such as monooxygenase produced by nitrifying bacteria are eluted by disintegration of the bacterial cells, and this enzyme-mediated co-oxidation reaction causes oxidative degradation of organic chlorine compounds. It is presumed to be promoted.

【0052】よって、水処理装置300及びこれを用い
た本発明の水処理方法によれば、生物反応槽1及び嫌気
性処理槽60の両方において、混合汚泥Dに含まれるダ
イオキシン類等の難溶性有機塩素化合物の分解が行われ
るので、それらの無害化を更に増進することができる。
なお、これら以外の処理手順及び作用効果については、
前述した水処理装置100におけるのと同様であるの
で、ここでの説明は省略する。
Therefore, according to the water treatment apparatus 300 and the water treatment method of the present invention using the water treatment apparatus 300, in both the biological reaction tank 1 and the anaerobic treatment tank 60, the poorly soluble dioxins and the like contained in the mixed sludge D are mixed. Since the decomposition of the organic chlorine compounds is performed, their harmlessness can be further enhanced.
In addition, regarding the processing procedure and operation effects other than these,
Since this is the same as in the water treatment apparatus 100 described above, the description here is omitted.

【0053】[0053]

【発明の効果】以上説明したように、本発明の水処理装
置及び水処理方法によれば、浸出水等の被処理水の浄化
処理に際し、被処理水に含まれるダイオキシン類等の難
分解性有機塩素化合物を従来に比してより一層十分に除
去できると共に、回収除去した有機塩素化合物の無害化
性能を向上でき、系外への有機塩素化合物の排出量を格
段に低減することが可能となる。
As described above, according to the water treatment apparatus and the water treatment method of the present invention, in the purification treatment of the water to be treated such as leachate, it is difficult to decompose dioxins and the like contained in the water to be treated. It is possible to remove organic chlorine compounds more sufficiently than before, improve the harmless performance of the collected and removed organic chlorine compounds, and significantly reduce the amount of organic chlorine compounds emitted outside the system. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による水処理装置の第一実施形態を模式
的に示す構成図である。
FIG. 1 is a configuration diagram schematically showing a first embodiment of a water treatment apparatus according to the present invention.

【図2】本発明による水処理装置の第二実施形態を模式
的に示す構成図である。
FIG. 2 is a configuration diagram schematically showing a second embodiment of the water treatment apparatus according to the present invention.

【図3】本発明による水処理装置の第三実施形態を模式
的に示す構成図である。
FIG. 3 is a configuration diagram schematically showing a third embodiment of the water treatment apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1,15…生物反応槽(汚泥処理部)、2…膜分離装置
(膜分離部)、3…汚泥脱水機、4…生物硝化脱窒槽
(生物処理部)、5…沈殿分離槽(活性汚泥分離部)、
6…凝集沈殿槽(第2の凝集分離部)、13…アンモニ
ア水貯留槽、20,30…前処理槽、21…炭酸塩貯留
槽、25…膜分離モジュール(膜分離部)、31,61
…凝集剤貯留槽、41,60…嫌気性処理槽、42…好
気性処理槽、50…凝集沈殿槽(第1の凝集分離部)、
100,200,300…水処理装置、D…混合汚泥、
W…浸出水(被処理水)。
1, 15: biological reaction tank (sludge processing unit), 2: membrane separator (membrane separation unit), 3: sludge dehydrator, 4: biological nitrification denitrification tank (biological processing unit), 5: sedimentation separation tank (activated sludge) Separation section),
6 ... coagulation sedimentation tank (second coagulation separation section), 13 ... ammonia water storage tank, 20, 30 ... pretreatment tank, 21 ... carbonate storage tank, 25 ... membrane separation module (membrane separation section), 31, 61
... Coagulant storage tank, 41,60 ... Anaerobic treatment tank, 42 ... Aerobic treatment tank, 50 ... Coagulation sedimentation tank (first coagulation separation section),
100, 200, 300: water treatment device, D: mixed sludge,
W: Leachate (water to be treated).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 3/12 C02F 3/12 V ZAB ZABD 9/00 501 9/00 501C 502 502P 502Z 503 503C 504 504A 504E (72)発明者 三木 康平 神奈川県平塚市夕陽ヶ丘63番30号 住友重 機械工業株式会社平塚事業所内 Fターム(参考) 4D015 BA23 BB05 CA02 DA17 DB01 EA12 EA32 FA01 FA12 FA17 FA22 FA26 4D028 AB00 AC01 BB07 BD16 BE04 BE08 4D038 AA08 AB59 BB06 BB13 BB17 BB18 BB19 4D059 AA05 AA06 AA18 BA01 BA31 BE55 BE56 CA28 DA41 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 3/12 C02F 3/12 V ZAB ZABD 9/00 501 9/00 501C 502 502P 502Z 503 503C 504 504A 504E (72) Inventor Kohei Miki 63-30 Yuyugaoka, Hiratsuka-shi, Kanagawa F-term in Hiratsuka Works of Sumitomo Heavy Industries, Ltd. (Reference) 4D015 BA23 BB05 CA02 DA17 DB01 EA12 EA32 FA01 FA12 FA17 FA22 FA26 4D028 AB00 AC01 BB07 BD16 BE04 BE08 4D038 AA08 AB59 BB06 BB13 BB17 BB18 BB19 4D059 AA05 AA06 AA18 BA01 BA31 BE55 BE56 CA28 DA41

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 有機塩素化合物を含有する被処理水を活
性汚泥により生物処理する生物処理工程を備える水処理
方法であって、 生物処理を実施した被処理水に含まれる活性汚泥を固液
分離する活性汚泥分離工程と、 前記被処理水に凝集剤を添加して凝集せしめた凝集汚泥
を固液分離する凝集汚泥分離工程と、 前記固液分離して得た活性汚泥及び凝集汚泥のそれぞれ
の少なくとも一部に還元態窒素を添加し、好気性処理す
ることにより該還元態窒素を酸化する汚泥処理工程と、
を備えることを特徴とする水処理方法。
1. A water treatment method comprising a biological treatment step of biologically treating treated water containing an organic chlorine compound with activated sludge, wherein the activated sludge contained in the treated water subjected to the biological treatment is solid-liquid separated. An activated sludge separating step, a flocculant is added to the water to be treated, and a coagulated sludge is separated into solid and liquid. A sludge treatment step of oxidizing the reduced nitrogen by adding a reduced nitrogen to at least a part thereof and performing aerobic treatment,
A water treatment method comprising:
【請求項2】 前記凝集汚泥分離工程が、 前記生物処理工程を実施する前に、前記被処理水に凝集
剤を添加して凝集せしめた凝集汚泥を固液分離する第1
の凝集分離ステップを有する、ことを特徴とする請求項
1記載の水処理方法。
2. The method according to claim 1, wherein the coagulated sludge separating step comprises the steps of: prior to performing the biological treatment step, performing a solid-liquid separation on the coagulated sludge that has been formed by adding a coagulant to the water to be treated;
The water treatment method according to claim 1, further comprising a coagulation separation step.
【請求項3】 前記凝集汚泥分離工程が、 前記活性汚泥分離工程を実施した後に、前記活性汚泥が
分離された前記被処理水に凝集剤を添加して凝集せしめ
た凝集汚泥を固液分離する第2の凝集分離ステップを有
する、ことを特徴とする請求項1記載の水処理方法。
3. The coagulated sludge separating step, after performing the activated sludge separating step, adds a coagulant to the water to be treated from which the activated sludge has been separated, and solid-liquid separates the coagulated sludge. The water treatment method according to claim 1, further comprising a second coagulation separation step.
【請求項4】 前記被処理水として浸出水を処理し、 前記第1の凝集分離ステップにおいては、前記浸出水
に、カルシウム(Ca)と反応して難水溶性塩を生じ得
る塩を添加する、ことを特徴とする請求項1〜3のいず
れか一項に記載の水処理方法。
4. A leachate is treated as the water to be treated, and a salt capable of reacting with calcium (Ca) to form a poorly water-soluble salt is added to the leachate in the first coagulation separation step. The water treatment method according to claim 1, wherein:
【請求項5】 有機塩素化合物を含有する被処理水が供
給され、該被処理水が活性汚泥により生物処理される生
物処理部を備える水処理装置であって、 前記生物処理部で生物処理された被処理水と前記活性汚
泥とが固液分離される活性汚泥分離部と、 前記被処理水が供給され、凝集剤が添加され、該被処理
水中から凝集した固形分が凝集汚泥として該処理水から
固液分離される凝集汚泥分離部と、 前記活性汚泥分離部と前記凝集汚泥分離部とに接続され
ており、前記活性汚泥及び前記凝集汚泥が供給され、且
つ、還元態窒素が供給され、好気性条件下で該還元態窒
素が酸化される汚泥処理部と、を更に備えることを特徴
とする水処理装置。
5. A water treatment apparatus comprising: a biological treatment section to which water to be treated containing an organic chlorine compound is supplied, and wherein the water to be treated is biologically treated by activated sludge, wherein the biological treatment is performed by the biological treatment section. Activated sludge separating section for solid-liquid separation of the treated water and the activated sludge, the treated water is supplied, a coagulant is added, and the solid content agglomerated from the treated water is treated as coagulated sludge. An agglomerated sludge separating section for solid-liquid separation from water, connected to the activated sludge separating section and the agglomerated sludge separating section, wherein the activated sludge and the agglomerated sludge are supplied, and reduced nitrogen is supplied. A sludge treatment section in which the reduced nitrogen is oxidized under aerobic conditions.
【請求項6】 前記凝集汚泥分離部が、 前記生物処理部の前段に設けられており、且つ、前記被
処理水に凝集剤が添加されて凝集した凝集汚泥が固液分
離される第1の凝集分離部を有する、ことを特徴とする
請求項5記載の水処理装置。
6. The first coagulated sludge separating section is provided in front of the biological treatment section, and a coagulant is added to the water to be treated to perform coagulation sludge solid-liquid separation. The water treatment device according to claim 5, further comprising an aggregating / separating unit.
【請求項7】 前記凝集汚泥分離部が、 前記生物処理部の前段に設けられており、且つ、前記被
処理水に凝集剤が添加されて凝集した凝集汚泥が固液分
離される第2の凝集分離部を有する、ことを特徴とする
請求項5記載の水処理装置。
7. The second method, wherein the coagulated sludge separation section is provided in front of the biological treatment section, and a coagulant is added to the water to be treated, and coagulated coagulated sludge is subjected to solid-liquid separation. The water treatment device according to claim 5, further comprising an aggregating / separating unit.
JP2001165224A 2001-05-31 2001-05-31 Water treatment method and apparatus Withdrawn JP2002355695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001165224A JP2002355695A (en) 2001-05-31 2001-05-31 Water treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001165224A JP2002355695A (en) 2001-05-31 2001-05-31 Water treatment method and apparatus

Publications (1)

Publication Number Publication Date
JP2002355695A true JP2002355695A (en) 2002-12-10

Family

ID=19007924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001165224A Withdrawn JP2002355695A (en) 2001-05-31 2001-05-31 Water treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP2002355695A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193189A (en) * 2004-01-09 2005-07-21 Kurita Water Ind Ltd Anaerobic treatment method and anaerobic treatment apparatus
WO2013097460A1 (en) * 2011-12-30 2013-07-04 深圳市能源环保有限公司 Wastewater pre-treatment system and wastewater pre-treatment method
JP2016034618A (en) * 2014-08-04 2016-03-17 株式会社Ihi Activated sludge process system
JP2019209324A (en) * 2018-05-30 2019-12-12 大矢建設工業株式会社 Wastewater treatment system and wastewater treatment method
CN113292214A (en) * 2021-05-27 2021-08-24 浙江大学 Heavy metal removal bioleaching process for carrying out classification treatment based on bottom mud properties
KR102449538B1 (en) * 2021-07-12 2022-09-30 이승준 A package system for treatment of wastewater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193189A (en) * 2004-01-09 2005-07-21 Kurita Water Ind Ltd Anaerobic treatment method and anaerobic treatment apparatus
JP4501432B2 (en) * 2004-01-09 2010-07-14 栗田工業株式会社 Anaerobic treatment method and apparatus
WO2013097460A1 (en) * 2011-12-30 2013-07-04 深圳市能源环保有限公司 Wastewater pre-treatment system and wastewater pre-treatment method
JP2016034618A (en) * 2014-08-04 2016-03-17 株式会社Ihi Activated sludge process system
JP2019209324A (en) * 2018-05-30 2019-12-12 大矢建設工業株式会社 Wastewater treatment system and wastewater treatment method
CN113292214A (en) * 2021-05-27 2021-08-24 浙江大学 Heavy metal removal bioleaching process for carrying out classification treatment based on bottom mud properties
KR102449538B1 (en) * 2021-07-12 2022-09-30 이승준 A package system for treatment of wastewater

Similar Documents

Publication Publication Date Title
CN105399287B (en) A kind of organic wastewater with difficult degradation thereby integrated treatment and Zero discharge treatment method and its system
CN106731774A (en) A kind of waste gas, sewage coprocessing system and method
JP2002011498A (en) Device for treating leachate
JP2002273494A (en) Method of treating organic solid containing inorganic salt, particularly sewer sludge
JPH09108690A (en) Treatment of phosphorus containing sewage
JPH10277568A (en) Treatment of organic matter-containing waste water
JP2002355695A (en) Water treatment method and apparatus
JP2992692B2 (en) Sewage purification method and apparatus
JP3653427B2 (en) Tofu drainage treatment method and equipment
JP4667910B2 (en) Waste treatment method and equipment
JP2003088892A (en) Organic waste water treatment apparatus
JP2002177981A (en) Waste water treatment method and equipment
JP2005185967A (en) Treatment method and treatment apparatus for organic waste water
JP4166881B2 (en) Wastewater treatment method and apparatus
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JP2002254079A (en) Wastewater treatment process
JP4085436B2 (en) Drainage treatment apparatus and method
JP3835922B2 (en) Treatment method of flue gas desulfurization waste water
JP2002326088A (en) Method and apparatus for treating phosphorous and cod- containing water
JP4647814B2 (en) Organic wastewater treatment equipment
JP3373138B2 (en) Organic wastewater treatment method and apparatus
JP3832888B2 (en) Purification device operation method
JP2000354892A (en) Treatment apparatus of hardly decomposable organic matter-containing water
JP3868535B2 (en) Dry desulfurization wastewater treatment method
JP3215619B2 (en) Purification device and operation method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071011

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805